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1. Introduction and overview
We have developed an approach to broad-coverage
semantic parsing that starts with Treebank parses
and yields scoped, deindexed formulas in Episodic
Logic (EL) that are directly usable for knowledge-
based inference. Distinctive properties of our ap-
proach are

• the use of a tree transduction language, TTT,
to partially disambiguate, refine (and some-
times repair) raw Treebank parses, and also to
perform many deindexing and logical canon-
icalization tasks;

• the use of EL, a Montague-inspired logical
framework for semantic representation and
knowledge representation;

• allowance for nonclassical restricted quanti-
fiers, several forms of modification and reifi-
cation, quasi-quotes and syntactic closures;

• an event semantics that directly represents
events with complex characterizations;

• a scoping algorithm that heuristically scopes
quantifiers, logical connectives, and tense;

• a compositional approach to tense deindexing
making use of tense trees; and

• the use of an inference engine, EPILOG, that
supports input-driven and goal-driven infer-
ence in EL, in a style similar to (but more
general than) Natural Logic.

We have applied this framework to general
knowledge acquisition from text corpora and the
web (though with tense meaning and many other
semantic details stripped away) (e.g., Schubert &
Hwang 2000, Van Durme & Schubert 2008), and
more recently to caption interpretation for family
photos, enabling alignment of names and other de-
scriptors with human faces in the photos, and to in-
terpreting sentences in simple first-reader stories.
Ongoing projects are aimed at full interpretation

of lexical glosses and other sources of explicitly
expressed general knowledge.

We now elaborate some of the themes in the pre-
ceding overview, concluding with comments on
related work and important remaining challenges.

2. Refinement of Treebank parses using TTT
We generate initial logical forms by compositional
interpretation of Treebank parses produced by the
Charniak parser.1 This mapping is encumbered by
a number of difficulties. One is that current Tree-
bank parsers produce many thousands of distinct
expansions of phrasal categories, especially VPs,
into sequences of constituents. We have overcome
this difficulty through use of enhanced regular-
expression patterns applied to sequences of con-
stituent types, where our interpretive rules are as-
sociated directly with these patterns. About 100
patterns and corresponding semantic rules cover
most of English.

Two other difficulties are that parsers still intro-
duce about one phrasal error for every 10 words,
and these can render interpretations nonsensical;
and even when parses are deemed correct accord-
ing to “gold standard" annotated corpora, they
often conflate semantically disparate word and
phrase types. For example, prepositional phrases
(PPs) functioning as predicates are not distin-
guished from ones functioning as adverbial modi-
fiers; the roles of wh-words that form questions,
relative clauses, or wh-nominals are not distin-
guished; and constituents parsed as SBARs (sub-
ordinate clauses) can be relative clauses, adver-
bials, question clauses, or clausal nominals. Our
approach to these problems makes use of a new
tree transduction language, TTT (Purtee & Schu-
bert 2012) that allows concise, modular, declara-
tive representation of tree transductions. (As in-
dicated below, TTT also plays a key role in log-
ical form postprocessing.) While we cannot ex-

1ftp://ftp.cs.brown.edu/pub/nlparser/
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pect to correct the majority of parse errors in gen-
eral texts, we have found it easy to use TTT for
correction of certain systematic errors in particu-
lar domains. In addition, we use TTT to subclas-
sify many function words and phrase types, and to
partially disambiguate the role of PPs and SBARs,
among other phrase types, allowing more reliable
semantic interpretation.

3. EL as a semantic representation and
knowledge representation

From a compositional perspective, the semantics
of natural language is intensional and richly ex-
pressive, allowing for nonclassical quantifiers and
several types of modification and reification. Yet
many approaches to semantic interpretation rely
on first-order logic (FOL) or some subset thereof
as their target semantic representation. This is jus-
tifiable in certain restricted applications, grounded
in extensional domains such as databases. How-
ever, FOL or description logics are often chosen
as the semantic target even for broad-coverage se-
mantic parsing, because of their well-understood
semantics and proof theory and well-developed in-
ference technology and, in some cases, by a pu-
tative expressiveness-tractability tradeoff. We re-
ject such motivations – tools should be made to fit
the phenomenon rather than the other way around.
The tractability argument, for example, is simply
mistaken: Efficient inference algorithms for sub-
sets of an expressive representation can also be
implemented within a more comprehensive infer-
ence framework, without forfeiting the advantages
of expressiveness. Moreover, recent work in Nat-
ural Logic, which uses phrase-structured NL di-
rectly for inference, indicates that the richness of
language is no obstacle to rapid inference of many
obvious lexical entailments (e.g., MacCartney &
Manning 2009).

Thus our target representation, EL, taking its
cue from Montague allows directly for the kinds
of quantification, intensionality, modification, and
reification found in all natural languages (e.g.,
Schubert & Hwang 2000, Schubert, to appear).
In addition, EL associates episodes (events, sit-
uations, processes) directly with arbitrarily com-
plex sentences, rather than just with atomic pred-
ications, as in Davidsonian event semantics. For
example, the initial sentence in each of the follow-
ing pairs is interpreted as directly characterizing
an episode, which then serves as antecedent for a

pronoun or definite:
For many months, no rain fell;
this totally dried out the topsoil.

Each superpower menaced the other with its nuclear
arsenal; this situation persisted for decades.

Also, since NL allows for discussion of linguis-
tic and other symbolic entities, so does EL, via
quasi-quotation and substitutional quantification
(closures). These can also express axiom schemas,
and autocognitive reasoning (see further com-
ments in Section 5).

4. Comprehensive scoping and tense
deindexing

Though EL is Montague-inspired, one difference
from a Montague-style intensional logic is that
we treat noun phrase (NP) interpretations as un-
scoped elements, rather than second-order predi-
cates. These elements are heuristically scoped to
the sentence level in LF postprocessing, as pro-
posed in (Schubert & Pelletier 1982). The latter
proposal also covered scoping of logical connec-
tives, which exhibit the same scope ambiguities
as quantifiers. Our current heuristic scoping al-
gorithm handles these phenomena as well as tense
scope, allowing for such factors as syntactic or-
dering, island constraints, and differences in wide-
scoping tendencies among different operators.

Episodes characterized by sentences remain im-
plicit until application of a “deindexing" algo-
rithm. This algorithm makes use of a contextual
element called a tense tree which is built and tra-
versed in accordance with simple recursive rules
applied to indexical LFs. A tense tree contains
branches corresponding to tense and aspect op-
erators, and in the course of processing one or
more sentences, sequences of episode tokens cor-
responding to clauses are deposited at the nodes by
the deindexing rules, and adjacent tokens are used
by these same rules to posit temporal or causal re-
lations among “evoked" episodes. A comprehen-
sive set of rules covering all tenses, aspects, and
temporal adverbials was specified in (Hwang &
Schubert 1994); the current semantic parsing ma-
chinery incorporates the tense and aspect rules but
not yet the temporal adverbial rules.

Further processing steps, many implemented
through TTT rules, further transform the LFs so
as to Skolemize top-level existentials and defi-
nite NPs (in effect accommodating their presup-
positions), separate top-level conjuncts, narrow
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the scopes of certain negations, widen quantifier
scopes out of episodic operator scopes where pos-
sible, resolve intrasentential coreference, perform
lambda and equality reductions, and also gener-
ate some immediate inferences (e.g., inferring that
Mrs. Smith refers to a married woman).

The following example, for the first sentence
above, illustrates the kind of LF generated by our
semantic parser (first in unscoped, indexical form,
then the resulting set of scoped, deindexed, and
canonicalized formulas). Note that EL uses pred-
icate infixing at the sentence level, for readabil-
ity; so for example we have (E0 BEFORE NOW0)
rather than (BEFORE E0 NOW0). ‘**’ is the op-
erator linking a sentential formula to the episode
it characterizes (Schubert 2000). ADV-S is a type-
shifting operator, L stands for λ, and PLUR is a
predicate modifer that converts a predicate over in-
dividuals into a predicate over sets of individuals.
For many months, no rain fell;
Refined Treebank parse:

(S (PP-FOR (IN for) (NP (CD many) (NNS months))) (|,| |,|)

(NP (DT no) (NN rain)) (VP (VBD fell)) (|:| |;|))

Unscoped, indexical LF (keys :F, :P, etc., are dropped later):

(:F (:F ADV-S (:P FOR.P (:Q MANY.DET (:F PLUR MONTH.N))))

(:I (:Q NO.DET RAIN.N) (:O PAST FALL.V)))

Canonicalized LFs (without adverbial-modifier deindexing):

(MONTHS0.SK (PLUR MONTH.N)), (MONTHS0.SK MANY.A),

((ADV-S (L Y (Y FOR.P MONTHS0.SK)))

((NO Z (Z RAIN.N) (SOME E0 (E0 BEFORE NOW0)

(Z FALL.V))) ** E0)

With adverbial deindexing, the prefixed adver-
bial modifier would become a predication (E0
LASTS-FOR.V MONTHS0.SK); E0 is the episode of
no rain falling and MONTHS0.SK is the Skolem
name generated for the set of many months.

5. Inference using the EPILOG inference engine

Semantic parsers that employ FOL or a subset of
FOL (such as a description logic) as the target rep-
resentation often employ an initial “abstract" rep-
resentation mirroring some of the expressive de-
vices of natural languages, which is then mapped
to the target representation enabling inference. An
important feature of our approach is that (scoped,
deindexed) LFs expressed in EL are directly us-
able for inference in conjunction with lexical and
world knowledge by our EPILOG inference en-
gine. This has the advantages of not sacrificing
any of the expressiveness of language, of linking
inference more directly to surface form (in prin-

ciple enabling incremental entailment inference),
and of being easier to understand and edit than rep-
resentations remote from language.

EPILOG’s two main inference rules, for
input-driven (forward-chaining) and goal-driven
(backward-chaining) inference, substitute conse-
quences or anti-consequences for subformulas as a
function of polarity, much as in Natural Logic. But
substitutions can be based on world knowledge as
well as lexical knowledge, and to assure first-order
completeness the chaining rules are supplemented
with natural deduction rules such as proof by con-
tradiction and proof of conditional formulas by as-
sumption of the antecedent.

Moreover, EPILOG can reason with the ex-
pressive devices of EL mentioned in Sections 1
and 3 that lie beyond FOL, including general-
ized quantifiers, and reified predicates and propo-
sitions. (Schubert, to appear) contains relevant ex-
amples, such as the inference from Most of the
heavy Monroe resources are located in Monroe-
east, and background knowledge, to the conclu-
sion Few heavy resources are located in Monroe-
west; and inference of an answer to the modally
complex question Can the small crane be used
to hoist rubble from the collapsed building on
Penfield Rd onto a truck? Also, the ability to
use axiom schemas that involve quasi-quotes and
syntactic closures allows lexical inferences based
on knowledge about syntactic classes of lexical
items (i.e., meaning postulates), as well as vari-
ous forms of metareasoning, including reasoning
about the system’s own knowledge and percep-
tions (Morbini & Schubert 2011). Significantly,
the expressiveness of EL/EPILOG does not pre-
vent competitive performance on first-order com-
monsense knowledge bases (derived from Doug
Lenat’s Cyc), especially as the number of KB for-
mulas grows into the thousands (Morbini & Schu-
bert 2009).

In the various inference tasks to which EPI-
LOG was applied in the past, the LFs used for
natural language sentences were based on pre-
sumed compositional rules, without the machin-
ery to derive them automatically (e.g., Schubert &
Hwang 2000, Morbini & Schubert 2011, Stratos
et al. 2011). Starting in 2001, in developing
our KNEXT system for knowledge extraction from
text, we used broad-coverage compositional inter-
pretion into EL for the first time, but since our
goal was to obtain simple general “factoids"–such
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as that a person may believe a proposition, peo-
ple may wish to get rid of a dictator, clothes can
be washed, etc. (expressed logically)–our interpre-
tive rules ignored tense, many modifiers, and other
subtleties (e.g., Van Durme & Schubert 2008).

Factoids like the ones mentioned are uncondi-
tional and as such not directly usable for inference,
but many millions of the factoids have been auto-
matically strengthened into quantified, inference-
enabling commonsense axioms (Gordon & Schu-
bert 2010), and allow EPILOG to draw conclusions
from short sentences (Gordon 2014, chapter 6).
An example is the inference from Tremblay is a
singer to the conclusion Quite possibly Tremblay
occasionally performs (or performed) a song (au-
tomatically verbalized from an EL formula). Here
the modal and frequency modification would not
easily be captured within an FOL framework.

Recently, we have begun to apply much more
complete compositional semantic rules to sen-
tences “in the wild", choosing two settings where
sentences tend to be short (to minimize the impact
of parse errors on semantic interpretation): deriva-
tion and integration of caption-derived knowledge
and image-derived knowledge in a family photo
domain, and interpretation of sentences in first-
reader stories. In the family photo domain, we
have fully interpreted the captions in a small de-
velopment set, and used an EPILOG knowledge
base to derive implicit attributes of the individuals
mentioned in the captions (by name or other des-
ignations). These attributes then served to align
the caption-derived individuals with individuals
detected in the images, and were subsequently
merged with image-derived attributes (with al-
lowance for uncertainty). For example, for the
caption Tanya and Grandma Lillian at her high
school graduation party, after correct interpreta-
tion of her as referring to Tanya, Tanya was in-
ferred to be a teenager (from the knowledge that
a high school graduation party is generally held
for a recent high school graduate, and a recent
high school graduate is likely to be a teenager);
while Grandma Lillian was inferred to be a grand-
mother, hence probably a senior, hence quite pos-
sibly gray-haired, and this enabled correct align-
ment of the names with the persons detected in the
image, determined via image processing to be a
young dark-haired female and a senior gray-haired
female respectively.

In the first-reader domain (where we are using

McGuffey (2005)), we found that we could obtain
correct or nearly correct interpretations for most
simple declaratives (and some of the stories con-
sist entirely of such sentences). At the time of
writing, we are still working on discourse phe-
nomena, especially in stories involving dialogues.
For example, our semantic parser correctly derived
and canonicalized the logical content of the open-
ing line of one of the stories under consideration,

Oh Rosie! Do you see that nest in the apple tree?

The interpretation includes separate speech acts
for the initial interjection and the question. Our
goal in this work is integration of symbolic infer-
ence with inferences from imagistic modeling (for
which we are using the Blender open source soft-
ware), where the latter provides spatial inferences
such as that the contents of a nest in a tree are not
likely to be visible to children on the ground (set-
ting the stage for the continuation of the story).

Phenomena not handled well at this point in-
clude intersentential anaphora, questions with
gaps, imperatives, interjections, and direct ad-
dress (Look, Lucy, ...). We are making progress
on these, by using TTT repair rules for phenom-
ena where Treebank parsers tend to falter, and by
adding LF-level and discourse-level interpretive
rules for the resulting phrasal patterns. Ongoing
projects are aimed at full interpretation of lexical
glosses and other sources of explicitly expressed
general knowledge. However, as we explain in
the concluding section, we do not believe that full-
fledged, deep story understanding will be possible
until we have large amounts of general knowledge,
including not only the kinds of “if-then" knowl-
edge (about word meanings and the world) we
and others have been deriving and are continuing
to derive, but also large amounts of pattern-like,
schematic knowledge encoding our expectations
about typical object configurations and event se-
quences (especially ones directed towards agents’
goals) in the world and in dialogue.

6. Related work

Most current projects in semantic parsing either
single out domains that assure highly restricted
natural language usage, or greatly limit the seman-
tic content that is extracted from text. For exam-
ple, projects may be aimed at question-answering
over relational databases, with themes such as
geography, air travel planning, or robocup (e.g.,
Ge & Mooney 2009, Artzi & Zettlemoyer 2011,
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Kwiatkowski et al. 2011, Liang et al. 2011, Poon
2013). Impressive thematic scope is achieved in
(Berant et al. 2013, Kwiatkowski et al. 2013), but
the target semantic language (for Freebase access)
is still restricted to database operations such as
join, intersection, and set cardinality. Another
popular domain is command execution by robots
(e.g., Tellex 2011, Howard et al. 2013, Artzi &
Zettlemoyer 2013).

Examples of work aimed at broader lin-
guistic coverage are Johan Bos’ Boxer project
(Bos 2008), Lewis & Steedman’s (2013) CCG-
Distributional system, James Allen et al.’s (2013)
work on extracting an OWL-DL verb ontology
from WordNet, and Draicchio et al.’s (2013)
FRED system for mapping from NL to OWL on-
tology. Boxer2 is highly developed, but inter-
pretations are limited to FOL, so that the kinds
of general quantification, reification and modifi-
cation that pervade ordinary language cannot be
adequately captured. The CCG-Distributional ap-
proach combines logical and distributional seman-
tics in an interesting way, but apart from the FOL
limitation, the induced cluster-based predicates
lose distinctions such as that between town and
country or between elected to and ran for. As
such, the system is applicable to (soft) entailment
verification, but probably not to reasoning. A
major limitation of mapping natural language to
OWL-DL is that the assertion component of the
latter is essentially limited to atomic predications
and their negations, so that ordinary statements
such as Most students who passed the AI exam
also passed the theory exam, or If Kim and Sandy
get divorced, then Kim will probably get custody
of their children, cannot be represented, let alone
reasoned with.

7. Concluding thoughts

The history of research in natural language under-
standing shows two seemingly divergent trends:
One is the attempt to faithfully capture the log-
ical form of natural language sentences, and to
study entailment relations based on such forms.
The other is the effort to map language onto
preexisting, schematic knowledge structures of
some sort, intended as a basis for understand-
ing and inference – these might be FrameNet-like
or Minsky-like frames, concepts in a description
logic, Schankian scripts, general plans as under-

2www.meaningfactory.com/bos/pubs/Bos2008STEP2.pdf

stood in AI, Pustejovskyan telic event schemas,
or something similar. Both perspectives seem to
have compelling merits, and this leads us to sup-
pose that deep understanding may indeed require
both surface representations and schematic repre-
sentations, where surface representations can be
viewed as concise abstractions from, or summaries
of, schema instances or (for generic statements) of
the schemas themselves. But where we differ from
most approaches is that we would want both levels
of representation to support inference. The surface
level should support at least Natural-Logic-like
entailment inference, along with inference chain-
ing – for which EL and EPILOG are well-suited.
The schematic level would support “reasonable"
(or default) expectations based on familiar patterns
of events, actions, or relationships. Further, the
schematic level should itself allow for language-
like expressiveness in the specification of roles,
steps, goals, or other components, which might
again be abstractions from more basic schemas.
In other words, we envisage hierarchically orga-
nized schemas whose constituents are expressed
in a language like EL and allow for EPILOG-like
inference. We see the acquisition of such schemas
as the most pressing need in machine understand-
ing. Without them, we are limited to either narrow
or shallow understanding.
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