
D S Sharma, R Sangal and J D Pawar. Proc. of the 11th Intl. Conference on Natural Language Processing, pages 56–62,
Goa, India. December 2014. c©2014 NLP Association of India (NLPAI)

Use of GPU and Feature Reduction for Fast Query-by-Example Spoken
Term Detection

Gautam Mantena, Kishore Prahallad
International Institute of Information Technology - Hyderabad, India

gautam.mantena@research.iiit.ac.in, kishore@iiit.ac.in

Abstract

For query-by-example spoken term de-
tection (QbE-STD) on low resource lan-
guages, variants of dynamic time warp-
ing techniques (DTW) are used. How-
ever, DTW-based techniques are slow and
thus a limitation to search in large spo-
ken audio databases. In order to enable
fast search in large databases, we exploit
the use of intensive parallel computations
of the graphical processing units (GPUs).
In this paper, we use a GPU to improve
the search speed of a DTW variant by
parallelizing the distance computation be-
tween the Gaussian posteriorgrams of spo-
ken query and spoken audio. We also
use a faster method of searching by av-
eraging the successive Gaussian posterior-
grams to reduce the length of the spoken
audio and the spoken query. The results in-
dicate an improvement of about 100x with
a marginal drop in search performance.

1 Introduction

Query by example spoken term detection (QbE-
STD) task is to detect a spoken query within a spo-
ken audio database. In a conventional approach,
an automatic speech recognition (ASR) system is
used to convert the speech signal to a sequence of
symbols and then text-based search techniques are
exploited for search (Szöke et al., 2008), (Saraclar
and Sproat, 2004), (Miller et al., 2007). How-
ever, ASR-based techniques assume the availabil-
ity of labelled data for training the acoustic and
language models and thus a limitation for low re-
source languages. To overcome this issue, dy-
namic time warping (DTW) based techniques are

proposed for QbE-STD search (Zhang and Glass,
2009), (Anguera and Ferrarons, 2013), (Mantena
et al., 2014), (Gupta et al., 2011), (Hazen et al.,
2009).

Parameters extracted from the speech signal
such as Mel-frequency cepstral coefficients and
frequency domain linear prediction cepstral coef-
ficients (Thomas et al., 2008), (Ganapathy et al.,
2010) cannot be used directly as they also cap-
ture speaker information. To overcome this is-
sue, Gaussian (Zhang and Glass, 2009), (Anguera
and Ferrarons, 2013), (Mantena et al., 2014) and
phone (Gupta et al., 2011), (Hazen et al., 2009)
posteriorgrams are used as feature representations
for DTW-based search. Gaussian posteriorgrams
are a popular feature representation in low re-
source scenarios as they do not require any prior
labelled data to compute them. In (Zhang and
Glass, 2009), (Mantena et al., 2014), (Anguera,
2012), Gaussian posteriorgrams are shown to be
a good feature representation to suppress speaker
characteristics and to perform search across multi-
lingual data.

Segmental DTW (S-DTW) is a popular tech-
nique for searching a spoken query within a spo-
ken audio data (Zhang and Glass, 2009). In
(Zhang and Glass, 2011), it is shown that the com-
putational upper bound of S-DTW is of the or-
der O(mn2), where m, n are the lengths of the
spoken audio and spoken query respectively. To
improve the search time, variants of DTW-based
techniques with a computational upper bound of
O(mn) such as sub-sequence DTW (Anguera and
Ferrarons, 2013) and non-segmental DTW (NS-
DTW) (Mantena et al., 2014) are used for QbE-
STD. However, DTW-based search techniques
are still slow as compared to other model based
approaches (Szöke et al., 2008), (Saraclar and56

Sproat, 2004), (Miller et al., 2007) and thus a lim-
itation for searching large databases.

An approach to improve the search speed is to
use hardware solutions such as graphical process-
ing units (GPUs). GPU is a computing device that
are designed for intensive, highly parallel compu-
tations that are often needed in real time speech
applications. In ASR, GPUs have been used to
compute the acoustic likelihoods for large mixture
models (Shi et al., 2008), (Cardinal et al., 2008),
and in building computation intensive machine
learning algorithms such as deep neural networks
(Povey et al., 2011), (Bergstra et al., 2010). In
(Zhang et al., 2012), GPUs were used to perform
constraint based search to prune out the spoken
audio references to perform the QbE-STD search.
The pruning process was implemented by comput-
ing a lower bound estimate for DTW.

In this paper, we use a GPU to improve the
search speed of NS-DTW using Gaussian poste-
riorgrams as feature representation of speech. The
contributions of this paper are as follows: (a) Ex-
perimental results to show the effect of the Gaus-
sian posteriorgram dimension on the QbE-STD
search using NS-DTW algorithm, (b) GPU imple-
mentation of NS-DTW. The results indicate that
by using a GPU, NS-DTW search speed can be
made independent (an approximation) of the di-
mension of the Gaussian posteriorgram, and (c)
We also use a faster method of searching by av-
eraging the successive Gaussian posteriorgrams to
reduce the length of the spoken audio and the spo-
ken query. The results indicate an improvement of
about 100x with a marginal drop in search perfor-
mance.

The organization of the paper is as follows: Sec-
tion 2 describes the database used in this work. In
Section 3, we describe the DTW-based algorithm
used to perform the search. Section 4 and Section
4.1 describes the computation of Gaussian posteri-
orgrams and its effect on the search speed. Section
5 describes the GPU implementation of NS-DTW
and followed by conclusions in Section 6.

2 Database and Evaluation

In this work, we use MediaEval 2012 data for eval-
uation which consists of audio recorded via tele-
phone in 4 South African languages (Barnard et
al., 2009). We consider two data sets, develop-
ment (dev) and evaluation (eval) which contain
spoken audio (reference) and spoken query data.

The statistics of the audio data is shown in Table
1.

Table 1: Statistics of MediaEval 2012 data.

Data Utts Total(mins) Average(sec)
dev reference 1580 221.863 8.42
dev query 100 2.372 1.42
eval reference 1660 232.541 8.40
eval query 100 2.537 1.52

All the evaluations are performed using 2006
NIST evaluation criteria (Fiscus et al., 2007),
(Metze et al., 2012) and the corresponding max-
imum term weighted values (MTWV), average
miss probability (MP) and false alarm probability
(FAP) are reported.

3 QbE-STD using NS-DTW

In this paper, a variant of DTW-based technique
referred to as non-segmental DTW (NS-DTW) is
used for QbE-STD search (Mantena et al., 2014).
LetQ andR be a spoken query and a spoken audio
(or reference) containing n and m feature vectors
respectively and are given as follows:

Q = [q1,q2, . . . ,qi, . . . ,qn]d×n (1)

R = [u1,u2, . . . ,uj, . . . ,um]d×m (2)

Each of these feature vectors represent a d di-
mensional Gaussian posteriorgrams (as described
in Section 4). The distance measure between a
query vector qi and a reference vector uj is the
negative logarithm of the cosine similarity of the
two vectors and is given by:

d(i, j) = −log
(
q̂Ti ûj

)
, (3)

where q̂i =
qi
||qi|| and ûj =

uj

||uj|| .

A similarity matrix S of size m × n is com-
puted to align the reference and query feature vec-
tors. Let i, j represent a column and a row of a
matrix. For DTW search, the start and end time
stamps are approximated by allowing the query to
start from any point in the reference and is given
by S(1, j) = d(1, j). Once the matrix S is initial-
ized the update equations for alignment are given
by Eq. 4.57

S(i, j) = min

d(i, j) + S(i− 1, j − 2)
T (i− 1, j − 2) + 1

d(i, j) + S(i− 1, j − 1)
T (i− 1, j − 1) + 2
d(i, j) + S(i− 1, j)
T (i− 1, j) + 1

,

(4)
where T (i, j) is a transition matrix which rep-

resents the number of transitions required to reach
i, j from a start point. On computing the similarity
matrix, the end point of the query within a refer-
ence is given by minj{S(n, j)} and followed by a
path traceback to obtain the start time stamp.

In segmental-DTW the reference is partitioned
based on the length of the query and a DTW is
performed for each partition resulting in a compu-
tational upper bound of O(mn2) for search. How-
ever, in NS-DTW, the reference is not partitioned
and a similarity matrix of size m × n is com-
puted resulting in a computational upper bound of
O(mn) (Mantena et al., 2014).

During the QbE-STD search, there is a possi-
bility of the query to be present in the reference
more than once. Hence, 5 best alignment scoring
indices are considered from the similarity matrix
(Mantena et al., 2014).

4 Feature Representation using Gaussian
Posteriorgrams

In general, Gaussian posteriorgrams are obtained
by a two step process (Anguera, 2012), (Mantena
et al., 2014). In the first step, acoustic parameters
such as frequency domain linear prediction cep-
stral coefficients (FDLP) are extracted from the
speech signal (Mantena et al., 2014). A 25 ms
window length with 10 ms shift is considered to
extract 13 dimensional features along with delta
and acceleration coefficients for FDLP. An all-
pole model of order 160 poles/sec and 37 filter
banks are considered to extract FDLP.

In general, spectral features such as Mel-
frequency cepstral coefficients (MFCC) are used
to compute Gaussian posteriorgrams. However, in
(Mantena et al., 2014), we have shown that the
FDLP parameters were working better than the
conventional features such as MFCC.

In the second step, Gaussian posteriorgrams are
computed by training a Gaussian mixture model
(GMM) with d number of Gaussians using the
spoken audio data and the posterior probability ob-
tained from each Gaussian is used to represent the

acoustic parameter. Thus, 39 dimensional FDLP
parameters are mapped to d dimensional Gaussian
posteriorgrams. In Section 4.1 we provide experi-
mental results to show the effect of d on the search
speed in the context of QbE-STD.

4.1 Effect of Gaussian Posteriorgram
Dimension on the Search Time

In this Section, we compute the search perfor-
mance and search time on dev dataset by vary-
ing the number of Gaussians (d). We consider the
search time as the time required to search all the
queries within a reference dataset. Table 2 show
the miss probability (MP), false alarm probability
(FAP), maximum term weighted value (MTWV),
and search time (in minutes) obtained using the
Gaussian posteriorgrams of FDLP for various val-
ues of d.

Table 2: Miss probability (MP), false alarm prob-
ability (FAP), maximum term weighted value
(MTWV) and search time on dev dataset for vari-
ous Gaussian posteriorgram dimensions (d) (Man-
tena et al., 2014).

d MP MTWV
Search

FAP Time
(10−2) (mins)

8 0.824 0.595 0.084 18.39
16 0.652 0.917 0.207 22.57
32 0.540 1.098 0.292 30.60
64 0.465 1.207 0.349 47.53
128 0.426 1.136 0.399 80.24
256 0.400 1.241 0.410 145.07
512 0.476 0.658 0.422 274.98
1024 0.413 1.009 0.432 534.15

From Table 2, it can be seen that MTWV in-
creases with an increase in d. However, with an
increase in d there is increase in search time and
thus resulting a slower QbE-STD search. In (Man-
tena et al., 2014), d = 128 is considered as an
optimum value of the Gaussian posteriorgram di-
mension based on the MTWV and the search time.
A more detailed description of the performance of
NS-DTW by varying the dimensions of the Gaus-
sian posteriorgrams is given in (Mantena et al.,
2014).

To better understand the computation intensive
components in NS-DTW, we calculate the time re-
quired for distance computation (as given by Eq.
(3)) and to perform the update equations (as given58

by Eq. (4)) along with the path traceback for
d = 128 (as shown in Table 3). It is to be noted
that the path traceback includes the selection of 5
best alignment scoring indices from each of the
reference file and thereby obtaining the start and
end time stamps.

Table 3: Time taken for distance computation,
d(i, j), and for update equations, S(i, j), along
with the alignment path traceback. It is to be noted
that we use d = 128 as the dimension of the Gaus-
sian posteriorgrams.

Time (mins)
d(i, j) 66.15
S(i, j) +

14.08
Path traceback

From Table 3, it can be seen that the distance
computation occupies 82.44% of the total search
time. Thus, we are motivated to use GPUs for fast
distance computation. A more detailed description
of GPU implementation of NS-DTW is provided
in Section 5.

5 GPU Accelerated NS-DTW

In this Section, we use NVIDIA CUDA frame-
work to exploit parallel processing for fast QbE-
STD search. CUDA follows a single instruction
multiple data (SIMD) paradigm where the GPU
cores executes the same instruction on different
portions of the data (Nickolls et al., 2008). DTW-
based variants perform the update equations in a
sequential manner and thus an issue for GPU im-
plementations (Zhang et al., 2012), (Sart et al.,
2010). A solution to overcome the problem is to
parallelize a part of the computation such as the
distance calculation for a search speedup. In this
paper, we use NVIDIA GT 610 graphic card with
48 cores and a GPU memory of 2048 MB.

CUDA is known for fast matrix operations such
as multiplication and thus we exploit its use for
distance computation. To exploit the computing
power of the GPU, we use matrix multiplication
of the complete reference (R) and query (Q) fea-
ture vectors. Let Ŝ represent anm×nmatrix such
that Ŝ(i, j) = d(i, j). Ŝ can be obtained as fol-
lows: Ŝ = −log(RTQ), where R and Q are the
reference and query feature vectors (as described
in Eq. (1) and Eq. (2)). It is to be noted that
RTQ represents an m × n matrix and log(RTQ)
performs a logarithmic operation on all the m× n

elements in the matrix.

Log

S
^

Query (Q)

GPU

Reference (R)

Matrix Multiplication

(R
TQ)

Figure 1: A general block diagram of the distance
computation in a GPU for NS-DTW.

The GPU implementation of the NS-DTW is as
follows:

1. CPU copies the reference and query Gaussian
posteriorgrams into the GPU memory.

2. To initialize Ŝ, CUDA kernels (or functions)
are used and is obtained in a two step process:
(a) Firstly, the dot product is performed using
matrix multiplication given by RTQ, and (b)
Then the log operation is performed. Fig. 1
shows a general block diagram of the opera-
tions performed using GPU to obtain Ŝ.

3. The CPU, then copies the Ŝ into the system
memory (RAM) and then performs the up-
date equations as described in Eq. (4). It is
to be noted that the distance of each of the
query and reference Gaussian posteriorgrams
have been computed in Step 2 and thus we use
Ŝ(i, j) instead of d(i, j) in the update equa-
tions given by Eq. (4).

5.1 Use of Batch Processing for Search

To maximize the number of parallel computations
on the GPU we use batch processing wherein NS-
DTW is performed on a query Q and the entire
database of references pooled to a single sequence
of Gaussian posteriorgrams. This single sequence
of Gaussian posteriorgrams is referred to as a ref-
erence batch (Rb) and is given as follows:

Rb = [R1
d×m1

, R2
d×m2

, . . . ,

. . . , Rkd×mk
, . . . , RLd×mL

]d×M , (5)59

where Rkd×mk
is a matrix of size d×mk which

represents the kth reference containing mk se-
quence of Gaussian posteriorgrams of dimension

d. The size of Rb is d×M , where M =
L∑
k=1

mk.

On obtaining Rb, Ŝ is then computed as fol-
lows: Ŝ = −log(RTb Q). If Rb is very large we
split the data into a smaller batches and processes
a single batch at a time. On computing the simi-
larity matrix S, we select 500 best alignment score
indices and perform a path trace back to obtain the
start time stamps of the possible search hits. From
the dev dataset, we have observed that there were
no queries which are present in more than 500 spo-
ken audio and thus we select 500 best alignment
score indices for detection.

5.2 Comparison of Search Time: GPU vs
CPU

Fig. 2 shows the search speed of NS-DTW us-
ing CPU and GPU cores. It is to be noted that we
use batch processing on the GPU for QbE-STD
search. From Fig. 2, it can be seen that the GPU
implementation is faster than that of the CPU and
the search speed is independent (an approxima-
tion) of the dimension (d).

8 16 32 64 128 256 512 1024
0

100

200

300

400

500

600

d

T
im

e
 (

m
in

u
te

s
)

CPU

GPU

Figure 2: NS-DTW search time on dev data by
varying the dimensions of the Gaussian posterior-
grams using CPU and GPU cores.

To summarize the search performance and
speed of NS-DTW, in Table 4 we show MP, FAP,
MTWV and speedup of QbE-STD search for d ≥
128 using a GPU. We define speedup as the ratio
of NS-DTW search time on CPU and to that of the
search time obtained using a GPU.

From Table 4, it can be seen that there is an
improvement in the search performance (MTWV)
for d = 128, 256, 512, 1024 as compared to the

Table 4: Miss probability (MP), false alarm prob-
ability (FAP), maximum term weighted value
(MTWV) and search speed on dev dataset using
a GPU for d = 128, 256, 512, 1024.

d MP FAP MTWV Speedup(10−2)
128 0.363 1.214 0.450 6.91x
256 0.393 1.010 0.452 11.48x
512 0.359 1.078 0.475 27.06x
1024 0.334 1.149 0.489 40.80x

MTWVs as shown in Table 2. It is to be noted that,
to compute the values in Table 2 we have selected
5 best alignment scores from each reference R (as
described in Section 3) and to compute the values
in Table 4, we have selected 500 best alignment
scores from the reference batch Rb (as described
in Section 5.1). The results indicate a decrease in
the miss probability in Table 4 as compared to that
of Table 2 for d = 128, 256, 512, 1024 and thus an
improvement in the search performance (MTWV).

5.3 Use of Feature Reduction for Search
In this Section, we intend to further improve the
search time by modifying the NS-DTW. In this pa-
per, we reduce the query and reference Gaussian
posteriorgram vectors before performing search.
In this method, we average the successive Gaus-
sian posteriorgrams to reduce the length of the
spoken audio and the spoken query.

Consider a reduction factor α ∈ N. Let Q̂, R̂
be the sequence of reduced set of feature vectors
representing the query and reference. Q̂ and R̂ are
obtained as follows:

Q̂ = [q̂1, q̂2, . . . , q̂i, . . . , q̂n̂]d×n̂
R̂ = [û1, û2, . . . , ûj, . . . , ûm̂]d×m̂,

where n̂ = n
α , m̂ = m

α and

q̂i =
1

α

α∑

k=1

q(i−1)α+k

ûj =
1

α

α∑

j=1

u(j−1)α+k

Given a reduction factor α ∈ N, a window of
size α is considered over the posteriorgram fea-
tures and a mean is computed. The window is then
shifted by α and another mean vector is computed.60

Table 5: Maximum term weighted value (MTWV), speedup and memory usage (%) obtained on dev and
eval datasets for α = 1, 2, 3 and d = 1024 using a GPU. It is to be noted that for α = 1, the GPU memory
is not sufficient to load the whole reference dev and eval database. Thus, for α = 1, the reference dev
and eval datasets are partitioned into 2 and 3 smaller batches respectively.

α
dev eval

MTWV Speedup Memory MTWV Speedup Memory
1 0.489 40.80x 83.15% 0.469 41.37x 63.46%
2 0.474 116.37x 88.63% 0.453 117.34 91.03%
3 0.462 211.12x 61.73% 0.4353 217.60x 63.31%

1 2 3 4 5 6

0.35

0.4

0.45

0.5

α

M
T

W
V

d=128

d=256

d=512

d=1024

1 2 3 4 5 6
0

200

400

600

α

S
p

e
e

d
u

p

d=128

d=256

d=512

d=1024

1 2 3 4 5 6
0

25

50

75

100

α

G
P

U
 M

e
m

o
ry

 (
%

)

d=128

d=256

d=512

d=1024

(a)

(c)

(b)

Figure 3: (a) MTWV, (b) Speedup, and (c) GPU
memory usage (in percentage) obtained using d =
128, 256, 512, 1024 for various values of α on dev
dataset. It is to be noted that α = 1 represents the
NS-DTW without feature reduction.

A more detailed description about the algorithm is
provided in (Mantena et al., 2014).

In Fig. 3, we show the MTWV, speedup, and
GPU memory usage (in percentage) obtained us-
ing d = 128, 256, 512, 1024 for α = 1, 2, 3, 4, 5, 6
on dev dataset. It is to be noted that α = 1 rep-
resents the NS-DTW without feature reduction.
From Fig. 3, it can be seen that the search perfor-
mance decreases with an increase in α but there is

an improvement in speedup and GPU memory us-
age. For d = 512, 1024, GPU memory is not suffi-
cient to load the whole reference batch and so it is
partitioned to 2 smaller batches for search. Thus,
for d = 512, 1024, the memory usage is lower for
α = 1 as compared to that of α = 2. From Fig. 3,
it can be also be seen that by using feature reduc-
tion one can use higher dimensions of Gaussian
posteriorgrams such as d = 1024 and thus enable
searching a query in large reference files.

To summarize the QbE-STD performance, in
Table 5, we show the MTWV, speedup and mem-
ory usage (%) on dev and eval datasets for α =
1, 2, 3 and d = 1024. It is to be noted that on in-
creasing the α the MTWV decreases and thus re-
sulting in a poor search performance (as shown in
Fig. 3). From Table 5, it can be seen that there is
a good improvement in the speedup for α = 2 re-
sulting in a marginal drop in search performance.
Thus, with the use of a GPU and feature reduction
for α = 2 we could attain a speedup of about 100x
and thereby enable QbE-STD search in real time.

6 Conclusions

In this paper, we used a graphical processing
unit (GPU) and improved the computation time
of the distance calculation of non-segmental dy-
namic time warping (NS-DTW) algorithm in the
context query-by-example spoken term detection
(QbE-STD) search. We have shown with experi-
mental results that the NS-DTW search speed can
be made independent (an approximation) of the
dimension of the Gaussian posteriorgram using a
GPU. We have also used a faster method of search-
ing by reducing the length of the spoken audio and
the spoken query. The reduction of the feature vec-
tors was done via arithmetic mean and it is shown
that for a reduction factor of α = 2, there is an im-
provement in the search speed of about 100x with
a marginal drop in search performance using 102461

dimensional Gaussian posteriorgrams.

7 Acknowledgements

We would like to thank P. J. Narayanan, Kishore
Kothapalli, Manoj Maramreddy and Sivanand
Achanta from IIIT-H, India for their feedback on
the GPU implementations of NS-DTW. We would
also like to thank TCS, India for partially support-
ing Gautam’s PhD fellowship.

References
X. Anguera and M. Ferrarons. 2013. Memory effi-

cient subsequence DTW for query-by-example spo-
ken term detection. In Proc. of ICME.

X. Anguera. 2012. Speaker independent discriminant
feature extraction for acoustic pattern-matching. In
Proc. of ICASSP, pages 485–488.

E. Barnard, M. H. Davel, and C. J. V. Heerden. 2009.
ASR corpus design for resource-scarce languages.
In Proc. of INTERSPEECH, pages 2847–2850.

J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pas-
canu, G. Desjardins, J. Turian, D. Warde-Farley, and
Y. Bengio. 2010. Theano: a CPU and GPU math
expression compiler. In in Proc. of the Python for
Scientific Computing Conference, June. Oral Pre-
sentation.

P. Cardinal, P. Dumouchel, G. Boulianne, and
M. Comeau. 2008. GPU accelerated acoustic like-
lihood computations. In Proc. of INTERSPEECH,
pages 964–967.

J. G. Fiscus, J. Ajot, J. S. Garofolo, and G. Dodding-
ton. 2007. Results of the 2006 spoken term detec-
tion evaluation. In Proc. of Workshop on Searching
Spontaneous Conversational Speech, pages 45–50.

S. Ganapathy, S. Thomas, and H. Hermansky.
2010. Temporal envelope compensation for ro-
bust phoneme recognition using modulation spec-
trum. Journal of Acoustical Society of America,
128:3769–3780.

V. Gupta, J. Ajmera, A., and A. Verma. 2011. A
language independent approach to audio search. In
Proc. of INTERSPEECH, pages 1125–1128.

T. J. Hazen, W. Shen, and C. White. 2009. Query-by-
example spoken term detection using phonetic pos-
teriorgram templates. In Proc. of ASRU, pages 421–
426.

G. Mantena, S. Achanta, and K. Prahallad. 2014.
Query-by-example spoken term detection using fre-
quency domain linear prediction and non-segmental
dynamic time warping. IEEE/ACM Trans. on Audio,
Speech and Lang. Processing, 22(5):946–955, May.

F. Metze, E. Barnard, M. H. Davel, C. J. V. Heerden,
X. Anguera, G. Gravier, and N. Rajput. 2012. The
spoken web search task. In MediaEval.

D. R. H. Miller, M. Kleber, C.-L. Kao, O. Kimball,
T. Colthurst, S. A. Lowe, R. M. Schwartz, and
H. Gish. 2007. Rapid and accurate spoken term
detection. In Proc. of INTERSPEECH, pages 314–
317.

J. Nickolls, I. Buck, M. Garland, and K. Skadron.
2008. Scalable parallel programming with cuda.
Queue, 6(2):40–53, March.

D. Povey, A. Ghoshal, G. Boulianne, L. Burget,
O. Glembek, N. Goel, M. Hannemann, P. Motlicek,
Y. Qian, P. Schwarz, J. Silovsky, G. Stemmer, and
K. Vesely. 2011. The Kaldi speech recognition
toolkit. In in Proc. of ASRU. IEEE Signal Process-
ing Society, December.

M. Saraclar and R. Sproat. 2004. Lattice-based search
for spoken utterance retrieval. In Proc. of HLT-
NAACL, pages 129–136.

D. Sart, A. Mueen, W. Najjar, E. Keogh, and V. Nien-
nattrakul. 2010. Accelerating dynamic time warp-
ing subsequence search with GPUs and FPGAs. In
in Proc. of International Conference on Data Mining
(ICDM), pages 1001–1006, Dec.

Y. Shi, F. Seide, and F. K. Soong. 2008. GPU-
accelerated gaussian clustering for fMPE discrimi-
native training. In Proc. of INTERSPEECH, pages
944–947.

I. Szöke, M. Fapso, L. Burget, and J. Cernocky. 2008.
Hybrid word-subword decoding for spoken term de-
tection. In Workshop on Searching Spontaneous
Conversational Speech, pages 4–11.

S. Thomas, S. Ganapathy, and H. Hermansky. 2008.
Recognition of reverberant speech using frequency
domain linear prediction. IEEE Signal Processing
Letters, 15:681 –684.

Y. Zhang and J. R. Glass. 2009. Unsupervised spoken
keyword spotting via segmental DTW on Gaussian
posteriorgrams. In Proc. of ASRU, pages 398–403.

Y. Zhang and J. Glass. 2011. An inner-product lower-
bound estimate for dynamic time warping. In Proc.
of ICASSP, pages 5660–5663.

Y. Zhang, K. Adl, and J. Glass. 2012. Fast spoken
query detection using lower-bound dynamic time
warping on graphical processing units. In in Proc.
of ICASSP, pages 5173–5176, March.

62

