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Introduction

Semantic parsers map sentences to formal representations of their underlying meaning. Recently,
algorithms have been developed to learn to recover increasingly expressive representations with ever
weaker forms of supervision. These advances have enabled many applications, including question
answering, relation extraction, robot control, interpreting instructions, and generating programs.

This workshop, collocated with ACL 2014, aims to achieve two goals. First, to bring together researchers
in the field to discuss the state of the art and opportunities for future research. Second, to create a stage
for presenting the variety of current approaches, thereby providing a unique opportunity for new entrants
to the field.
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Abstract
While there has been significant recent work on 
learning semantic parsers for specific task/
domains, the results don’t transfer from one 
domain to another domains. We describe a 
project to learn a broad-coverage semantic 
lexicon for domain independent semantic 
parsing. The technique involves several 
bootstrapping steps starting from a semantic 
parser based on a modest-sized hand-built 
semantic lexicon. We demonstrate that the 
approach shows promise in building a semantic 
lexicon on the scale of WordNet, with more 
coverage and detail that currently available in 
widely-used resources such as VerbNet. We view 
having such a lexicon as a necessary prerequisite 
for any attempt at  attaining broad-coverage 
semantic parsing in any domain. The approach 
we described applies to all word classes,  but in 
this paper we focus here on verbs,  which are the 
most critical phenomena facing semantic 
parsing.

1. Introduction and Motivation 

Recently we have seen an explosion of work 
on learning semantic parsers (e.g., Matuszek, et 
al, 2012; Tellex et al, 2013; Branavan et  al, 2010, 
Chen et al, 2011). While such work shows 
promise, the results are highly domain dependent 
and useful only for that domain. One cannot, for 
instance, reuse a lexical entry learned in one 
robotic domain in another robotic domain, let 
alone in a database query domain. Furthermore, 
the techniques being developed require domains  
that are simple enough so that  the semantic 
models can be produced, either by hand or 
induced from the application. Language in 
general, however, involves  much more complex 
concepts and connections, including discussion 
of involves abstract concepts, such as plans, 
theories, political views, and so on. It is not  clear 
how the techniques currently being developed 
could be generalized to such language.

The challenge we are addressing is learning a  
broad-coverage, domain-independent  semantic 
parser, i.e., a semantic parser that  can be used in 
any domain. At present, there is a tradeoff 

between the depth of semantic representation 
produced and the coverage of the techniques.  
One of the critical gaps in enabling more general, 
deeper semantic systems is the lack of any broad-
coverage deep semantic lexicon. Such a lexicon 
must contain at least the following information:
i. an enumeration of the set of distinct  senses for 

the word (e.g., as  in WordNet, PropBank), 
linked into an ontology that supports reasoning

ii. For each sense, we would have
• Deep argument structure, i.e., semantic 

roles with selectional preferences
• Constructions that  map syntax to the deep 

argument structure (a.k.a. linking rules)
• Lexical entailments that characterize the 

temporal consequences of the event 
described by the verb

The closest example to such lexical entries can 
be found in VerbNet  (Kipper et  al, 2008), a hand-
built resource widely used for a range of general 
applications. An example entry from VerbNet  is 
seen in Figure 1, which describes a class of verbs 
called murder-42.1. VerbNet  clusters verbs by 
the constructions they take, not  by sense or 
meaning, although many times, the set  of 
constructions a verb takes is a good feature for 
clustering by semantic meaning. We see that the 
verbs in this class can take an AGENT, 
PATIENT  and INSTRUMENT role, and we see 
the possible constructions that  map syntactic 
structure to the deep argument  structure. For 
instance, the first  entry indicates that  the simple 
transitive construction has the AGENT as the 
subject and the PATIENT as the object. In 
addition, it  specifies lexical entailments in an 
informal notation, roughly stating that murder 
verbs involve causing a event that  is a transition 
f rom being a l ive to not be ing a l ive . 
Unfortunately, VerbNet  only covers a few 
thousand verbs. This paper reports on work to 
automatically build entries with much greater 
coverage and more detail than found in VerbNet, 
for all the senses in WordNet. This includes the 
deep argument  structure and constructions  for 
each sense, as well as axioms describing lexical 
entailments, expressed in a formally defined 
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temporal logic (Allen, 1984; Allen & Teng, 
2013).

2. Overview of the Approach
To attain broader coverage of the verbs (and their 
senses) for English, we look to WordNet.  
Though WordNet  has excellent  coverage, it does 
not contain information about argument 
structure, and has varying quality of ontological 
information (good for nouns, some information 
for verbs, and little for adjective and adverbs). 
But  it  does contain rich sources of information in 
unstructured form, i.e., each sense has a gloss 
that defines the word’s meaning, and often 
provides examples of the word’s usage. The 
technique we describe here uses an existing 
hand-built, but  relatively limited coverage, 
semant ic l ex icon to boots t rap in to a 
comprehensive lexicon by processing these 
definitions and examples. In other words, we are 
learning the lexicon by reading the dictionary.

Specifically, we use the TRIPS parser (Allen et 
al, 2008) as the starting point, which has a 
semantic lexicon of verbs about the same size as 
VerbNet. To build the comprehensive semantic 
lexicon, we use two bootstrapping steps. The 
first  uses ontology mapping techniques to 
generate underspecified lexical entries for 
unknown words. This technique enables the 
parser to construct  interpretations of sentences 
involving words not encoded in the core lexicon. 
We then use information extracted from the 
definitions and examples to build much more 
detailed and deeper lexical entries. We have run 
this process over the entire set  of WordNet 
entries and provide preliminary results below  
evaluating the results along a number of key 
dimensions. 

2.1. The TRIPS Parsing System
The TRIPS system is a packed-forest  chart parser 
which builds constituents bottom-up using a 
best-first search strategy (Allen et  al, 2008). The 
core grammar is a hand-built, lexicalized 
context-free grammar, augmented with feature 
structures and feature unification, and driven by 
a semantic lexicon and ontology. The core 
semantic lexicon1  was constructed by hand and 
contains more than 7000 lemmas, For each word, 
it  specifies its possible senses (i.e., its ontology 
type), and for each sense, its semantic roles and 
semantic preferences, and constructions for 
mapping from syntax to semantics. 

The system uses variety of statistical and 
preprocessors to improve accuracy. These 
include the Stanford tools for POS tagging, 
named entity recognition and syntactic parsing. 
The parser produces and detailed logical form 
capturing the semantics of the sentence in a 
graphical notation equivalent  to an unscoped, 
modal logic (Manshadi et al, 2012).
2.2. Level One Bootstrapping: Generating 
Lexical Entries Foe Unknown Words
The key idea in generating abstract  lexical 
entries for unknown verbs builds from the same 
intuition the motivations underlying VerbNet - 

1 you can browse the lexicon and ontology at www.cs.rochester.edu/research/trips/lexicon/browse-ont-lex.html

Figure 2: WordNet Entry for murder

Figure 1: VerbNet Entry for murder
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that the set of constructions a verb supports 
reflects its semantic meaning. While in VerbNet, 
the constructions are used to cluster verbs into 
semantic classes, we work in the opposite 
direction and use the semantic classes to predict 
the likely syntactic constructions. 

To generate the lexical entries for an unknown 
verb we use the synset hierarchy in WordNet, 
plus a hand-built  mapping between certain key 
synsets and the classes in the TRIPS ontology. 
The whole process operates as follows, given an 
unknown word w:
i. Look up word w in WordNet and obtain its 

possible synsets
ii. For each synset, find a mapping to the TRIPS 

ontology
i. If there is a direct mapping, we are done
ii. If not, traverse up the WordNet Hypernym 

hierarchy and recursively check for a 
mapping

iii. For each TRIPS ontology type found, gather 
all the words in the TRIPS lexicon that are 
associated with the type

iv. Take the union of all the constructions defined 
on the words associated with the TRIPS type

v. Generate a lexical entry for each possible 
combination of constructions and types

The result of this process is an over-generated set 
of underspecified lexical entries. Figure 3 
illustrates this with a very simple example of 
deriving the lexical entries for the verb 
“collaborate”: it is first looked up in WordNet, 
then we traverse the hypernym hierarchy until 
we find a mapping to the TRIPS ontology, from 
work%2:41:02 to ONT::WORKING. From there 
we find all the lexical entries associated with 
ONT::WORKING, and then take the union of the 
lexical information to produce new entries. The 
valid entries will be the ones that  contribute to 
successful parses of the sentences involving the 
unknown words. In addition to what  is shown, 
other lexical information is also derived in the 
same way, including weak select ional 
preferences for the argument roles.

While the result of this stage of bootstrapping 
produces lexical entries that  identify the TRIPS 
type, the semantic roles and constructions, many  
of the lexical entries are not  valid and not very 
deep. In particular, even considering just the 
correct entries, the semantic models are limited 
to the relatively small TRIPS ontology, and do 
not  capture lexical entailments. Also, the 
selectional preferences for the semantic roles are 
very weak. These problems are all addressed in 
the second bootstrapping step.  

2.3. Level Two Bootstrapping: Reading 
Definitions and Examples
The key idea in this stage of processing is to use 
the lexicon bootstrapped in level one to parse all 
the definitions and examples for each WordNet 
synset. We then use this information to build a 
richer ontology, better identify the semantic roles 
and their selectional preferences, and identify the 
appropr ia te cons t ruc t ions and lex ica l 
entailments. The hope is that the result  is this 
process will be lexical entries suitable for 
semantic parsing, and tightly coupled with an 
ontology and commonsense knowledge base 
suitable for reasoning.

Consider an example processing a sense of the 
verb keep up, defined as prevent from  going to 
bed at night. We use sense tagged glosses 
obtained from the Princeton Gloss Corpus to 
provide guidance to the parser. The TRIPS parser 
produces the logical form for the definition as 
shown in Figure 4. Each node in the graph 
specifies the most specific TRIPS ontology class 
that covers the word plus the WordNet sense. For 
example, the verb prevent is captured by a node 
indicating its WordNet sense prevent%2:41:00 
and the TRIPS class ont::HINDERING. Note the 
verb go to bed, tagged as a multi-word verb in 
the Gloss corpus, has no information in the 
TRIPS ontology other than being an event of 
some sort. The semantic roles are indicated by 
the labelled arcs between the nodes. The nodes 
labelled IMPRO are the elided arguments in the 
definition (i.e., the missing subject and object). 

work%2:41:02

collaborate%2:41:01

WordNet Hypernym
Hierarchy

ONT::WORKING

ONT::INTENTIONALLY-ACT

TRIPS Ontology 

Ontology
Mapping

unknown verb:
"collaborate"

�������	���	���

�������

"labor": subj/AGENT PP(over)/AFFECTED

"labor": subj/AGENT

"work": subj/AGENT PP(on)/AFFECTED

"work": subj/AGENT
……

TRIPS Lexicon 

lookup in
WordNet

TRIPS Lexicon
lookup by type

"collaborate":ONT::WORKING subj/AGENT
"collaborate":ONT::WORKING  subj/AGENT PP(on)/AFFECTED 
"collaborate":ONT::WORKING subj/AGENT PP(over)/AFFECTED 

Automatically Generated Lexical Entries

Lexical Entry
Generation

Figure 3: Example of Ontology-based Automatic Lexicon Generation
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From this definition alone we can extract 
several key pieces of semantic information about 
the verb keep up, namely2

i. Ontological: keep_up  is a subclass of prevent
%2:41:00 and ont::HINDERING events

ii. Argument Structure: keep_up has two 
semantic roles: AGENT and AFFECTED3

iii. Lexical Entailment: When a keep_up event 
occurs, the AGENT  prevents the AFFECTED 
from going to bed

Definitions can be notoriously terse and complex 
to parse, and thus in many cases the parser can 
only extract key fragments of the definition. We 
use the TRIPS robust parsing mechanism to 
extract  the most meaningful parse fragments 
when a complete parse cannot be found. 

To identify the selectional preferences for the 
roles and the valid constructions, we parse the 
examples given in WordNet, plus synthetically 
produced sentences derived from the WordNet 
sentence frame information, plus additional 
examples extracted from SEMCOR, in which the 
words are tagged with their WordNet senses. 
From parsing the examples, we obtain a set of 
examples of the semantic roles used, plus the 
constructions used to produce them. We apply a 
heuristic process to combine the proposed role 
sets from the definitions and the glosses to arrive 
at  a final role set for the verb. We then gather the 
semantic types of all the arguments from the 
examples, and abstract  them using the derived 
ontology to produce the most  compact  set of 
types that  cover all the examples seen. Here we 
present a few more details of the approach.
Determining Semantic Roles
One of the interesting observations that  we 
discovered in this project is that  the missing parts 
of definitions are highly predictive of the roles of 
the verb being defined. For instance, looking at 
Figure 4, we see that the verb prevent, used in 
the definition, has three roles: AGENT, 
AFFECTED, and EFFECT. Two of these are 
filled by implicit  pro (IMPRO) forms (i.e., they 

were elided in the definition), and one is fully 
instantiated. Almost  all the time it is the IMPRO 
roles that  are promoted be the roles of keep up. 
We have found this technique to be highly 
reliable when we have fully accurate parsing. 
Because of the inevitable errors in parsing such 
terse language, however, we find the combining 
the information from the definition with 
additional evidence produced by parsing 
concrete examples gives better accuracy.
Computing Lexical Entailments
To compute lexical entailments, we use the 
definitions, often expanding them by recursively 
expanding the senses in the definition with their 
definitions. At  some stage, the definitions of 
certain verb verbs become quite abstract  and/or 
circular. To deal with this, we hand coded 
axiomatic definitions for a small set of aspectual 
verbs such as start, end, and continue, and causal 
verbs such as cause, prevent, stop, in a temporal 
logic. When a definition is expanded to the point 
of including one of these verbs, we can create a 
“temporal map” of entailments from the event. 
Thus, from the definition of keep up, we can 
infer that  the event of going to bed does not 
occur over the time over which the keep up event 
occurs. A description of our first  attempt  to 
generate entailments can be found in Allen et al 
(2011), and the temporal logic we have 
developed to support  compositional derivation of 
entailments is described in Allen & Teng (2013).
Computing Selectional Preferences
We compute selectional preferences by gathering 
the ontological types of elements that fill each 
argument position, using examples drawn from 
WordNet and SEMCOR.  We then generalize this 
set by trying to find non-trivial subsuming types 
that cover the examples. For example, for the 
verb kill, we might find examples of the 
AFFECTED role of being a person, a pig, and a 
plant. We try to find a subsuming type that 
covers all of these classes that  is more specific 
than the extremely abstract classes such as 

2 The ontology is represented in OWL-DL (www.w3.org/TR/owl-guide), and the entailments in a logic based on 
Allen’s (1984) Logic of Action and Time. There is no space to present these details in this paper.

3 The AFFECTED role in TRIPS includes most cases using the PATIENT role in VerbNet

Figure 4: The parse of prevent from going to bed at night

(F  ont::HINDERING prevent%2:41:00)

(IMPRO agent)  
(F  ont::SITUATION-ROOT go_to_bed%2:29:00)

(IMPRO affected)

:effect
:affected:agent

(BARE ont::TIME-INTERVAL night%1:28:00)

:time-clock-rel
:agent
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REFERENTIAL-SEM (the class of all things that 
can be referred to). We compute this over a 
combined ontology using the TRIPS ontology 
plus the ontology that we derive from parsing all 
the WordNet definitions. Using both allows us to 
avoid the pitfalls of lack of coverage in one 
source or the other. As an example, in this case 
we would find the class LIVING-THING covers 
the three examples above, so this would be the 
derived selectional preference for this role of kill. 
Selectional preferences derived by the method 
have been shown to be useful in automatically 
identifying metaphors (Wilks et al, 2013).

3. Evaluations
This is a work in progress, so we do not  yet have 
a comprehensive evaluation. We do have 
preliminary evaluations of specific aspects of the 
lexical entries we are producing, however. For 
the most part, our evaluations have been 
performed using set  of human judges (some 
fellow colleagues and some recruited using 
Amazon Turk). Because of the complexity of 
such judging tasks, we generally use at  least 
seven judges, and sometimes up to eleven. We 
then eliminate cases where there is not 
substantial human agreement, typically at  least 
75%. We have found that this eliminates less that 
20% of the potential test cases. The remaining 
cases provide a gold standard.
The Event Ontology
To evaluate the derived event  ontology, we 
randomly created a evaluation set consisting of 
1) subclass pairs derived by our system, 2) 
hypernym pairs extracted from WordNet, and 3) 
random pairs of classes. We used eleven human 
judges to judge whether one class is a subclass of 
the other, and evaluated the system on the cases 
where at  least eight judges in agreement  (83% of 
cases). The system had 83% precision and 42% 
recall in this test, indicating good accuracy. The 
low recall score, however, indicates our 
techniques do not extract many of the hypernym 
relations present in WordNet. It suggests that  we 
should also incorporate the hypernym relations 
as a ontology source when constructing the final 
deep semantic lexicon. More details can be found 
in Allen et al (2013).
Causal Relations Between Events
We used a similar technique to evaluate our 
ability to extract causal relationships between 
events classes (e.g., kill causes die). We tested on 
a similar blend of derived casual relations, 
explicitly annotated causal relations in WordNet 
and random other pairs. The system achieved 
100% precision and 55% recall on this test. 

Interestingly, there was almost no overlap 
between the system-derived causal relations and 
those in WordNet, indicating that combining the 
two sources will produce a much richer resource. 
More details can be found in Allen et al (2013).
Selectional Preferences for Roles
We performed a preliminary evaluation on the 
correctness of the selectional preferences by 
comparing our derived classes with the 
restrictions in VerbNet. This is not an ideal 
evaluation as the VerbNet restrictions are quite 
abstract. For instance, VerbNet  has one class for 
abstract  objects, whereas the our derived 
ontology has a much richer classification, 
including plans, words, properties, beliefs, and so 
on. Thus, we expected that often our derived 
preferences would be more specific than the 
VerbNet  restrictions. On a test  set  of 50 
randomly selected verbs, 51% of the restrictions 
were exactly correct, 26% were too specific, 
19% too general, and 2% were inconsistent. 
These results suggest promise for the approach. 
We are designing a more refined experiment 
using human judges to attempt to drill deeper.

4. Conclusion
The preliminary evaluations are promising and 
suggest  it  could be feasible to automatically 
build a deep semantic lexicon on the scale of 
WordNet, tightly integrated with an ontology 
also derived from the same sources.  We are 
continuing this work in a number of directions, 
and designing better evaluation metrics. In 
addition, as many researchers find the WordNet 
inventory of word senses too fine grained, we are 
developing techniques that used the derived 
information to automatically cluster sets of 
senses in more abstract senses that cover them.
When the project is completed, we will be 
releasing the full semantic lexicon for use by 
other researchers.
As a final note, while the TRIPS system is an 
essential part of the bootstrapping process, it is 
trivial to remove all traces of TRIPS in the final 
resource, removing the hand-built  lexical entries 
and the TRIPS ontology, leaving a resource 
entirely grounded in WordNet.
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Abstract

We propose a new approach to semantic
parsing that is not constrained by a fixed
formal ontology and purely logical infer-
ence. Instead, we use distributional se-
mantics to generate only the relevant part
of an on-the-fly ontology. Sentences and
the on-the-fly ontology are represented in
probabilistic logic. For inference, we
use probabilistic logic frameworks like
Markov Logic Networks (MLN) and Prob-
abilistic Soft Logic (PSL). This seman-
tic parsing approach is evaluated on two
tasks, Textual Entitlement (RTE) and Tex-
tual Similarity (STS), both accomplished
using inference in probabilistic logic. Ex-
periments show the potential of the ap-
proach.

1 Introduction

Semantic Parsing is probably best defined as the
task of representing the meaning of a natural lan-
guage sentence in some formal knowledge repre-
sentation language that supports automated infer-
ence. A semantic parser is best defined as having
three parts, a formal language, an ontology, and an
inference mechanism. Both the formal language
(e.g. first-order logic) and the ontology define the
formal knowledge representation. The formal lan-
guage uses predicate symbols from the ontology,
and the ontology provides them with meanings by
defining the relations between them.1. A formal
expression by itself without an ontology is insuf-
ficient for semantic interpretation; we call it un-
interpreted logical form. An uninterpreted logical
form is not enough as a knowledge representation

1For conciseness, here we use the term “ontology” to refer
to a set of predicates as well as a knowledge base (KB) of
axioms that defines a complex set of relationships between
them

because the predicate symbols do not have mean-
ing in themselves, they get this meaning from the
ontology. Inference is what takes a problem repre-
sented in the formal knowledge representation and
the ontology and performs the target task (e.g. tex-
tual entailment, question answering, etc.).

Prior work in standard semantic parsing uses a
pre-defined set of predicates in a fixed ontology.
However, it is difficult to construct formal ontolo-
gies of properties and relations that have broad
coverage, and very difficult to do semantic parsing
based on such an ontology. Consequently, current
semantic parsers are mostly restricted to fairly lim-
ited domains, such as querying a specific database
(Kwiatkowski et al., 2013; Berant et al., 2013).

We propose a semantic parser that is not re-
stricted to a predefined ontology. Instead, we
use distributional semantics to generate the needed
part of an on-the-fly ontology. Distributional se-
mantics is a statistical technique that represents
the meaning of words and phrases as distributions
over context words (Turney and Pantel, 2010; Lan-
dauer and Dumais, 1997). Distributional infor-
mation can be used to predict semantic relations
like synonymy and hyponymy between words and
phrases of interest (Lenci and Benotto, 2012;
Kotlerman et al., 2010). The collection of pre-
dicted semantic relations is the “on-the-fly ontol-
ogy” our semantic parser uses. A distributional
semantics is relatively easy to build from a large
corpus of raw text, and provides the wide cover-
age that formal ontologies lack.

The formal language we would like to use in the
semantic parser is first-order logic. However, dis-
tributional information is graded in nature, so the
on-the-fly ontology and its predicted semantic re-
lations are also graded. This means, that standard
first-order logic is insufficient because it is binary
by nature. Probabilistic logic solves this problem
because it accepts weighted first order logic for-
mulas. For example, in probabilistic logic, the
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synonymy relation between “man” and “guy” is
represented by: ∀x. man(x) ⇔ guy(x) | w1 and
the hyponymy relation between “car” and “vehi-
cle” is: ∀x. car(x) ⇒ vehicle(x) | w2 where w1

and w1 are some certainty measure estimated from
the distributional semantics.

For inference, we use probabilistic logic
frameworks like Markov Logic Networks
(MLN) (Richardson and Domingos, 2006) and
Probabilistic Soft Logic (PSL) (Kimmig et al.,
2012). They are Statistical Relational Learning
(SRL) techniques (Getoor and Taskar, 2007) that
combine logical and statistical knowledge in one
uniform framework, and provide a mechanism for
coherent probabilistic inference. We implemented
this semantic parser (Beltagy et al., 2013; Beltagy
et al., 2014) and used it to perform two tasks
that require deep semantic analysis, Recognizing
Textual Entailment (RTE), and Semantic Textual
Similarity (STS).

The rest of the paper is organized as follows:
section 2 presents background material, section
3 explains the three components of the semantic
parser, section 4 shows how this semantic parser
can be used for RTE and STS tasks, section 5
presents the evaluation and 6 concludes.

2 Background

2.1 Logical Semantics

Logic-based representations of meaning have a
long tradition (Montague, 1970; Kamp and Reyle,
1993). They handle many complex semantic phe-
nomena such as relational propositions, logical
operators, and quantifiers; however, they can not
handle “graded” aspects of meaning in language
because they are binary by nature. Also, the logi-
cal predicates and relations do not have semantics
by themselves without an accompanying ontology,
which we want to replace in our semantic parser
with distributional semantics.

To map a sentence to logical form, we use Boxer
(Bos, 2008), a tool for wide-coverage semantic
analysis that produces uninterpreted logical forms
using Discourse Representation Structures (Kamp
and Reyle, 1993). It builds on the C&C CCG
parser (Clark and Curran, 2004).

2.2 Distributional Semantics

Distributional models use statistics on contextual
data from large corpora to predict semantic sim-
ilarity of words and phrases (Turney and Pantel,

2010; Mitchell and Lapata, 2010), based on the
observation that semantically similar words occur
in similar contexts (Landauer and Dumais, 1997;
Lund and Burgess, 1996). So words can be rep-
resented as vectors in high dimensional spaces
generated from the contexts in which they occur.
Distributional models capture the graded nature
of meaning, but do not adequately capture log-
ical structure (Grefenstette, 2013). It is possi-
ble to compute vector representations for larger
phrases compositionally from their parts (Lan-
dauer and Dumais, 1997; Mitchell and Lapata,
2008; Mitchell and Lapata, 2010; Baroni and
Zamparelli, 2010; Grefenstette and Sadrzadeh,
2011). Distributional similarity is usually a mix-
ture of semantic relations, but particular asymmet-
ric similarity measures can, to a certain extent,
predict hypernymy and lexical entailment distri-
butionally (Lenci and Benotto, 2012; Kotlerman
et al., 2010).

2.3 Markov Logic Network
Markov Logic Network (MLN) (Richardson and
Domingos, 2006) is a framework for probabilis-
tic logic that employ weighted formulas in first-
order logic to compactly encode complex undi-
rected probabilistic graphical models (i.e., Markov
networks). Weighting the rules is a way of soft-
ening them compared to hard logical constraints.
MLNs define a probability distribution over possi-
ble worlds, where a world’s probability increases
exponentially with the total weight of the logical
clauses that it satisfies. A variety of inference
methods for MLNs have been developed, however,
their computational complexity is a fundamental
issue.

2.4 Probabilistic Soft Logic
Probabilistic Soft Logic (PSL) is another recently
proposed framework for probabilistic logic (Kim-
mig et al., 2012). It uses logical representations to
compactly define large graphical models with con-
tinuous variables, and includes methods for per-
forming efficient probabilistic inference for the re-
sulting models. A key distinguishing feature of
PSL is that ground atoms have soft, continuous
truth values in the interval [0, 1] rather than bi-
nary truth values as used in MLNs and most other
probabilistic logics. Given a set of weighted in-
ference rules, and with the help of Lukasiewicz’s
relaxation of the logical operators, PSL builds a
graphical model defining a probability distribution
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over the continuous space of values of the random
variables in the model. Then, PSL’s MPE infer-
ence (Most Probable Explanation) finds the over-
all interpretation with the maximum probability
given a set of evidence. It turns out that this op-
timization problem is second-order cone program
(SOCP) (Kimmig et al., 2012) and can be solved
efficiently in polynomial time.

2.5 Recognizing Textual Entailment
Recognizing Textual Entailment (RTE) is the task
of determining whether one natural language text,
the premise, Entails, Contradicts, or not related
(Neutral) to another, the hypothesis.

2.6 Semantic Textual Similarity
Semantic Textual Similarity (STS) is the task of
judging the similarity of a pair of sentences on
a scale from 1 to 5 (Agirre et al., 2012). Gold
standard scores are averaged over multiple human
annotations and systems are evaluated using the
Pearson correlation between a system’s output and
gold standard scores.

3 Approach

A semantic parser is three components, a formal
language, an ontology, and an inference mecha-
nism. This section explains the details of these
components in our semantic parser. It also points
out the future work related to each part of the sys-
tem.

3.1 Formal Language: first-order logic
Natural sentences are mapped to logical form us-
ing Boxer (Bos, 2008), which maps the input
sentences into a lexically-based logical form, in
which the predicates are words in the sentence.
For example, the sentence “A man is driving a car”
in logical form is:
∃x, y, z. man(x) ∧ agent(y, x) ∧ drive(y) ∧

patient(y, z) ∧ car(z)
We call Boxer’s output alone an uninterpreted

logical form because predicates do not have mean-
ing by themselves. They still need to be connected
with an ontology.

Future work: While Boxer has wide coverage,
additional linguistic phenomena like generalized
quantifiers need to be handled.

3.2 Ontology: on-the-fly ontology
Distributional information is used to generate the
needed part of an on-the-fly ontology for the given

input sentences. It is encoded in the form of
weighted inference rules describing the seman-
tic relations connecting words and phrases in the
input sentences. For example, for sentences “A
man is driving a car”, and “A guy is driving a
vehicle”, we would like to generate rules like
∀x.man(x)⇔ guy(x) |w1 indicating that “man”
and “guy” are synonyms with some certainty w1,
and ∀x. car(x)⇒ vehicle(x) | w2 indicating that
“car” is a hyponym of “vehicle” with some cer-
tainty w2. Other semantic relations can also be
easily encoded as inference rules like antonyms
∀x. tall(x)⇔ ¬short(x) |w, contextonymy rela-
tion ∀x. hospital(x) ⇒ ∃y. doctor(y) | w. For
now, we generate inference rules only as syn-
onyms (Beltagy et al., 2013), but we are experi-
menting with more types of semantic relations.

In (Beltagy et al., 2013), we generate infer-
ence rules between all pairs of words and phrases.
Given two input sentences T and H , for all pairs
(a, b), where a and b are words or phrases of T
and H respectively, generate an inference rule:
a → b | w, where the rule’s weight w =
sim(−→a ,

−→
b ), and sim is the cosine of the angle

between vectors −→a and
−→
b . Note that this simi-

larity measure cannot yet distinguish relations like
synonymy and hypernymy. Phrases are defined in
terms of Boxer’s output to be more than one unary
atom sharing the same variable like “a little kid”
which in logic is little(k) ∧ kid(k), or two unary
atoms connected by a relation like “a man is driv-
ing” which in logic is man(m) ∧ agent(d, m) ∧
drive(d). We used vector addition (Mitchell and
Lapata, 2010) to calculate vectors for phrases.

Future Work: This can be extended in many
directions. We are currently experimenting with
asymmetric similarity functions to distinguish se-
mantic relations. We would also like to use longer
phrases and other compositionality techniques as
in (Baroni and Zamparelli, 2010; Grefenstette and
Sadrzadeh, 2011). Also more inference rules can
be added from paraphrases collections like PPDB
(Ganitkevitch et al., 2013).

3.3 Inference: probabilistic logical inference

The last component is probabilistic logical infer-
ence. Given the logical form of the input sen-
tences, and the weighted inference rules, we use
them to build a probabilistic logic program whose
solution is the answer to the target task. A proba-
bilistic logic program consists of the evidence set
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E, the set of weighted first order logical expres-
sions (rule base RB), and a query Q. Inference is
the process of calculating Pr(Q|E,RB).

Probabilistic logic frameworks define a proba-
bility distribution over all possible worlds. The
number of constants in a world depends on the
number of the discourse entities in the Boxer out-
put, plus additional constants introduced to han-
dle quantification. Mostly, all constants are com-
bined with all literals, except for rudimentary type
checking.

4 Tasks

This section explains how we perform the RTE
and STS tasks using our semantic parser.

4.1 Task 1: RTE using MLNs

MLNs are the probabilistic logic framework we
use for the RTE task (we do not use PSL here as
it shares the problems of fuzzy logic with proba-
bilistic reasoning). The RTE’s classification prob-
lem for the relation between T and H , and given
the rule base RB generated as in 3.2, can be
split into two inference tasks. The first is find-
ing if T entails H , Pr(H|T, RB). The second
is finding if the negation of the text ¬T entails H ,
Pr(H|¬T, RB). In case Pr(H|T, RB) is high,
while Pr(H|¬T, RB) is low, this indicates En-
tails. In case it is the other way around, this indi-
cates Contradicts. If both values are close to each
other, this means T does not affect probability of
H and that is an indication of Neutral. We train a
classifier to map the two values to the final classi-
fication decision.

Future Work: One general problem with
MLNs is its computational overhead especially
for the type of inference problems we have. The
other problem is that MLNs, as with most other
probabilistic logics, make the Domain Closure
Assumption (Richardson and Domingos, 2006)
which means that quantifiers sometimes behave in
an undesired way.

4.2 Task 2: STS using PSL

PSL is the probabilistic logic we use for the STS
task since it has been shown to be an effective
approach to compute similarity between struc-
tured objects. PSL does not work “out of the
box” for STS, because Lukasiewicz’s equation for
the conjunction is very restrictive. We addressed
this problem (Beltagy et al., 2014) by replacing

SICK-RTE SICK-STS
dist 0.60 0.65
logic 0.71 0.68
logic+dist 0.73 0.70

Table 1: RTE accuracy and STS Correlation

Lukasiewicz’s equation for the conjunction with
an averaging equation, then change the optimiza-
tion problem and the grounding technique accord-
ingly.

For each STS pair of sentences S1, S2, we run
PSL twice, once where E = S1, Q = S2 and
another where E = S2, Q = S1, and output the
two scores. The final similarity score is produced
from a regressor trained to map the two PSL scores
to the overall similarity score.

Future Work: Use a weighted average where
different weights are learned for different parts of
the sentence.

5 Evaluation

The dataset used for evaluation is SICK:
Sentences Involving Compositional Knowledge
dataset, a task for SemEval 2014. The initial data
release for the competition consists of 5,000 pairs
of sentences which are annotated for both RTE and
STS. For this evaluation, we performed 10-fold
cross validation on this initial data.

Table 1 shows results comparing our full
approach (logic+dist) to two baselines, a
distributional-only baseline (dist) that uses vector
addition, and a probabilistic logic-only baseline
(logic) which is our semantic parser without distri-
butional inference rules. The integrated approach
(logic+dist) out-performs both baselines.

6 Conclusion

We presented an approach to semantic parsing that
has a wide-coverage for words and relations, and
does not require a fixed formal ontology. An
on-the-fly ontology of semantic relations between
predicates is derived from distributional informa-
tion and encoded in the form of soft inference rules
in probabilistic logic. We evaluated this approach
on two task, RTE and STS, using two probabilistic
logics, MLNs and PSL respectively. The semantic
parser can be extended in different direction, es-
pecially in predicting more complex semantic re-
lations, and enhancing the inference mechanisms.
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Abstract

In present CCG-based semantic parsing
systems, the extraction of a semantic
grammar from sentence-meaning exam-
ples poses a computational challenge. An
important factor is the decomposition of
the sentence meaning into smaller parts,
each corresponding to the meaning of a
word or phrase. This has so far limited
supervised semantic parsing to small, spe-
cialised corpora. We propose a set of
heuristics that render the splitting of mean-
ing representations feasible on a large-
scale corpus, and present a method for
grammar induction capable of extracting a
semantic CCG from the Groningen Mean-
ing Bank.

1 Introduction

Combinatory Categorial Grammar (CCG) forms
the basis of many current approaches to semantic
parsing. It is attractive for semantic parsing due
to its unified treatment of syntax and semantics,
where the construction of the meaning representa-
tion directly follows the syntactic analysis (Steed-
man, 2001). However, the supervised induction of
semantic CCGs—the inference of a CCG from a
corpus of sentence-meaning pairs—has so far only
been partially solved. While approaches are avail-
able that work on small corpora focused on spe-
cific domains (such as Geoquery and Freebase QA
for question answering (Zelle and Mooney, 1996;
Cai and Yates, 2013)), we are not aware of any
approach that allows the extraction of a seman-
tic CCG from a wide-coverage corpus such as the
Groningen Meaning Bank (GMB) (Basile et al.,
2012). This work attempts to fill this gap.

Analogous to the work of Kwiatkowski et al.
(2010), we view grammar induction as a series of
splitting steps, each of which essentially reverses

a CCG derivation step. However, we diverge
from their approach by applying novel heuristics
for searching the space of possible splits. The
combination of alignment consistency and single-
branching recursion turns out to produce a man-
ageable number of lexical items for most sen-
tences in the GMB, while statistical measures
and manual inspection suggest that many of these
items are also plausible.

2 Searching the space of CCG
derivations

Our search heuristics are embedded into a very
general splitting algorithm, Algorithm 1. Given
a sentence-meaning pair, it iterates over all possi-
ble sentence-meaning splits in two steps. First, a
split index in the sentence is chosen along with a
binary CCG-combinator to be reversed (the syn-
tactic split). Then, the meaning representation is
split accordingly to reverse the application of the
selected combinator (the semantic split). E. g., for
the forward application combinator, the meaning
representation z is split into f, g so that z = fg
(modulo α, β, η conversions). By identifying f
with the left half l of the sentence and g with the
right half r, we obtain two new phrase-meaning
pairs, which are then split recursively.

This algorithm combines two challenging
search problems. Recursive syntactic splitting
searches the space of syntactic CCG derivations
that yield the sentence, which is exponential in the
length of the sentence. Semantic splitting, given
the flexibility of λ-calculus, has infinitely many
solutions. The crucial question is how to prune
the parts of the search space that are unlikely to
lead to good results.

Our strategy to address this problem is to apply
heuristics that constrain the results returned by se-
mantic splitting. By yielding no results on certain
inputs, this at the same time constrains the syntac-
tic search space. The following descriptions there-
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fore relate to the implementation of the SEMSPLIT

function.

Algorithm 1 A general splitting algorithm. C is
the set of binary CCG combinators. The SEM-
SPLIT function returns possible splits of a meaning
representation according to the reverse application
of a combinator.

function SPLIT(x, z)
if |x| = 1 then

return {(x, z)}
else

G← ∅
for 0 < i ≤ |x| − 1 and c ∈ C do

l← x0 . . . xi−1

r ← xi . . . x|x|−1

S ← SEMSPLIT(c, z)
for (f, g) ∈ S do

G← G ∪ SPLIT(l, f)
∪ SPLIT(r, g)

end for
end for
return G

end if
end function

2.1 Alignment consistency

The first heuristic we introduce is borrowed from
the field of statistical machine translation. There,
alignments between words of two languages are
used to identify corresponding phrase pairs, as
in the well-known GHKM algorithm (Galley et
al., 2004). In order to apply the same strategy
to meaning representations, we represent them as
their abstract syntax trees. Following Li et al.
(2013), we can then align words in the sentence
and nodes in the meaning representation to iden-
tify components that correspond to each other.

This allows us to impose an extra constraint on
the generation of splits: We require that nodes in f
not be aligned to any words in the right sentence-
half r, and conversely, that nodes in g not be
aligned to words in l.

Alignment consistency helps the search to fo-
cus on more plausible splits by grouping elements
of the meaning representation with the words that
evoked them. However, by itself it does not signif-
icantly limit the search space, as it is still possible
to extract infinitely many semantic splits from any
sentence at any splitting index.

Example: Given the word-to-meaning

∃x

∃y

∧

mia(y)love(x, y)vincent(x)

lovesVincent Mia

Figure 1: An example word-to-meaning align-
ment. Splits across any of the alignment edges are
prohibited. E. g., we cannot produce a split whose
meaning representation contains both vincent and
mia.

alignment from Figure 1, a split that is
excluded by the alignment criterion is:
(Vincent : λg.∃x.∃y.vincent(x) ∧ love(x, y) ∧
g(y)), (loves Mia : λy.mia(y)). This is because
the node “love” (in f ) is aligned to the word
“loves” (in r).

2.2 Single-branching recursive splitting
The second heuristic is best described as a search
strategy over possible semantic splits. In the fol-
lowing presentation, we presume that alignment
consistency is being enforced. Again, it is helpful
to view the meaning representation as an abstract
syntax tree.

Recall that our goal is to find two expressions
f, g to be associated with the sentence halves l, r.
In a special case, this problem is easily solved: If
we can find some split node X which governs all
nodes aligned to words in r, but no nodes aligned
to words in l, we can simply extract the sub-tree
rooted at X and replace it with a variable. E. g.,
z = a(bc) can be split into f = λx.a(xc) and
g = b, which can be recombined by application.

However, requiring the existence of exactly two
such contiguous components can be overly restric-
tive, as Figure 2 illustrates. Instead, we say that we
decompose z into a hierarchy of components, with
a split node at the root of each component. These
components are labelled as f - and g-components
in an alternating fashion.

In this hierarchy, the members of an f -
component are not allowed to have alignments to
words in l. A corresponding requirement holds for
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Figure 2: Illustration of single-branching recur-
sion: Assume that the leaves of the meaning rep-
resentation a(bc)(de) are aligned as given to the
words x0 . . . x4, and that we wish to split the sen-
tence at index 2. The indicated split partitions the
meaning representation into three hierarchically
nested components and yields f = λx.xc(de) and
g = λy.a(by), which can be recombined using ap-
plication.

g-components.
The single-branching criterion states that all

split nodes lie on a common path from the root,
or in other words, every component is the parent
of at most one sub-component.

In comparison to more flexible strategies,
single-branching recursive splitting has the advan-
tage of requiring a minimum of additionally gen-
erated structure. For every component, we only
need to introduce one new bound variable for the
body plus one for every variable that occurs free
under the split node.

Together with the alignment consistency cri-
terion, single-branching recursive splitting limits
the search space sufficiently to make a full search
tractable in many cases.

2.3 Other heuristics
The following heuristics seem promising but are
left to be explored in future work.

Min-cut splitting In this strategy, we place no
restriction on which split nodes are chosen. In-
stead, we require that the overall count of split
nodes is minimal, which is equivalent to saying
that the edges cut by the split form a minimum cut
separating the nodes aligned to the left and right
halves of the sentence, respectively. This strat-
egy has the advantage of being able to handle any
alignment/split point combination, but requires a
more complex splitting pattern and thus more ad-
ditional structure than single-branching recursion.

Syntax-driven splitting Since CCG is based

on the assumption that semantic and syntactic
derivations are isomorphic, we might use syntac-
tic annotations to guide the search of the deriva-
tion space and only consider splits along con-
stituent boundaries. Syntactic annotations might
be present in the data or generated by standard
tools. However, initial tests have shown that this
requirement is too restrictive when combined with
our two main heuristics.

Obviously, an effective combination of heuris-
tics needs to be found. One particular configura-
tion which seems promising is alignment consis-
tency combined with min-cut splitting (which is
more permissive than single-branching recursion)
and syntax-driven splitting (which adds an extra
restriction).

3 Discussion

We present some empirical observations about the
behaviour of the above-mentioned heuristics. Our
observations are based on a grammar extracted
from the GMB. A formal evaluation of our system
in the context of a full semantic parsing system is
left for future work.

3.1 Implementation

Currently, our system implements single-
branching recursive splitting along with alignment
consistency. We extracted the word-to-meaning
alignments from the CCG derivations annotated
in the GMB, but kept only alignment edges
to predicate nodes. Sentence grammars were
extracted by generating an initial item for each
sentence and feeding it to the SPLIT procedure.

In addition to alignment consistency and single-
branching recursion, we enforce three simple cri-
teria to rule out highly implausible items: The
count of arrows in an extracted meaning represen-
tation’s type is limited to eight, the number of split
nodes is limited to three, and the number of free
variables in extracted components is also limited
to three.

A major limitation of our implementation is that
it currently only considers the application combi-
nator during splitting. We take this as a main rea-
son for the limited granularity we observe in our
output. Generalisation of the splitting implemen-
tation to other combinators such as composition is
therefore necessary before performing any serious
evaluation.
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3.2 Manual inspection

Manual inspection of the generated grammars
leads to two general observations.

Firstly, many single-word items present in the
CCG annotations of the GMB are recovered.
While this behaviour is not required, it is en-
couraging, as these items exhibit a relatively sim-
ple structure and would be expected to generalise
well.

At the same time, many multi-word phrases
remain in the data that cannot be split further,
and are therefore unlikely to generalise well. We
have identified two likely causes for this phe-
nomenon: The missing implementation of a com-
position combinator, and coarse alignments.

Composition splits would enable the splitting of
items which do not decompose well (i. e., do not
pass the search heuristics in use) under the appli-
cation combinator. Since composition occurs fre-
quently in GMB derivations, it is to be expected
that its lack noticeably impoverishes the quality of
the extracted grammar.

The extraction of alignments currently in use in
our implementation works by retracing the CCG
derivations annotated in the GMB, and thus es-
tablishing a link between a word and the set of
meaning representation elements introduced by it.
However, our current implementation only han-
dles the most common derivation nodes and oth-
erwise cuts this retracing process short, making
alignments to the entire phrase governed by an in-
termediate node. This may cause the correspond-
ing part of the search to be pruned due to a search
space explosion. We plan to investigate using a
statistical alignment tool instead, possibly using
supplementary heuristics for determining aligned
words and nodes. As an additional advantage, this
would remove the need for annotated CCG deriva-
tions in the data.

3.3 Statistical observations

From the total 47 230 sentences present in the
GMB, our software was able to extract a sentence
grammar for 43 046 sentences. Failures occurred
either because processing took longer than 20 min-
utes, because the count of items extracted for a
single sentence surpassed 10 000, or due to pro-
cessing errors.

On average, 825 items were extracted per sen-
tence with a median of 268. After removing dupli-
cate items, the combined grammar for the whole

GMB consisted of about 32 million items. While
the running time of splitting is still exponential
and gets out of hand on some examples, most sen-
tences are processed within seconds.

Single-word items were extracted for 46% of
word occurrences. Ideally, we would like to ob-
tain single-word items for as many words as pos-
sible, as those items have the highest potential to
generalise to unseen data. For those occurrences
where no single-word item was extracted, the me-
dian length of the smallest extracted item was 12,
with a maximum of 49.

4 Conclusion

We have presented a method for bringing the in-
duction of semantic CCGs to a larger scale than
has been feasible so far. Using the heuristics of
alignment consistency and single-branching recur-
sive splitting, we are able to extract a grammar
from the full GMB. Our observations suggest a
mixed outcome: We obtain desirable single-word
items for only about half of all word occurrences.
However, due to the incompleteness of the im-
plementation and the lack of a formal evaluation,
these observations do not yet permit any conclu-
sions. In future work, we will address both of
these shortcomings.

5 Final remarks

The software implementing the presented func-
tionality is available for download1.

This work has been supported by the Ger-
man Research Foundation (DFG) as part of the
CINACS international graduate research group.
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Figure 1: Generated scene for “There is a room
with a chair and a computer.” Note that the system
infers the presence of a desk and that the computer
should be supported by the desk.

1 Introduction

We propose text-to-scene generation as an appli-
cation for semantic parsing. This is an applica-
tion that grounds semantics in a virtual world that
requires understanding of common, everyday lan-
guage. In text to scene generation, the user pro-
vides a textual description and the system gener-
ates a 3D scene. For example, Figure 1 shows the
generated scene for the input text “there is a room
with a chair and a computer”. This is a challeng-
ing, open-ended problem that prior work has only
addressed in a limited way.
Most of the technical challenges in text to

scene generation stem from the difficulty of map-
ping language to formal representations of vi-
sual scenes, as well as an overall absence of real
world spatial knowledge from current NLP sys-
tems. These issues are partly due to the omis-
sion in natural language of many facts about the
world. When people describe scenes in text, they
typically specify only important, relevant informa-
tion. Many common sense facts are unstated (e.g.,
chairs and desks are typically on the floor). There-

fore, we focus on inferring implicit relations that
are likely to hold even if they are not explicitly
stated by the input text.
Text to scene generation offers a rich, interactive

environment for grounded language that is famil-
iar to everyone. The entities are common, every-
day objects, and the knowledge necessary to ad-
dress this problem is of general use across many
domains. We present a system that leverages user
interactionwith 3D scenes to generate training data
for semantic parsing approaches.
Previous semantic parsing work has dealt with

grounding text to physical attributes and rela-
tions (Matuszek et al., 2012; Krishnamurthy and
Kollar, 2013), generating text for referring to ob-
jects (FitzGerald et al., 2013) and with connect-
ing language to spatial relationships (Golland et
al., 2010; Artzi and Zettlemoyer, 2013). Seman-
tic parsing methods can also be applied to many
aspects of text to scene generation. Furthermore,
work on parsing instructions to robots (Matuszek
et al., 2013; Tellex et al., 2014) has analogues in
the context of discourse about physical scenes.
In this extended abstract, we formalize the text

to scene generation problem and describe it as a
task for semantic parsing methods. To motivate
this problem, we present a prototype system that
incorporates simple spatial knowledge, and parses
natural text to a semantic representation. By learn-
ing priors on spatial knowledge (e.g., typical posi-
tions of objects, and common spatial relations) our
system addresses inference of implicit spatial con-
straints. The user can interactively manipulate the
generated scene with textual commands, enabling
us to refine and expand learned priors.
Our current system uses deterministic rules to

map text to a scene representation but we plan to
explore training a semantic parser from data. We
can leverage our system to collect user interactions
for training data. Crowdsourcing is a promising
avenue for obtaining a large scale dataset.

17



Objects:

PLATE, FORK

ON(FORK, TABLE)

ON(PLATE, TABLE)

ON(CAKE, PLATE)

“There is a piece of 

cake on a table.”

Scene 

Generation

3D ModelsSpatial KB

Objects:

CAKE, TABLE

ON(CAKE, TABLE)

Semantic

Parsing

INTERACTION

Scene 

Inference

Object

Selection

Figure 2: Illustration of our system architecture.

2 Task Definition

We define text to scene generation as the task of
taking text describing a scene as input, and gen-
erating a plausible 3D scene described by that
text as output. More concretely, we parse the
input text into a scene template, which places
constraints on what objects must be present and
relationships between them. Next, using priors
from a spatial knowledge base, the system expands
the scene template by inferring additional implicit
constraints. Based on the scene template, we select
objects from a dataset of 3D models and arrange
them to generate an output scene.
After a scene is generated, the user can interact

with the scene using both textual commands and
mouse interactions. During interaction, semantic
parsing can be used to parse the input text into
a sequence of scene interaction commands. See
Figure 2 for an illustration of the system archi-
tecture. Throughout the process, we need to ad-
dress grounding of language to: 1) actions to be
performed, 2) objects to be instantiated or manip-
ulated, and 3) constraints on the objects.

2.1 Scene Template
A scene template T = (O, C) consists of a set
of object descriptions O = {o1, . . . , on} and con-
straints C = {c1, . . . , ck} on the relationships be-
tween the objects. For each object oi, we identify
properties associated with it such as category la-
bel, basic attributes such as color and material, and
number of occurrences in the scene. Based on the
object category and attributes, and other words in
the noun phrase mentioning the object, we iden-
tify a set of associated keywords to be used later
for querying the 3D model database. Spatial rela-

tions between objects are extracted as predicates of
the form on(oi, oj) or left(oi, oj) where oi and oj

are recognized objects.
As an example, given the input “There is a room

with a desk and a red chair. The chair is to the left
of the desk.” we extract the following objects and
spatial relations:

Objects category attributes keywords
o0 room room
o1 desk desk
o2 chair color:red chair, red

Relations: left(o2, o1)

2.2 Scene Interaction Commands
During interaction, we parse textual input provided
by the user into a sequence of commands with rele-
vant parts of the scene as arguments. For example,
given a scene S, we use the input text to identify a
subset of relevant objects matchingX = {Os, Cs}
where Os is the set of object descriptions and Cs

is the set of object constraints. Commands can
then be resolved against this argument to manip-
ulate the scene state: Select(X), Remove(X),
Insert(X), Replace(X, Y ), Move(X, ∆X),
Scale(X, ∆X), and Orient(X, ∆X). X and Y
are semantic representations of objects, while∆X
is a change to be applied to X , expressed as either
a target condition (“put the lamp on the table”) or
a relative change (“move the lamp to the right”).
These basic operations demonstrate possible

scene manipulations through text. This set of op-
erations can be enlarged to cover manipulation of
parts of objects (“make the seat of the chair red”),
and of the viewpoint (“zoom in on the chair”).

2.3 Spatial Knowledge
One of the richest sources of spatial knowledge
is 3D scene data. Prior work by (Fisher et al.,
2012) collected 133 small indoor scenes created
with 1723 3D Warehouse models. Based on their
approach, we create a spatial knowledge base with
priors on the static support hierarchy of objects in
scenes1, their relative positions and orientations.
We also define a set of spatial relations such as left,
right, above, below, front, back, on top of, next to,
near, inside, and outside. Table 1 gives examples
of the definitions of these spatial relations.
We use a 3D model dataset collected from

Google 3DWarehouse by prior work in scene syn-
1A static support hierarchy represents which objects are

likely to support which other objects on their surface (e.g.,
the floor supports tables, tables support plates).
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Relation P (relation)

inside(A,B) V ol(A∩B)
V ol(A)

right(A,B) V ol(A∩ right (B))
V ol(A)

near(A,B) 1(dist(A,B) < tnear)

Table 1: Definitions of spatial relation using object
bounding box computations.

thesis and containing about 12490 mostly indoor
objects (Fisher et al., 2012). These models have
text associated with them in the form of names and
tags, and category labels. In addition, we assume
the models have been scaled to physically plausi-
ble sizes and oriented with consistent up and front
direction (Savva et al., 2014). All models are in-
dexed in a database so they can be queried at run-
time for retrieval.

3 System Description

We present how the parsed representations are
used by our system to demonstrate the key issues
that have to be addressed during text to scene gen-
eration. Our current implementation uses a sim-
ple deterministic approach to map text to the scene
template and user actions on the scene. We use the
Stanford CoreNLP pipeline2 to process the input
text and use rules to match dependency patterns.

3.1 Scene generation
During scene generation, we want to construct the
most likely scene given the input text. We first
parse the text into a scene template and use it to
select appropriate models from the database. We
then perform object layout and arrangement given
the priors on spatial knowledge.

Scene Template Parsing We use the Stanford
coreference system to determine when the same
object is being referred to. To identify objects,
we look for noun phrases and use the head word
as the category, filtering with WordNet (Miller,
1995) to determine which objects are visualizable
(under the physical object synset, excluding loca-
tions). To identify properties of the objects, we ex-
tract other adjectives and nouns in the noun phrase.
We also match syntactic dependency patterns such
as “X is made of Y” to extract more attributes and
keywords. Finally, we use dependency patterns to
extract spatial relations between objects.

2http://nlp.stanford.edu/software/corenlp.shtml

Figure 3: Select “a blue office chair” and “a
wooden desk” from the models database

Object Selection Once we have the scene tem-
plate, we use the keywords associated with each
object to query the model database. We select ran-
domly from the top 10 results for variety and to
allow the user to regenerate the scene with differ-
ent models. This step can be enhanced to take into
account correlations between objects (e.g., a lamp
on a table should not be a floor lamp model). See
Figure 3 for an example of object selection.

Object Layout Given the selected models, the
source scene template, and priors on spatial rela-
tions, we find an arrangement of the objects within
the scene that maximizes the probability of the lay-
out under the given scene template.

3.2 Scene Interaction
Here we address parsing of text after a scene has
been generated and during interaction sessions.

Command Parsing We deterministically map
verbs to possible actions as shown in Table 2.
Multiple actions are possible for some verbs (e.g.,
“place” and “put” can refer to either Move or
Insert). To differentiate between these, we as-
sume new objects are introduced with the indefi-
nite article “a” whereas old ones are modified with
the definite article “the”.

Object Resolution To allow interaction with the
scene, wemust resolve references to objects within
a scene. Objects are disambiguated by category
and view-centric spatial relations. In addition to
matching objects by their categories, we use the
WordNet hierarchy to handle hyponym or hyper-
nym referents. Depending on the current view,
spatial relations such as “left” or “right” can refer
to different objects (see Figure 4).

Scene Modification Based on the action we
need to appropriately modify the current scene.
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verb Action Example Text Example Parse
generate Generate generate a room with a desk and a lamp Generate( {room,desk,lamp} , {}) )
select Select select the chair on the right of the table Select({lamp},{right(lamp,table)})

add, insert Insert add a lamp to the table Insert({lamp},{on(lamp,table)})
delete, remove Remove remove the lamp Remove({lamp})

move Move move the chair to the left Move({chair},{left(chair)})
place, put Move, Insert put the lamp on the table Move({lamp},{on(lamp,table)})
replace Replace replace the lamp with a vase Replace({lamp},{vase})

Table 2: Mapping of verbs to possible actions.

Figure 4: Left: chair is selected by “chair to the
right of the table” or “object to the right of the ta-
ble”, but not selected by “cup to the right of the
table”. Right: Different view results in a different
chair selection for “chair to the right of the table”.

Figure 5: Left: initial scene. Right: after input
“Put a lamp on the table”.

We do this by maximizing the probability of a new
scene template given the requested action and pre-
vious scene template (see Figure 5 for an example).

4 Future Directions

We described a system prototype to motivate ap-
proaching text to scene generation as a semantic
parsing application. While this prototype illus-
trates inference of implicit constraints using prior
knowledge, it still relies on hand coded rules for
mapping text to the scene representation. This is
similar to most previous work on text to scene gen-
eration (Winograd, 1972; Coyne and Sproat, 2001)
and limits handling of natural language. More re-
cently, (Zitnick et al., 2013) used data to learn how
to ground sentences to a CRF representing 2D cli-
part scenes. Similarly, we plan to investigate using
data to learn how to ground sentences to 3D scenes.
Spatial knowledge can be helpful for resolving

ambiguities during parsing. For instance, from

spatial priors of object positions and reasoning
with physical constraints we can disambiguate the
attachment of “next to” in “there is a book on the
table next to the lamp”. The book and lamp are
likely on the table and thus next_to(book, lamp)
should be more likely.
User interaction is a natural part of text to scene

generation. We can leverage such interaction to
obtain data for training a semantic parser. Every
time the user issues a command, the user can indi-
cate whether the result of the interaction was cor-
rect or not, and optionally provide a rating. By
keeping track of these scene interactions and the
user ratings we can construct a corpus of tuples
containing: user action, parsed scene interaction,
scene operation, scene state before and after the
operation, and rating by the user. By building up
such a corpus over multiple interactions and users,
we obtain data for training semantic parsers.
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Abstract

Many successful approaches to semantic
parsing build on top of the syntactic anal-
ysis of text, and make use of distribu-
tional representations or statistical mod-
els to match parses to ontology-specific
queries. This paper presents a novel deep
learning architecture which provides a se-
mantic parsing system through the union
of two neural models of language se-
mantics. It allows for the generation of
ontology-specific queries from natural lan-
guage statements and questions without
the need for parsing, which makes it es-
pecially suitable to grammatically mal-
formed or syntactically atypical text, such
as tweets, as well as permitting the devel-
opment of semantic parsers for resource-
poor languages.

1 Introduction

The ubiquity of always-online computers in the
form of smartphones, tablets, and notebooks has
boosted the demand for effective question answer-
ing systems. This is exemplified by the grow-
ing popularity of products like Apple’s Siri or
Google’s Google Now services. In turn, this cre-
ates the need for increasingly sophisticated meth-
ods for semantic parsing. Recent work (Artzi and
Zettlemoyer, 2013; Kwiatkowski et al., 2013; Ma-
tuszek et al., 2012; Liang et al., 2011, inter alia)
has answered this call by progressively moving
away from strictly rule-based semantic parsing, to-
wards the use of distributed representations in con-
junction with traditional grammatically-motivated
re-write rules. This paper seeks to extend this line
of thinking to its logical conclusion, by provid-
ing the first (to our knowledge) entirely distributed
neural semantic generative parsing model. It does
so by adapting deep learning methods from related

work in sentiment analysis (Socher et al., 2012;
Hermann and Blunsom, 2013), document classifi-
cation (Yih et al., 2011; Lauly et al., 2014; Her-
mann and Blunsom, 2014a), frame-semantic pars-
ing (Hermann et al., 2014), and machine trans-
lation (Mikolov et al., 2010; Kalchbrenner and
Blunsom, 2013a), inter alia, combining two em-
pirically successful deep learning models to form
a new architecture for semantic parsing.

The structure of this short paper is as follows.
We first provide a brief overview of the back-
ground literature this model builds on in §2. In §3,
we begin by introducing two deep learning models
with different aims, namely the joint learning of
embeddings in parallel corpora, and the generation
of strings of a language conditioned on a latent
variable, respectively. We then discuss how both
models can be combined and jointly trained to
form a deep learning model supporting the gener-
ation of knowledgebase queries from natural lan-
guage questions. Finally, in §4 we conclude by
discussing planned experiments and the data re-
quirements to effectively train this model.

2 Background

Semantic parsing describes a task within the larger
field of natural language understanding. Within
computational linguistics, semantic parsing is typ-
ically understood to be the task of mapping nat-
ural language sentences to formal representations
of their underlying meaning. This semantic rep-
resentation varies significantly depending on the
task context. For instance, semantic parsing has
been applied to interpreting movement instruc-
tions (Artzi and Zettlemoyer, 2013) or robot con-
trol (Matuszek et al., 2012), where the underlying
representation would consist of actions.

Within the context of question answering—the
focus of this paper—semantic parsing typically
aims to map natural language to database queries
that would answer a given question. Kwiatkowski

22



et al. (2013) approach this problem using a multi-
step model. First, they use a CCG-like parser
to convert natural language into an underspecified
logical form (ULF). Second, the ULF is converted
into a specified form (here a FreeBase query),
which can be used to lookup the answer to the
given natural language question.

3 Model Description

We describe a semantic-parsing model that learns
to derive quasi-logical database queries from nat-
ural language. The model follows the structure of
Kwiatkowski et al. (2013), but relies on a series of
neural networks and distributed representations in
lieu of the CCG and λ-Calculus based representa-
tions used in that paper.

The model described here borrows heavily from
two approaches in the deep learning literature.
First, a noise-contrastive neural network similar to
that of Hermann and Blunsom (2014a, 2014b) is
used to learn a joint latent representation for nat-
ural language and database queries (§3.1). Sec-
ond, we employ a structured conditional neural
language model in §3.2 to generate queries given
such latent representations. Below we provide the
necessary background on these two components,
before introducing the combined model and de-
scribing its learning setup.

3.1 Bilingual Compositional Sentence Models

The bilingual compositional sentence model
(BiCVM) of Hermann and Blunsom (2014a) pro-
vides a state-of-the-art method for learning se-
mantically informative distributed representations
for sentences of language pairs from parallel cor-
pora. Through the joint production of a shared la-
tent representation for semantically aligned sen-
tence pairs, it optimises sentence embeddings
so that the respective representations of dissim-
ilar cross-lingual sentence pairs will be weakly
aligned, while those of similar sentence pairs will
be strongly aligned. Both the ability to jointly
learn sentence embeddings, and to produce latent
shared representations, will be relevant to our se-
mantic parsing pipeline.

The BiCVM model shown in Fig. 1 assumes
vector composition functions g and h, which map
an ordered set of vectors (here, word embed-
dings from DA,DB) onto a single vector in Rn.
As stated above, for semantically equivalent sen-
tences a, b across languages LA,LB , the model

aims to minimise the distance between these com-
posed representations:

Ebi(a, b) = ‖g(a)− h(b)‖2

In order to avoid strong alignment between dis-
similar cross-lingual sentence pairs, this error
is combined with a noise-contrastive hinge loss,
where n ∈ LB is a randomly sampled sentence,
dissimilar to the parallel pair {a, b}, and m de-
notes some margin:

Ehl(a, b, n) = [m+ Ebi(a, b)− Ebi(a, n)]+ ,

where [x]+ = max(0, x). The resulting objective
function is as follows

J(θ) =
∑

(a,b)∈C

(
k∑
i=1

Ehl(a, b, ni) +
λ

2
‖θ‖2

)
,

with λ
2‖θ‖2 as the L2 regularization term and

θ={g, h,DA,DB} as the set of model variables.

...

L1 sentence embedding

L1 word embeddings

L2 sentence embedding

L2 word embeddings

contrastive estimation

g

h

Figure 1: Diagrammatic representation of a
BiCVM.

While Hermann and Blunsom (2014a) applied
this model only to parallel corpora of sentences,
it is important to note that the model is agnostic
concerning the inputs of functions g and h. In this
paper we will discuss how this model can be ap-
plied to non-sentential inputs.
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3.2 Conditional Neural Language Models
Neural language models (Bengio et al., 2006) pro-
vide a distributed alternative to n-gram language
models, permitting the joint learning of a pre-
diction function for the next word in a sequence
given the distributed representations of a subset
of the last n−1 words alongside the representa-
tions themselves. Recent work in dialogue act la-
belling (Kalchbrenner and Blunsom, 2013b) and
in machine translation (Kalchbrenner and Blun-
som, 2013a) has demonstrated that a particular
kind of neural language model based on recurrent
neural networks (Mikolov et al., 2010; Sutskever
et al., 2011) could be extended so that the next
word in a sequence is jointly generated by the
word history and the distributed representation for
a conditioning element, such as the dialogue class
of a previous sentence, or the vector representation
of a source sentence. In this section, we briefly de-
scribe a general formulation of conditional neural
language models, based on the log-bilinear mod-
els of Mnih and Hinton (2007) due to their relative
simplicity.

A log-bilinear language model is a neural net-
work modelling a probability distribution over the
next word in a sequence given the previous n−1,
i.e. p(wn|w1:n−1). Let |V | be the size of our vo-
cabulary, and R be a |V | × d vocabulary matrix
where the Rwi demnotes the row containing the
word embedding in Rd of a word wi, with d be-
ing a hyper-parameter indicating embedding size.
Let Ci be the context transform matrix in Rd×d

which modifies the representation of the ith word
in the word history. Let bwi be a scalar bias as-
sociated with a word wi, and bR be a bias vector
in Rd associated with the model. A log-bilinear
model expressed the probability of wn given a his-
tory of n−1 words as a function of the energy of
the network:

E(wn;w1:n−1) =

−
(
n−1∑
i=1

RTwi
Ci

)
Rwn − bTRRwn − bwn

From this, the probability distribution over the
next word is obtained:

p(wn|w1:n−1) =
e−E(wn;w1:n−1)∑
wn
e−E(wn;w1:n−1)

To reframe a log-bilinear language model as a
conditional language model (CNLM), illustrated

β

wnwn-1wn-2wn-3

Figure 2: Diagrammatic representation of a Con-
ditional Neural Language Model.

in Fig. 2, let us suppose that we wish to jointly
condition the next word on its history and some
variable β, for which an embedding rβ has been
obtained through a previous step, in order to com-
pute p(wn|w1:n−1, β). The simplest way to do this
additively, which allows us to treat the contribu-
tion of the embedding for β as similar to that of an
extra word in the history. We define a new energy
function:

E(wn;w1:n−1, β) =

−
((

n−1∑
i=1

RTwi
Ci

)
+ rTβCβ

)
Rwn− bTRRwn− bwn

to obtain the probability

p(wn|w1:n−1, β) =
e−E(wn;w1:n−1,β)∑
wn
e−E(wn;w1:n−1,β)

Log-bilinear language models and their condi-
tional variants alike are typically trained by max-
imising the log-probability of observed sequences.

3.3 A Combined Semantic Parsing Model
The models in §§3.1–3.2 can be combined to form
a model capable of jointly learning a shared la-
tent representation for question/query pairs using
a BiCVM, and using this latent representation to
learn a conditional log-bilinear CNLM. The full
model is shown in Fig. 3. Here, we explain the
final model architecture both for training and for
subsequent use as a generative model. The details
of the training procedure will be discussed in §3.4.

The combination is fairly straightforward, and
happens in two steps at training time. For the
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...

Knowledgebase query

Question

Latent
representation

Query embedding

Question embedding

Relation/object
embeddings

Word embeddings

Conditional
Log-bilinear

Language Model

g

h

Figure 3: Diagrammatic representation of the full
model. First the mappings for obtaining latent
forms of questions and queries are jointly learned
through a BiCVM. The latent form for questions
then serves as conditioning element in a log-
bilinear CNLM.

first step, shown in the left hand side of Fig. 3,
a BiCVM is trained against a parallel corpora
of natural language question and knowledgebase
query pairs. Optionally, the embeddings for the
query symbol representations and question words
are initialised and/or fine-tuned during training,
as discussed in §3.4. For the natural language
side of the model, the composition function g can
be a simple additive model as in Hermann and
Blunsom (2014a), although the semantic informa-
tion required for the task proposed here would
probably benefit from a more complex composi-
tion function such as a convolution neural net-
work. Function h, which maps the knowledgebase
queries into the shared space could also rely on
convolution, although the structure of the database
queries might favour a setup relying primarily on
bi-gram composition.

Using function g and the original training data,
the training data for the second stage is created
by obtaining the latent representation for the ques-
tions of the original dataset. We thereby obtain
pairs of aligned latent question representations and
knowledgebase queries. This data allows us to
train a log-bilinear CNLM as shown on the right
side of Fig. 3.

Once trained, the models can be fully joined to
produce a generative neural network as shown in
Fig. 4. The network modelling g from the BiCVM

...

Question

Generated Query

g

Figure 4: Diagrammatic representation of the final
network. The question-compositional segment of
the BiCVM produces a latent representation, con-
ditioning a CNLM generating a query.

takes the distributed representations of question
words from unseen questions, and produces a la-
tent representation. The latent representation is
then passed to the log-bilinear CNLM, which con-
ditionally generates a knowledgebase query corre-
sponding to the question.

3.4 Learning Model Parameters

We propose training the model of §3.3 in a two
stage process, in line with the symbolic model of
Kwiatkowski et al. (2013).

First, a BiCVM is trained on a parallel corpus
C of question-query pairs 〈Q,R〉 ∈ C, using com-
position functions g for natural language questions
and h for database queries. While functions g and
hmay differ from those discussed in Hermann and
Blunsom (2014a), the basic noise-contrastive op-
timisation function remains the same. It is possi-
ble to initialise the model fully randomly, in which
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case the model parameters θ learned at this stage
include the two distributed representation lexica
for questions and queries, DQ and DR respec-
tively, as well as all parameters for g and h.

Alternatively, word embeddings inDQ could be
initialised with representations learned separately,
for instance with a neural language model or a
similar system (Mikolov et al., 2010; Turian et al.,
2010; Collobert et al., 2011, inter alia). Likewise,
the relation and object embeddings inDR could be
initialised with representations learned from dis-
tributed relation extraction schemas such as that
of Riedel et al. (2013).

Having learned representations for queries in
DR as well as function g, the second training phase
of the model uses a new parallel corpus consisting
of pairs 〈g(Q), R〉 ∈ C ′ to train the CNLM as pre-
sented in §3.3.

The two training steps can be applied iteratively,
and further, it is trivial to modify the learning
procedure to use composition function h as an-
other input for the CNLM training phrase in an
autoencoder-like setup.

4 Experimental Requirements and
Further Work

The particular training procedure for the model
described in this paper requires aligned ques-
tion/knowledgebase query pairs. There exist some
small corpora that could be used for this task
(Zelle and Mooney, 1996; Cai and Yates, 2013). In
order to scale training beyond these small corpora,
we hypothesise that larger amounts of (potentially
noisy) training data could be obtained using a
boot-strapping technique similar to Kwiatkowski
et al. (2013).

To evaluate this model, we will follow the ex-
perimental setup of Kwiatkowski et al. (2013).
With the provisio that the model can generate
freebase queries correctly, further work will seek
to determine whether this architecture can gener-
ate other structured formal language expressions,
such as lambda expressions for use in textual en-
tailement tasks.
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Abstract
We outline a vision for computational se-
mantics in which formal compositional
semantics is combined with a powerful,
structured lexical semantics derived from
distributional statistics. We consider how
existing work (Lewis and Steedman, 2013)
could be extended with a much richer
lexical semantics using recent techniques
for modelling processes (Scaria et al.,
2013)—for example, learning that visit-
ing events start with arriving and end with
leaving. We show how to closely inte-
grate this information with theories of for-
mal semantics, allowing complex compo-
sitional inferences such as is visiting→has
arrived in but will leave, which requires
interpreting both the function and content
words. This will allow machine reading
systems to understand not just what has
happened, but when.

1 Combined Distributional and Logical
Semantics

Distributional semantics aims to induce the mean-
ing of language from unlabelled text. Traditional
approaches to distributional semantics have repre-
sented semantics in vector spaces (Baroni et al.,
2013). Words are assigned vectors based on col-
locations in large corpora, and then these vectors
a composed into vectors representing longer utter-
ances. However, so far there is relatively limited
empirical evidence that composed vectors provide
useful representations for whole sentences, and it
is unclear how to represent logical operators (such
as universal quantifiers) in a vector space. While
future breakthroughs may overcome these limita-
tions, there are already well developed solutions in
the formal semantics literature using logical rep-
resentations. On the other hand, standard for-
mal semantic approaches such as Bos (2008) have

found that hand-built ontologies such as Word-
Net (Miller, 1995) provide an insufficient model
of lexical semantics, leading to low recall on appli-
cations. The complementary strengths and weak-
nesses of formal and distributional semantics mo-
tivate combining them into a single model.

In Lewis and Steedman (2013), we proposed
a solution to these problems which uses CCG
(Steedman, 2012) as a model of formal semantics,
making it straightforward to build wide-coverage
logical forms. Hand built representations are
added for a small number of function words such
as negatives and quantifiers—but the lexical se-
mantics is represented by first clustering predi-
cates (based on their usage in large corpora), and
then using the cluster-identifiers as symbols in the
logical form. For example, the induced CCG lexi-
con might contain entries such as the following1:
write ` (S\NP)/NP

: λyλxλe.rel43(x, y, e)
author `N/PPof

: λyλxλe.rel43(x, y, e)
Equivalent sentences like Shakespeare wrote

Macbeth and Shakespeare is the author of
Macbeth can then both be mapped to a
rel43(shakespeare,macbeth) logical form, us-
ing derivations such as:

Shakespeare wrote Macbeth

NP (S\NP)/NP NP
shakespeare λyλxλe.rel43(x, y, e) macbeth

>
S\NP

λxλe.rel43(x,macbeth, e)
<

S
λe.rel43(shakespeare,macbeth, e)

This approach interacts seamlessly with stan-
dard formal semantics—for example modelling
negation by mapping Francis Bacon didn’t write
Macbeth to ¬rel43(francis bacon,macbeth).
Their method has shown good performance on a
dataset of multi-sentence textual inference prob-
lems involving quantifiers, by using first-order the-
1The e variables are Davidsonian event variables.
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orem proving. Ambiguity is handled by a proba-
bilistic model, based on the types of the nouns.

Beltagy et al. (2013) use an alternative approach
with similar goals, in which every word instance
expresses a unique semantic primitive, but is con-
nected to the meanings of other word instances us-
ing distributionally-derived probabilistic inference
rules. This approach risks requiring very large
number of inference rules, which may make infer-
ence inefficient. Our approach avoid this problem
by attempting to fully represent lexical semantics
in the lexicon.

2 Proposal

We propose how our previous model could be ex-
tended to make more sophisticated inferences. We
will demonstrate how many interesting problems
in semantics could be solved with a system based
on three components:

• A CCG syntactic parse for modelling com-
position. Using CCG allows us to handle in-
teresting forms of composition, such as co-
ordination, extraction, questions, right node
raising, etc. CCG also has both a developed
theory of operator semantics and a transpar-
ent interface to the underlying predicate ar-
gument structure.

• A small hand built lexicon for words
with complex semantics—such as negatives,
quantifiers, modals, and implicative verbs.

• A rich model of lexical semantics de-
rived from distributionally-induced entail-
ment graphs (Berant et al., 2011), extended
with subcategories of entailment relations in
a similar way to Scaria et al. (2013). We show
how such graphs can be converted into a CCG
lexicon.

2.1 Directional Inference
A major limitation of our previous model is
that it uses a flat clustering to model the
meaning of content words. This method en-
ables them to model synonymy relations be-
tween words, but not relations where the en-
tailment only holds in one direction—for ex-
ample, conquers→invades, but not vice-versa.
This problem can be addressed using the en-
tailment graph framework introduced by Berant
et al. (2011), which learns globally consistent
graphs over predicates in which directed edges

indicate entailment relations. Exactly the same
methods can be used to build entailment graphs
over the predicates derived from a CCG parse:

1 attackarg0,arg1

2
invadearg0,arg1

invasionposs,of

3
conquerarg0,arg1

annexarg0,arg1

4
bombarg0,arg1

The graph can then be converted to a CCG lexi-
con by making the semantics of a word be the con-
junction of all the relation identifiers it implies in
the graph. For example, the above graph is equiv-
alent to the following lexicon:
attack ` (S\NP)/NP

: λxλyλe.rel1(x, y, e)
bomb ` (S\NP)/NP

: λxλyλe.rel1(x, y, e)∧rel4(x, y, e)
invade ` (S\NP)/NP

: λxλyλe.rel1(x, y, e)∧rel2(x, y, e)
conquer` (S\NP)/NP

: λxλyλe.rel1(x, y, e) ∧
rel2(x, y, e) ∧ rel3(x, y, e)

This lexicon supports the correct infer-
ences, such as conquers→attacks and didn’t
invade→didn’t conquer.

2.2 Temporal Semantics

One case where combining formal and distribu-
tional semantics may be particularly helpful is in
giving a detailed model of temporal semantics. A
rich understanding of time would allow us to un-
derstand when events took place, or when states
were true. Most existing work ignores tense, and
would treat the expressions used to be president
and is president either as equivalent or completely
unrelated. Failing to model tense would lead to in-
correct inferences when answering questions such
as Who is the president of the USA?

Another motivation for considering a detailed
model of temporal semantics is that understanding
the time of events should improve the quality of
the distributional clustering. It has recently been
shown that such information is extremely useful
for learning equivalences between predicates, by
determining which sentences describe the same
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events using date-stamped text and simple tense
heuristics (Zhang and Weld, 2013). Such meth-
ods escape common problems with traditional ap-
proaches to distributional similarity, such as con-
flating causes with effects, and may prove very
useful for building entailment graphs.

Temporal information is conveyed by both by
auxiliary verbs such as will or used to, and in
the semantics of content words. For example, the
statement John is visiting Baltimore licences en-
tailments such as John has arrived in Baltimore
and John will leave Baltimore, which can only be
understood through both knowledge of tense and
lexical semantic relations.

The requisite information about lexical seman-
tics could be represented by labelling edges in the
entailment graphs, along the lines of Scaria et al.
(2013). Instead of edges simply representing en-
tailment, they should represent different kinds of
lexical relations, such as precondition or conse-
quence. Building such graphs requires training
classifiers that predict fine-grained semantic rela-
tions between predicates, and defining transitivity
properties of the relations (e.g. a precondition of a
precondition is a precondition). For example, the
system might learn the following graph:

1 visitarg0,arg1

3
leavearg0,arg1

exitarg0,arg1

departarg0,from

2
arrivearg0,in

reacharg0,arg1

initiated by terminated by

By defining a simple mapping between edge la-
bels and logical forms, this graph can be converted
to CCG lexical entries such as:
visit ` (S\NP)/NP

: λyλxλe.rel1(x, y, e) ∧
∃e′[rel2(x, y, e′)∧ before(e, e′)]∧
∃e′′[rel3(x, y, e′′) ∧ after(e, e′′)]

arrive ` (S\NP)/PPin

: λyλxλe.rel2(x, y, e)
leave ` (S\NP)/NP

: λyλxλe.rel3(x, y, e)

These lexical entries could be complemented
with hand-built interpretations for a small set of
common auxiliary verbs:

has ` (S\NP)/(Sb\NP)
: λpλxλe.before(r, e) ∧ p(x, e)

will ` (S\NP)/(Sb\NP)
: λpλxλe.after(r, e) ∧ p(x, e)

is ` (S\NP)/(Sng\NP)
: λpλxλe.during(r, e) ∧ p(x, e)

used ` (S\NP)/(Sto\NP)
: λpλxλe.before(r, e) ∧ p(x, e) ∧
¬∃e′[during(r) ∧ p(x, e′)]

Here, r is the reference time (e.g. the time that
the news article was written). It is easy to verify
that such a lexicon supports inferences such as is
visiting→will leave, has visited→has arrived in,
or used to be president→is not president.

The model described here only discusses tense,
not aspect—so does not distinguish between John
arrived in Baltimore and John has arrived in Bal-
timore (the latter says that the consequences of his
arrival still hold—i.e. that he is still in Baltimore).
Going further, we could implement the much more
detailed proposal of Moens and Steedman (1988).
Building this model would require distinguishing
states from events—for example, the semantics of
arrive, visit and leave could all be expressed in
terms of the times that an is in state holds.

2.3 Intensional Semantics
Similar work could be done by subcatego-
rizing edges in the graph with other lexi-
cal relations. For example, we could ex-
tend the graph with goal relations between
words, such as between set out for and ar-
rive in, search and find, or invade and conquer:

1
set outarg0,for

headarg0,to

2
arrivearg0,in

reacharg0,arg1

goal

The corresponding lexicon contains entries such
as:
set out ` (S\NP)/PPfor

: λyλxλe.rel1(x, y, e) ∧
�∃e′[goal(e, e′) ∧ rel2(x, y, e′)]

The modal logic � operator is used to mark that
the goal event is a hypothetical proposition, that
is not asserted to be true in the real world—so
Columbus set out for India6→Columbus reached
India. The same mechanism allows us to handle
Montague (1973)’s example that John seeks a uni-
corn does not imply the existence of a unicorn.

Just as temporal information can be expressed
by auxiliary verbs, relations such as goals can
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Columbus failed to reach India
<

Sdcl/(Sdcl\NP ) (Sdcl\NP )/(Sto\NP ) (Sto\NP )/(Sb\NP ) Sb\NP
λp.p(Columbus) λpλxλe. � ∃e′[p(x, e′) ∧ goal(e′, e)] ∧ ¬∃e′′[p(x, e′′)] λpλxλe.p(x, e) λxλe.rel2(x, India, e)

>
Sto\NP

λxλe.rel2(x, India, e)
>

Sdcl\NP
λxλe. � ∃e′[rel2(x, India, e′) ∧ goal(e′, e)] ∧ ¬∃e′′[rel2(x, India, e′′)]

>
Sdcl

λe. � ∃e′[rel2(Columbus, India, e′) ∧ goal(e′, e)] ∧ ¬∃e′′[rel2(Columbus, India, e′′)]

Figure 1: Output from our system for the sentence Columbus failed to reach India

be expressed using implicative verbs like try or
fail. As the semantics of implicative verbs is of-
ten complex (Karttunen, 1971), we propose hand-
coding their lexical entries:
try ` (S\NP)/(Sto\NP)

: λpλxλe.�∃e′[goal(e, e′)∧p(x, e′)]
fail ` (S\NP)/(Sto\NP)

: λpλxλe.�∃e′[goal(e, e′)∧p(x, e′)]∧
¬∃e′′[goal(e, e′′) ∧ p(x, e′′)]

The � operator is used to assert that the comple-
ment of try is a hypothetical proposition (so try to
reach 6→reach). Our semantics for fail is the same
as that for try, except that it asserts that the goal
event did not occur in the real world.

These lexical entries allow us to make complex
compositional inferences, for example Columbus
failed to reach India now entails Columbus set
out for India, Columbus tried to reach India and
Columbus didn’t arrive in India.

Again, we expect that the improved model of
formal semantics should increase the quality of
the entailment graphs, by allowing us to only clus-
ter predicates based on their real-world arguments
(ignoring hypothetical events).

3 Conclusion

We have argued that several promising recent
threads of research in semantics can be combined
into a single model. The model we have described
would enable wide-coverage mapping of open-
domain text onto rich logical forms that model
complex aspects of semantics such as negation,
quantification, modality and tense—whilst also
using a robust distributional model of lexical se-
mantics that captures the structure of events. Con-
sidering these interwined issues would allow com-
plex compositional inferences which are far be-
yond the current state of the art, and would give
a more powerful model for natural language un-
derstanding.
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Abstract

We are interested in the automatic inter-
pretation of how-to instructions, such as
cooking recipes, into semantic representa-
tions that can facilitate sophisticated ques-
tion answering. Recent work has shown
impressive results on semantic parsing of
instructions with minimal supervision, but
such techniques cannot handle much of the
situated and ambiguous language used in
instructions found on the web. In this pa-
per, we suggest how to extend such meth-
ods using a model of pragmatics, based on
a rich representation of world state.

1 Introduction

Understanding instructional text found on the web
presents unique challenges and opportunities that
represent a frontier for semantic parsing. Cru-
cially, instructional language is situated: it as-
sumes a situational context within which the agent
(i.e., the reader) is to carry out a sequence of ac-
tions, as applied to objects that are (or become)
available in the immediate environment. These ac-
tions and objects may not be explicitly specified;
indeed, much instructional language is ambigu-
ous, underspecified and often even ungrammatical
relative to conventional usage.

In this “vision paper”, we focus on interpreting
cooking recipes. While there are several services
that already support searching for recipes (such
as Google Recipe Search1, Yummly, Foodily, and
MyTaste), the faceted search capabilities they pro-
vide are limited to recipe meta-data such as ingre-
dients, genres, cooking time, portions, and nutri-
tion values. Some of this information is explicitly
marked up in machine-readable form2. However,

1http://www.google.com/insidesearch/
features/recipes/

2See e.g. http://microformats.org/wiki/
recipe-formats

Figure 1: Example recipes. Left: for a mixed
drink. Right: for guacamole dip.

the actual steps of the recipe are treated as an un-
structured blob of text. (The same problem ap-
plies to other instructional sites, such as ehow.
com, wikihow.com, answers.yahoo.com,
www.instructables.com, etc.) Interpreting
the steps of recipes (and instructions more gener-
ally) is the goal of this paper.

2 Challenges

This section surveys some of the linguistic chal-
lenges typical of the cooking domain, as illustrated
by the two recipes in Figure 1. These difficulties
can be classified broadly as problems arising from
the interpretation of arguments, actions and con-
trol structure.

Arguments: One particularly salient character-
istic of recipes is that they often feature arguments
that are omitted, underspecified or otherwise de-
pendent on the context. Arguments may be elided
in syntactic contexts where they are usually re-
quired (the so-called “zero anaphora” problem),
especially when they are easily filled by an object
in the immediate context. For example, the item
to set aside in (1a) is the just-treated cocktail glass,
and the item to fill in (1b) and shake and then strain
in (1c) is the recently mentioned shaker. Note that
the context may include the ingredient list itself, as
illustrated by the elided argument(s) to be added
in the one-line recipe “Add to a cocktail glass in
the order listed.” Arguments may be implicitly
available, based on either domain-specific expec-
tations of the initial context or the results of pre-
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ceding steps. The ice in (1b) isn’t listed in the
corresponding recipes ingredient list, since many
common ingredients (water, ice, salt, pepper) are
assumed to be available in most kitchens. Some-
times, the argument may never have been directly
verbalized, but rather is the result of a previous ac-
tion. Thus in the recipe “Pour ingredients over ice
and shake vigorously,” the object to shake is the
container (only implicitly available) along with its
contents — which, once the “pour” instruction is
executed, include both ice and the (listed) ingre-
dients. Note also that interpreting “the remain-
ing ingredients” in (1b) requires an understand-
ing of which ingredients have yet to be used at
that point in the recipe. Arguments may be in-
directly available, by association with an explic-
itly available argument. Recipe 2 mentions avo-
cados in several explicit and implicit referring ex-
pressions; of these only the “them” in (2a) may
be considered straightforward anaphoric reference
(to the just-cut avocados). Step (2b) involves a
metonymic reference to the “skin and pits” where
the part-whole relation between these items and
the avocado is what makes the instruction inter-
pretable. Step (2c) once again mentions “avoca-
dos”, but note that this now refers to the flesh of
the avocados, i.e., the implicit scooped-out object
from (2a). Arguments may be incompletely speci-
fied, especially with respect to amount. The exact
amount of sugar needed in (1a) is not mentioned,
for example. Similarly, the amount of ice needed
in (1b) depends on the size of the shaker and is not
precisely specified.

Actions: Like arguments, action interpretation
also depends on the situational context. For exam-
ple, actions may have ambiguous senses, mainly
due to the elided arguments noted above. The verb
“shake” in (1c), for example, yields a spurious in-
transitive reading. Actions may have argument-
dependent senses: certain verbs may resolve to
different motor actions depending on the affor-
dances of their arguments. For example, the ac-
tion intended by the verb “garnish” in (1d) might
involve careful perching of the peel on the rim
of the glass; in other recipes, the same verb ap-
plied to nutmeg or cut fruit may be better inter-
preted as an add action. Actions may be omitted
or implied, in particular by the way certain argu-
ments are expressed. Most recipes involving eggs,
for example, do not explicitly mention the need to
crack them and extract their contents; this is a de-

fault preparatory step. Other ingredients vary in
how strongly they are associated with (implicit)
preparatory steps. For example, recipes calling
for “1/4 avocado” may require that something like
steps (2a-b) be undertaken (and their results quar-
tered); the “orange peel” of (1d) may likewise de-
pend on a separate procedure for extracting peel
from an orange.

Control structure: Instructions sometimes
provide more complex information about se-
quence, coordination and control conditions. Con-
ditions: An action may be specified as being per-
formed until some finish condition holds. In (2c),
the “until smooth” condition—itself featuring an
elided avocado argument—controls how long the
blending action should continue. Other conditions
mentioned in recipes include “Add crushed ice un-
til the glass is almost full”, “Stir until the glass be-
gins to frost”, and “Add salt to taste”. Sequence:
Though implicitly sequential, recipes occasion-
ally include explicit sequencing language. In the
recipe “Add to a cocktail glass in the order listed”,
the order reflects that of the ingredient list. Other
recipes specify that certain steps can or should be
done “ahead of time”, or else while other steps are
in progress. Alternatives: Recipes sometimes al-
low for some variability, by specifying alternative
options for specific ingredients (“Garnish with a
twist of lemon or lime”), appliances or utensils
(“Using a large fork (or a blender)...”), and even
actions (“Chop or mash the avocados”).

As should be clear from these examples, the in-
terpretation of a given step in a set of instructions
may hinge on many aspects of situated and proce-
dural knowledge, including at least: the physical
context (including the particular props and tools
assumed available); the incremental state result-
ing from successful execution of previous steps;
and general commonsense knowledge about the
affordances of specific objects or expected argu-
ments of specific actions (or more conveniently,
corpus-based verb-argument expectations that ap-
proximate such knowledge, see e.g., (Nyga and
Beetz, 2012)). All of these sources of knowl-
edge go significantly beyond those employed in
semantic parsing models for single utterances and
in non-procedural contexts.

3 Proposed approach

We propose to maintain a rich latent context that
persists while parsing an entire recipe, in contrast
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Bowl    
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Empty    
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Add:
   from: jug
   to: bowl
   what: milk
   manner: pouring
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Figure 2: Our proposed probabilistic model, showing a possible trace of observed and latent variables
after parsing each step of a pancake recipe. See text for description of notation.

to approaches that interpret each sentence inde-
pendently. This context represents the state of the
kitchen, and statements in the recipes are inter-
preted pragmatically with respect to the evolving
context. More precisely, our model has the over-
all structure of a discrete-time, partially observed,
object-oriented Markov Decision Process, as il-
lustrated in Figure 2. The states and actions are
both hidden. What we observe is text and/or im-
ages/video; our goal is to infer the posterior over
the sequence of actions (i.e., to recover the “true”
recipe), given the noisy evidence.

States and actions. The world state St is repre-
sented as a set of objects, such as ingredients and
containers, along with various predicates, encod-
ing the quantity, location, and condition (e.g., raw
or cooked, empty or full) of each object. Note that
previous work on situated semantic parsing often
uses grid world environments where the only flu-
ent is the agent’s location; in contrast, we allow
any object to undergo state transformations. In
particular, objects can be created and destroyed.

Each action At is represented by a semantic
frame, corresponding to a verb with various ar-
guments or roles. This specifies how to trans-
form the state. We also allow for sequencing
and loop frames c.f., the “robot control language”

in (Matuszek et al., 2013). We assume access
to a simple cooking simulator that can take in a
stream of low-level instructions to produce a new
state; this implements the world dynamics model
p(St|St−1, At).

Text data. We assume that the text of the
t’th sentence, represented by WAt, describes the
t’th primitive action, At. We represent the con-
ditional distribution p(At|WAt, St−1) as a log-
linear model, as in prior work on frame-semantic
parsing/ semantic role labeling (SRL) (Das et al.,
2014).3 However, we extend this prior work by al-
lowing roles to be filled not just from spans from
the text, but also by objects in the latent state vec-
tor. We will use various pragmatically-inspired
features to represent the compatibility between
candidate objects in the state vector and roles in
the action frame, including: whether the object
has been recently mentioned or touched, whether
the object has the right affordances for the cor-
responding role (e.g., if the frame is “mix”, and
the role is “what”, the object should be mixable),

3Although CCGs have been used in previous work on
(situated) semantic parsing, such as (Artzi and Zettlemoyer,
2013), we chose to use the simpler approach based on frames
because the nature of the language that occurs in recipes
is sufficiently simple (there are very few complex nested
clauses).
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etc. More sophisticated models, based on model-
ing the belief state of the listener (e.g., (Goodman
and Stuhlmüller, 2013; Vogel et al., 2013)) are also
possible and within the scope of future work.

In addition to imperative sentences, we some-
times encounter descriptive sentences that de-
scribe what the state should look like at a given
step (c.f., (Lau et al., 2009)). We let WSt denote a
sentence (possibly empty) describing the t’th state,
St. The distribution p(St|WSt) is a discriminative
probabilistic classifier of some form.

Visual data. Much instructional information is
available in the form of how-to videos. In addi-
tion, some textual instructions are accompanied by
static images. We would like to extend the model
to exploit such data, when available.

Let a video clip associated with an action at
time t be denoted by VAt. We propose to learn
p(At|VAt) using supervised machine learning.
For features, we could use the output of standard
object detectors and their temporal trajectories, as
in (Yu and Siskind, 2013), bags of visual words
derived from temporal HOG descriptors as in (Das
et al., 2013), or features derived from RGB-D sen-
sors such as Kinect, as in (Song et al., 2013; Lei et
al., 2012).

There are many possible ways to fuse the in-
formation from vision and text, i.e., to com-
pute p(At|VAt, WAt, St−1). The simplest ap-
proach is to separately train the two conditionals,
p(At|WAt, St−1) and p(At|VAt), and then train
another model to combine them, using a separate
validation set; this will learn the relative reliability
of the two sources of signal.

Learning and inference. We assume that we
have manually labeled the actions At, and that the
initial state S0 is fully observed (e.g., a list of in-
gredients, with all containers empty). If we ad-
ditional assume that the world dynamics model is
known4 and deterministic, then we can uniquely
infer the sequence of states S1:T . This lets us use
standard supervised learning to fit the log-linear
model p(At|WAt, St−1).

In the future, we plan to relax the assumption
of fully labeled training data, and to allow for
learning from a distant supervision signal, simi-
lar to (Artzi and Zettlemoyer, 2013; Branavan et
al., 2009). For example, we can prefer a parse that
results in a final state in which all the ingredients

4There has been prior work on learning world models
from text, see e.g., (Sil and Yates, 2011; Branavan et al.,
2012).

have been consumed, and the meal is prepared.

4 Preliminary results

We conducted a preliminary analysis to gauge the
feasibility and expected performance benefits of
our approach. We used the raw recipes provided
in the CMU Recipe Database (Tasse and Smith,
2008), which consists of 260 English recipes
downloaded from allrecipes.com. We then
applied a state-of-the art SRL system (Das et al.,
2014) to the corpus, using Propbank (Palmer et al.,
2005) as our frame repository. Figure 3 summa-
rizes our findings.

To judge the variance of predicates used in the
cooking domain, we computed the frequency of
each word tagged as a present-tense verb by a sta-
tistical part-of-speech tagger, filtering out a small
number of common auxiliary verbs. Our find-
ings suggest a relatively small number of verbs
account for a large percentage of observed instruc-
tions (e.g, “add”, “bake”, and “stir”). The majority
of these verbs have corresponding framesets that
are usually correctly recognized, with some no-
table exceptions. Further, the most common ob-
served framesets have a straightforward mapping
to our set of kitchen state transformations, such
as object creation via combination (“add”, “mix”,
“combine”, “stir in”), location transfers (“place”,
“set”), and discrete state changes over a small
space of features (“cook”, “cut”, “cool”, “bake”).

To gain a preliminary understand of the limi-
tations of the current SRL system and the possi-
ble performance benefits of our proposed system,
we hand-annotated five of our recipes as follows:
Each verb in the recipe corresponding to an action
was annotated with its best corresponding roleset
(if any). Each role in that roleset was marked as
either being explicitly present in the text, implic-
itly present in our latent kitchen model but not in
the text (and so in principle, fillable by our model),
or neither present in the text nor in our model. For
example, in“cover for forty minutes”, the frameset
“cover” has an explicit temporal role-filling (“for
forty minutes”) and an implicit role-filling (“the
pot” as the patient of “cover”).

For each verb in the annotation, we checked if
the SRL system mapped that verb to the correct
roleset and if so, whether it filled the same seman-
tic roles as the annotator indicated were explicitly
present in the text. Overall, we found 54% recall
of the annotations by the SRL system. We quali-
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Heat oil in a large pot [until hot]; brown chicken [in the pot]. 
Remove chicken [from the pot] and set [the chicken] aside.
Saute onions until [the onions are] soft, about 5 minutes.
Add broth, beans, half the pepper, and all the chicken [to the pot]; cover and simmer [the pot contents] for 40 minutes.
Add parsley, cilantro, salt, and remaining pepper [to the pot], and simmer [the mixture] 5 more minutes.

Figure 3: Results. Top: Distribution of the ten most common verbs and framesets in 260 recipes from
allrecipes.com. Bottom: An example recipe annotation. Blue indicates propbank predicates. Bracketed
red indicates implicit propbank arguments not in the text, but in principle recognizable by our model.
Green indicates quantifier adjectives which our model could resolve to an exact quantity, given initial
ingredient amounts.

tatively notes several failure modes. Many errors
arise from not recognizing predicates represented
in the text as an imperative verb, likely because
PropBank contains few examples of such language
for the labeler to learn from. Other errors result
from ungrammatical constructs (e.g. in “cook five
minutes”, the eliding of “for” causes “five min-
utes” to incorrectly parse as a direct argument).
Certain cooking-related verbs lack framesets en-
tirely, such as “prebake”. Occasionally, the wrong
roleset is chosen. For example, in“Stir the mix-
ture” , “Stir” is labeled as “stir.02: cause (emo-
tional) reaction” rather than “stir.01: mix with a
circular motion”.

We also analyzed the quantity and qualitative
trends in the human annotations that refer to roles
fillable from the latent kitchen model but not lit-
erally present in the text. Overall, 52% of verb
annotations referenced at least one such role. The
most common situation (occurring for 36% of all
annotated verbs) is the “patient/direct object” role
is elided in the text but inferable from the world
state, as in “simmer [the mixture] for 40 min-
utes”. The second most common is the “location”
modifier role is elided in the text, as in “Remove
chicken [from the pot]”. Overall, we believe our
proposed approach will improve the quality of the
SRL system, and thus the overall interpretability
of the recipes.

5 Possible applications

We believe that semantic parsing of recipes and
other instructional text could support a rich array
of applications, such as the following:

Deriving a “canonical” recipe. It would be
useful to align different versions of the same

recipe to derive a “canonical form” cf., (Druck and
Pang, 2012; Tenorth et al., 2013b).

Explaining individual steps. It would be help-
ful if a user could click on a confusing step in a
recipe and get a more detailed explanation and/or
an illustrative video clip.

Automatically interpreting software instruc-
tions. Going beyond the recipe domain, it would
be useful to develop a system which can interpret
instructions such as how to install software, and
then automatically execute them (i.e., install the
software for you). In practice, this may be too
hard, so we could allow the system to ask for hu-
man help if it gets stuck, cf. (Deits et al., 2013).

Robotics. (Tenorth et al., 2013a) suggest min-
ing natural language “action recipes” as a way to
specify tasks for service robots. In the domain
of food recipes, there have already been several
demonstrations (e.g., (Beetz et al., 2011; Bollini et
al., 2013)) of robots automatically cooking meals
based on recipes.

Task assistance using augmented reality.
Imagine tracking the user as they follow some in-
structions using a device such as Google glass, and
offering help when needed. Such systems have
been developed before for specialized domains
like maintenance and repair of military hardware5,
but automatic parsing of natural language text po-
tentially opens this up to the consumer market.
(Note that there is already a recipe app for Google
Glass6, although it just displays a static list of in-
structions.)

5For example, see http://graphics.cs.
columbia.edu/projects/armar/index.htm.

6See http://www.glassappsource.com/
listing/all-the-cooks-recipes.
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Abstract 

This paper offers an Embodied Construc-

tion Grammar (Feldman et al. 2010) rep-

resentation of caused motion, thereby al-

so providing (a sample of) the computa-

tional infrastructure for implementing the 

information that FrameNet has character-

ized as Caused_motion1 (Ruppenho-

fer et al. 2010). This work specifies the 

semantic structure of caused motion in 

natural language, using an Embodied 

Construction Grammar analyzer that in-

cludes the semantic parsing of linguisti-

cally instantiated constructions. Results 

from this type of analysis can serve as the 

input to NLP applications that require 

rich semantic representations. 

1 Introduction 

Computational linguistics recognizes the difficul-

ty in articulating the nature of complex events, 

including causation, while understanding that 

doing so is fundamental for creating natural lan-

guage processing (NLP) systems (e.g. Girju 

2003, Quang et al. 2011), and more generally for 

other computational techniques (Guyon et al. 

2007, Friedman et al. 2000).  Also, although in-

sightful, linguistic analyses of causation are in-

sufficient for systems that require drawing the 

inferences that humans draw with ease. Such sys-

tems must incorporate information about the pa-

rameters that support drawing these inferences. 

Embodied Construction Grammar (ECG) pro-

vides the computational and representational ap-

paratus for capturing what language expresses. 

FrameNet (FN) frames capture event structure 

in terms of the participants that play a role in that 

event. ECG provides a means for the automatic 

identification of frames and frame roles ex-

                                                 
1
 Courier New font indicates a FrameNet frame; 

and small CAPS indicate a FE in a FN frame.  

pressed in any given sentence. Here, we focus on 

a pair of sentences that illustrate the rich mean-

ings and relations characterized in FN frames as 

represented in ECG.  

This paper is organized as follows: Section 2 

includes background information on FrameNet 

(FN) and ECG; Section 3 describes the FN 

treatment of Caused_motion, and the ECG 

representation of the CauseMotion schema, 

which constitutes the meaning block of the 

Cause_motion construction; Section 4 summa-

rizes the ECG analysis of motion and caused mo-

tion example sentences; and Section 5 discusses 

new directions for future work with ECG repre-

sentations of information structured in FrameNet 

frames (http://framenet.icsi.berkeley.edu). 

2 Background 

Chang et al. (2002) constitutes the first effort to 

represent the prose description of the information 

that FN has defined in semantic frames in formal 

terms. The work provided an ECG representation 

of FN’s (then) Commerce frame, showing the 

perspicuity of doing so to account for linguistic 

perspective, and ultimately useful in translating 

FN information into a representation needed for 

event simulation (Narayanan 1997). Building on 

Chang et al. (2002), this paper focuses on the 

analysis and representation of the meanings of 

sentences describing different kinds of motion 

events, using a set of related semantic frames.   

Before detailing the examples that illustrate the 

analysis and representation, we offer a very brief 

overview of FN and ECG. 

2.1 FrameNet 

The FrameNet knowledge base holds unique 

information on the mapping of meaning to form 

via the theory of Frame Semantics (Fillmore and 

Baker 2010), at the heart of which is the seman-

tic frame, i.e. an experience-based schematiza-

tion of the language user’s world that allows in-

ferences about participants and objects in and 

across situations, states of affairs, and events. FN 
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has characterized nearly 1,200 frames, more than 

12,740 lexical units (LUs), where a lexical unit is 

a pairing of a lemma and a frame, and approxi-

mately 200,000 manually annotated example 

sentences that illustrate usage of each LU. 

A FN frame definition includes a prose de-

scription of a prototypical situation, along with a 

specification of the frame elements (FEs), or se-

mantic roles, that uniquely characterize that situ-

ation. For example, FN has defined Motion as a 

situation in which a THEME starts out at a 

SOURCE, moves along a PATH, and ends up at a 

GOAL.
2
  Example (1) illustrates FN’s analysis of 

SLIDE, one of many LUs, in the Motion 

frame, also indicating which constituents in the 

sentence are the linguistic realizations of the FEs 

THEME and GOAL. 

(1) [The envelope THEME] SLID [into  

the mailbox GOAL]. 

2.2 Embodied Construction Grammar 

An ECG grammar (Feldman et al. 2010) consists 

of structured lattices of two basic primitives: 

schemas and constructions. As with other forms 

of construction grammar, a key tenet of ECG is 

that each construction is a form-meaning pair. 

Constructional meaning is represented using 

schemas, which are analogous to FN frames. 

Each schema includes several roles (comparable 

to FN’s FEs), and specifies various types of con-

straints on its roles.  Thus, the ECG formalism 

provides the means for representing frame struc-

ture and relations in a precise and computational-

ly tractable manner.  

Crucially, our computationally implemented 

system (Bryant 2008) uses an ECG grammar for 

sentence interpretation and produces construc-

tion-based semantic parses. The Constructional 

Analyzer utilizes form and meaning infor-

mation in the constructional analysis of a given 

sentence. Thus, constructional analysis is not just 

a form match; importantly, it is a meaning match 

as well.  The output of the analysis is a semantic 

specification, a meaning representation in the 

form of schemas, roles, bindings, and role-filler 

information. Constructional analysis is part of a 

larger model of language understanding, in 

which the semantic specification, in conjunction 

with discourse and situational context, serves as 

an input for a simulation process, which fleshes 

                                                 
2 FN also describes another scenario for Motion, not 

included here for space-saving reasons. 

out and supports further inferences about the rel-

atively schematic meaning specified in the text.   

Among the potential applications for such 

deep semantic analysis are question-answering 

tasks, information extraction, and identifying 

different political viewpoints.  Each task has its 

own requirements in terms of constructions and 

semantic representations.  This paper illustrates a 

computationally implemented means for deter-

mining the frames and frame roles in a given 

sentence, as well as the particular entities that 

link to those roles. 

Figure 1 shows the ECG formalism that repre-

sents the semantic structure of FN’s Motion 

frame, where the MotionPath schema specifies 

the structural relationships among the partici-

pants (FEs) in FN’s Motion frame. 

 

 

Figure 1: MotionPath Schema 

ECG defines MotionPath as a subcase of the 

very general Motion schema; as a child of the 

Motion schema, MotionPath inherits the struc-

ture of Motion, the latter including a mover role. 

Also, MotionPath evokes a Source-Path-Goal 

(SPG) schema, which includes the roles source, 

path, and goal, for the initial, medial, and final 

locations, respectively, of a trajector. MotionPath 

also includes a constraint that the mover is 

bound to the trajector role. 

A construction is a pairing between form and 

meanng, the ECG representation of which con-

sists of a form block and a meaning block.  To 

illustrate, in Figure 2, which shows the simple 

lexical construction Slid_Past, the form block 

indicates the orthographic form associated with 

the lexical construction. The form constraint in-

dicates that the constraint applies to the form of 

the construction (self.f.orth <-- “slid”), where 

.orth indicates that the form is a text string, in 

this case “slid”.   ECG represents constructional 

meaning using schemas; in the Slid_Past con-

struction, (Figure 2), the meaning is identified 

with the MotionPath schema (as shown in Figure 

1). Constructions also define relations to other 
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constructions in the grammar. For instance, 

Slid_Past is a subcase of a more general 

PastTense construction. The PastTense construc-

tion is one of several general verb conjugation 

constructions in the grammar, each of which cap-

tures general facts about tense and aspect associ-

ated with different verb conjugation forms. For 

example, all past tense verbs, including slid (an 

instantiation of Slid_Past), use PastTense.   

 

 

Figure 2: Slid_Past Construction 

3 Caused_motion 

This section describes FN’s characterization of 

Caused_motion and provides the ECG rep-

resentation of the CausedMotion schema, i.e., the 

meaning of the Cause_motion construction. 

3.1 FrameNet 

FrameNet characterizes Caused_motion as 

a situation in which an AGENT causes a THEME 

to undergo translation motion, where the motion 

also may always be described with respect to a 

SOURCE, PATH, and GOAL.
3
   Example (2) shows 

the FN analysis with SLIDE as the target verb in 

Caused_motion, marking the constituents 

that fill the AGENT, THEME, and GOAL roles. 

(2) [Smedlap AGENT] SLID [the envelope 

 THEME] into the mailbox GOAL]. 

Note that whereas FN’s Caused_motion 

frame has an AGENT FE, Motion does not. 

 

 
Table 1: FN’s Motion and Caused_motion 

                                                 
3 As with Motion, FN also defines another scenario 

for Caused_motion, specifically one with a CAUSE 

FE, excluded here because of space limitations. 

3.2 Embodied Construction Grammar 

The ECG representation of CauseMotion, given 

in Figure 3, is a complex schema that combines 

the structure of causation with that of transla-

tional motion. The causal structure is supplied by 

defining CauseMotion as a subcase of a more 

general CauseEffect schema, which includes 

roles for a causal agent and an affected entity. 

Also, CauseMotion specifies that the effect is 

translational motion, indicated with the addition 

of a type constraint that identifies the effect with 

the MotionPath schema. 

 

Figure 3: CauseMotion Schema 

 

Additional constraints bind the mover role of 

MotionPath (Figure 1) to the affected role of 

CauseMotion. Thus, the ECG mover (i.e. the FE 

THEME) is bound to the affected role; and the 

motion itself is bound to the effect. ECG uses the 

CauseMotion schema to analyze sentences such 

as Example (2), an instance of the Cause_motion 

construction, a summary of which follows below 

in Section 4. 

4 ECG for Linguistic Analysis 

Here, we provide an overview of the ECG analy-

sis process for the examples discussed above.  

A basic tenet of construction grammar is that 

each sentence instantiates multiple constructions.  

Bryant’s (2008) computationally implemented 

Constructional Analyzer uses an ECG grammar 

to determine the set of constructions that best-fit 

a given sentence.
4
  The assessment of “best-fit” 

takes both syntactic and semantic information 

into account. Constructional unification requires 

compatibility between unifying elements.  Unifi-

cation tests the compatibility of the constraints 

that these constructions specify, and leads to var-

ious bindings. The analyzer produces a SemSpec, 

i.e. a semantic specification of the sentence, that 

is, a meaning representation in the form of a 

network of schemas, with bindings between 

schema roles and fillers of these roles. 

                                                 
4
 ECG Workbench provides an interface to the ana-

lyzer, and allows the viewing of analysis results. 
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To illustrate the analysis process, we revisit 

Example (1) The envelope slid into the mailbox, 

which instantiates some of the following lexical 

and grammatical constructions: 

 Lexical constructions for slid,  nouns (enve-

lope, mailbox), and determiners (the) 

 NP constructions (the envelope, the mailbox) 

 Declarative construction, a clause-level con-

struction spanning the sentence as a whole. 

In what follows, we define and explain the 

constructions in Example (1) that are crucial for 

the present analysis of Motion and CausedMo-

tion. Specifically, the Active_Motion_Path con-

struction (Figure 4) is a sub-case of a more gen-

eral Argument Structure construction (Goldberg 

1995, Dodge 2010).  Argument Structure (A-S) 

constructions specify general patterns of role ex-

pression associated with the description of basic 

experiences, such as those involving motion, 

perception, object transfer, actions and/or causa-

tion.  Schemas represent each type of experience 

and include roles for the relevant participant(s). 

A-S constructions include one or more constitu-

ent constructions, specified within their con-

structional block. All A-S constructions include 

a verb constituent (V: Verb); here, note that the 

Active_Motion_Path construction also contains a 

prepositional phrase constituent (PP), con-

strained to be of type Path-PP, a general con-

struction that identifies its meaning with the SPG 

schema.   The form block specifies ordering con-

straints: the V constituent comes before the PP 

constituent. The meaning block specifies that the 

construction’s meaning is identified with the Mo-

tionPath schema, indicating that the construction 

describes translational motion events. Con-

straints within the meaning block specify how 

the meaning of the construction as a whole com-

poses with the meanings of its constituents. As is 

usually the case, the ‘V’ constituent shares the 

same schematic meaning as the A-S construc-

tion. These constraints indicate that the A-S con-

struction will unify with verbs that identify their 

meaning with the MotionPath schema, as in the 

motion verbs roll, slip, bounce, etc, along with 

slide.  Thus, this A-S construction captures a par-

ticular valence pattern associated with several 

semantically similar verbs.  

A further meaning constraint indicates that the 

meaning of the PP constituent serves to elaborate 

the SPG schema that forms part of the meaning 

of the MotionPath schema. That is, whichever 

specific PP serves as a constituent in a given ex-

ample will supply more information about the 

particular path of motion the mover is following.  

Additionally, the mover role of MotionPath is 

bound to the profiledParticipant role (i.e., the 

semantic correlate of the role expressed in the 

sentence’s subject slot), and the meaning of the 

construction as a whole binds to an eventProcess 

role, which indicates the type of event that this 

A-S construction describes. 

 

 

Figure 4: Active_Motion_Path Construction 

 

Constraint-based unification of the instantiated 

construction produces a SemSpec that includes 

the following information: (1) a MotionPath 

schema is co-indexed with the ‘eventProcess’ 

role, indicating that the sentence describes an 

event of translational motion; (2) the meaning of 

the envelope is co-indexed with the profiledPar-

ticipant role, the mover of MotionPath, and the 

trajector of SPG, indicating that this object is the 

semantic subject of the sentence, and that it is the 

entity that moves and changes location with re-

spect to a landmark; and (3) the meaning of the 

mailbox is co-indexed with the landmark of SPG, 

and the boundedObject role of a BoundedObject 

schema.  The source of SPG is bound to the exte-

rior role of boundedObject. The goal of SPG is 

bound to the interior of boundedObject. Togeth-

er, these bindings indicate that the mailbox is 

conceptualized as a bounded object or container, 

the envelope’s initial location (source) is outside 

of the mailbox, and its final location is inside.  

Having analyzed a sentence about motion, we 

return to our example of caused motion: (2) 

Smedlap slid the envelope into the mailbox. This 

sentence instantiates many of the same construc-

tions as does Example (1).  The key difference 

between the two is the A-S construction, here the 
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Active_Transitive_Caused_Motion construction, 

shown below in Figure 5. 
 

 
 

Figure 5:Active_Transitive_Caused_Motion 

 

This is similar to the Active_Motion_Path con-

struction in that it has both a V and a PP constit-

uent.  However, as with other A-S constructions 

that characterize transitives, this A-S construc-

tion also includes an NP constituent, whose form 

follows that of the verb. Crucially, this A-S con-

struction identifies its meaning with CauseMo-

tion, indicating that it is used to describe scenes 

which a causal agent causes the translational mo-

tion of some other entity.   Meaning constraints 

specify that the affected role of CauseMotion is 

bound to the meaning of the NP constituent, and 

the causer role is bound to the profiled partici-

pant role. This latter constraint indicates that this 

active voice construction describes caused mo-

tion events from the causer’s perspective. 

Using these constructions, the analysis of Ex-

ample (2) produces a SemSpec that is similar to 

that produced for Example (1), with the follow-

ing key differences:  

 the eventProcess is CausedMotion (ra-

ther than MotionPath);  

 the profiledParticipant role is bound to 

the causer role of CauseMotion, and to 

Smedlap; 

 the envelope is bound to the affected 

role of CauseMotion, as well as to the 

mover role of MotionPath, and the tra-

jector role of SPG.   

 

This SemSpec for Example (2) indicates that: 

 the sentence describes an event of caused 

motion, represented by the CauseMotion 

schema; 

 the caused effect is motion, represented 

by the MotionPath schema; 

 the subject (Smedlap) is the causer of the 

motion; 

 the direct object (the envelope) is the 

causally affected entity that moves.  

 the path of motion is one where with the 

goal location inside the entity that the 

prepositional phrase object (the mailbox) 

specifies, just  as in Example (1). 

 

To summarize, the semantic representation 

output of the ECG analysis process for each of 

Examples (1) and (2) identifies that they evoke 

the MotionPath and CauseMotion schemas, re-

spectively (analogous to FN’s Motion and 

Cause_Motion, respectively).  Also, the out-

put specifies the different roles (FEs) that the 

different constituents of each sentence realize. 

Thus, the information provided by such output 

identifies the frames and frame roles expressed 

in each sentence.  

5 Extensions 

Given the compositional nature of the ECG 

grammar, it will also support the analysis of oth-

er sentences describing translational motion and 

caused motion events that differ in terms of the 

lexical items that are realized. Consider the fol-

lowing new examples. 

 His hat is slipping off his head. 

 Did the dog roll the ball under the table?  

 Which leaf fell off the tree?  

Moreover, the approach outlined here clearly 

also would apply to the analysis of all FrameNet 

frames that characterize, for instance, cognition, 

perception, communication or other causal 

events or transitive actions.  

Research has begun to extend the present work 

to support the analysis of metaphorical uses of 

motion and caused motion frame structure, as in: 

The young family slid into poverty or Their huge 

debts dragged the young family into poverty.  

This research requires the specification of appro-

priate constraints on the fillers of the roles that 

will facilitate distinguishing between the literal 

and the metaphorical.  
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Abstract

Many machine reading approaches, from
shallow information extraction to deep
semantic parsing, map natural language
to symbolic representations of meaning.
Representations such as first-order logic
capture the richness of natural language
and support complex reasoning, but often
fail in practice due to their reliance on log-
ical background knowledge and the diffi-
culty of scaling up inference. In contrast,
low-dimensional embeddings (i.e. distri-
butional representations) are efficient and
enable generalization, but it is unclear how
reasoning with embeddings could support
the full power of symbolic representations
such as first-order logic. In this proof-of-
concept paper we address this by learning
embeddings that simulate the behavior of
first-order logic.

1 Introduction

Much of the work in machine reading follows an
approach that is, at its heart, symbolic: language
is transformed, possibly in a probabilistic way,
into a symbolic world model such as a relational
database or a knowledge base of first-order for-
mulae. For example, a statistical relation extractor
reads texts and populates relational tables (Mintz
et al., 2009). Likewise, a semantic parser can
turn sentences into complex first-order logic state-
ments (Zettlemoyer and Collins, 2005).

Several properties make symbolic representa-
tions of knowledge attractive as a target of ma-
chine reading. They support a range of well under-
stood symbolic reasoning processes, capture se-
mantic concepts such as determiners, negations

and tense, can be interpreted, edited and curated
by humans to inject prior knowledge. However, on
practical applications fully symbolic approaches
have often shown low recall (e.g. Bos and Markert,
2005) as they are affected by the limited coverage
of ontologies such as WordNet. Moreover, due to
their deterministic nature they often cannot cope
with noise and uncertainty inherent to real world
data, and inference with such representations is
difficult to scale up.

Embedding-based approaches address some of
the concerns above. Here relational worlds are de-
scribed using low-dimensional embeddings of en-
tities and relations based on relational evidence in
knowledge bases (Bordes et al., 2011) or surface-
form relationships mentioned in text (Riedel et al.,
2013). To overcome the generalization bottleneck,
these approaches learn to embed similar entities
and relations as vectors close in distance. Subse-
quently, unseen facts can be inferred by simple and
efficient linear algebra operations (e.g. dot prod-
ucts).

The core argument against embeddings is their
supposed inability to capture deeper semantics,
and more complex patterns of reasoning such
as those enabled by first-order logic (Lewis and
Steedman, 2013). Here we argue that this does
not need to be true. We present an approach that
enables us to learn low-dimensional embeddings
such that the model behaves as if it follows a com-
plex first-order reasoning process—but still oper-
ates in terms of simple vector and matrix repre-
sentations. In this view, machine reading becomes
the process of taking (inherently symbolic) knowl-
edge in language and injecting this knowledge into
a sub-symbolic distributional world model. For
example, one could envision a semantic parser that
turns a sentence into a first-order logic statement,
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worksFor(A), profAt(A)
profAt(B) ...

profAt(x) => worksFor(x)

worksFor(B)

Curate

IE

SP

worksFor

profAt

ALogical Inference Algebra

B

C

worksFor(B)
D

Logic Embedded LogicEvidence

Figure 1: Information extraction (IE) and semantic
parsing (SP) extract factual and more general log-
ical statements from text, respectively. Humans
can manually curate this knowledge. Instead of
reasoning with this knowledge directly (A) we in-
ject it into low dimensional representations of en-
tities and relations (B). Linear algebra operations
manipulate embeddings to derive truth vectors (C),
which can be discretized or thresholded to retrieve
truth values (D).

just to then inject this statement into the embed-
dings of relations and entities mentioned in the
sentence.

2 Background

Figure 1 shows our problem setup. We as-
sume a domain of a set of entities, such as
SMITH and CAMBRIDGE, and relations among
these (e.g. profAt(·, ·)). We start from a
knowledge base of observed logical statements,
e.g., profAt(SMITH, CAMBRIDGE) or ∀x, y :
profAt(x, y) =⇒ worksFor(x, y). These state-
ments can be extracted from text through informa-
tion extraction (for factual statements), be the out-
put from a semantic parsing (for first-order state-
ments) or come from human curators or external
knowledge bases.

The task at hand is to predict the truth
value of unseen statements, for example
worksFor(SMITH, CAMBRIDGE). Assuming we
have the corresponding formulae, logical infer-
ence can be used to arrive at this statement (arrow
A in Figure 1). However, in practice the relevant
background knowledge is usually missing. By
contrast, a range of work (e.g. Bordes et al., 2011;
Riedel et al., 2013) has successfully predicted
unseen factual statements by learning entity and
relation embeddings that recover the observed
facts and generalize to unseen facts through
dimensionality reduction (B). Inference in these
approaches amounts to a series of algebraic

operations on the learned embeddings that returns
a numeric representation of the degree of truth
(C), which can be thresholded to arrive back at a
true or false statement (D) if needed.

Our goal in this view is to generalize (B) to al-
low richer logical statements to be recovered by
low-dimensional embeddings. To this end we first
describe how richer logical statements can be em-
bedded at full dimension where the number of di-
mensions equals to the number of entities in the
domain.

2.1 Tensor Calculus
Grefenstette (2013) presents an isomorphism be-
tween statements in predicate logic and expres-
sions in tensor calculus. Let [·] denote this map-
ping from a logical expression F to an expression
in tensor algebra. Here, logical statements evaluat-
ing to true or false are mapped to [true] :=
> =

[
1 0

]T and [false] := ⊥ =
[
0 1

]T re-
spectively.

Entities are represented by logical constants and
mapped to one-hot vectors where each component
represents a unique entity. For example, let k = 3
be the number of entities in a domain, then SMITH

may be mapped to [SMITH] =
[
1 0 0

]T . Unary
predicates are represented as 2×k matrices, whose
columns are composed of > and ⊥ vectors. For
example, for a isProfessor predicate we may get

[isProfessor ] =
[
1 0 1
0 1 0

]
.

In this paper we treat binary relations as unary
predicates over constants 〈X, Y〉 that correspond to
pairs of entities X and Y in the domain.1

The application of a unary predicate to a con-
stant is realized through matrix-vector multiplica-
tion. For example, for profAt and the entity pair
〈X, Y〉 we get

[profAt(〈X, Y〉)] = [profAt ] [〈X, Y〉] .
In Grefenstette’s calculus, binary boolean oper-

ators are mapped to mode 3 tensors. For example,
for the implication operator holds:

[ =⇒ ] :=
[

1 0 1 1
0 1 0 0

]
.

Let A and B be two logical statements that,
when evaluated in tensor algebra, yield a vector

1This simplifies our exposition and approach, and it can
be shown that both representations are logically equivalent.
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in {>,⊥}. The application of a binary operator
to statements A and B is realized via two con-
secutive tensor-vector products in their respective
modes (see Kolda and Bader (2009) for details),
e.g.,

[A =⇒ B] := [ =⇒ ]×1 [A]×2 [B] .

3 Method

Grefenstette’s mapping to tensors exactly recov-
ers the behavior of predicate logic. However, it
also inherits the lack of generalization that comes
with a purely symbolic representation. To over-
come this problem we propose an alternate map-
ping. We retain the representation of truth val-
ues and boolean operators as the 2 × 1 and the
2 × 2 × 2 sized tensors respectively. However,
instead of mapping entities and predicates to one-
hot representations, we estimate low-dimensional
embeddings that recover the behavior of their one-
hot counterparts when plugged into a set of tensor-
logic statements.

In the following we first present a general learn-
ing objective that encourages low-dimensional
embeddings to behave like one-hot representa-
tions. Then we show how this objective can be
optimized for facts and implications.

3.1 Objective
Let R be the set of all relation embeddings and
P be the set of all entity pair embeddings. Given
a knowledge base (KB) of logical formulae K
which we assume to hold, the objective is

min
[p]∈P, [R]∈R

∑
F∈K

‖[F ]−>‖2 . (1)

That is, we prefer embeddings for which the given
formulae evaluate to the vector representation for
truth. The same can be done for negative data by
working with ⊥, but we omit details for brevity.

To optimize this function we require the gradi-
ents of ‖[F ]−>‖2 terms. Below we discuss these
for two types of formulae: ground atoms and first-
order formulae.

3.2 Ground Atoms
The KB may contain ground atoms (i.e. facts) of
the form F = R(p) for a pair of entities p and a
relation R. These atoms correspond to observed
cells in an entity-pair-relation matrix, and inject-
ing these facts into the embedding roughly corre-
sponds to matrix factorization for link prediction
or relation extraction (Riedel et al., 2013).

Let η̂F := ([F ]−>) / ‖[F ]−>‖2, then it is
easy to show that the gradients with respect to re-
lation embedding [R] and entity pair embedding
[p] are

∂/∂ [p] = [R] η̂F and ∂/∂ [R] = η̂F ⊗ [p] .

3.3 First-order Formulae
Crucially, and in contrast to matrix factorization,
we can inject more expressive logical formulae
than just ground atoms. For example, the KB
K may contain a universally quantified first-order
rule such as ∀x : R1(x) =⇒ R2(x). Assum-
ing a finite domain, this statement can be unrolled
into a conjunction of propositional statements of
the form F = R1(p) =⇒ R2(p), one for each
pair p. We can directly inject these propositional
statements into the embeddings, and their gradi-
ents are straightfoward to derive. For example,

∂/∂ [R1] = (([ =⇒ ]×2 [R2(p)]) η̂F )⊗ [p] .

3.4 Learning and Inference
We learn embeddings for entity pairs and relations
by minimizing objective 1 using stochastic gradi-
ent descent (SGD). To infer the (two-dimensional)
truth value (C in Figure 1) of a formula F in em-
bedded logic we evaluate [F ]. An easier to intpret
one-dimensional representation can be derived by(

〈[F ] ,
[
1 −1

]T 〉+ 1
)

/2,

followed by truncation to the interval [0, 1]. Other
ways of projecting [F ] to R, such as using cosine
similarity to >, are possible as well.

4 Experiments

We perform experiments on synthetic data defined
over 7 entity pairs and 6 relations. We fix the em-
bedding size k to 4 and train the model for 100
epochs using SGD with `2-regularization on the
values of the embeddings. The learning rate and
the regularization parameter are set to 0.05.

The left part of Table 1 shows the observed
(bold) and inferred truth values for a set of fac-
tual staments of the form R(p), mapped to R as
discussed above. Due to the generalization ob-
tained by low-dimensional embeddings, the model
infers that, for example, SMITH is an employee
at CAMBRIDGE and DAVIES lives in LONDON.
However, we would like the model to also capture
that every professor works for his or her university
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With Factual Constraints With Factual and First-Order Constraints
profAt worksFor employeeAt registeredIn livesIn bornIn profAt worksFor employeeAt registeredIn livesIn bornIn

〈JONES, UWASH〉 1.00 1.00 1.00 0.00 0.18 0.01 0.98 0.98 0.95 0.03 0.00 0.04
〈TAYLOR, UCL〉 1.00 1.00 0.98 0.00 0.20 0.00 0.98 0.96 0.95 0.05 0.00 0.06

〈SMITH, CAMBRIDGE〉 0.98 > 0.00 > 0.64 0.75 0.07 0.72 0.92 > 0.97 > 0.89 0.04 0.04 0.05
〈WILLIAMS, OXFORD〉 ⊥ 0.02 1.00 0.08 0.00 0.93 0.02 ⊥ 0.05 0.91 0.02 0.05 0.87 0.06
〈BROWN, CAMBRIDGE〉 ⊥ 0.00 0.97 0.02 ⊥ 0.01 0.95 0.06 ⊥ 0.01 0.90 0.00 ⊥ 0.07 0.92 0.07
〈DAVIES, LONDON〉 0.00 0.00 0.00 0.99 > 0.50 1.00 0.01 0.00 0.00 0.98 > 0.98 0.97
〈EVANS, PARIS〉 0.00 0.00 0.00 1.00 > 0.48 1.00 0.00 0.00 0.00 0.97 > 1.00 0.96

Table 1: Reconstructed matrix without (left) and with (right) the first-order constraints profAt =⇒
worksFor and registeredIn =⇒ livesIn . Predictions for training cells of factual constraints [R(p)] =
> are shown in bold, and true and false test cells are denoted by > and ⊥ respectively.

and that, when somebody is registered in a city, he
or she also lives in that city.

When including such first-order constraints
(right part of Table 1), the model’s predictions
improve concerning different aspects. First, the
model gets the implication right, demonstrating
that the low-dimensional embeddings encode first-
order knowledge. Second, this implication transi-
tively improves the predictions on other columns
(e.g. SMITH is an employee at CAMBRIDGE).
Third, the implication works indeed in an asym-
metric way, e.g., the model does not predict that
WILLIAMS is a professor at OXFORD just because
she is working there.

5 Related Work

The idea of bringing together distributional se-
mantics and formal logic is not new. Lewis and
Steedman (2013) improve the generalization per-
formance of a semantic parser via the use of dis-
tributional representations. However, their target
representation language is still symbolic, and it is
unclear how this approach can cope with noise and
uncertainty in data.

Another line of work (Clark and Pulman, 2007;
Mitchell and Lapata, 2008; Coecke et al., 2010;
Socher et al., 2012; Hermann and Blunsom, 2013)
uses symbolic representations to guide the com-
position of distributional representations. Read-
ing a sentence or logical formula there amounts
to compositionally mapping it to a k-dimensional
vector that then can be used for downstream tasks.
We propose a very different approach: Reading a
sentence amounts to updating the involved entity
pair and relation embeddings such that the sen-
tence evaluates to true. Afterwards we cannot use
the embeddings to calculate sentence similarities,
but to answer relational questions about the world.

Similar to our work, Bowman (2014) provides
further evidence that distributed representations

can indeed capture logical reasoning. Although
Bowman demonstrates this on natural logic ex-
pressions without capturing factual statements,
one can think of ways to include the latter in
his framework as well. However, the ap-
proach presented here can conceptually inject
complex nested logical statements into embed-
dings, whereas it is not obvious how this can be
achieved in the neural-network based multi-class
classification framework proposed by Bowman.

6 Conclusion

We have argued that low dimensional embeddings
of entities and relations may be tuned to simu-
late the behavior of logic and hence combine the
advantages of distributional representations with
those of their symbolic counterparts. As a first
step into this direction we have presented an ob-
jective that encourages embeddings to be consis-
tent with a given logical knowledge base that in-
cludes facts and first-order rules. On a small syn-
thetic dataset we optimize this objective with SGD
to learn low-dimensional embeddings that indeed
follow the behavior of the knowledge base.

Clearly we have only scratched the surface
here. Besides only using toy data and logical for-
mulae of very limited expressiveness, there are
fundamental questions we have yet to address.
For example, even if the embeddings could en-
able perfect logical reasoning, how do we pro-
vide provenance or proofs of answers? More-
over, in practice a machine reader (e.g. a semantic
parser) incrementally gathers logical statements
from text— how could we incrementally inject this
knowledge into embeddings without retraining the
whole model? Finally, what are the theoretical
limits of embedding logic in vector spaces?
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Abstract

Software requirements are commonly
written in natural language, making them
prone to ambiguity, incompleteness and
inconsistency. By converting require-
ments to formal semantic representations,
emerging problems can be detected at an
early stage of the development process,
thus reducing the number of ensuing errors
and the development costs. In this paper,
we treat the mapping from requirements to
formal representations as a semantic pars-
ing task. We describe a novel data set for
this task that involves two contributions:
first, we establish an ontology for formally
representing requirements; and second, we
introduce an iterative annotation scheme,
in which formal representations are de-
rived through step-wise refinements.

1 Introduction

During the process of software development, de-
velopers and customers typically discuss and
agree on requirements that specify the function-
ality of a system that is being developed.1 Such
requirements play a crucial role in the develop-
ment lifecycle, as they form the basis for actual
implementations, corresponding work plans, cost
estimations and follow-up directives (van Lam-
sweerde, 2009). In general, software requirements
can be expressed in various different ways, includ-
ing the use of UML diagrams and storyboards.
Most commonly, however, expectations are ex-
pressed in natural language (Mich et al., 2004), as
shown in Example (1):

(1) A user should be able to login to his account.
1Although software engineering can also involve non-

functional requirements, which describe general quality cri-
teria of a system, this paper is only concerned with functional
requirements, i.e., requirements that specify the behavior of a
system.

While requirements expressed in natural lan-
guage have the advantage of being intelligible to
both clients and developers, they can of course
also be ambiguous, vague and incomplete. Al-
though formal languages could be used as an alter-
native that eliminates some of these problems, cus-
tomers are rarely equipped with the mathematical
and technical expertise for understanding highly
formalised requirements. To benefit from the ad-
vantages of both natural language and formal rep-
resentations, we propose to induce the latter au-
tomatically from text in a semantic parsing task.
Given the software requirement in Example (1),
for instance, we would like to construct a represen-
tation that explicitly specifies the types of the en-
tities involved (e.g., object(account)) and that cap-
tures explicit and inferable relationships among
them (e.g., owns(user, account)). We expect such
formal representations to be helpful in detecting
errors at an early stage of the development process
(e.g., via logical inference and verification tools),
thus avoiding the costs of finding and fixing prob-
lems at a later and hence more expensive stage
(Boehm and Basili, 2001).

Given the benefits of formal representations,
we believe that software requirements constitute
a useful application domain for semantic parsers.
Requirement texts naturally occur in the real world
and appropriate data sets can thus be constructed
without setting up artificial tasks to collect them.
Parsing requirements of different software projects
also poses interesting challenges as texts exhibit a
considerable amount of lexical variety, while fre-
quently also containing more than one relation per
sentence.

2 Related Work

A range of methods have been proposed in previ-
ous work to (semi-)automatically process require-
ments written in plain, natural language text and
map them to formal representations. To the best
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of our knowledge, Abbott (1983) was the first to
introduce a technique for extracting data types,
variables and operators from informal texts de-
scribing a problem. The proposed method fol-
lows a simple rule-based setup, in which common
nouns are identified as data types, proper nouns
as objects and verbs as operators between them.
Booch (1986) described a method of similar com-
plexity that extends Abbot’s approach to object-
oriented development. Saeki et al. (1989) imple-
mented a first prototype that automatically con-
structs object-oriented models from informal re-
quirements. As proposed by Abbott and Booch,
the system is based on automatically extracted
nouns and verbs. Although Saeki et al. found re-
sulting object diagrams of reasonable quality, they
concluded that human intervention was still nec-
essary to distinguish between words that are rele-
vant for the model and irrelevant nouns and verbs.
Nanduri and Rugaber (1995) proposed to further
automate object-oriented analysis of requirement
texts by applying a syntactic parser and a set of
post-processing rules. In a similar setting, Mich
(1996) employed a full NLP pipeline that con-
tains a semantic analysis module, thus omitting the
need for additional post-processing rules. More
recent approaches include those by Harmain and
Gaizauskas (2003) and Kof (2004), who relied on
a combination of NLP components and human in-
teraction. Whereas most approaches in previous
work aim to derive class diagrams, Ghosh et al.
(2014) proposed a pipeline architecture that con-
verts syntactic parses to logical expressions via a
set of heuristic post-processing rules.

Despite this seemingly long tradition, previ-
ous methods for processing software requirements
have tended to depend on domain-specific heuris-
tics and knowledge bases or have required addi-
tional user intervention. In contrast, we propose
to utilize annotated data to learn how to perform
semantic parsing of requirements automatically.

3 Data Set

Given our conviction that mapping natural lan-
guage software requirements to formal representa-
tions provides an attractive challenge for semantic
parsing research, we believe that there is a more
general benefit in building a corpus of annotated
requirements. One immediate obstacle is that soft-
ware requirements can drastically differ in quality,
style and granularity. To cover a range of possible

#sentences #tokens #types

student projects 270 3130 604
industrial prototypes 55 927 286

Our dataset (total) 325 4057 765

GEOQUERY880 880 6656 279
FREE917 917 6769 2035

Table 1: Statistics on our requirements collection
and existing semantic parsing data sets.

differences, we asked lecturers from several uni-
versities to provide requirement documents writ-
ten by students. We received requirement docu-
ments on student projects from various domains,
including embedded systems, virtual reality and
web applications.2 From these documents, we ex-
tracted lists of requirements, each of which is ex-
pressed within a single sentence. We addition-
ally collected single sentence requirements within
the S-CASE project, describing industrial proto-
types of cloud-based web services.3 Table 1 gives
an overview of the quantity of requirements col-
lected. We observe that the number of require-
ments received for student projects is much higher.
The token counts reveal however that require-
ments written for industrial prototypes are longer
on average (16.6 vs. 11.6 words). This observa-
tion might be related to the fact that students in
software engineering classes are often provided
with explicit guidelines on how to concisely ex-
press requirements in natural language. As a con-
sequence, we also find their requirement texts to
be more regimented and stylised than those writ-
ten by senior software engineers. Examples (2)
and (3) show examples of a student-written and
developer-written requirement, respectively.

(2) The user must be able to vote on polls.

(3) For each user contact, back-end must perform
a check to determine whether the contact is a
registered user or not.

In comparison to two extant data sets, namely
GeoQuery880 (Tang, 2003) and Free917 (Cai and
Yates, 2013), we find that our collection is still rel-
atively small in terms of example sentences. The

2The majority of collected requirements are
from a software development course organized
jointly by several European universities, cf.
http://www.fer.unizg.hr/rasip/dsd

3http://www.scasefp7.eu/
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Figure 1: Class hierarchy of our conceptual ontol-
ogy for modeling software requirements.

difference in total number of tokens is not as cru-
cial, however, given that sentences in our data set
are much longer on average. We further observe
that the token/type ratio in our texts lies some-
where between ratios reported in previous work.
Based on the observed lexical variety and average
sentence length, we expect our texts to be chal-
lenging but not too difficult to parse using existing
methods.

4 Modeling Requirements Conceptually

Different representations have been proposed for
modeling requirements in previous work: whereas
early work focused on deriving simple class dia-
grams, more recent approaches suggest represent-
ing requirements via logical forms (cf. Section 2).

In this paper, we propose to model requirements
using a formal ontology that captures general con-
cepts from different application domains. Our pro-
posed ontology covers the same properties as ear-
lier work and provides a means to represent re-
quirements in logical form. In practice, such logi-
cal forms can be induced by semantic parsers and
in subsequent steps be utilized for automatic infer-
ence. The class hierarchy of our ontology is shown
in Figure 1. At the highest level of the class hierar-
chy, we distinguish between “things” (ThingType)
and “operations” (OperationType).

4.1 ThingType
We define the following subclasses of ThingType:

• A Participant is a thing that is involved in an
operation. We further subdivide Participants

into Actors, which can be users of a system
or the system itself, and Objects.

• A Property is an attribute of an Object or a
characteristic of an OperationType.

4.2 OperationType
We further divide operations into the following
subclasses:

• An Action describes an operation that is per-
formed by an Actor on one or several Ob-
ject(s).

• A State is an operation that describes the sta-
tus of an Actor.

• Ownership is used to model operations that
express possession.

• Emergence represent operations that undergo
passive transformation.

4.3 Relations
In addition to the class hierarchy, we define a set
of relations between classes, which describe and
constrain how different operations and things can
interact with each other.

On the level of OperationType, every opera-
tion can be assigned one Actor via the relations
HAS ACTOR or HAS OWNER, respectively. Ob-
jects can participate in Actions, States and Owner-
ships via the relations ACTS ON, HAS STATE and
OWNS, respectively. Every instance of Opera-
tionType and Object can further have an arbitrary
number of properties assigned to it via the relation
HAS PROPERTY.

5 Annotation Process

In preliminary annotation experiments, we found
that class diagrams may be too simple to repre-
sent requirements conceptually. Logical forms, on
the other hand, can be difficult to use for anno-
tators without sufficient background knowledge.
To keep the same level of expressiveness as log-
ical forms and the simplicity of object-oriented
annotations, we propose a multi-step annotation
scheme, in which decisions in one iteration are fur-
ther refined in later iterations.

By adopting the class hierarchy introduced in
Section 4, we can naturally divide each annotation
iteration according to a level in the ontology. This
means that in the first iteration, we ask annotators
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A user that is logged in to his account must be able to update his password.

Actor(user) ∧ Action(login) ∧ Action(update)
∧ Object(account) ∧ HAS ACTOR(login,user) ∧ HAS ACTOR(update,user)
∧ Object(password) ∧ ACTS ON(login,account) ∧ ACTS ON(update,password)

∧ Ownership(o1) ∧ Ownership(o2)
∧ HAS OWNER(o1,user) ∧ HAS OWNER(o2,user)
∧ OWNS(o1,account) ∧ OWNS(o2,password)

The system must be able to forward and rewind a playing program.

Actor(system) ∧ Action(forward) ∧ Action(rewind)
∧ Object(program) ∧ HAS ACTOR(forward,system) ∧ HAS ACTOR(rewind,system)

∧ ACTS ON(forward,program) ∧ ACTS ON(rewind,program)

∧ Property(playing) ∧ HAS PROPERTY(program,playing)

Table 2: Example requirements from different domains and logical forms derived from annotations.

A user should be able login to his account
ThingType OperationType ThingType
Participant Action Participant

Actor Object

HAS ACTOR ACTS ON

(implicit)
OwnershipHAS OWNER OWNS

Figure 2: Annotation process: instances are
marked in text (dashed), class assignments are re-
fined (dotted), and relations are added (solid).

to simply mark all instances of ThingType and Op-
erationType that are explicitly expressed in a given
requirement. We then resolve conflicting annota-
tions and present the resulting instances from the
first level to annotators for the next iteration. In
each iteration, we add one layer of sophistication
from the class hierarchy, resulting in step-wise re-
finements. In the final iteration, we add relations
between instances of concepts, including implicit
but inferable cases.

An illustration of the overall annotation process,
based on Example (1), is depicted in Figure 2. The
last iteration in this example involves the addition
of an Ownership instance that is indicated (by the
phrase “his account”) but not explicitly realized in
text. Although identifying and annotating such in-
stances can be more challenging than the previous
annotation steps, we can directly populate our on-
tology at this stage (e.g., via conversion to RDF
tuples) and run verification tools to check whether

they are consistent with the annotation schema.

6 Discussion

The annotation scheme introduced in Section 4 is
designed with the goal of covering a wide range
of different application domains. Although this
means that many of the more fine-grained distinc-
tions within a domain are not considered here, we
believe that the scheme already provides sufficient
information for a range of tasks. By storing pro-
cessed requirements in a relational database, for
example, they can be retrieved using structured
queries and utilized for probabilistic inference.

Given the hierarchical structure of our annota-
tion process, as defined in Section 5, it is possible
to extend existing annotations with additional lev-
els of granularity provided by domain ontologies.
As an example, we have defined a domain ontol-
ogy for web services, which contains subclasses
of Action to further distinguish between the HTTP
methods get, put, post and delete. Similar exten-
sions can be defined for other domains.

Regarding the task of semantic parsing itself,
we are currently in the process of annotating sev-
eral hundreds of instances of requirements (cf.
Section 3) following the proposed ontology. We
will release an initial version of this data set at
the Semantic Parsing workshop. The initial re-
lease will serve as a basis for training and eval-
uating parsers in this domain, for which we are
also planning to collect more examples through-
out the year. We believe that requirements form
an interesting domain for the parsing community

53



as the texts involve a fair amount of variation and
challenging semantic phenomena (such as infer-
able relations), while also serving a practical and
valuable purpose.
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1. Introduction and overview
We have developed an approach to broad-coverage
semantic parsing that starts with Treebank parses
and yields scoped, deindexed formulas in Episodic
Logic (EL) that are directly usable for knowledge-
based inference. Distinctive properties of our ap-
proach are

• the use of a tree transduction language, TTT,
to partially disambiguate, refine (and some-
times repair) raw Treebank parses, and also to
perform many deindexing and logical canon-
icalization tasks;

• the use of EL, a Montague-inspired logical
framework for semantic representation and
knowledge representation;

• allowance for nonclassical restricted quanti-
fiers, several forms of modification and reifi-
cation, quasi-quotes and syntactic closures;

• an event semantics that directly represents
events with complex characterizations;

• a scoping algorithm that heuristically scopes
quantifiers, logical connectives, and tense;

• a compositional approach to tense deindexing
making use of tense trees; and

• the use of an inference engine, EPILOG, that
supports input-driven and goal-driven infer-
ence in EL, in a style similar to (but more
general than) Natural Logic.

We have applied this framework to general
knowledge acquisition from text corpora and the
web (though with tense meaning and many other
semantic details stripped away) (e.g., Schubert &
Hwang 2000, Van Durme & Schubert 2008), and
more recently to caption interpretation for family
photos, enabling alignment of names and other de-
scriptors with human faces in the photos, and to in-
terpreting sentences in simple first-reader stories.
Ongoing projects are aimed at full interpretation

of lexical glosses and other sources of explicitly
expressed general knowledge.

We now elaborate some of the themes in the pre-
ceding overview, concluding with comments on
related work and important remaining challenges.

2. Refinement of Treebank parses using TTT
We generate initial logical forms by compositional
interpretation of Treebank parses produced by the
Charniak parser.1 This mapping is encumbered by
a number of difficulties. One is that current Tree-
bank parsers produce many thousands of distinct
expansions of phrasal categories, especially VPs,
into sequences of constituents. We have overcome
this difficulty through use of enhanced regular-
expression patterns applied to sequences of con-
stituent types, where our interpretive rules are as-
sociated directly with these patterns. About 100
patterns and corresponding semantic rules cover
most of English.

Two other difficulties are that parsers still intro-
duce about one phrasal error for every 10 words,
and these can render interpretations nonsensical;
and even when parses are deemed correct accord-
ing to “gold standard" annotated corpora, they
often conflate semantically disparate word and
phrase types. For example, prepositional phrases
(PPs) functioning as predicates are not distin-
guished from ones functioning as adverbial modi-
fiers; the roles of wh-words that form questions,
relative clauses, or wh-nominals are not distin-
guished; and constituents parsed as SBARs (sub-
ordinate clauses) can be relative clauses, adver-
bials, question clauses, or clausal nominals. Our
approach to these problems makes use of a new
tree transduction language, TTT (Purtee & Schu-
bert 2012) that allows concise, modular, declara-
tive representation of tree transductions. (As in-
dicated below, TTT also plays a key role in log-
ical form postprocessing.) While we cannot ex-

1ftp://ftp.cs.brown.edu/pub/nlparser/
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pect to correct the majority of parse errors in gen-
eral texts, we have found it easy to use TTT for
correction of certain systematic errors in particu-
lar domains. In addition, we use TTT to subclas-
sify many function words and phrase types, and to
partially disambiguate the role of PPs and SBARs,
among other phrase types, allowing more reliable
semantic interpretation.

3. EL as a semantic representation and
knowledge representation

From a compositional perspective, the semantics
of natural language is intensional and richly ex-
pressive, allowing for nonclassical quantifiers and
several types of modification and reification. Yet
many approaches to semantic interpretation rely
on first-order logic (FOL) or some subset thereof
as their target semantic representation. This is jus-
tifiable in certain restricted applications, grounded
in extensional domains such as databases. How-
ever, FOL or description logics are often chosen
as the semantic target even for broad-coverage se-
mantic parsing, because of their well-understood
semantics and proof theory and well-developed in-
ference technology and, in some cases, by a pu-
tative expressiveness-tractability tradeoff. We re-
ject such motivations – tools should be made to fit
the phenomenon rather than the other way around.
The tractability argument, for example, is simply
mistaken: Efficient inference algorithms for sub-
sets of an expressive representation can also be
implemented within a more comprehensive infer-
ence framework, without forfeiting the advantages
of expressiveness. Moreover, recent work in Nat-
ural Logic, which uses phrase-structured NL di-
rectly for inference, indicates that the richness of
language is no obstacle to rapid inference of many
obvious lexical entailments (e.g., MacCartney &
Manning 2009).

Thus our target representation, EL, taking its
cue from Montague allows directly for the kinds
of quantification, intensionality, modification, and
reification found in all natural languages (e.g.,
Schubert & Hwang 2000, Schubert, to appear).
In addition, EL associates episodes (events, sit-
uations, processes) directly with arbitrarily com-
plex sentences, rather than just with atomic pred-
ications, as in Davidsonian event semantics. For
example, the initial sentence in each of the follow-
ing pairs is interpreted as directly characterizing
an episode, which then serves as antecedent for a

pronoun or definite:
For many months, no rain fell;
this totally dried out the topsoil.

Each superpower menaced the other with its nuclear
arsenal; this situation persisted for decades.

Also, since NL allows for discussion of linguis-
tic and other symbolic entities, so does EL, via
quasi-quotation and substitutional quantification
(closures). These can also express axiom schemas,
and autocognitive reasoning (see further com-
ments in Section 5).

4. Comprehensive scoping and tense
deindexing

Though EL is Montague-inspired, one difference
from a Montague-style intensional logic is that
we treat noun phrase (NP) interpretations as un-
scoped elements, rather than second-order predi-
cates. These elements are heuristically scoped to
the sentence level in LF postprocessing, as pro-
posed in (Schubert & Pelletier 1982). The latter
proposal also covered scoping of logical connec-
tives, which exhibit the same scope ambiguities
as quantifiers. Our current heuristic scoping al-
gorithm handles these phenomena as well as tense
scope, allowing for such factors as syntactic or-
dering, island constraints, and differences in wide-
scoping tendencies among different operators.

Episodes characterized by sentences remain im-
plicit until application of a “deindexing" algo-
rithm. This algorithm makes use of a contextual
element called a tense tree which is built and tra-
versed in accordance with simple recursive rules
applied to indexical LFs. A tense tree contains
branches corresponding to tense and aspect op-
erators, and in the course of processing one or
more sentences, sequences of episode tokens cor-
responding to clauses are deposited at the nodes by
the deindexing rules, and adjacent tokens are used
by these same rules to posit temporal or causal re-
lations among “evoked" episodes. A comprehen-
sive set of rules covering all tenses, aspects, and
temporal adverbials was specified in (Hwang &
Schubert 1994); the current semantic parsing ma-
chinery incorporates the tense and aspect rules but
not yet the temporal adverbial rules.

Further processing steps, many implemented
through TTT rules, further transform the LFs so
as to Skolemize top-level existentials and defi-
nite NPs (in effect accommodating their presup-
positions), separate top-level conjuncts, narrow
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the scopes of certain negations, widen quantifier
scopes out of episodic operator scopes where pos-
sible, resolve intrasentential coreference, perform
lambda and equality reductions, and also gener-
ate some immediate inferences (e.g., inferring that
Mrs. Smith refers to a married woman).

The following example, for the first sentence
above, illustrates the kind of LF generated by our
semantic parser (first in unscoped, indexical form,
then the resulting set of scoped, deindexed, and
canonicalized formulas). Note that EL uses pred-
icate infixing at the sentence level, for readabil-
ity; so for example we have (E0 BEFORE NOW0)
rather than (BEFORE E0 NOW0). ‘**’ is the op-
erator linking a sentential formula to the episode
it characterizes (Schubert 2000). ADV-S is a type-
shifting operator, L stands for λ, and PLUR is a
predicate modifer that converts a predicate over in-
dividuals into a predicate over sets of individuals.
For many months, no rain fell;
Refined Treebank parse:

(S (PP-FOR (IN for) (NP (CD many) (NNS months))) (|,| |,|)

(NP (DT no) (NN rain)) (VP (VBD fell)) (|:| |;|))

Unscoped, indexical LF (keys :F, :P, etc., are dropped later):

(:F (:F ADV-S (:P FOR.P (:Q MANY.DET (:F PLUR MONTH.N))))

(:I (:Q NO.DET RAIN.N) (:O PAST FALL.V)))

Canonicalized LFs (without adverbial-modifier deindexing):

(MONTHS0.SK (PLUR MONTH.N)), (MONTHS0.SK MANY.A),

((ADV-S (L Y (Y FOR.P MONTHS0.SK)))

((NO Z (Z RAIN.N) (SOME E0 (E0 BEFORE NOW0)

(Z FALL.V))) ** E0)

With adverbial deindexing, the prefixed adver-
bial modifier would become a predication (E0
LASTS-FOR.V MONTHS0.SK); E0 is the episode of
no rain falling and MONTHS0.SK is the Skolem
name generated for the set of many months.

5. Inference using the EPILOG inference engine

Semantic parsers that employ FOL or a subset of
FOL (such as a description logic) as the target rep-
resentation often employ an initial “abstract" rep-
resentation mirroring some of the expressive de-
vices of natural languages, which is then mapped
to the target representation enabling inference. An
important feature of our approach is that (scoped,
deindexed) LFs expressed in EL are directly us-
able for inference in conjunction with lexical and
world knowledge by our EPILOG inference en-
gine. This has the advantages of not sacrificing
any of the expressiveness of language, of linking
inference more directly to surface form (in prin-

ciple enabling incremental entailment inference),
and of being easier to understand and edit than rep-
resentations remote from language.

EPILOG’s two main inference rules, for
input-driven (forward-chaining) and goal-driven
(backward-chaining) inference, substitute conse-
quences or anti-consequences for subformulas as a
function of polarity, much as in Natural Logic. But
substitutions can be based on world knowledge as
well as lexical knowledge, and to assure first-order
completeness the chaining rules are supplemented
with natural deduction rules such as proof by con-
tradiction and proof of conditional formulas by as-
sumption of the antecedent.

Moreover, EPILOG can reason with the ex-
pressive devices of EL mentioned in Sections 1
and 3 that lie beyond FOL, including general-
ized quantifiers, and reified predicates and propo-
sitions. (Schubert, to appear) contains relevant ex-
amples, such as the inference from Most of the
heavy Monroe resources are located in Monroe-
east, and background knowledge, to the conclu-
sion Few heavy resources are located in Monroe-
west; and inference of an answer to the modally
complex question Can the small crane be used
to hoist rubble from the collapsed building on
Penfield Rd onto a truck? Also, the ability to
use axiom schemas that involve quasi-quotes and
syntactic closures allows lexical inferences based
on knowledge about syntactic classes of lexical
items (i.e., meaning postulates), as well as vari-
ous forms of metareasoning, including reasoning
about the system’s own knowledge and percep-
tions (Morbini & Schubert 2011). Significantly,
the expressiveness of EL/EPILOG does not pre-
vent competitive performance on first-order com-
monsense knowledge bases (derived from Doug
Lenat’s Cyc), especially as the number of KB for-
mulas grows into the thousands (Morbini & Schu-
bert 2009).

In the various inference tasks to which EPI-
LOG was applied in the past, the LFs used for
natural language sentences were based on pre-
sumed compositional rules, without the machin-
ery to derive them automatically (e.g., Schubert &
Hwang 2000, Morbini & Schubert 2011, Stratos
et al. 2011). Starting in 2001, in developing
our KNEXT system for knowledge extraction from
text, we used broad-coverage compositional inter-
pretion into EL for the first time, but since our
goal was to obtain simple general “factoids"–such
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as that a person may believe a proposition, peo-
ple may wish to get rid of a dictator, clothes can
be washed, etc. (expressed logically)–our interpre-
tive rules ignored tense, many modifiers, and other
subtleties (e.g., Van Durme & Schubert 2008).

Factoids like the ones mentioned are uncondi-
tional and as such not directly usable for inference,
but many millions of the factoids have been auto-
matically strengthened into quantified, inference-
enabling commonsense axioms (Gordon & Schu-
bert 2010), and allow EPILOG to draw conclusions
from short sentences (Gordon 2014, chapter 6).
An example is the inference from Tremblay is a
singer to the conclusion Quite possibly Tremblay
occasionally performs (or performed) a song (au-
tomatically verbalized from an EL formula). Here
the modal and frequency modification would not
easily be captured within an FOL framework.

Recently, we have begun to apply much more
complete compositional semantic rules to sen-
tences “in the wild", choosing two settings where
sentences tend to be short (to minimize the impact
of parse errors on semantic interpretation): deriva-
tion and integration of caption-derived knowledge
and image-derived knowledge in a family photo
domain, and interpretation of sentences in first-
reader stories. In the family photo domain, we
have fully interpreted the captions in a small de-
velopment set, and used an EPILOG knowledge
base to derive implicit attributes of the individuals
mentioned in the captions (by name or other des-
ignations). These attributes then served to align
the caption-derived individuals with individuals
detected in the images, and were subsequently
merged with image-derived attributes (with al-
lowance for uncertainty). For example, for the
caption Tanya and Grandma Lillian at her high
school graduation party, after correct interpreta-
tion of her as referring to Tanya, Tanya was in-
ferred to be a teenager (from the knowledge that
a high school graduation party is generally held
for a recent high school graduate, and a recent
high school graduate is likely to be a teenager);
while Grandma Lillian was inferred to be a grand-
mother, hence probably a senior, hence quite pos-
sibly gray-haired, and this enabled correct align-
ment of the names with the persons detected in the
image, determined via image processing to be a
young dark-haired female and a senior gray-haired
female respectively.

In the first-reader domain (where we are using

McGuffey (2005)), we found that we could obtain
correct or nearly correct interpretations for most
simple declaratives (and some of the stories con-
sist entirely of such sentences). At the time of
writing, we are still working on discourse phe-
nomena, especially in stories involving dialogues.
For example, our semantic parser correctly derived
and canonicalized the logical content of the open-
ing line of one of the stories under consideration,

Oh Rosie! Do you see that nest in the apple tree?

The interpretation includes separate speech acts
for the initial interjection and the question. Our
goal in this work is integration of symbolic infer-
ence with inferences from imagistic modeling (for
which we are using the Blender open source soft-
ware), where the latter provides spatial inferences
such as that the contents of a nest in a tree are not
likely to be visible to children on the ground (set-
ting the stage for the continuation of the story).

Phenomena not handled well at this point in-
clude intersentential anaphora, questions with
gaps, imperatives, interjections, and direct ad-
dress (Look, Lucy, ...). We are making progress
on these, by using TTT repair rules for phenom-
ena where Treebank parsers tend to falter, and by
adding LF-level and discourse-level interpretive
rules for the resulting phrasal patterns. Ongoing
projects are aimed at full interpretation of lexical
glosses and other sources of explicitly expressed
general knowledge. However, as we explain in
the concluding section, we do not believe that full-
fledged, deep story understanding will be possible
until we have large amounts of general knowledge,
including not only the kinds of “if-then" knowl-
edge (about word meanings and the world) we
and others have been deriving and are continuing
to derive, but also large amounts of pattern-like,
schematic knowledge encoding our expectations
about typical object configurations and event se-
quences (especially ones directed towards agents’
goals) in the world and in dialogue.

6. Related work

Most current projects in semantic parsing either
single out domains that assure highly restricted
natural language usage, or greatly limit the seman-
tic content that is extracted from text. For exam-
ple, projects may be aimed at question-answering
over relational databases, with themes such as
geography, air travel planning, or robocup (e.g.,
Ge & Mooney 2009, Artzi & Zettlemoyer 2011,
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Kwiatkowski et al. 2011, Liang et al. 2011, Poon
2013). Impressive thematic scope is achieved in
(Berant et al. 2013, Kwiatkowski et al. 2013), but
the target semantic language (for Freebase access)
is still restricted to database operations such as
join, intersection, and set cardinality. Another
popular domain is command execution by robots
(e.g., Tellex 2011, Howard et al. 2013, Artzi &
Zettlemoyer 2013).

Examples of work aimed at broader lin-
guistic coverage are Johan Bos’ Boxer project
(Bos 2008), Lewis & Steedman’s (2013) CCG-
Distributional system, James Allen et al.’s (2013)
work on extracting an OWL-DL verb ontology
from WordNet, and Draicchio et al.’s (2013)
FRED system for mapping from NL to OWL on-
tology. Boxer2 is highly developed, but inter-
pretations are limited to FOL, so that the kinds
of general quantification, reification and modifi-
cation that pervade ordinary language cannot be
adequately captured. The CCG-Distributional ap-
proach combines logical and distributional seman-
tics in an interesting way, but apart from the FOL
limitation, the induced cluster-based predicates
lose distinctions such as that between town and
country or between elected to and ran for. As
such, the system is applicable to (soft) entailment
verification, but probably not to reasoning. A
major limitation of mapping natural language to
OWL-DL is that the assertion component of the
latter is essentially limited to atomic predications
and their negations, so that ordinary statements
such as Most students who passed the AI exam
also passed the theory exam, or If Kim and Sandy
get divorced, then Kim will probably get custody
of their children, cannot be represented, let alone
reasoned with.

7. Concluding thoughts

The history of research in natural language under-
standing shows two seemingly divergent trends:
One is the attempt to faithfully capture the log-
ical form of natural language sentences, and to
study entailment relations based on such forms.
The other is the effort to map language onto
preexisting, schematic knowledge structures of
some sort, intended as a basis for understand-
ing and inference – these might be FrameNet-like
or Minsky-like frames, concepts in a description
logic, Schankian scripts, general plans as under-

2www.meaningfactory.com/bos/pubs/Bos2008STEP2.pdf

stood in AI, Pustejovskyan telic event schemas,
or something similar. Both perspectives seem to
have compelling merits, and this leads us to sup-
pose that deep understanding may indeed require
both surface representations and schematic repre-
sentations, where surface representations can be
viewed as concise abstractions from, or summaries
of, schema instances or (for generic statements) of
the schemas themselves. But where we differ from
most approaches is that we would want both levels
of representation to support inference. The surface
level should support at least Natural-Logic-like
entailment inference, along with inference chain-
ing – for which EL and EPILOG are well-suited.
The schematic level would support “reasonable"
(or default) expectations based on familiar patterns
of events, actions, or relationships. Further, the
schematic level should itself allow for language-
like expressiveness in the specification of roles,
steps, goals, or other components, which might
again be abstractions from more basic schemas.
In other words, we envisage hierarchically orga-
nized schemas whose constituents are expressed
in a language like EL and allow for EPILOG-like
inference. We see the acquisition of such schemas
as the most pressing need in machine understand-
ing. Without them, we are limited to either narrow
or shallow understanding.
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Abstract

Consideration of the decoding problem
in semantic parsing as finding a maxi-
mum spanning DAG of a weighted di-
rected graph carries many complexities
that haven’t been fully addressed in the lit-
erature to date, among which are its ac-
tual appropriateness for the decoding task
in semantic parsing, not to mention an ex-
plicit proof of its complexity (and its ap-
proximability). In this paper, we con-
sider the objective function for the maxi-
mum spanning DAG problem, and what it
means in terms of decoding for semantic
parsing. In doing so, we give anecdotal
evidence against its use in this task. In ad-
dition, we consider the only graph-based
maximum spanning DAG approximation
algorithm presented in the literature (with-
out any approximation guarantee) to date
and finally provide an approximation guar-
antee for it, showing that it is an O( 1

n) fac-
tor approximation algorithm, where n is
the size of the digraph’s vertex set.

1 Introduction

Recent research in semantic parsing has moved at-
tention towards recovering labeled digraph repre-
sentations of the semantic relations corresponding
to the linguistic agendas across a number of theo-
ries where simple tree representations are claimed
not to be expressive enough to capture senten-
tial meaning. As digraph structures presented in
predominant semantic graph databases are mainly
acyclic, the semantic parsing problem has some-
times become associated with a maximum span-
ning directed acyclic graph (MSDAG) decoding
problem (McDonald and Pereira, 2006; Sagae and
Tsujii, 2008; Titov et al., 2009), in analogy and
perhaps as a generalisation of the maximum span-

ning tree decoding problem for syntactic depen-
dency parsing.

The appropriateness of finding the MSDAG in
decoding for semantic parsing has, however, never
been fully motivated, and in fact carries more
complexities than that of maximum spanning tree
(MST) decoding for syntactic parsing. In this pa-
per, we discuss the appropriateness of MSDAG
decoding in semantic parsing, considering the pos-
sible objective functions and whether they match
our linguistic goals for the decoding process. Our
view is that they probably do not, in general.

In addition to the problem of not being suffi-
ciently synchronised with our linguistic intuitions
for the semantic parsing decoding problem, the
MSDAG problem itself carries with it its own
complexities, which are still in the process of
becoming more understood in the algorithms re-
search community. McDonald and Pereira (2006)
claim that the MSDAG problem is NP-hard, cit-
ing (Heckerman et al., 1995); however, there is
no MSDAG problem in this latter work, and no
explicit reduction to any problem presented in
(Heckerman et al., 1995) has been published to
date. We point out that Schluter (submitted) ex-
plicitly provides a linear reduction to MSDAG
from the problem of finding a minimum weighted
directed multicut (IDMC), showing MSDAG’s
NP-hardness; this reduction also yields a result
on the approximability of MSDAG, namely that
it is APX-hard. We show in this paper that the ap-
proximation algorithm presented without any ap-
proximation guarantee in (McDonald and Pereira,
2006) is, in fact, a O( 1

n) factor approximation al-
gorithm, where n is the size of the graphs vertex
set. This is not particularly surprising given the
problem’s APX-hardness.

Following some preliminaries on weighted di-
graphs (Section 2), we make the MSDAG prob-
lem precise through a discussion of the objective
function in question and briefly question this ob-
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jective function with respect to decoding in se-
mantic parsing (Section 3). Finally, we discuss the
only other graph-based (approximation) algorithm
in the literature and prove its approximation guar-
antee (Section 4), followed by some brief conclu-
sions (Section 5).

2 Preliminaries

A directed graph (or digraph) G is a pair (V,E)
where V is the set of nodes and E is the set of
(directed) edges. E ⊂ V × V is a set of ordered
pairs of vertices. For u, v ∈ V , if (u, v) ∈ E, then
we say there is an “edge from u to v”. If there is
any confusion over the digraph we are referring to,
then we disambiguate by using the notation G :=
(E(G), V (G)).

If all edges e ∈ E(G) are associated with a real
number, a weight w : E(G)→ R, then we call the
digraph weighted. In this paper, all digraphs are
weighted and weights are positive.

For a subset of edges U of a weighted di-
graph, we set w(U) :=

∑
e∈U w(e). Simi-

larly, for a weighted digraph G, we set w(G) :=∑
e∈E(G) w(e).
We denote the size of a set S, by |S|.
For G = (V,E), let u1, . . . , uk ∈ V and

(ui, ui+1) ∈ E, for each i ∈ [k − 1], then we
say that there is path (also directed path, or di-
path) of length (k− 1) from u1 to uk in G. If also
(uk, u1) ∈ E, then we say that u1, u2, . . . , uk, u1

is a cycle of length k in G.
A directed acyclic graph (DAG) is a directed

graph with no cycles. There is a special kind of
DAG, which has a special node called a root with
no incoming edges and in which there is a unique
path from the root to all nodes; this is called a tree.

Finally, a tournament is a digraph in which
all pairs of vertices are connected by exactly one
edge. If, in addition, the edges are weighted, then
we call the digraph a weighted tournament.

3 Objective functions for finding an
MSDAG of a digraph

We first make precise the objective function for
the MSDAG problem, by considering two sepa-
rate objective functions, one additive and one mul-
tiplicative, over the weights of edges in the optimal
solution:

D∗ := arg max
D a spanning DAG of G

∑
e∈E(D)

w(e), and (1)

D∗ := arg max
D a spanning DAG of G

∏
e∈E(D)

w(e). (2)

Maximising Equation (2) amounts to concur-
rently minimising the number of edges of weight
less than 1 in the optimal solution and maximis-
ing the number of edges of weight at least 1. In
fact, if all edge weights are less than 1, then this
problem reduces to finding the MST. However, the
objective in semantic parsing in adopting the MS-
DAG problem for decoding is to increase power
from finding only MSTs. Therefore, this version
of the problem is not the subject of this paper. If
a graph has even one edge of weight greater than
1, then all edges of lesser weights should be dis-
carded, and for the remaining subgraph, maximis-
ing Equations (1) or (2) is equivalent.

Maximising Equation (1) is complex and under
certain restrictions on edge weights may optimise
for simply the number of edges (subject to being a
DAG). For example, if the difference between any
two edge weights is less than 1

|E(G)| × w(e) for
the smallest weighted e in E(G), then the prob-
lem reduces to finding the spanning DAG with the
greatest number of edges, as shown by Proposition
1.

Proposition 1. Let G be a weighted digraph, with
minimum edge weight M . Suppose the difference
in weight between any two edges of G is at most

1
|E(G)|×M . Then an MSDAG for G maximises the
number of edges of any spanning DAG for G.

Proof. Suppose D1, D2 are spanning DAGs for G,
such that (without loss of generality) |E(D1)| =
|E(D2)| + 1, but that D2 is an MSDAG and that
D1 is not. We derive the following contradiction.

w(D2) =
∑

e∈E(D2)

w(e)

≤ |E(D2)| ·M + |E(D2)| ·
(

1

|E(G)| ·M
)

< |E(D2)| ·M + M

= |E(D1)| ·M
≤

∑
e∈E(D2)

w(e)

= w(D1)

Admittedly, for arbitrary edge weights, the rela-
tion between the sum of edge weights and number
of edges is more intricate, and it is this problem
that we refer to as the MSDAG problem in this
paper. However, the maximisation of the number
of edges in the MSDAG does play a role when
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using Equation (1) as the objective function, and
this may be inappropriate for decoding in seman-
tic parsing.

3.1 Two linguistic issues of in MSDAG
decoding for semantic parsing

We can identify two important related issues
against linguistic motivation for the use of MS-
DAG algorithms in decoding for semantic parsing.
The first problem is inherited from that of the arc-
factored model in syntactic parsing, and the sec-
ond problem is due to MSDAGs constrained max-
imisation of edges discussed above.

In the arc-factored syntactic parsing paradigm,
it was shown that the MST algorithm could be
used for exact inference (McDonald et al., 2005).
However, one problem with this paradigm was that
edges of the inferred solution did not linguisti-
cally constrain each other. So, for example, a verb
can be assigned two separate subject dependents,
which is linguistically absurd. Use of the MS-
DAG algorithm in semantic parsing corresponds,
in fact, to a generalisation of the arc-factored syn-
tactic parsing paradigm to semantic parsing. As
such, the problem of a lack of linguistic constraints
among edges is inherited by the arc-factored se-
mantic parsing paradigm.

However, MSDAG decoding for semantic pars-
ing suffers from a further problem. In MST de-
coding, the only constraint is really that the output
should have a tree structure; this places a precise
restriction on the number of edges in the output
(i.e., n − 1), unlike for MSDAGs. From our dis-
cussion above, we know that the MSDAG prob-
lem is closely related to a constrained maximisa-
tion of edges. In particular, a candidate solution s
to the problem that is not optimal in terms of to-
tal weight may, however, be linguistically optimal;
adding further edges to s would increase weight,
but may be linguistically undesirable.

Consider the tree at the top of Figure 1, for the
example John loves Mary. In decoding, this tree
could be our linguistic optimal, however according
to our additive objective function, it is more likely
for us to obtain either of the bottom DAGs, which
is clearly not what is wanted in semantic parsing.

4 Related Research and an
Approximation Guarantee

The only algorithm presented to date for MSDAG
is an approximation algorithm proposed by Mc-

John loves Mary

John loves Mary John loves Mary

Figure 1: Possible spanning DAGs for John loves
Mary.

Donald and Pereira (2006), given without any ap-
proximation guarantee. The algorithm first con-
structs an MST of the weighted digraph, and
then greedily attempts to add remaining edges
to the MST in order of descending weight, so
long as no cycle is introduced. Only part of
this algorithm is greedy, so we will refer to it as
semi-greedy-MSDAG. Given the fact that MS-
DAG is APX-hard (Schluter, submitted), the fol-
lowing approximation guarantee is not surprising.

Theorem 2. semi-greedy-MSDAG is an O( 1
n)

factor approximation algorithm for MSDAG.

Proof. We separate the proof into two parts. In
Part 1, we first consider an easy worst case
scenario for an upper bound on the error for
semi-greedy-MSDAG, without any considera-
tion for whether such a graph actually exists. Fol-
lowing this in Part 2, we construct a family of
graphs to show that this bound is tight (i.e., that
the algorithm exhibits worst imaginable behaviour
for this family of graphs).

Part 1. For G a digraph, let D be the output of
semi-greedy-MSDAG on G, and D∗ be an MS-
DAG for G. The worst case is (bounded by the
case) where the algorithm finds an MST T ∗ for
G but then cannot introduce any extra edges to ob-
tain a spanning DAG of higher weight, because the
addition of any extra edges would induce a cycle.
For G’s nodes, we suppose that |V (G)| > 3. For
edges, we suppose that all the edges in T ∗ have
equally the largest weight, say wmax, of any edge
in E(G), and that all other edges in E(G) have
weight O(wmax). We can do this, because it gives
an advantage to T ∗.

We suppose also that the underlying undirected
graph of G is complete and that the true MSDAG
for G is D∗ := (V (G), E(G)− E(T ∗)).

This clearly must be the worst imaginable case:
that T ∗ shares no edges with D∗, but that D∗ con-
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tains every other possible edge in the graph, with
the weight of every edge in D∗ being at most the
weight of the maximum weighted edge of those
of T ∗ (remember we are trying to favour T ∗). No
other imaginable case could introduce more edges
to D∗ without inducing a cycle. So, for all G,

w(D∗) = O

(
(n− 1)2 · wmax

2

)
= O(n2·wmax),

and we had that w(T ∗) = w(D) = O(n · wmax).
So at very worst, semi-greedy-MSDAG finds
a spanning DAG D of weight within O( 1

n) of the
optimal.

Part 2. We now show that this bound is tight.
We construct a family of graphs Gn = (Vn, En) as
follows. Vn := {v0, v1, v2, . . . , vn}, with n > 3,
and we suppose that n is even. Let c ∈ R be some
constant such that c > 3. We place the following
edges in En:

(E1) (vi, vi+1) of weight c for all i ∈ {0, . . . , n −
1} into En, creating a path from v0 to vn of
length n where every edge has weight c, and

(E2) (vi, vj) of weight c− 1 for all j ∈ {2, i− 1},
i ∈ {2, . . . , n}.

So, in addition to the path defined by the edges in
(E1), Gn − {v0} contains a weighted tournament
on n− 1 nodes, such that if j < i, then there is an
edge from i to j.

Let us denote the MST of Gn by T ∗n
and the maximal spanning tree obtainable by
semi-greedy-MSDAG, by Dn. We will show
that the (unique) MSDAG of Gn is the graph D∗n
that we construct below.

It is easy to see that the MST T ∗n of Gn consists
of the edges in (E1), and that no further edges can
be added to T ∗n without creating a cycle. So, Dn =
T ∗n .

On the other hand, we claim that there is a
unique D∗n consisting of:

1. the edge (v0, v1),
2. the edges (v2i−1, v2i) for all i ∈
{1, . . . , n/2} into E(D∗n), that is every
second edge in the path described in (E1),
and

3. all the edges from (E2) except for (v2i, v2i−1)
for all i ∈ {1, . . . , n/2}.

We can easily see that D∗n is at least maximal. The
only edges not in D∗n are ones that are parallel

to other edges. So, introducing any other edge
from (E2) would mean removing an edge from
(E1), which would decrease D∗n’s overall weight.
Moreover, notice that introducing any other edge
from (E1), say (vk−1, vk) would require remov-
ing two edges (from (E2)), either (vk, vk−1) and
(vk+1, vk−1) or (vk, vk−1) and (vk, vk+1), to avoid
cycles in D∗n, but this also decreases overall
weight. We extend these two simple facts in the
remainder of the proof, showing that D∗, in addi-
tion to being maximal, is also a global maximum.

We prove the result by induction on n (with n
even), that D∗n is the MSDAG for Gn. We take
n = 4 as our base case.

For G4 (see Figure 2), E(G4)−E(D∗4) contains
only three edges: the edge (v2, v3) of weight c and
the edges (v4, v3) and (v2, v1) of weight (c − 1).
Following the same principles above, adding the
edge (v2, v1) would entail removing an edge of
higher weight; the same is true of adding the edge
(v4, v3). No further edges in either case could
be added to make up this difference and achieve
greater weight than D∗4. So the only option is to
add the edge (v2, v3). However, this would entail
removing either the two edges (v3, v2) and (v4, v2)
or (v3, v2) and (v3, v4) from D∗4, both of which ac-
tions results in lower overall weight.

Now suppose D∗n−2 is optimal (for n ≥ 6,
n even). We show that this implies D∗n is op-
timal (with n even). Consider the two sub-
graphs Gn−2 and H of Gn induced by the sub-
sets of V (Gn), V (Gn−2) = {v0, . . . , vn−2} and
V (H) := {vn−1, vn} respectively (so H =
(V (H), {(vn−1, vn), (vn−1, vn)})). We are as-
suming that the MSDAG of Gn−2 is D∗n−2. More-
over, the MSDAG of H is a single edge, DH :=
(V (H), {(vn−1, vn)}).

D∗n includes the MSDAGs (D∗n−2 and DH ) of
these two digraphs, so for these parts of D∗n, we
have reached an upper bound for optimality. Now
we consider the optimal way to connect D∗n−2 and
DH to create D∗n.

Let C denote the set of edges in Gn which
connect DH to Gn−2 and vice versa. C =
{(vn−2, vn−1)} ∪ {(un, ui) | 1 ≤ i < n} ∪
{(un−1, ui) | 1 ≤ i < n − 1}. Note that the
only edge from C not included in D∗n is eC :=
(vn−2, vn−1). By the discussion above, we know
that including eC would mean excluding two other
edges from C of weight at least (c−1), which can-
not be optimal. Therefore D∗n must be optimal.
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Figure 2: G4, with D∗4 in blue and green and T ∗4 in red and green.

So we have constructed a family of graphs Gn

where w(Dn) = w(T ∗n) = nc and

w(D∗n) =

(
n−1∑
i=0

i(c− 1) + (n · c)
)
− (

n

2
· c)

=
n(n− 1)

2
(c− 1)− n

2
· c.

This completes the proof that
semi-greedy-MSDAG is an

O

(
nc

n(n−1)
2

(c−1)−n
2
·c

)
= O( 1

n) factor ap-

proximation algorithm for MSDAG.

Now let us consider the version of the state-
ment of the MSDAG problem that, rather than
maximising the weight of a spanning DAG D∗

of a weighted digraph G, looks to minimise the
weight of the set C∗ of edges that must be re-
moved from G in order for G − C∗ to be an MS-
DAG for G. Clearly these problems are identical.
We refer to the minimisation version of the state-
ment as MSDAGC , and to C∗ as the complement
(in G) of the MSDAG D∗ := G − C∗. Also, let
semi-greedy-MSDAGC be the same algorithm
as semi-greedy-MSDAG except that it outputs
C∗ rather than D∗.

Using the same graphs and proof structure as in
the proof of Theorem 2, the following theorem can
be shown.

Theorem 3. semi-greedy-MSDAGC is
an O(n) factor approximation algorithm for
MSDAGC .

5 Conclusions and Open Questions

This paper provides some philosophical and math-
ematical foundations for the MSDAG problem as
decoding in semantic parsing. We have put for-
ward the view that the objective in semantic pars-
ing is not in fact to find the MSDAG, however it re-
mains open as to whether this mismatch can be tol-
erated, given empirical evidence of MSDAG de-
coding’s utility in semantic parsing. We have also

pointed to an explicit proof of the APX-hardness
(that of (Schluter, submitted)) of MSDAG and
given an approximation guarantee of the only pub-
lished approximation algorithm for this problem.

In particular, Schluter (submitted) provides
an approximation preserving reduction from
MSDAGC to IDMC. Moreover, the best known
approximation ratio for IDMC is O(n

11
23 ) (Agar-

wal et al., 2007), which yields a better (in terms
of worst case error) approximation algorithm for
MSDAGC . An interesting open problem would
compare these two decoding approximation algo-
rithms empirically for semantic parsing decoding
and in terms of expected performance (or error)
both in general as well as specifically for semantic
parsing decoding.
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Abstract

We propose an intermediary-level seman-
tic representation, providing a higher level
of abstraction than syntactic parse trees,
while not committing to decisions in cases
such as quantification, grounding or verb-
specific roles assignments. The proposal
is centered around the proposition struc-
ture of the text, and includes also im-
plicit propositions which can be inferred
from the syntax but are not transparent in
parse trees, such as copular relations intro-
duced by appositive constructions. Other
benefits over dependency-trees are ex-
plicit marking of logical relations between
propositions, explicit marking of multi-
word predicate such as light-verbs, and a
consistent representation for syntactically-
different but semantically-similar struc-
tures. The representation is meant to
serve as a useful input layer for semantic-
oriented applications, as well as to provide
a better starting point for further levels of
semantic analysis such as semantic-role-
labeling and semantic-parsing.

1 Introduction

Parsers for semantic formalisms (such as Neo-
davidsonian (Artzi and Zettlemoyer, 2013) and
DRT (Kamp, 1988)) take unstructured natural lan-
guage text as input, and output a complete seman-
tic representation, aiming to capture the mean-
ing conveyed by the text. We suggest that this
task may be effectively separated into a sequential
combination of two different tasks. The first of
these tasks is syntactic abstraction over phenom-
ena such as expression of tense, negation, modal-
ity, and passive versus active voice, which are all
either expressed or implied from syntactic struc-
ture. The second task is semantic interpretation

over the syntactic abstraction, deriving quantifi-
cation, grounding, etc. Current semantic parsers
(such as Boxer (Bos, 2008)) tackle these tasks si-
multaneously, mixing syntactic and semantic is-
sues in a single framework. We believe that sepa-
rating semantic parsing into two well defined tasks
will help to better target and identify challenges
in syntactic and semantic domains. Challenges
which are often hidden due to the one-step archi-
tecture of current parsers.

Many of today’s semantic parsers, and semantic
applications in general, leverage dependency pars-
ing (De Marneffe and Manning, 2008a) as an ab-
straction layer, since it directly represents syntac-
tic dependency relations between predicates and
arguments. Some systems exploit Semantic Role
Labeling (SRL) (Carreras and M‘arquez, 2005),
where predicate-argument relationships are cap-
tured at a thematic (rather than syntactic) level,
though current SRL technology is less robust and
accurate for open domains than syntactic pars-
ing. While dependency structures and semantic
roles capture much of the proposition structure of
sentences, there are substantial aspects which are
not covered by these representations and therefore
need to be handled by semantic applications on
their own (or they end up being ignored).

Such aspects, as detailed in Section 3, include
propositions which are not expressed directly as
such but are rather implied by syntactic struc-
ture, like nominalizations, appositions and pre-
modifying adjectives. Further, the same proposi-
tion structure may be expressed in many differ-
ent ways by the syntactic structure, forcing sys-
tems to recognize this variability and making the
task of recognizing semantic roles harder. Other
aspects not addressed by common representations
include explicit marking of links between propo-
sitions within a sentence, which affect their asser-
tion or truth status, and the recognition of multi-
word predicates (e.g., considering “take a deci-
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Figure 1: Proposed representation for the sentence: “If you
leave the park, you will find the Peak Tram terminal”

sion” as a single predicate, rather than considering
decision as an argument).

In this position paper we propose an intermedi-
ary representation level for the first syntactic ab-
straction phase described above, intended to re-
place syntactic parsing as a more abstract repre-
sentation layer. It is designed to capture the full
proposition structure which is expressed, either
explicitly or implicitly, by the syntactic structure
of sentences. Thus, we aim to both extract im-
plicit propositions as well as to abstract away syn-
tactic variations which yield the same proposition
structure. At the same time, we aim to remain at
a representation level that corresponds to syntac-
tic properties and relationships, while avoiding se-
mantic interpretations, to be targeted by systems
implementing the further step of semantic inter-
pretation, as discussed above.

In addition, we suggest our representation as a
useful input for semantic applications which need
to recognize the proposition structure of sentences
in order to identify targeted information, such as
Question Answering(QA), Information Extraction
(IE) and multidocument summarization. We ex-
pect that our representation may be more useful
in comparison with current popular use of depen-
dency parsing, in such applications.

2 Representation Scheme

Our representation is centered around proposi-
tions, where a proposition is a statement for which
a truth-value can be assigned. We propose to rep-
resent sentences as a set of inter-linked proposi-
tions. Each proposition is composed of one pred-
icate and a set of arguments. An example rep-
resentation can be seen in Figure 1. Predicates
are usually centered around verbs, and we con-

sider multi-word verbs (e.g., “take apart”) as sin-
gle predicates. Both the predicates and arguments
are represented as sets of feature-value pairs. Each
argument is marked with a relation to its predicate,
and the same argument can appear in different
propositions. The relation-set we use is syntactic
in nature, including relations such as Subject,
Object, and Preposition with, in contrast
to semantic relations such as instrument.

Canonical Representation The same proposi-
tion can be realized syntactically in many forms.
An important goal of our proposal is abstracting
over idiosyncrasies in the syntactic structure and
presenting unified structures when possible. We
canonicalize on two levels:

• We canonicalize each predicate and argument
by representing each predicate as its main
lemma, and indicating other aspects of the
predication (e.g., tense, negation and time) as
features; Similarly, we mark arguments with
features such as definiteness and plurality.

• We canonicalize the argument structure by
abstracting away over word order and phe-
nomena such as topicalization and pas-
sive/active voice, and present a unified rep-
resentation in terms of the argument roles (so
that, for example, in the sentence “the door
was opened” the argument “door” will re-
ceive the object role, with the passive be-
ing indicated as a feature of the predicate).

Relations Between Propositions Some propo-
sitions must be interpreted taking into account
their relations to other propositions. These in-
clude conditionals (“if congress does nothing,
President Bush will have won” (wsj 0112));
temporal relations (“UAL’s announcement came
after the market closed yesterday”(wsj 0112));
and conjunctions (“They operate ships and
banks.”(wsj 0083)).

We model such relations as typed links between
extracted propositions. Figure 1 presents an exam-
ple of handling a conditional relation: the depen-
dence between the propositions is made explicit by
the Cond(if) relation.

3 Implicit Propositions

Crucially, our proposal aims to capture not only
explicit but also implicit propositions – proposi-
tions that can be inferred from the syntactic struc-
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ture but which are not explicitly marked in syn-
tactic dependency trees, as we elaborate below.
Some of these phenomena are relatively easy to
address by post-processing over syntactic parsers,
and could thus be included in a first implemen-
tation that produces our proposed representations.
Other phenomena are more subtle and would re-
quire further research, yet they seem important
while not being addressed by current techniques.
The syntactic structures giving rise to implicit
propositions include:
Copular sentences such as “This is not a triv-
ial issue.” (wsj 0108) introduces a proposition by
linking between a non-verbal predicate and its ar-
gument. We represent this by making “not a triv-
ial issue” a predicate, and “this” an argument of
type Predication.
Appositions, we distinguish between co-reference
and predicative appositions. In Co-reference in-
dication appositions (“The company, Random
House, doesn’t report its earnings.” (adaption of
wsj 0111)) we produce a proposition to indicate
the co-reference between two lexical items. Other
propositions relating to the entity use the main
clause as the referent for this entity. In this ex-
ample, we will produce:
1. Random House == the company.
2. The company doesn’t report its earnings.

In Predicative appositions (“Pierre Vinken, 61
years old, will join the board as a nonexecutive di-
rector Nov. 29.” (wsj 0001)) an apposition is used
in order to convey knowledge about an entity. In
our representation this will produce:
1. Pierre Vinken is 61 years old (which is canoni-
calized to the representation of copular sentences)
2. Pierre Vinken will join the board as a nonexec-
utive director Nov. 29.
Adjectives, as in the sentence “you emphasized
the high prevalence of mental illness” (wsj 0105).
Here an adjective is used to describe a definite sub-
ject and introduces another proposition, namely
the high prevalence of mental illness.
Nominalizations, for instance in the sentence
“Googles acquisition of Waze occurred yester-
day”, introduce the implicit proposition that
“Google acquired Waze”. Such propositions were
studied and annotated in the NOMLEX (Macleod
et al., 1998) and NOMBANK (Meyers et al., 2004)
resources. It remains an open issue how to repre-
sent or distinguish cases in which nominalization
introduce an underspecified proposition. For ex-

ample, consider “dancing” in “I read a book about
dancing”.
Possessives, such as “John’s book” introduce the
proposition that John has a book. Similarly, ex-
amples such as “John’s Failure” combine a pos-
sessive construction with nominalization and in-
troduce the proposition that John has failed.
Conjunctions - for example in “They operate
ships and banks.” (wsj 0083), introduce several
propositions in one sentence:
1. They operate ships
2. They operate banks
We mark that they co-refer to the same lexical unit
in the original sentence. Such cases are already
represented explicitly in the “collapsed” version
of Stanford-dependencies (De Marneffe and Man-
ning, 2008a).1

Implicit future tense indication, for instance
in “I’m going to vote for it” (wsj 0098) and
“The economy is about to slip into recession.”
(wsj 0036), verbs like “going to” and “about to”
are used as future-tense markers of the proposi-
tion following them, rather than predicates on their
own. We represent these as a single predicate
(“vote”) in which the tense is marked as a fea-
ture.2

Other phenomena, omitted for lack of space,
include propositional modifiers (e.g., relative
clause modifiers), propositional arguments (such
as ”John asserted that he will go home”), condi-
tionals, and the canonicalization of passive and
active voice.

4 Relation to Other Representations

Our proposed representation is intended to serve
as a bridging layer between purely syntactic rep-
resentations such as dependency trees, and seman-
tic oriented applications. In particular, we explic-
itly represent many semantic relations expressed
in a sentence that are not captured by contempo-
rary proposition-directed semantic representations
(Baker et al., 1998; Kingsbury and Palmer, 2003;
Meyers et al., 2004; Carreras and Màrquez, 2005).

Compared to dependency-based representations
such as Stanford-dependency trees (De Marneffe

1A case of conjunctions requiring special treatment is in-
troduced by reciprocals, in which the entities roles are ex-
changeable. For example: “John and Mary bet against each
other on future rates” (adaption of wsj 0117).

2Care needs to be taken to distinguish from cases such as
“going to Italy” in which “going to” is not followed by a
verbal predicate.
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and Manning, 2008b), we abstract away over
many syntactic details (e.g., the myriad of ways
of expressing tense, negation and modality, or the
difference between passive and active) which are
not necessary for semantic interpretation and mark
them instead using a unified set of features and ar-
gument types. We make explicit many relations
that can be inferred from the syntax but which
are not directly encoded in dependency relations.
We directly connect predicates with all of their ar-
guments in e.g., conjunctions and embedded con-
structions, and we do not commit to a tree struc-
ture. We also explicitly mark predicate and argu-
ment boundaries, and explicitly mark multi-word
predicates such as light-verb constructions.

Compared to proposition-based semantic rep-
resentations, we do not attempt to assign frame-
specific thematic roles, nor do we attempt to dis-
ambiguate or interpret word meanings. We restrict
ourselves to representing predicates by their (lem-
matized) surface forms, and labeling arguments
based on a “syntactic” role inventory, similar to the
label-sets available in dependency representations.
This design choice makes our representation much
easier to assign automatically to naturally occur-
ring text (perhaps pre-annotated using a syntactic
parser) than it is to assign semantic roles. At the
same time, as described in Section 3, we capture
many relations that are currently not annotated in
resources such as FrameNet, and provide a com-
prehensive set of propositions present in the sen-
tence (either explicitly or implicitly) as well as the
relations between them – an objective which is not
trivial even when presented with full semantic rep-
resentation.

Compared to more fine-grained semantic repre-
sentations used in semantic-parsers (i.e. lambda-
calculus (Zettlemoyer and Collins, 2005), neo-
davidsonian semantics (Artzi and Zettlemoyer,
2013), DRT (Kamp, 1988) or the DCS represen-
tation of Liang (2011)), we do not attempt to
tackle quantification, nor to ground the arguments
and predicates to a concrete domain-model or on-
tology. These important tasks are orthogonal to
our representation, and we believe that semantic-
parsers can benefit from our proposal by using it
as input in addition to or instead of the raw sen-
tence text – quantification, binding and grounding
are hard enough without needing to deal with the
subtleties of syntax or the identification of implicit
propositions.

5 Conclusion and Future Work

We proposed an intermediate semantic repre-
sentation through proposition extraction, which
captures both explicit and implicit propositions,
while staying relatively close to the syntactic
level. We believe that this kind of representation
will serve not only as an advantageous input for
semantically-centered applications, such as ques-
tion answering, summarization and information
extraction, but also serve as a rich representation
layer that can be used as input for systems aiming
to provide a finer level of semantic analysis, such
as semantic-parsers.

We are currently at the beginning of our in-
vestigation. In the near future we plan to semi-
automatically annotate the Penn Tree Bank (Mar-
cus et al., 1993) with these structures, as well as
to provide software for deriving (some of) the im-
plicit and explicit annotations from automatically
produced parse-trees. We believe such resources
will be of immediate use to semantic-oriented ap-
plications. In the longer term, we plan to inves-
tigate dedicated algorithms for automatically pro-
ducing such representation from raw text.

The architecture we describe can easily accom-
modate additional layers of abstraction, by en-
coding these layers as features of propositions,
predicates or arguments. Such layers can include
the marking of named entities, the truth status of
propositions and author commitment.

In the current version infinitive constructions
are treated as nested propositions, similar to their
representation in syntactic parse trees. Providing
a consistent, useful and transparent representation
for infinitive constructions is a challenging direc-
tion for future research.

Other extensions of the proposed representa-
tion are also possible. One appealing direction
is going beyond the sentence level and represent-
ing discourse level relations, including implied
propositions and predicate - argument relation-
ships expressed by discourse (Stern and Dagan,
2014; Ruppenhofer et al., 2010; Gerber and Chai,
2012). Such an extension may prove useful as an
intermediary representation for parsers of seman-
tic formalisms targeted at the discourse level (such
as DRT).
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Abstract

Dependency-based Compositional Se-
mantics (DCS) provides a precise and
expressive way to model semantics of
natural language queries on relational
databases, by simple dependency-like
trees. Recently abstract denotation is pro-
posed to enable generic logical inference
on DCS. In this paper, we discuss some
other possibilities to equip DCS with
logical inference, and we discuss further
on how logical inference can help textual
entailment recognition, or other semantic
precessing tasks.

1 Introduction

Dependency-based Compositional Semantics
(DCS) was proposed as an interface for querying
relational databases by natural language. It
features DCS trees as semantic representation,
with a structure similar to dependency trees. In
its basic version, a node of a DCS tree indicates
a table in the database, and an edge indicates a
join relation. Both ends of an edge are labeled by
a field of the corresponding table (Liang et al.,
2011). However, when DCS is applied to logical
inference on unrestricted texts, it is unrealistic to
assume an explicit database, because we cannot
prepare a database for everything in the world.
For this reason, DCS trees are detached from any
specific relational database, in a way that each
node of a DCS tree indicates a content word in a
sentence (thus no fixed set of possible word labels
for a DCS tree node), and each edge indicates

∗Current affiliation of the first author: Graduate School
of Information Sciences, Tohoku University, Japan. Email
address: tianran@ecei.tohoku.ac.jp

a semantic relation between two words. Labels
on the two ends of an edge, initially indicating
fields of tables in a database, are considered
as semantic roles of the corresponding words.
Abstract denotation is proposed to capture the
meaning of this abstract version of DCS tree,
and a textual inference system based on abstract
denotation is built (Tian et al., 2014).

It is quite natural to apply DCS trees, a simple
and expressive semantic representation, to textual
inference; however the use of abstract denotations
to convey logical inference is somehow unusual.
There are two seemingly obvious way to equip
DCS with logical inference: (i) at the tree level, by
defining a set of logically sound transformations
of DCS trees; or (ii) at the logic level, by convert-
ing DCS trees to first order predicate logic (FOL)
formulas and then utilizing a theorem prover. For
(i), it may not be easy to enumerate all types of
logically sound transformations, but tree transfor-
mations can be seen as an approximation of logical
inference. For (ii), abstract denotation is more ef-
ficient than FOL formula, because abstract deno-
tation eliminates quantifiers and meanings of nat-
ural language texts can be represented by atomic
sentences.

To elaborate the above discussion and to pro-
vide more topics to the literature, in this paper we
discuss the following four questions: (§2) How
well can tree transformation approximate logical
inference? (§3) With rigorous inference on DCS
trees, where does logic contribute in the system
of Tian et al. (2014)? (§4) Does logical inference
have further potentials in Recognizing Textual En-
tailment (RTE) task? and (§5) How efficient is ab-
stract denotation compared to FOL formula? We
provide examples or experimental results to the
above questions.
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Figure 1: DCS trees of T: Tropical storm Debby is
blamed for death and H: A storm has caused loss
of life

2 Tree transformation vs. logical
inference

In the tree transformation based approach to RTE,
it has been realized that some gaps between T and
H cannot be filled even by a large number of tree
transformation rules extracted from corpus (Bar-
Haim et al., 2007a). For example in Figure 1, it
is possible to extract the rule blamed for death→
cause loss of life, but not easy to extract tropical
storm Debby→ storm, because “Debby” could be
an arbitrary name which may not even appear in
the corpus.

This kind of gaps was typically addressed by
approximate matching methods, for example by
counting common sub-graphs of T and H, or by
computing a cost of tree edits that convert T to
H. In the example of Figure 1, we would expect
that T is “similar enough” (i.e. has many common
sub-graphs) with H, or the cost to convert T into H
(e.g. by deleting the node Debby and then add the
node storm) is low. As for how similar is enough,
or how the cost is evaluated, we will need a statis-
tical model to train on RTE development set.

It was neglected that some combinations of tree
edits are logical (while some are not). The entail-
ment pair in Figure 1 can be easily treated by log-
ical inference, as long as the apposition tropical
storm = Debby is appropriately handled. In con-
trast to graph matching or tree edit models which
theoretically admit arbitrary tree transformation,
logical inference clearly discriminate sound trans-
formations from unsound ones. In this sense, there
would be no need to train on RTE data.

When coreference is considered, logically
sound tree transformations can be quite compli-
cated. The following is a modified example from
RTE2-dev:

T: Hurricane Isabel, which caused significant
damage, was a tropical storm when she entered
Virginia.
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Figure 2: DCS trees with coreference

H: A storm entered Virginia, causing damage.

The corresponding DCS trees are shown in Fig-
ure 2. Though the DCS trees of T and H are
quite different, H can actually be proven from T.
Note the coreference between Hurricane Isabel
and she, suggesting us to copy the subtree of Hur-
ricane Isabel to she, in a tree edit approach. This
is not enough yet, because the head storm in T is
not placed at the subject of cause. The issue is in-
deed very logical: from “Hurricane Isabel = she”,
“Hurricane Isabel = storm”, “she = subject of en-
ter” and “Hurricane Isabel = subject of cause”,
we can imply that “storm = subject of enter = sub-
ject of cause”.

3 Alignment with logical clues

Tian et al. (2014) proposed a way to generate on-
the-fly knowledge to fill knowledge gaps: if H is
not proven, compare DCS trees of T and H to
generate path alignments (e.g. blamed for death
∼ cause loss of life, as underscored in Figure 1);
evaluate the path alignments by a similarity score
function; and path alignments with a score greater
than a threshold (0.4) are accepted and converted
to inference rules.

The word vectors Tian et al. (2014) use to
calculate similarities are reported able to cap-
ture semantic compositions by simple additions
and subtractions (Mikolov et al., 2013). This is
also the case when used as knowledge resource
for RTE, for example the similarities between
blamed+death and cause+loss+life, or between
found+shot+dead and killed, are computed >
0.4.

However, generally such kind of similarity is
very noisy. Tian et al. (2014) used some logical
clues to filter out irrelevant path alignments, which
helps to keep a high precision. To evaluate the
effect of such logical filters, we compare it with
some other alignment strategies, the performance
of which on RTE5-test data is shown in Table 1.

Each strategy is described in the following.
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Strategy Prec. Rec. Acc.
LogicClue + Inference 69.9 55.0 65.7
LexNoun + Inference 64.2 57.3 62.7
LexNoun + Coverage 57.1 75.0 59.3
NoFilter + Coverage 54.2 87.7 56.8

Table 1: Comparison of different alignment strate-
gies

LogicClue + Inference This is the system of
Tian et al. (2014)1, which use logical clues to filter
out irrelevant path alignments, and apply accepted
path alignments as inference rules.

LexNoun + Inference The same system as
above, except that we only align paths between
lexically aligned nouns. Two nouns are aligned
if and only if they are synonyms, hyponyms or
derivatively related in WordNet.

LexNoun + Coverage As above, paths between
lexically aligned nouns are aligned, and aligned
paths with similarity score > 0.4 are accepted. If
all nodes in H can be covered by some accepted
path alignments, then output “Y”. This is very
similar to the system described in Bar-Haim et al.
(2007b).

NoFilter + Coverage Same as above, but all
paths alignments with similarity score > 0.4 are
accepted.

4 How can logical inference help RTE?

Logical inference is shown to be useful for RTE,
as Tian et al. (2014) demonstrates a system with
competitive results. However, despite the expec-
tation that all entailment matters can be explained
logically, our observation is that currently logical
inference only fills very limited short gaps from T
to H. The logical phenomena easily addressed by
Tian et al. (2014)’s framework, namely universal
quantifiers and negations, seems rare in PASCAL
RTE data. Most heavy lifting is done by distribu-
tional similarities between phrases, which may fail
in complicated sentences. An especially complex
example is:

T: Wal-Mart Stores Inc. said Tuesday that a Mas-
sachusetts judge had granted its motion to decer-
tify a class action lawsuit accusing the world’s
largest retailer of denying employees breaks.
H: Employee breaks had been denied by a motion
granted by a Massachusetts judge.

1http://kmcs.nii.ac.jp/tianran/tifmo/
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Figure 3: Time of forward-chaining (seconds) in
our system, plotted on weights of statements (log-
arithmic scale).

Orig. 3 Sec. Orig. 5 Min. Red. 5 Min.
Proof found 8 16 82
Too many variables 5 24 3
Failed to find proof 0 1 3
Memory limit 0 2 0
Time out 86 57 13

Table 2: Proportion (%) of exit status of Prover9

The system of Tian et al. (2014) generated on-
the-fly knowledge to join several fragments in T
and wrongly proved H. In examples of such com-
plexity, distributional similarity is no longer reli-
able. However, it may be possible to build a pri-
ori logical models at the meta level, such as on
epistemic, intentional and reportive attitudes. The
models then can provide signals for semantic pars-
ing to connect the logic to natural language, such
as the words “grant”, “decertify”, and “accuse” in
the above example. We hope this approach can
bring new progress to RTE and other semantic pro-
cessing tasks.

5 Efficiency of abstract denotations

To evaluate the efficiency of logical inference on
abstract denotations, we took 110 true entailment
pairs from RTE5 development set, which are also
pairs that can be proven with on-the-fly knowl-
edge. We plot the running time of Tian et al.
(2014)’s inference engine (single-threaded) on a
2.27GHz Xeon CPU, with respect to the weighted
sum of all statements2, as shown in Figure 3. The
graph shows all pairs can be proven in 6 seconds,
and proof time scales logarithmically on weight of
statements.

On the other hand, we converted statements on
abstract denotations into FOL formulas, and tried
to prove the same pairs using Prover9,3 a popu-

2If a statement is translated to FOL formula, the weight of
this statement equals to the weighted sum of all predicates in
the FOL formula, where an n-ary predicate is weighted as n.

3www.cs.unm.edu/˜mccune/prover9/
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lar FOL theorem prover. As the result turns out
(Table 2), only 8% of the pairs can be proven in
3 seconds (the “Orig. 3 Sec.” column), and only
16% pairs can be proven in 5 minutes (the “Orig.
5 Min.” column), showing severe difficulties for
an FOL prover to handle textual inferences with
many (usually hundreds of) on-the-fly rules. As
such, we use Tian et al. (2014)’s inference engine
to pin down statements that are actually needed for
proving H (usually just 2 or 3 statements), and try
to prove H by Prover9 again, using only necessary
statements. Proven pairs in 5 minutes then jump
to 82% (the “Red. 5 Min.” column), showing that
a large number of on-the-fly rules may drastically
increase computation cost. Still, nearly 20% pairs
cannot be proven even in this setting, suggesting
that traditional FOL prover is not suited for tex-
tual inference.

6 Conclusion and future work

We have discussed the role that logical infer-
ence could play in RTE task, and the efficiency
of performing inference on abstract denotations.
Though currently logical inference contributes at
places that are somehow inconspicuous, there is
the possibility that with some meta level logical
models and the methodology of semantic parsing,
we can build systems that understand natural lan-
guage texts deeply: logic implies (in)consistency,
which is in turn used as signals to produce more
accurate semantic interpretation. And after all, as
there may be many possible variations of seman-
tic representations, it is good to have an efficient
inference framework that has the potential to con-
nect them. It would be exciting if we can combine
different types of structured data with natural lan-
guage in semantic processing tasks. Directions of
our future work are described below.

Improvement of similarity score To calculate
phrase similarities, Tian et al. (2014) use the co-
sine similarity of sums of word vectors, which ig-
nores syntactic information. We plan to add syn-
tactic information to words by some supertags,
and learn a vector space embedding for this struc-
ture.

Integration of FreeBase to RTE It would be
exciting if we can utilize the huge amount of Free-
Base data in RTE task. Using the framework of
abstract denotation, meanings of sentences can be
explained as relational database queries; to convert

it to FreeBase data queries is like relational to on-
tology schema matching. In order to make effec-
tive use of FreeBase data, we also need to recog-
nize entities and relations in natural language sen-
tences. Previous research on semantic parsing will
be very helpful for learning such mapping.

Winograd Schema Challenge (WSC) As the
RTE task, WSC (Levesque et al., 2012) also pro-
vides a test bed for textual inference systems. A
Winograd schema is a pair of similar sentences but
contain an ambiguity of pronouns that is resolved
in opposite ways. A complicated partial example
is:

Michael decided to freeze himself in
cryo-stasis even though his father was
against it, because he hopes to be un-
frozen in the future when there is a cure
available.

The logical interplay among decided, hopes,
even though, because, and the realization that he
is coreferent to Michael (but not his father) is in-
triguing. By working on the task, we hope to gain
further understanding on how knowledge can be
gathered and applied in natural language reason-
ing.
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Abstract

This abstract describes README-EVAL,
a novel measure for semantic parsing eval-
uation of interpreters for instructions in
computer program README files. That
is enabled by leveraging the tens of thou-
sands of Open Source Software programs
that have been annotated by package main-
tainers of GNU/Linux operating systems.
We plan to make available a public shared
implementation of this evaluation.

1 Introduction
That natural language is learned by humans in
rich grounded perceptual contexts has been rec-
ognized by many researchers for quite some time
(Regier, 1996) (Silberer and Lapata, 2012). But
most efforts at machine learning of natural lan-
guage continue to address tasks which are en-
tirely divorced from any grounding and/or have
perceptual requirements for which machines are
ill-suited. Computers are machines and their nat-
ural perceptual context is that of the computing
machine world. Therefore, to apply the model of
grounded language learning most effectively, we
should choose tasks in which the relevant percepts
are of those in the computing world (e.g., bits,
bytes, characters, files, memory, operations, pro-
grams, events, processes, services, devices, pro-
cessors, drivers, operating systems, and networks).

This abstract describes proposed work aimed
at the goal of deep semantic parsing of the web,
which for us includes the ability to interpret doc-
uments that give instructions for acting on com-
puter systems in human natural language. To facil-
itate research in that direction, we plan to evaluate
systems that build software packages by follow-
ing the README1 file instructions contained in

1We use the term README file in a broad sense mean-
ing a document that contains instructions to be read by a hu-

GNU/Linux distributions like Centos and Debian.
Key to this plan is the novel README-EVAL
score which we propose as an extrinsic (i.e. goal-
oriented) performance measure for parsing, map-
ping/planning, and related linguistics tasks. The
planned baseline system is a pipeline using a doc-
ument classifier and instruction sequence extractor
trained on hand-labeled data followed by a rein-
forcement learner for mapping the instructions to
a build script (plan of actions) for that software
package (context).

2 Background
A significant challenge for semantic parsing re-
search is finding a method to measure a system’s
performance that will indicate its effectiveness in
the domain of interest. Traditionally the approach
has been to gather and have human annotators
make judgements that are of the same kind the
system is intended to perform. That process is rel-
atively costly and may result in a corpus which is
actually too small considering the amount of varia-
tion that occurs when humans perform an activity.
Relevant prior work in the computing domain pro-
duced the Linux and Monroe plan corpora (Blay-
lock and Allen, 2005). The Linux Plan Corpus
consists of 457 interactive shell script sessions,
with an average of 6.1 actions each, captured from
human experimental subjects attempting to satisfy
one of 19 different goals stated as an English sen-
tence. Although it has been used successfully by
those and other researchers, the natural variation
in human behavior means that a corpus of such
relatively small size appears to be very noisy. As
a result they have had to rely on artificially gener-
ated data such as the Monroe Plan Corpus in order
to get results that are more easily compared across
system evaluations.

man that concern performing actions on a computer (whether
at the keyboard or some other input device). For this task
we confine ourselves to instructions given for the purpose of
building a software package.
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More promising therefore is the way some re-
searchers have discovered ways to repurpose data
and/or judgements created for other purposes and
turn them into training data and/or evaluations of
NLP systems. We employ that paradigm here by
repurposing the efforts of Open Source Software
(OSS) package maintainers who have created an-
notations (aka metadata) including dependency re-
lations and scripts that build computer programs.

3 GNU/Linux Software Package Data

The advent of the Internet resulted in explosive
growth for OSS, the premier example of which
is the GNU/Linux operating system family. Cur-
rent distributions contain packages built from over
15,000 program source bundles.2 The production
of OSS packages for such systems typically in-
volves two different types of programmers work-
ing independently. The authors of the source
computer program usually do not produce pack-
aging metadata for their work and instead tend
to write README files and related documenta-
tion explaining how to build and use the software.
The package maintainers then work out the spe-
cific requirements and scripts necessary to build
the program as some package(s) using the partic-
ular package manager and format of the OS dis-
tribution (aka ”distro”) that they are supporting.
Software package metadata contained in bundles
such as Debian .deb and Fedora RPM .spec
files are rich in annotations.3,4

See Figure 1 for excerpts of text describing the
Bean Scripting Framework (BSF) from its Source
RPM Package Manager (SRPM) package in the
Fedora Core 17 distribution.5 The two kinds of
data shown are file contents (1a, 1c, 1e), which
usually originate with the “upstream” program au-
thor(s), and sections from the RPM Spec file (1b,
1d, 1f), which are annotations (aka metadata) cu-
rated by the package maintainers. There are other

2Debian Wheezy has over 37,000 packages from about
17,500 source packages https://www.debian.org/
News/2013/20130504 and Fedora 20 has more than
15,000 packages https://admin.fedoraproject.
org/pkgdb/collections/.

3https://www.debian.org/doc/manuals/
maint-guide/dreq.en.html

4http://www.rpm.org/max-rpm/
ch-rpm-inside.html

5For more examples, we refer the interested reader the
author’s web page which includes access to a web linked
data explorer for the entire corpus.
http://students.washington.edu/jimwhite/
sp14.html

sections and fields used in RPM Spec files, but
those tend to more distro-specific and these suffice
for this discussion.

Figure 1a shows some BSF package description
text from the source README.txt file and Figure
1b shows the version appearing the RPM Spec.
That close textual similarity is a common occur-
rence in the data and can be used to identify some
likely README files. Those are only a starting
point though, because the natural language pro-
gram build instructions are often in other files, as
in this case. For many packages those instruc-
tions are in a file named INSTALL. There is an
INSTALL.txt file with some instructions for BSF
here (Figure 1e), but they are for a binary instal-
lation. The instructions for building from source
that we will primarily concerned with here are in
the file BUILDING.txt (Figure 1c).

A potential use for this data that we haven’t ex-
plored yet is its use in summarization tasks. In ad-
dition to the text which is usually in the README
file and RPM Spec DESCRIPTION section, there
is the “Summary” field of the PACKAGE section.
Although in Figure 1d the value for the summary
field appears as just the package’s full name, this
is typically a full sentence that is a good one-line
summary of the multiple line description section.

It is worthwhile to notice that thousands of
programs have been packaged multiple times for
different systems (e.g. Debian, Fedora, Cygwin,
NixOS, Homebrew, and others) and many pack-
ages have also been internationalized.6 Both of
those aspects point to opportunities for learning
from parallel data.

For the present discussion we focus on two par-
ticular elements of package metadata: dependen-
cies and build scripts.7 The packages in a distribu-
tion have dependency relationships which desig-
nate which packages must be built and installed for
other packages to be built, installed, and/or exe-
cuted. These relationships form a directed acyclic
graph (DAG) in which the nodes are packages and
the edges are dependency relationships.

6Debian for example currently lists more than 800k sen-
tences in the localization database and about 75 human lan-
guages have translations for at least 100k of them with the
top ten languages having over 500k each https://www.
debian.org/international/l10n/po/rank.

7Packaging systems usually support at least three types of
scripts: build, install, and remove. The build script usually
has more in common with the README instructions than
the install and remove scripts which are more distro specific.
Some packages also have a check script to validate the state
of a build prior to performing the install operation.
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(a) README.txt file (d) RPM Spec PACKAGE section (metadata)
Bean Scripting Framework (BSF) is a set of Java classes
which provides an easy to use scripting language support
within Java applications. It also provides access to Java
objects and methods from supported scripting languages.
· · ·
(b) RPM Spec DESCRIPTION section
Bean Scripting Framework (BSF) is a set of Java classes
which provides scripting language support within Java
applications, and access to Java objects and methods from
scripting languages.
· · ·
(c) BUILDING.txt file
From the ant "build.xml" file:

Master Build file for BSF
Notes:

This is the build file for use with
the Jakarta Ant build tool.

Optional additions:
BeanShell -> http://www.beanshell.org/
Jython -> http://www.jython.org/
JRuby -> http://www.jruby.org/ (3rd ...)
Xalan -> http://xml.apache.org/xalan-j
. . .

Build Instructions:
To build, run
java org.apache.tools.ant.Main <target>

on the directory where this file is
located with the target you want.

Most useful targets:
- all -> creates the binary and src
distributions, and builds the site

- compile -> creates the "bsf.jar"
package in "./build/lib" (default target)

- samples -> creates/compiles the samples
· · ·

Name: bsf
Version: 2.4.0
Release: 12.fc17
Summary: Bean Scripting Framework
License: ASL 2.0
URL: http://commons.apache.org/bsf/
Group: Development/Libraries
BuildRequires: jpackage-utils >= 1.6
BuildRequires: ant, xalan-j2, jython
BuildRequires: rhino
BuildRequires: apache-commons-logging
Requires: xalan-j2
Requires: apache-commons-logging
Requires: jpackage-utils
BuildArch: noarch

· · ·
(e) INSTALL.txt file
Installing BSF consists of copying
bsf.jar and .jars for any languages
intended to be supported to a directory
in the execution CLASSPATH of your
application, or simply adding them
to your CLASSPATH.
BSF can be used either as a standalone
system, as a class library, or as part
of an application server. In order to be
used as a class library or as a standalone
system, one must simply download the
bsf.jar file from the BSF web site
(http://jakarta.apache.org/bsf/index.html)
and include it in their CLASSPATH, along
with any required classes or jar files
implementing the desired languages.

· · ·
(f) RPM Spec BUILD section (shell script)
[ -z "$JAVA_HOME" ] && export JAVA_HOME=/usr/lib/jvm/java
export CLASSPATH=$(build-classpath apache-commons-logging jython xalan-j2 rhino)
ant jar
/usr/bin/rm -rf bsf/src/org/apache/bsf/engines/java
ant javadocs

Figure 1: Bean Scripting Framework (BSF) excerpts from Fedora Core 17 RPMS.

4 From Dependencies to Validation

The idea that turns the package dependency DAG
into training, test, and evaluation data is to choose
dependency targets for test (i.e. the system build
script outputs will be used for them in test) and
dependency sources (the dependent packages) for
validation (their package maintainer written build
scripts are used as is to observe whether the depen-
dencies are likely to be good). Validation subsets
can be arranged for both internal validation (tun-
ing) and external validation (evaluation).

Two kinds of dependency relationships are
of special interest here: Requires and
BuildRequires. The former typically means
the target package (its name appears to the right of
a Requires or BuildRequires in Figure 1d)

is required at both build time and execution time
by the source package (identified by the Name
field of Figure 1d) while the latter means it is only
required at build time. That distinction can be
used to guide the selection of which packages to
choose for the validation and test subsets. Pack-
ages that are the target of a BuildRequires
relationship are more likely to cause their depen-
dents’ build scripts to fail when they (the targets)
are built incorrectly than targets of a Requires
relationship.

Analysis of the 2,121 packages in Release 17 of
the Fedora Core SRPM distribution shows 1,673
package nodes that have a build script and some
declared dependency relationship. Those build
scripts average 6.9 non-blank lines each. Of
those nodes, 1,009 are leaves and the 664 inter-
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nal nodes are the target of an average of 7 de-
pendencies each. There are 218 internal nodes
that are the direct target of at least one leaf node
via a BuildRequires relationship and they av-
erage 12.4 such dependent leaves each. We ex-
pect to have a larger corpus prepared from a full
GNU/Linux distribution (at least 15,000 source
packages) at the time of the workshop.

5 Task Description
The top-level README-EVAL task would be to
generate complete packaging metadata given the
source files for a program thus automating the
work of a package maintainer. Since that task
is somewhat complicated, it is useful to break
it down into multiple subtasks which can be ad-
dressed and evaluated separately before proceed-
ing to combine them. For the discussion here we
will consider a partial solution using a four stage
pipeline: README document classification, in-
struction extraction, dependency relation extrac-
tion, and build script generation.

The corpus’ package metadata can be used to
directly evaluate the results of the last two stages
of that pipeline. The first two stages, README
document classification and instruction extraction,
are well understood tasks for which a moderate
amount of manually labelled data can suffice to
train and test effective classifiers.

The dependency relation extraction subtask can
be treated as a conventional information extraction
task concerned with named entity recognition for
packages and relation extraction for dependencies.
We may regard the dependencies in the corpus as
effectively canonical because the package main-
tainers strive to keep those annotations to a rea-
sonable minimum. Therefore computing precision
and recall scores of the dependency DAG edges
and labels of this stage’s output versus the corpus’
metadata will be a meaningful metric.

Work on instruction and direction following is
applicable to the build script generation subtask.
Such systems tend to be somewhat more complex
than shallow extraction systems and may incor-
porate further subcomponents including goal de-
tectors and/or planners that interact with a seman-
tic parser (Branavan et al., 2012). It is possible
to evaluate the final stage output by comparing it
to the build script in the package’s metadata, but
that would suffer from the same sort of evalua-
tion problems that other language generation tasks
have when we are concerned with semantics rather

than syntax. This is where the superiority of an
NLP task where the target language is understood
by computers comes in, because we can also eval-
uate it using execution. Which isn’t to say we can
solve the program equivalence problem in general,
but README-EVAL does a pragmatic determina-
tion of how good a substitute it is based on its us-
age by the package’s dependency sources.

6 README-EVAL Scoring
The README-EVAL score is a measure of how
effective the system under test (SUT) is at gener-
ating software package metadata. For the compo-
nents of the SUT this score can serve as an extrin-
sic indication of their effectiveness.

Let N be a set of tuples (x, y) representing the
corpus in which x is the package data and relevant
metadata subset minus the labels to be generated
and y is a known good label for x. To prepare the
corpus for the task, two disjoint subsets C and T
are selected from the set of all package nodes N .
C is for the common packages which are available
to the SUT for training, and T is for the test pack-
ages that the SUT’s interpretation function will be
tested on. A third set V which is disjoint from T
is selected from N for the validation packages.

Many partitioning schemes are possible. A sim-
ple method is to choose the leaf nodes (packages
that are sources but not targets of dependency re-
lationships) for V . The members of T can then
be chosen as the set of packages which are the di-
rect targets of the dependency relationships from
V . The members of V are expected to be likely
to fail to build correctly if there are errors in the
system outputs for T . Note that for the SUT to
do tuning it will need some leaf node packages in
C. Therefore if V is made disjoint from C then it
should not actually select all of those leaves.

The README-EVAL score R is computed us-
ing a suitable loss function L for the SUT’s la-
bel predictor function Ŷ . Ŷ is presumed to have
been trained on C and it yields a set of (x, ŷ) tu-
ples given a set of x values. The loss function
L((x, y), D) yields a real number in the range 0
to 1 inclusive that indicates what fraction of the
components in package (x, y) are incorrect given
the context D ⊂ N . It is required for all v ∈ V
that L(v, (C ∪ T ∪ V ) \ {v}) = 0.

For this exposition, assume y is a build script
and L yields 0 if it succeeds and 1 if it fails. Linux
processes typically indicate success by returning a
zero exit code. Therefore a simple realization of
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L is to return 0 if the process executing the build
script y of (x, y) given D returns zero and 1 oth-
erwise.

The computation iterates over each member
D ∈ partition(T ) and obtains measures of cor-
rectness by evaluating B(Ŷ (X(D))∪C ∪ T \D)
where X is a function that yields the set of x val-
ues for a given set of (x, y) tuples. To keep the task
as easy as possible, the members of partition(T )
may be singletons.
B(D) = |V | −∑v∈V L(v, (D ∪ V ) \ {v})
Those values are normalized by a scale factor

for each D determined by the value of B given D
minus B given Z(D). Z(D) is the set of tuples
(x, λ) for a given set D where λ is the null label.
A null label for a build script is one which has no
actions and executes successfully.

R(D) = B(Ŷ (X(D))∪C∪T\D)
B(C∪T )−B(Z(D)∪C∪T\D)

The final README-EVAL measureR is the av-
erage score over those partitions:

R =
∑

D∈partition(T ) R(D)

|partition(T )|

6.1 Loss Function Variations

There are other useful implementation variations
for the loss function L. In a system where the
number of components can be determined inde-
pendently from whether they are correct or not, a
possibly superior alternative is to return the num-
ber of incorrect components divided by the total
number of components. To determine loss for a
build script for example, the value may be deter-
mined by counting the number of actions that exe-
cute successfully and dividing by the total number
of steps.

A further consideration in semantic evaluation
is parsimony, which is the general expectation that
the shortest adequate solution is to be preferred
(Gagne et al., 2006). To incorporate parsimony
in the evaluation we can add a measure(s) of the
solution’s cost(s), such as the size of the label y
and/or execution resources consumed, to L.

7 Conclusion
A common objection to tackling this task is that
it seems too hard given the state of our knowl-
edge about human language, computer program-
ming (as performed by humans), and especially
the capabilities of current NLP systems. We con-
sider that to be a feature rather than a bug. It
may be some time before a state-of-the-art im-
plementation of a README interpreter is suffi-

ciently capable to be considered comparable to
an expert human GNU/Linux package maintainer
performance, but that is perfectly fine because we
would like to have an evaluation that is robust,
long-lived, and applicable to many NLP subtasks.
We also have the more pragmatic response given
here which shows that that difficult task can be
decomposed into smaller subtasks like others that
have been addressed in the NLP and computa-
tional linguistics communities.

To conclude, this proposal recommends
README-EVAL as an extrinsic (goal-oriented)
evaluation system for semantic parsing that could
provide a meaningful indication of performance
for a variety of NLP components.

Because the evaluation platform may be some-
what complicated to set up and run, we would
like to make a publicly available shared evalua-
tion platform on which it would be a simple matter
to submit new systems or components for evalua-
tion. The MLcomp.org system developed by Percy
Liang and Jacob Abernethy, a free website for ob-
jectively comparing machine learning programs,
is an especially relevant precedent (Gollub et al.,
2012). But we notice that the NLP tasks on ML-
comp receive little activity (the last new run was
more than a year ago at this writing) which is in
stark contrast to the other ML tasks which are very
active (as they are on sites like Kaggle). With the
README-EVAL task available in such an easy-
to-use manner could draw significant participation
because of its interesting and challenging domain,
especially from ML and other CS students and re-
searchers.

Finally we look forward to discussing this pro-
posal with the workshop attendees, particularly in
working out the details for manual annotation of
the README files for the instruction extractor
(including whether it is needed), and discussing
ideas for a baseline implementation.
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Abstract

We contrast two seemingly distinct ap-
proaches to the task of question answering
(QA) using Freebase: one based on infor-
mation extraction techniques, the other on
semantic parsing. Results over the same
test-set were collected from two state-of-
the-art, open-source systems, then ana-
lyzed in consultation with those systems’
creators. We conclude that the differ-
ences between these technologies, both
in task performance, and in how they
get there, is not significant. This sug-
gests that the semantic parsing commu-
nity should target answering more com-
positional open-domain questions that are
beyond the reach of more direct informa-
tion extraction methods.

1 Introduction

Question Answering (QA) from structured data,
such as DBPedia (Auer et al., 2007), Freebase
(Bollacker et al., 2008) and Yago2 (Hoffart et
al., 2011), has drawn significant interest from
both knowledge base (KB) and semantic pars-
ing (SP) researchers. The majority of such work
treats the KB as a database, to which standard
database queries (SPARQL, MySQL, etc.) are is-
sued to retrieve answers. Language understand-
ing is modeled as the task of converting natu-
ral language questions into queries through inter-
mediate logical forms, with the popular two ap-
proaches including: CCG parsing (Zettlemoyer
and Collins, 2005; Zettlemoyer and Collins, 2007;
Zettlemoyer and Collins, 2009; Kwiatkowski et
al., 2010; Kwiatkowski et al., 2011; Krishna-
murthy and Mitchell, 2012; Kwiatkowski et al.,
2013; Cai and Yates, 2013a), and dependency-
based compositional semantics (Liang et al., 2011;
Berant et al., 2013; Berant and Liang, 2014).

We characterize semantic parsing as the task
of deriving a representation of meaning from lan-
guage, sufficient for a given task. Traditional
information extraction (IE) from text may be
coarsely characterized as representing a certain
level of semantic parsing, where the goal is to
derive enough meaning in order to populate a
database with factoids of a form matching a given
schema.1 Given the ease with which reasonably
accurate, deep syntactic structure can be automat-
ically derived over (English) text, it is not surpris-
ing that IE researchers would start including such
“features” in their models.

Our question is then: what is the difference be-
tween an IE system with access to syntax, as com-
pared to a semantic parser, when both are targeting
a factoid-extraction style task? While our conclu-
sions should hold generally for similar KBs, we
will focus on Freebase, such as explored by Kr-
ishnamurthy and Mitchell (2012), and then others
such as Cai and Yates (2013a) and Berant et al.
(2013). We compare two open-source, state-of-
the-art systems on the task of Freebase QA: the
semantic parsing system SEMPRE (Berant et al.,
2013), and the IE system jacana-freebase (Yao
and Van Durme, 2014).

We find that these two systems are on par with
each other, with no significant differences in terms
of accuracy between them. A major distinction be-
tween the work of Berant et al. (2013) and Yao
and Van Durme (2014) is the ability of the for-
mer to represent, and compose, aggregation oper-
ators (such as argmax, or count), as well as in-
tegrate disparate pieces of information. This rep-
resentational capability was important in previous,
closed-domain tasks such as GeoQuery. The move
to Freebase by the SP community was meant to

1So-called Open Information Extraction (OIE) is simply
a further blurring of the distinction between IE and SP, where
the schema is allowed to grow with the number of verbs, and
other predicative elements of the language.
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provide richer, open-domain challenges. While
the vocabulary increased, our analysis suggests
that compositionality and complexity decreased.
We therefore conclude that the semantic parsing
community should target more challenging open-
domain datasets, ones that “standard IE” methods
are less capable of attacking.

2 IE and SP Systems

jacana-freebase2 (Yao and Van Durme, 2014)
treats QA from a KB as a binary classification
problem. Freebase is a gigantic graph with mil-
lions of nodes (topics) and billions of edges (re-
lations). For each question, jacana-freebase
first selects a “view” of Freebase concerning only
involved topics and their close neighbors (this
“view” is called a topic graph). For instance,
for the question “who is the brother of justin
bieber?”, the topic graph of Justin Bieber, con-
taining all related nodes to the topic (think of the
“Justin Bieber” page displayed by the browser), is
selected and retrieved by the Freebase Topic API.
Usually such a topic graph contains hundreds to
thousands of nodes in close relation to the central
topic. Then each of the node is judged as answer
or not by a logistic regression learner.

Features for the logistic regression learner are
first extracted from both the question and the
topic graph. An analysis of the dependency
parse of the question characterizes the question
word, topic, verb, and named entities of the
main subject as the question features, such as
qword=who. Features on each node include the
types of relations and properties the node pos-
sesses, such as type=person. Finally features
from both the question and each node are com-
bined as the final features used by the learner, such
as qword=who|type=person. In this way the as-
sociation between the question and answer type
is enforced. Thus during decoding, for instance,
if there is a who question, the nodes with a per-
son property would be ranked higher as the an-
swer candidate.

SEMPRE3 is an open-source system for training
semantic parsers, that has been utilized to train a
semantic parser against Freebase by Berant et al.
(2013). SEMPRE maps NL utterances to logical
forms by performing bottom-up parsing. First, a

2https://code.google.com/p/jacana/
3http://www-nlp.stanford.edu/software/

sempre/

lexicon is used to map NL phrases to KB predi-
cates, and then predicates are combined to form a
full logical form by a context-free grammar. Since
logical forms can be derived in multiple ways from
the grammar, a log-linear model is used to rank
possible derivations. The parameters of the model
are trained from question-answer pairs.

3 Analysis

3.1 Evaluation Metrics
Both Berant et al. (2013) and Yao and
Van Durme (2014) tested their systems on
the WEBQUESTIONS dataset, which contains
3778 training questions and 2032 test questions
collected from the Google Suggest API. Each
question came with a standard answer from
Freebase annotated by Amazon Mechanical Turk.

Berant et al. (2013) reported a score of 31.4%
in terms of accuracy (with partial credit if inexact
match) on the test set and later in Berant and Liang
(2014) revised it to 35.7%. Berant et al. focused
on accuracy – how many questions were correctly
answered by the system. Since their system an-
swered almost all questions, accuracy is roughly
identical to F1. Yao and Van Durme (2014)’s sys-
tem on the other hand only answered 80% of all
test questions. Thus they report a score of 42%
in terms of F1 on this dataset. For the purpose of
comparing among all test questions, we lowered
the logistic regression prediction threshold (usu-
ally 0.5) on jacana-freebase for the other 20%
of questions where jacana-freebase had not pro-
posed an answer to, and selected the best-possible
prediction with the highest prediction score as the
answer. In this way jacana-freebase was able
to answer all questions with a lower accuracy of
35.4%. In the following we present analysis re-
sults based on the test questions where the two
systems had very similar performance (35.7% vs.
35.4%).4 The difference is not significant accord-
ing to the paired permutation test (Smucker et al.,
2007).

3.2 Accuracy vs. Coverage
First, we were interested to see the proportions of
questions SEMPRE and jacana-freebase jointly
and separately answered correctly. The answer to

4In this setting accuracy equals averaged macro F1: first
the F1 value on each question were computed, then averaged
among all questions, or put it in other words: “accuracy with
partial credit”. In this section our usage of the terms “accu-
racy” and “F1” can be exchanged.
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jacana (F1 = 1) jacana (F1 ≥ 0.5)

SE
M

P
R

E

√ × √ ×√
153 (0.08) 383 (0.19) 429 (0.21) 321 (0.16)

× 136 (0.07) 1360 (0.67) 366 (0.18) 916 (0.45)

Table 1: The absolute and proportion of ques-
tions SEMPRE and jacana-freebase answered
correctly (

√
) and incorrectly (×) jointly and sep-

arately, running a threshold F1 of 1 and 0.5.

many questions in the dataset is a set of answers,
for example what to see near sedona arizona?.
Since turkers did not exhaustively pick out all pos-
sible answers, evaluation is performed by comput-
ing the F1 between the set of answers given by
the system and the answers provided by turkers.
With a strict threshold of F1 = 1 and a permis-
sive threshold of F1 ≥ 0.5 to judge the correct-
ness, we list the pair-wise correctness matrix in
Table 1. Not surprisingly, both systems had most
questions wrong given that the averaged F1’s were
only around 35%. With the threshold F1 = 1,
SEMPRE answered more questions exactly cor-
rectly compared to jacana-freebase, while when
F1 ≥ 0.5, it was the other way around. This
shows that SEMPRE is more accurate in certain
questions. The reason behind this is that SEMPRE

always fires queries that return exactly one set of
answers from Freebase, while jacana-freebase
could potentially tag multiple nodes as the answer,
which may lower the accuracy.

We have shown that both systems can be more
accurate in certain questions, but when? Is there
a correlation between the system confidence and
accuracy? Thus we took the logistic decoding
score (between 0 and 1) from jacana-freebase
and the probability from the log-linear model used
by SEMPRE as confidence, and plotted an “accu-
racy vs. coverage” curve, which shows the accu-
racy of a QA engine with respect to its coverage
of all questions. The curve basically answers one
question: at a fixed accuracy, what is the propor-
tion of questions that can be answered? A better
system should be able to answer more questions
correctly with the same accuracy.

The curve was drawn in the following way. For
each question, we select the best answer candidate
with the highest confidence score. Then for the
whole test set, we have a list of (question, highest
ranked answer, confidence score) tuples. Running
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Figure 1: Precision with respect to proportion of
questions answered

a threshold from 1 to 0, we select those questions
with an answer confidence score above the thresh-
old and compute accuracy at this point. The X-
axis indicates the percentage of questions above
the threshold and the Y-axis the accuracy, shown
in Figure 1.

The two curves generally follow a similar trend,
but while jacana-freebase has higher accuracy
when coverage is low, SEMPRE obtains slightly
better accuracy when more questions are an-
swered.

3.3 Accuracy by Question Length and Type

Do accuracies of the two systems differ with re-
spect to the complexity of questions? Since there
is no clear way to measure question complexity,
we use question length as a surrogate and report
accuracies by question length in Figure 2. Most of
the questions were 5 to 8 words long and there was
no substantial difference in terms of accuracies.
The major difference lies in questions of length 3,
12 and 13. However, the number of such ques-
tions was not high enough to show any statistical
significance.

Figure 3 further shows the accuracies with re-
spect to the question types (as reflected by the
WH-word). Again, there is no significant differ-
ence between the two systems.

3.4 Learned Features

What did the systems learn during training? We
compare them by presenting the top features by
weight, as listed in Table 2. Clearly, the type of
knowledge learned by the systems in these fea-
tures is similar: both systems learn to associate
certain phrases with predicates from the KB.
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Figure 2: Accuracy (Y-axis) by question length.
The X-axis specifies the question length in words
and the total number of questions in parenthesis.
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Figure 3: Accuracy by question type (and the
number of questions).

We note, however, that SEMPRE also obtains in-
formation from the fully constructed logical form.
For instance, SEMPRE learns that logical forms
that return an empty set when executed against the
KB are usually incorrect (the weight for this fea-
ture is -8.88). In this respect the SP approach “un-
derstands” more than the IE approach.

We did not further compare on other datasets
such as GeoQuery (Tang and Mooney, 2001) and
FREE917 (Cai and Yates, 2013b). The first one
involves geographic inference and multiple con-
traints in queries, directly fitting the compositional
nature of semantic parsing. The second one was
manually generated by looking at Freebase top-
ics. Both datasets were less realistic than the
WEBQUESTIONS dataset. Both datasets were also
less challenging (accuracy/F1 were between 80%
and 90%) compared to WEBQUESTIONS (around
40%).

4 Discussion and Conclusion

Our analysis of two QA approaches, semantic
parsing and information extraction, has shown no
significant difference between them. Note the

feature weight
qfocus=religion|type=Religion 8.60
qfocus=money|type=Currency 5.56
qverb=die|type=CauseOfDeath 5.35

qword=when|type=datetime 5.11
qverb=border|rel=location.adjoins 4.56

(a) jacana-freebase

feature weight
die from=CauseOfDeath 10.23

die of=CauseOfDeath 7.55
accept=Currency 7.30

bear=PlaceOfBirth 7.11
in switzerland=Switzerland 6.86

(b) SEMPRE

Table 2: Learned top features and their weights for
jacana-freebase and SEMPRE.

similarity between features used in both systems
shown in Table 2: the systems learned the same
”knowledge” from data, with the distinction that
the IE approach acquired this through a direct as-
sociation between dependency parses and answer
properties, while the SP approach acquired this
through optimizing on intermediate logic forms.

With a direct information extraction technol-
ogy easily getting on par with the more sophis-
ticated semantic parsing method, it suggests that
SP-based approaches for QA with Freebase has
not yet shown its power from a “deeper” under-
standing of the questions, among questions of var-
ious lengths. We suggest that more compositional
open-domain datasets should be created, and that
SP researchers should focus on utterances in exist-
ing datasets that are beyond the reach of direct IE
methods.
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