
D S Sharma, R Sangal and J D Pawar. Proc. of the 11th Intl. Conference on Natural Language Processing, pages 328–335,
Goa, India. December 2014. c©2014 NLP Association of India (NLPAI)

Hindi Word Sketches 

 

 

Anil Krishna Eragani
1
, Varun Kuchibhotla

1
, Dipti Misra Sharma

1
, Siva Reddy

2
, and 

Adam Kilgarriff
3 

 
1
IIIT Hyderabad, India; 

2
University of Edinburgh; 

3
UK, Lexical Computing Ltd., UK 

{anil.eragani,varun.k}@research.iiit.ac.in, dipti@iiit.ac.in, 

siva.reddy@ed.ac.uk, adam@lexmasterclass.com 

 

  

 

Abstract 

Word sketches are one-page automatic, cor-

pus-based summaries of a word’s grammati-

cal and collocational behaviour. These are 

widely used for studying a language and in 

lexicography. Sketch Engine is a leading cor-

pus tool which takes as input a corpus and 

generates word sketches for the words of that 

language. It also generates a thesaurus and 

‘sketch differences’, which specify similari-

ties and differences between near-synonyms. 

In this paper, we present the functionalities of 

Sketch Engine for Hindi. We collected 

HindiWaC, a web crawled corpus for Hindi 

with 240 million words. We lemmatized, 

POS tagged the corpus and then loaded it into 

Sketch Engine. 

1 Introduction 

A language corpus is simply a collection of texts, 

so-called when it is used for language research. 

Corpora can be used for all sorts of purposes: 

from literature to language learning; from dis-

course analysis to grammar to language change 

to sociolinguistic or regional variation; from 

translation to technology. 

Corpora are becoming more and more im-

portant, because of computers.  On a computer, a 

corpus can be searched and explored in all sorts 

of ways.  Of course that requires the right app.  

One leading app for corpus querying is the 

Sketch Engine (Kilgarriff et al., 2004).  The 

Sketch Engine has been in daily use for writing 

dictionary entries since 2004, first at Oxford 

University Press, more recently at Cambridge 

University Press, Collins, Macmillan, and in Na-

tional Language Institutes for Czech, Dutch, Es-

tonian, Irish, Slovak and Slovene.  It is also in 

use for all the other purposes listed above.  On 

logging in to the Sketch Engine, the user can ex-

plore corpora for sixty languages.  In many cases 

the corpora are the largest and best available for 

the language.  For Indian languages, there are the 

corpora for Bengali, Gujarati, Hindi, Malayalam, 

Tamil and Telugu.  The largest is for Hindi with 

Figure 1. Word sketches for the verb कर (do) 

328



240 million words – we would be referring to it 

as HindiWaC in the rest of the paper. 

The function that gives the Sketch Engine its 

name is the 'word sketch', a one-page, automat-

ically-derived summary of a word's grammatical 

and collocational behaviour, as in Figure 1. Since 

the images in this paper are screen shots taken 

from Sketch Engine, translations and gloss have 

not been provided for the Hindi words in the im-

ages. 

In this paper we first introduce the main func-

tions of the Sketch Engine, with Hindi examples.  

We then describe how we built and processed 

HindiWaC, and set it up in the Sketch Engine. 

 

2 The Sketch Engine For Hindi 

2.1 The Simple Concordance Query Func-

tion 

A Simple concordance query shows the word as 

it is used in different texts. Figure 2 shows the 

query box, while Figures 3 shows its output. A 

simple search query for a word such as कर (do) 

searches for the lemma as well as the words 

which have  कर (do) as the lemma, so  कर (do), 

�कया (did), करने (to do), करत े([they] will do), etc. 

are all retrieved.  Figure 3 shows the first 20 re-

sults out of the retrieved ~5 million results.  

2.2 The Frequency Functions 

The Sketch Engine interface provides easy ac-

cess to tools for visualizing different aspects of 

the word frequency (see Figure 4). The Frequen-

cy Node forms function on the left hand menu in 

Figure 4 shows which of the returned forms are 

most frequent. 

Thus we have immediately discovered that the 

commonest forms of the lemma कर (do) are कर 

(do), �कया (did) and करने (to do). 

The p/n links are for positive and negative ex-

amples. Clicking on p gives a concordance for 

the word form, while clicking on n gives the 

whole concordance except for the word form.  

Figure 2. Simple concordance query 

Figure 3. The resulting concordance lines 

329



2.3 The Word List function 

The Word List function allows the user to make 

frequency lists of many types (words, lemmas, 

tags). Figure 5 shows the most frequent words in 

the corpus. In addition to most frequent words, 

keywords of any target corpus can be extracted. 

This is done by comparing frequent words from 

the target corpus with the frequent words from a 

general purpose corpus. Figure 6 displays the 

keywords of a Hindi Election corpus, where this 

is the target corpus, and the general purpose cor-

pus is the HindiWaC. 

Almost every keyword closely relates to the 

trend of news articles in the 2014 Indian Parlia-

ment elections. Since the Hindi Election Corpus 

is of small size, the frequency-per-million col-

umn contains projected values. These are signifi-

Figure 4. Frequency of word forms of कर (do) 

Figures 5 & 6. Frequency list of the whole corpus for Words and Keywords extracted au-

tomatically from Hindi Election Corpus by comparing it with Hindi Web Corpus 

330



cantly higher than the same words in the Hindi-

WaC since the Election Corpus is domain specif-

ic. 

2.4 The Word Sketch and Collocation Con-

cordance functions 

The Word Sketch function is invaluable for find-

ing collocations. The word sketches of the word 

लोग (people) for three dependency relations are 

shown in Figure 7. 

    The dependency relations that we use are 

based on the Paninian framework (Begum et al., 

2008). Three of the most common dependency 

relations given by this model are as follows:  
 

● k1: agent and/or doer 

● k2: object and/or theme 

● k3: instrument 

    These relations are syntactico-semantic in na-

ture, and differ slightly from the equivalent the-

matic roles mentioned above. More about how 

we get the word sketches shown in Figure 7 is 

explained in Section 3. 

    In figure 7, the three dependency relations 

shown are: 

 

● nmod_adj: noun-modifier_adjective 

● k1_inv: doer_inverse 

● nmod: noun-modifier 

        The word sketch function assigns weights to 

each of the collocates and also to the dependency 

relations.  

    Clicking on the number after the collocate 

gives a concordance of the combination (Figure 

8). 

 

2.5 The Bilingual Word Sketch function 

A new function has been added recently to the 

Word Sketch, which is the Bilingual Word 

Sketch. This allows the user to see word sketches 

for two words side by side in different languages. 

Figure 9 shows a comparison between लाल (red) 

and red. Interestingly, the usage of word red in 

Hindi and English are very diverse. The only 

common noun which is modified by red in both 

languages is गुलाब (rose). 

Figure 7. Word Sketch results for लोग (people) Figure 8. Concordance lines for लोग (people) in 

combination with its gramrel “nmod” 

331



2.6 Distributional Thesaurus and Sketch 

Diff 

The Sketch Engine also offers a distributional 

thesaurus, where, for the input word, the words 

'sharing' most collocates are presented. Figure 10 

shows the top entries in similarity to कर (do). 

The top result is हो (be). Clicking on it takes us 

to a 'sketch diff', a report that shows the similari-

ties and differences between the two words in 

Figure 11. 

Figure 9. Adjective results of a bilingual word sketch for Hindi लाल (red) and English red 

English translations of some of the Hindi words are:  chilli, colour, fort, flower, rose, cloth, Shastri 

Figure 10 & 11. Thesaurus search showing entries similar to कर (do) (left) and Sketch Diff compar-

ing collocates of कर (do) and हो (be) (right) 

332



    The red results occur most frequently with हो 

(be), the green ones with कर (do). The ones on 

white occur equally with both. 

3 Building and processing HindiWaC 

and loading it into the Sketch Engine 

 

HindiWaC was built using the Corpus Factory 

procedure (Kilgarriff et al., 2010).  A first 

tranche was built in 2009, with the crawling pro-

cess repeated and more data added in 2011, and 

again in 2014. Corpus Factory method can be 

briefly described as follows: several thousands of 

target language search queries are generated 

from Wikipedia, and are submitted to Microsoft 

Bing search engine. The corresponding hit pages 

for each query are downloaded. The pages are 

filtered using a language model. Boilerplate text 

is removed using body text extraction, deduplica-

tion to create clean corpus. We use jusText and 

Onion tools (Pomikálek, 2011) for body-text ex-

traction and deduplication tools respectively. 

    The text is then tokenized, lemmatized and 

POS-tagged using the tools downloaded from 

http://sivareddy.in/downloads (Reddy and 

Sharoff, 2011). The tokenizer found here is in-

stalled in the Sketch Engine. 

3.1 Sketch Grammar for Hindi 

A sketch grammar is a grammar for the lan-

guage, based on regular expressions over part-of-

speech tags. It underlies the word sketches and is 

written in the Corpus Query Language (CQL). 

Sketch grammar is designed particularly to iden-

tify head-and-dependent pairs of words (e.g., खा 

[eat] and राम [Ram]) in specified grammatical 

relations (here, k1 [doer]), in order that the de-

pendent can be entered into the head's word 

sketch and vice versa. 

    Sketch Grammars are popular with lexico-

graphic and corpus linguistics community, and 

are used to identify collocations of a word with a 

given grammatical relation (Kilgarriff and Run-

dell, 2002). We use Sketch Grammar to identify 

words in syntactic relations in a given sentence. 

For example, a grammar rule for the relation 

"k1" (doer) is 2:"NN" "PSP\:ने" "JJ"? 1:"VM", 

which specifies that if a noun is followed by a 

PSP and an optional adjective and followed by a 

verb, then the noun is the kartha/subject of the 

verb. The head and child are identified by 1: and 

2: respectively. Each rule may often be matched 

by more than one relation creating ambiguity. 

Yet they tend to capture the most common be-

havior in the language. 

    Writing a full-fledged sketch grammar with 

high coverage is a difficult task even for lan-

guage experts, as it would involve capturing all 

the idiosyncrasies of a language. Even though 

such hand-written rules tend to be more accurate, 

the recall of the rules is very low. In this paper, 

the grammar we use is a collection of POS tag 

sequences (rules) which are automatically ex-

tracted from an annotated Treebank, Hindi De-

pendency Treebank (HDT-v0.5), which was re-

leased for the Coling2012 shared task on de-

pendency parsing (Sharma et al., 2012). This 

treebank uses IIIT tagset described in (Bharati et 

al., 2006). This method gives us a lot of rules 

based on the syntactic ordering of the words. 

Though these rules do not have all the lexical 

cues of a language, the hope is that, when ap-

plied on a large-scale web corpus, the correct 

matches (sketches) of the rules automatically 

become statistically more frequent, and hence 

more significant.  

    From the above mentioned treebank (HDT) we 

extract dependency grammar rules (i.e. sketch 

grammar) automatically for each dependency 

relation, based on the POS tags appearing in be-

tween the dependent words (inclusive). For ex-

ample, from the sentence,  

राम(Ram) ने(erg.) कमरे(room) म�(inside) 

आम(mango) खाया(eat), Ram ate [a] mango in 

[the] room, we extract rules of the type:  

(k1[doer], k2 [object], k7[location]) 
 

k1 - 2:[tag="NNP"] [tag="PSP\:ने"] [tag="NN"] 

[tag="PSP\:म�"] 1:[tag="VM"] 

k2 - 2:[tag="NN"] 1:[tag="VM"] 

k7 - 2:[tag="NN"] [tag="PSP\:म�"] [tag="NN"] 

1:[tag="VM"] 
 

    In the above example, relation names are in 

bold with one of the corresponding rules for each 

of them.  

    We do include a few lexical features associat-

ed with the POS tags PSP (post-position) and 

CC (conjunction) in order to disambiguate be-

tween different dependency relations. For exam-

ple, in both the relations k1 (doer) and k2 (ob-

ject) we have the rules (1) and (2) given below 

respectively in Figure 12: 

     
333



 

    In (1), the ergative marker indicates that the 

noun (NN) is the doer of the verb (VM). In (2), 

the accusative marker indicates that the noun 

(NN) is the object of the verb (VM). Also, (2) is 

not a complete sentence – the doer has not been 

mentioned, and only the part of the sentence that 

the rule is applied to is shown.  

    If in the rules, the PSP POS tags didn’t con-

tain the lexical features, both the rules would 

have been the same, and hence both the rules 

have been applied on both the sentences, making 

the word sketches erroneous. 

    By lexicalizing the PSP POS tag, the rule(s) 

formed are now less ambiguous, and more accu-

rate. 

    After extracting all the dependency rules, we 

apply each rule on the annotated Treebank 

(HDT), and compute its precision. For example, 

if the rule “k7 (location) - 2:[tag="NN"] 

[tag="PSP\:म�"] [tag="NN"] 1:[tag="VM"]” 

is applied on the HDT, we get all the [2:NN, 

1:VM] pairs where the rule holds, say N pairs. 

Out of these N pairs, if M of them are seen cor-

rectly with k7 (place) relation in the training data 

then the precision of the rule is	
�

�
.  

    Conditions that need to be satisfied for a rule 

to be included in the sketch grammar: 
 

● The rule must have a precision of at least 

70%. A higher cut-off gives us rules with 

better precision, but less recall, and it is 

the reverse for lower cut-off limits.  

● The frequency of the tag sequence (N) 

must be greater than 4, to ensure some 

amount of statistical significance of the 

rules.  

    The context size – the maximum allowed 

length of the tag sequence (rule), is set to 7 to 

limit the number of rules generated. 

4 Error Analysis 

The word sketches may not always be accurate 

due to the ambiguous nature of rules, and POS 

tagging errors. For example, when a rule such as  

1:[tag=”NN”] [tag=”PSP: ने”] 2:[tag=”VM”] 

is applied on sentences which have nouns ending 

with the honorific जी in the data, जी is likely to 

be a collocate of the words. This is an error due 

to the POS tagger that we use to tag the Hindi-

WaC. The tagger tags the honorific जी as NN and 

not RP. These word sketches can be improved 

further by improving the POS tagger, or the 

grammar, for example by involving local word 

group information. The other related errors are 

due to UNK POS tag which is generally assigned 

to the words that are unknown to the tagger. 

    As the length of a rule increases so does its 

sparsity, i.e. the number of sentences on which 

the rule can be applied since all the POS tags in 

the rule have to occur in that particular order. 

Hindi being a free word order language the pos-

sibility of all the POS tags occurring in that order 

is even less. 

5 Conclusion and Future Work 

Corpora are playing an increasing role in all 

kinds of language research as well as in language 

learning, lexicography, translation, literary stud-

ies and discourse analysis.  The requirements are, 

firstly, a suitable corpus, and secondly, a corpus 

query tool. We have presented HindiWaC, a 

large corpus of Hindi, which has been prepared 

for use in the Sketch Engine.  We have described 

how we used Hindi Dependency Treebank to 

develop the grammar underlying the word 

sketches.  And we have shown the core features 

of the Sketch Engine, as applied to Hindi.   

    Our  current  grammar  is  prone  to  data 

sparseness  as  the  length  of  rule  increases. A 

future direction of this work could be on building 

compact grammars using regular expressions. 

Figure 12. A sample of similar rules for different dependency relations 

334



Additionally, one could also explore the useful-

ness of morphological features in grammar rules 

to make them semantically accurate. 

Reference 

Adam Kilgarriff, Pavel Rychly, Pavel Smrz and Da-

vid Tugwell. The Sketch Engine. Proceedings of 

EURALEX 2004. 

R. Begum, S. Husain, A. Dhwaj, D. Sharma, L. Bai 

and R. Sangal. Dependency annotation scheme for 

Indian languages. Proceedings of International 

Joint Conference on Natural Language Processing 

2008 

Adam Kilgarriff, Siva Reddy, Jan Pomikálek and 

Avinesh PVS. A Corpus Factory for many lan-

guages. In LREC. 2010 

Jan Pomikálek. Removing Boilerplate and Duplicate 

Content from Web Corpora. 2011 

Siva Reddy and Serge Sharoff. Cross Language POS 

Taggers (and other Tools) for Indian Languages: 

An Experiment with Kannada using Telugu Re-

sources. Proceedings of IJCNLP workshop on 

Cross Lingual Information Access 2011. 

Adam Kilgarriff and Michael Rundell. Lexical Pro-

filng Software and its Lexicographic Applications – 

a Case Study. In A. Braasch et al. (eds.) EURA-

LEX Proceedings 2002 807-818. 

A. Bharati, R. Sangal, D. Sharma and L. Bai. 

"Anncorra: Annotating corpora guidelines for pos 

and chunk annotation for Indian languages."  

LTRC-TR31  2006 

D. Sharma, P. Mannem, Joseph van Genabith, Sobha 

Lalitha Devi, Radhika Mamidi and Ranjani Par-

thasarathi. Workshop on Machine Translation and 

Parsing in Indian Languages (MTPIL-2012). Pro-

ceedings of International Conference on Computa-

tional Linguistics (COLING) 2012 

Kilgarriff, Adam, et al. "Itri-04-08 the sketch en-

gine." Information Technology105 (2004): 116. 

Pearce, Michael. "Investigating the collocational be-

haviour of man and woman in the BNC using 

Sketch Engine 1." Corpora 3.1 (2008): 1-29. 

335


