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Abstract

An accurate estimation of segmental dura-
tions is needed for natural sounding text-
to-speech (TTS) synthesis. This paper
propose multi-models based on produc-
tion aspects of vowels. In this work
four multi-models are developed based on
vowel length, vowel height, vowel front-
ness and vowel roundness. In each multi-
model, syllables are divided into groups
based on specific vowel articulation char-
acteristics. In this study, (i) linguistic con-
straints represented by positional, contex-
tual and phonological features and (ii) pro-
duction constraints represented by articu-
latory features are used for predicting du-
ration patterns. Feed-forward Neural Net-
works are used for developing duration
models. From the results, it was observed
that the average prediction error is reduced
by 23.21% and correlation coefficient is
improved by 9.64% using multi-model de-
veloped based on vowel length production
characteristics, compared to single dura-
tion model.

1 Introduction

Naturalness and intelligibility of the synthetic
speech generated by the text-to-speech synthesis
(TTS) systems can be improved by means of ac-
curate prediction of prosodic parameters. Prosody
refers to duration, intonation and intensity patterns
of speech for the sequence of syllables, words and
phrases. In this work, we focus on modeling or
predicting one of the important prosodic param-
eters i.e., duration. Duration plays an important
role in human speech communication. Duration

patterns of an utterance is defined as the sequence
of segmental (phone) or supra-segmental (sylla-
ble) durations. Variation in duration patterns pro-
vide naturalness to speech. Human hearing system
is highly sensitive to variations in duration pat-
terns. Hence, while developing speech synthesis
systems, acquisition and incorporation of the du-
ration knowledge is very much essential.

In this work, we are modeling the syllable dura-
tions for Indian language Bengali. In speech sig-
nal, the duration of each unit is dictated by the
linguistic and production constraints of the unit
(Reddy and Rao, 2012) (Rao and Yegnanarayana,
2007). In (Reddy and Rao, 2012), Ramu et al have
developed single duration model using linguistic
constraints represented by positional, contextual
and phonological (PCP) features, and production
constraints represented by articulatory (A) fea-
tures (Reddy and Rao, 2012). From here onward
it is referred as PCPA features in the rest of the pa-
per. In most of the existing Indian context TTS
works (Kumar and Yegnanarayana, 1989) (Ku-
mar, 1990) (Kumar, 2002) (Krishna and Murthy,
2004) (Rao and Yegnanarayana, 2007) (Kumar et
al., 2002) single duration models are developed by
considering all the available syllables present in
the training dataset irrespective of syllable posi-
tion or articulation aspects of syllables. The distri-
bution plot of duration of syllables present in our
database is shown in Fig. 1. From Fig. 1, it is
observed that duration values of syllables in the
database vary from 50 to 560 ms with mean and
standard deviations 212.9 ms and 80.6 ms, respec-
tively. It is also observed that most of the duration
values of syllables are concentrated between 110
ms and 350 ms, respectively. Therefore, the single
duration model will be more prone to erroneous
by classifying the low and high duration values to-39



wards mean values (central tendency) due to less
frequency of low and high duration syllables in the
training phase. This results in high average predic-
tion error.
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Figure 1: Distribution plot of Syllable durations

To improve the prediction accuracy by elim-
inating the biases of short durations of sylla-
bles towards long durations of syllables and vice-
versa, Rao et al have developed two-stage duration
model (Rao, 2005) (Rao and B.Yegnanarayana,
2004). However, the accuracy of second stage de-
pends on the accuracy of first stage. Therefore,
in this study, we have explored in a different way
to improve the prediction accuracy of durations by
separating or grouping the durations of syllables
based on production aspects of vowel generation
and thereby developing single stage multi-model
based duration models rather than multi-stage du-
ration model. The implicit knowledge of duration
is usually captured by using modeling techniques.
In this work, supervised learning is carried out us-
ing neural networks to capture the underlying in-
teractions that exist between input and output fea-
tures (Haykin, 1999). The main contributions of
this paper are as follows:

1. Analysing the syllable durations based on the
vowel production characteristics.

2. Separating the syllables based on production
aspects of vowels and developing the dura-
tion models for each class of vowel articula-
tions.

The paper is organized as follows: Section 2
presents an overview of the existing research on
acquisition of duration knowledge using different
models. Performance of single neural network
model for predicting the duration values of syl-
lables along with the details of database and fea-
ture is given in Section 3. Analysis of durations

of syllables for different vowel production char-
acteristics is discussed in section 4. Section 5
compares the performance results of the proposed
multi-models with single duration model. Sum-
mary and conclusions of this paper is presented in
Section 6.

2 Previous efforts

Different approaches have been proposed by many
researchers for modeling durations of sound units
in the development of TTS systems. Duration
models range from rule-based methods to data-
based methods (Mixdorff, 2002). In the rule-based
models, some set of rules will be derived with the
help of linguistic experts and phoneticians using
limited amount of data. However, the state-of-
art is dominated by data-based models which gain
knowledge directly from the data. The data-based
methods are generally dependent on the quality
and quantity of available training data.

Rule-based models like Klatt model, which ap-
plies rules to lengthen or shorten the duration of
the segments (Klatt, 1979). Umeda developed
rule-based duration model (Umeda, 1976) which
is distinctly different from Klatt’s model. The Chi-
nese and Japanese TTS systems emphasize more
on pitch rather than durations, due to tonal na-
ture of the languages. Lee et al have developed
Chinese syllable based TTS system with simple
rule-based duration model (Lee et al., 1989). Lin-
ear statistical model like sum-of-products mod-
els, which combine multiple features into sin-
gle expression. Jan van Santen proposed sums-
of-products (SoP) model (Santen, 1994). The
model uses set of linear equations based on the
prior phonetic and phonological information as
well as the information obtained by analyzing the
data. Due to availability of large speech corpora,
many researchers have proposed non-linear statis-
tical approaches for analyzing large data. The two
major approaches follow under this category are
Classification and Regression Trees (CART) and
Artificial Neural Networks (ANN). The CART
based models are typical data-based duration mod-
els that can be constructed automatically. The
self-configuration capability of CART makes them
very popular (Black and Lenzo, Beijing China
2000); for instance the Festival TTS system uses
‘wagon’ tool to construct such trees from the ex-
isting databases. Riley used the CART based
model for predicting the segmental durations (Ri-40



ley, 1992). The prediction of syllable durations
using neural networks is proposed by Campbell
(Campbell, 1990). Neural network models also
used by Barbosa and Bailly to predict the duration
of unit, known as Inter Perceptual Center Group
(IPCG) (Barbosa and Bailly, 1994). Neural net-
work based duration models also exist for lan-
guages like Arabic (Hifny and Rashwan, 2002),
Spanish (Cordoba et al., 1999), Portuguese (Teix-
eira and Freitas, 2003) and German (Sonntag et
al., 1997).

In view of Indian context, the rule based du-
ration model is developed by Kumar and Yegna-
narayana for Hindi TTS system (Kumar and Yeg-
nanarayana, 1989) (Kumar, 1990). The rules were
derived by analyzing 500 sentences, considering
contextual and positional information. About 31
rules were derived to predict the durations. Later
the rules were upgraded by analysing the large
broadcast news data in Hindi (Kumar, 2002) (Ku-
mar et al., 2002). CART based duration models
are developed for languages like Hindi and Tel-
ugu (Krishna and Murthy, 2004). Rao and Yeg-
nanarayana have used statistical models such as
neural networks and support vector machines for
modeling the durations of syllables for Hindi, Tel-
ugu and Tamil (Rao and Yegnanarayana, 2007).
The duration models were developed by using
broadcast news data from the three languages.
Linguistic constraints represented in the form of
positional, contextual and phonological features
were used to capture the durational phenomena.
To improve the accuracy of prediction further, a
two-stage duration model was developed. By us-
ing two-stage model prediction of short and long
durations of syllables is better compared to single
stage model.

3 Single duration model using
feed-forward neural network

The details of experimental database, features,
neural network and the evaluation results for sin-
gle duration model is presented in the following
subsections.

3.1 Experimental database

The text utterances of speech database used for
this study are collected mainly from Anandabazar
Patrika - a Bengali news paper. It consists of
news from several domains like sports, politics,
entertainment, and stories. The other sources in-

clude story and text books in various fields such
as history, geography, travelogue, drama and sci-
ence. The text corpus covers 7762 declarative
sentences derived from 50,000 sentences through
optimal text selection method (Narendra et al.,
2011). The corpus covers 4372 unique sylla-
bles and 22382 unique words. The optimal text
is recorded with a professional female artist in a
noiseless chamber. The duration of total recorded
speech is around 10 hrs. The speech signal
was sampled at 16 kHz and represented as 16
bit numbers. The speech utterances are seg-
mented and labeled into syllable-like units us-
ing ergodic hidden Markov models (EHMM) (Ra-
biner and Juang, 1993). For every utterance a
label file is maintained, which consists of sylla-
bles of the utterance and their timing information.
The percentage of different syllable structures
present in the database are V(8.20%), VC(3.50%),
VCC (0.20%), CV(50.41%), CVC(32.26%),
CVCC(1.05%), CCV(2.50%), CCVC(1.77%) and
CCCV(0.11%), where C is a consonant and V is a
vowel.

3.2 Features
As we have developed syllable based TTS sys-
tem, therefore we have used syllable specific
features represented by linguistic and production
constraints are represented by positional, contex-
tual, phonological and articulatory (PCPA) fea-
tures (Reddy and Rao, 2012)(Reddy and Rao,
2013). The features representing linguistic con-
straints are syllable position in the sentence, syl-
lable position in the word, word position in the
sentence, syllable identity, contextual information,
syllable nucleus, whereas production constraints
features are vowel length, vowel height, vowel
frontness, vowel roundness, consonant type, con-
sonant place, consonant voice, aspiration, nukta,
first phone, last phone.

3.3 Feed-forward Neural Network
Feed-forward neural networks (FFNN) are used in
this work for modeling the durations of sequence
of syllables using PCPA features, since Ramu
et al in (Reddy and Rao, 2012) had confirmed
neural network model is outperformed compared
to other models like classification and regression
trees and linear regression trees. Therefore, in this
work also a four layer feedforward neural network
(FFNN) with the structure represented in Fig. 2 is
used for predicting the duration values.41
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Figure 2: Architecture of four layer feedforward
neural network for predicting the duration values
of syllables.

In Fig. 2, the input layer which is the first layer
consists of linear neuron units. The second and
third layers are the hidden layers with non-linear
neuron units. The last layer is the output layer with
linear neuron units. The first hidden layer (second
layer in Fig. 2) of the neural network consists of
more units compared to the input layer (first layer
in Fig. 2), so that network can capture local varia-
tions of features in the input space. The second
hidden layer (third layer in Fig. 2) of the neu-
ral network has fewer units compared to the input
layer, so that network can capture global variations
of features in the input space (Haykin, 1999). The
last layer (fourth layer in Fig. 2) is the output layer
having one linear unit. The activation function for
the units at the input and output layers is linear,
whereas the activation function used at hidden lay-
ers is non-linear. The extracted PCPA feature vec-
tors representing positional, contextual, phonolog-
ical and articulatory features are presented as in-
put, and the corresponding duration values are pre-
sented as desired outputs to the FFNN models.

The generalization by the network is basically
influenced by three major factors : (1) the archi-
tecture of the network, (2) the amount of data used
in the training phase of the network, and (3) the
complexity of the problem. We have some control
over the second factor but there is no control over
the third factor. Different network structures were
explored in this study to obtain the optimal perfor-
mance, by incrementally varying the hidden layer
neurons in between 5 and 100 as follows:

1. In the first iteration, the number of neurons in

layer 2 (approximately 55) is considered to be
greater than 1.5 times the number of neurons
present in layer 1.

2. The number of neurons in layer 3 (approxi-
mately 25) considered in the first iteration is
to be less than 0.75 times the number of neu-
rons present in layer 1.

3. In this work, optimal structure is determined
in 2 steps.the number of neurons in layer 2
are increased with an increment of 5 from
55 to 100, whereas in layer 3, the number of
neurons are decreased with a decrement of 5
from 25 to 5. Based on the best performance
(least training error) of all combinations (i.e.,
10 × 5 = 50 combinations), layer 2 and layer
3 neurons are fixed.

4. In step 2, with the obtained neurons in step
1, fine tuning is carried out by incrementing
the neurons of layer 2 and decrementing the
neurons of layer 3 with the step count of 1.

5. For example in step 1, assume the best perfor-
mance is obtained with h1 and h2 neurons in
layer 2 and 3, respectively. In step 2, the neu-
rons of layer 2 are varied from h1-4 to h1+4
excluding h1 (7 values) with step count of 1.
Thus, in step 2, 49 possible combinations are
tried out.

6. Overall, for finding the best optimal struc-
ture, we explored 99 possible combinations.

The structure of the network is represented by
AL BN CN DL, where L denotes linear unit and N
denotes non-linear unit. A, B, C and D are the inte-
ger values indicate the number of units used in dif-
ferent layers. The activation function used in the
non-linear unit (N) is tanh(s) function, where ‘s’ is
activation value of that unit. The (empirically ar-
rived) final optimal structures obtained with min-
imum generalization errors for predicting the du-
rations is 35L 68N 17N 1L. The input and out-
put features are normalized between [-1, 1], before
giving to the neural network.

The training process of FFNN is carried out
using Levenberg-Marquardt back-propagation al-
gorithm to adjust the weights of the neural net-
work, by back propagating the mean-squared er-
ror to the neural units and optimizes the free pa-
rameters (synaptic weights) to minimize the er-
ror (Yegnanarayana, 1999). The back-propagation42



network learns by examples. So, we use input-
output examples to show the network what type of
behaviour is expected, and the back propagation
algorithm allows the network to adapt. The back
propagation learning process works in small itera-
tive steps as follows:

• One of the example cases is applied to the
network.

• The network produces some output based on
the current state of it’s synaptic weights (ini-
tially, the output will be random).

• The network output is then compared to the
desired output and a mean-squared error sig-
nal is calculated.

• The error value is then propagated backwards
through the network, and weights are updated
to decrease the error in each layer.

• The whole process is repeated for each of the
examples.

For each syllable a 35 dimensional feature vec-
tor is formed, representing the positional, contex-
tual, phonological and articulatory information. In
this work, the data consists of 177820 syllables are
used for modeling the duration. The data is di-
vided into two parts namely design data and test
data. The design data is used to determine the net-
work topology. The design data in turn is divided
into two parts namely training data and validation
data. Training data is used to estimate the weights
(includes biases) of the neural network and val-
idation data is used to minimize the over-fitting
of network, to verify the performance error and to
stop training once the non-training validation error
estimate stops decreasing. The test data is used
once and only once on the best design, to obtain
an unbiased estimate for the predicted error of un-
seen non-training data. The amount of data used
for training, validation and testing the network are
70%, 15% and 15%, respectively. The motivation
here is to validate the model on a data set from the
one used for parameter estimation. As generaliza-
tion is the goal of the neural network, hence we
used cross validation.The early stopping method
is used to avoid over-fitting of the neural network.

3.4 Objective and subjective evaluation
The performance of duration model is evaluated
by using objective measures such as percentage

of syllables predicted within different deviations
from their actual duration values, average predic-
tion error (µ), standard deviation (σ) and linear
correlation coefficient (γX,Y ) between actual and
predicted duration values. The computation of ob-
jective measures are as follows:

Di =
|xi − yi|
xi

× 100, µ =

∑
i |xi − yi|
N

, (1)

σ =

√∑
i d

2
i

N
, and γX,Y =

VX,Y
σX .σY

(2)

where di = ei − µ, ei = xi − yi (3)

and VX,Y =

∑
i |xi − x̄|.|yi − ȳ|

N
(4)

where xi, yi are the actual and predicted duration
values respectively, and ei is the error between the
actual and predicted duration values. The devi-
ation in error is di, and N is the number of ob-
served duration values of the syllables. σX , σY are
the standard deviations for the actual and predicted
duration values respectively, and VX,Y is the cor-
relation between the actual and predicted duration
values.

The performance of method is also evaluated by
means of subjective analysis. Naturalness and in-
telligibility are two important key features to mea-
sure the quality of the synthesized speech. Natu-
ralness can be defined as, how close the synthe-
sized speech to human speech, whereas intelligi-
bility is defined as how well the message is under-
stood from the speech. The perceptual evaluation
is conducted by incorporating FFNN based dura-
tion model developed into the TTS system. In this
work, 20 subjects within the age group of 23-35
were considered for perceptual evaluation of syn-
thesized speech. After giving appropriate training
to the subjects, evaluation of TTS system is car-
ried out in a laboratory environment. Randomly
10 sentences were selected, and played the synthe-
sized speech signals through headphones to evalu-
ate the quality. Subjects have to assess the quality
on a 5-point scale (Reddy and Rao, 2012) for each
of the synthesized sentences. The subjective lis-
tening tests are carried out for the synthesized sen-
tences generated by FFNN duration model devel-
oped using the PCPA features. The mean opinion
scores (MOS) are calculated for both naturalness
and intelligibility of the synthesized speech.

The objective and subjective evaluation results
of single duration model is given in Table 1.43



Table 1: Performance of single duration model
% Predicted syllables Objective Subjective

within deviation measures measures

µ σ γ Naturalness Intelligibility
10% 15% 25% (ms) (ms)

35.14 50.63 72.56 39.04 35.09 0.83 3.53 2.86

4 Analysis of duration of syllables based
on vowel articulation factors

Production aspect of speech segments (vowels
and consonants) is one of the major factor influ-
encing the variation in the duration of syllables.
In syllables, major contribution of the duration
values is mainly from the vowels compared
to consonants. This can be verified from the
example shown in Fig. 3. The phrase ”sAro-
dAdebI” contains two words(”sArodA”,”debI”),
5 syllables(”sA”,”ro”,”dA”,”de”,”bI”) and 10
phones(s,A,r,o,d,A,d,e,b,I). The speech signal
of the phrase ”sArodAdebI” with its consonant
and vowel portions (duration) shown in Fig.
3, indicates that major portion of duration of
syllables is mainly from the vowel region.
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Figure 3: Durations of consonants and vowels of
the syllables in the phrase ”sArodAdebI”

Moreover, the duration values of vowels vary
based on their place and manner of articulation
while uttering. Therefore, in this study, analysis
of duration is carried out based on production as-
pects of vowels. The features related to vowel are
vowel length, vowel height, vowel frontness and
vowel roundness. The distribution plot of sylla-
bles based on production characteristics of vowel
is given in Fig. 4.

From Fig. 4, it is quite clear that there is a vari-
ations in the distributions of syllables of differ-
ent vowel production characteristics. Therefore,
if we separate the syllables based on these vari-
ations model and modeled each group separately,
the prediction performance can be improved.

5 Proposed multi-model based approach

It was concluded that the durations of syllables de-
pends on articulations of vowels from the anal-
ysis presented in Section 4. Therefore, in this
study, multi-models are developed separately for
each case to improve the prediction accuracy. The
prediction performance of proposed FFNN multi-
models is compared with the FFNN single dura-
tion model developed using PCPA features. The
details of performance of multi-models are dis-
cussed in the following subsections.

In this study, multi-models are developed based
on different vowel articulations described in the
section 4. For the vowel length, durations of syl-
lables are divided into 3 parts and hence 3 mod-
els are developed representing short, diphthongs
and long vowels. For vowel height, syllables are
divided into 3 parts such as high, mid and low
vowels based on tongue height while articulating
vowels, and hence 3 models are developed for
vowel height. Similarly, based on tongue front-
ness, 3 models are developed representing front,
mid and backness of tongue while articulating
vowels. Lastly, 2 models based on vowel round-
ness is developed by categorizing syllables as lip
roundness and no lip roundness while articulating
vowels.

The input features used for developing multi-
models is same as that of single model ex-
cept the articulatory feature of the vowel type.
For vowel length models, the articulatory feature
vowel length is not used as it is redundant. This is
applicable even for vowel height, vowel frontness
and vowel roundness models. The performance of
multi-models for each category of vowel articula-
tions is given in Table 2. Column 1 of Table 2
indicate the vowel feature , column 2 indicate the
models developed for each vowel feature, columns
3-5 indicates the percentage of syllables predicted
within different deviations from their actual du-
ration values and columns 6-8 indicates objective44
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Figure 4: Distribution plots of the syllable durations based on different articulations of vowels related to
(a) vowel length (b) vowel height, (c) vowel frontness, and (d) vowel roundness

Table 2: Performance of FFNN based multi-models based on vowel articulations for predicting the
duration values of the syllables.

Vowel
Models

% Predicted syllables Objective

features
within deviation measures

µ σ γ

10% 15% 25% (ms) (ms)

Vowel
Long 36.82 (35.19) 54.87 (51.25) 73.08 (72.31) 36.50 (39.87) 29.09 (35.50) 0.86 (0.80)

Length
Dipthong 32.16 (48.39) 45.59 (63.40) 66.83 (88.56) 40.05 (33.63) 23.91 (30.66) 0.85 (0.78)

Short 43.03 (34.99) 60.00 (50.30) 81.46 (72.47) 27.76 (38.83) 25.28 (35.00) 0.93 (0.84)

AVERAGE 41.44 ( 35.14 ) 58.64 ( 50.63 ) 79.31 ( 72.56 ) 29.98 ( 39.04 ) 26.20 ( 35.09 ) 0.91 ( 0.83 )

Vowel
High 40.63(35.11) 55.25(51.99) 77.30 (72.68) 31.33 (37.13) 28.72 (33.85) 0.84 (0.82)

Height
Mid 39.15 (34.77) 56.48 (49.61) 79.79 (72.61) 31.19 (39.66) 27.49 (35.34) 0.91 (0.85)

Low 35.28 (36.11) 52.14 (51.75) 75.54 (72.29) 35.37 (39.54) 28.18 (35.78) 0.87 (0.80)

AVERAGE 38.66 ( 35.14 ) 55.25 ( 50.63 ) 78.29 ( 72.56 ) 32.13 ( 39.04 ) 27.93 ( 35.09 ) 0.89 ( 0.83 )

Vowel
Front 39.21 (34.61) 55.22 (51.01) 76.89 (73.64) 30.82 (38.36) 25.34 (32.89) 0.90 (0.83)

Frontness
Mid 41.13(37.01) 58.92 (53.23) 80.57 (74.70) 31.53 (39.12) 27.25 (35.57) 0.91 (0.83)

Back 33.10 (33.52) 47.38 (46.89) 70.60 (68.47) 36.67 (39.84) 30.72 (37.41) 0.87 (0.83)

AVERAGE 38.17 ( 35.14 ) 54.31 ( 50.63 ) 76.41 ( 72.56 ) 32.71 ( 39.04 ) 27.51 ( 35.09 ) 0.90 ( 0.83 )

Vowel
No-round 33.50 (35.77) 50.14 (52.09) 72.43 (74.15) 37.88 (38.73) 30.53 (34.19) 0.85 (0.83)

Roundness
Round 34.71 (33.52) 51.02 (46.89) 74.68 (68.47) 33.24 (39.84) 28.61 (37.40) 0.89 (0.83)

AVERAGE 33.84 ( 35.14 ) 50.39 ( 50.63 ) 73.06 ( 72.56 ) 36.58 ( 39.04 ) 29.99 ( 35.09 ) 0.87 ( 0.83 )

measures.

Table 1 represents the average performance of
all the syllables in the test set of the single dura-
tion model. The prediction performance of the syl-
lables corresponding to different vowel production
characteristics is also computed which is shown in
brackets in Table 2 and the average performance

of multi-models is shown in bold. From Table 2, it
is quite clear that the performance of multi-models
developed based on articulation of vowels is bet-
ter compared to the performance of single duration
model (the values in brackets). From this hypoth-
esis, we concluded that the prediction accuracy of
durations depends on the articulations of vowels,
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and it can be captured by separating the syllables
and developing different models based on the ar-
ticulations. Among all the multi-models based on
different vowel articulations. The multi-model de-
veloped based on vowel length production charac-
teristics is outperformed compared to other multi-
models. It is found that the average prediction
error is reduced by 23.21% and correlation coef-
ficient is improved by 9.64% using multi-model
developed by separating syllables based on vowel
length production characteristic compared to sin-
gle duration model. However, we can notice that
the average error for the model developed using
duration of syllables having vowel diphthongs is
more compared to single duration model. This is
expected because the amount of syllables having
vowel diphthongs are quite less for training the
neural network (0.89% in training set and 0.77%
in test set). This error can be minimized by taking
average duration value of diphthongs.

The subjective listening tests are also carried
out for the synthesized sentences generated by
FFNN multi-models as shown in Table 3. The
mean opinion scores (MOS) are calculated for
both naturalness and intelligibility of the synthe-
sized speech. For comparing the quality of syn-
thesized speech based on incorporation of specific
duration models, we have also derived the mean
opinion scores for the synthesized speech gener-
ated in the absence of duration model. From Table
3, it is observed that the MOS values for natural-
ness and intelligibility of FFNN multi-model de-
veloped based on vowel length production charac-
teristics is better compared to other models. The
scores indicate that the intelligibility of the synthe-
sized speech is fairly acceptable, whereas the nat-
uralness seems to be poor. Naturalness is mainly
attributed to individual perception.

6 Summary and conclusions

In this work, novel multi-models are developed
based on the articulation characteristics of vow-
els. Among all multi-models, the multi-model de-
veloped based on vowel length category is per-
formed better compared to other multi-models de-
veloped based on vowel height, vowel frontness
and vowel roundness. The prediction accuracy of
multi-model is outperformed compared with sin-
gle duration model. The prediction performance
of diphthongs model in vowel length multi-model
is dropped compared to single duration model.

The error can be minimized or prediction accuracy
can be further improved by taking average dura-
tion of diphthongs rather than modeling using net-
works due to less frequency of diphthongs or it can
be included in the model of long vowels as long
vowel durations are quite close to duration values
of diphthongs. The prediction accuracy can be fur-
ther improved by analogizing and constructing the
multi-models based on position aspect of syllables
in sentence and in words, as well as multi-models
based on consonant production characteristics.

Table 3: Mean opinion scores for the quality of
synthesized speech of TTS after incorporating the
multi-model based duration models

Models Mean Opinion Scores
Intelligibility Naturalness

Without Duration model 3.10 2.62
Single model 3.53 2.86
Vowel Length 3.70 3.01
Vowel Height 3.65 2.89
Vowel Frontness 3.62 2.88
Vowel Roundness 3.56 2.87
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