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Abstract

This work introduces new methods for de-
tecting non-scorable tests, i.e., tests that
cannot be accurately scored automatically,
in educational applications of spoken lan-
guage proficiency assessment. Those in-
clude cases of unreliable automatic speech
recognition (ASR), often because of noisy,
off-topic, foreign or unintelligible speech.
We examine features that estimate signal-
derived syllable information and compare
it with ASR results in order to detect
responses with problematic recognition.
Further, we explore the usefulness of lan-
guage model based features, both for lan-
guage models that are highly constrained
to the spoken task, and for task inde-
pendent phoneme language models. We
validate our methods on a challenging
dataset of young English language learn-
ers (ELLs) interacting with an automatic
spoken assessment system. Our proposed
methods achieve comparable performance
compared to existing non-scorable detec-
tion approaches, and lead to a 21% rela-
tive performance increase when combined
with existing approaches.

1 Introduction

Automatic language assessment systems are be-
coming a valuable tool in education, and provide
efficient and consistent student assessment that
can complement teacher assessment. Recently,
there has been a great increase of English Lan-
guage Learners (ELLs) in US education (Pear-
son, 2006). ELLs are students coming from non-
English speaking backgrounds, and often require
additional teacher attention. Thus, assessing ELL
student language proficiency is a key issue.

Pearson has developed an automatic spoken as-
sessment system for K-12 students and collected

a large dataset of ELL students interacting with
the system. This is a challenging dataset, con-
taining accented speech and speech from young
students. Thus, for a small percentage of tests, it
is technically challenging to compute an accurate
automatic score, often because of background/line
noise, off-topic or non-English responses or un-
intelligible speech. Such tests as referred to as
non-scorable. Here, our goal is to propose new
methods for better classifying non-scorable tests
and describe a system for non-scorable detection.

We propose two new sets of features: sylla-
ble based and language model (LM) based. The
intuition is to contrast information from differ-
ent sources when processing a test, in order to
detect inconsistencies in automatic speech recog-
nition (ASR), that often appear in non-scorable
tests. Syllable features measure similarity be-
tween different estimates of syllable locations, one
extracted from ASR and the second from the raw
signal. LM features measure similarity between
two ASR results, one using a standard item spe-
cific word LM, and the second using a item inde-
pendent phoneme LM. Finally, an additional set
of ASR confidence scores and log-likelihoods is
computed using the proposed phoneme LM.

Compared to existing work, our new methods
achieve comparable performance, although they
approach the problem from a different perspective.
Furthermore, our proposed features carry comple-
mentary information to existing ones, and lead to
a 21% relative performance increase when com-
bined with existing work.

2 Related Work

A review of spoken language technologies for ed-
ucation can be found in Eskanazi (2009). There
is a considerable amount of previous work on
automatic speech assessment. Pearson’s auto-
mated speech scoring technologies that measure
the candidates’ speaking skill (pronunciation, flu-
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ency, content) have been used in the Versant series
tests: English, Aviation English, Junior English,
Spanish, Arabic, French, Dutch, Chinese (Bern-
stein et al., 2000; Bernstein and Cheng, 2007;
Cheng et al., 2009; Bernstein et al., 2010; Xu et
al., 2012), and Pearson Test of English Academic
(Pearson, 2011). A non-scorable detection com-
ponent (Cheng and Shen, 2011) is usually required
for such systems. Educational Testing Service de-
scribed a three-stage system on spoken language
proficiency scoring, that rates open-ended speech
and includes a non-scorable detection component
(Higgins et al., 2011).

The system described here evaluates spoken En-
glish skills of ELL students in manner and con-
tent. Past work on children’s automatic assess-
ment of oral reading fluency includes systems that
score performance at the passage-level (Cheng and
Shen, 2010; Downey et al., 2011) or word-level
(Tepperman et al., 2007).

Regarding detecting problematic responses in
speech assessment applications, related work in-
cludes off-topic and non-scorable detection. Non-
scorable detection is a more general problem
which includes not only off-topic responses, but
also noisy, poor quality, foreign or unintelligible
responses, etc. Higgins et al. (2011) describe a
system that uses linear regression and four infor-
mative features (number of distinct words, average
ASR confidence, average and standard deviation
of speech energy) for filtering out non-scorable re-
sponses. Yoon et al. (2011) use a set of 42 signal-
derived and ASR features along with a decision
tree classifier for non-scorable response detection.
Many of their features are also extracted here for
comparison purposes (see Section 7).

Chen and Mostow (2011) focus on off-topic
detection for a reading tutor application. They
use signal features (energy, spectrum, cepstrum
and voice quality features) and ASR features (per-
centage of off-topic words) with a Support Vector
Machine (SVM) classifier. In our previous work
(Cheng and Shen, 2011), we described an off-topic
detection system, where we computed three vari-
ations for ASR confidence scores, along with fea-
tures derived from acoustic likelihood, language
model likelihood, and garbage modeling. Linear
regression was used for classification.

Here, we focus on non-scorable test detection,
using aggregate information from multiple test re-
sponses. We propose new similarity features that

are derived from syllable location estimation and
the use of a item independent phoneme LM.

3 The ELL student dataset

3.1 The asessment system

Pearson has developed an English proficiency as-
sessment test, which has been administered in a
large number of K-12 ELL students in a U.S. state.
The speaking component of the test is delivered
via speakerphone, and the student performance is
automatically scored. Each tests consists of a se-
ries of spoken tasks which are developed by pro-
fessional educators to elicit various displays of
speaking ability. There are repeat tasks, where
students repeat a short sentence, and open ended
tasks, where students are required to answer ques-
tions about an image or a topic, give instructions,
ask a question about an image, etc. Each test
contains multiple test prompts (also referred to as
items), some of which may belong to the same
task. For example, for the ‘question about image’
task, there may be items refering to different im-
ages. Each test contains student responses to the
items. Responses which are typically two or three
sentences long.

Figure 1 summarizes the components of Pear-
son’s automatic proficiency assessment system.
Assessment is done through combination of ASR,
speech and text processing, and machine learn-
ing to capture the linguistic content, pronuncia-
tion and fluency of the student’s responses. In this
work, we focus on the lower block of Figure 1 that
illustrates the non-scorable detection component,
whose purpose is to detect the tests that cannot
be reliably scored. It exploits signal related and
ASR information to extract features that are later
used by a binary classifier to decide whether a test
is scorable or not. Our goal is to filter out non-
scorable tests, to be graded by humans. The pro-
ficiency assessment system (upper part of Figure
1) is described elsewhere (Cheng and Shen, 2010;
Downey et al., 2011). The word error rate (WER)
over the test set using the final acoustic models is
around 35%.

3.2 The non-scorable tests

This research focuses on data obtained from four
stages; elementary, primary, middle school and
high school. Those consist of 6000 spoken tests
(1500 per stage), of which 4800 were used for
training (1200 per stage) and the remaining 1200
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Figure 1: Outline of the assessment system. The
lower block is the non-scorable test detection
module, that is the focus of this work.

were used for testing. Professional human graders
were recruited to provide a grade for each test
response, following pre-defined rubrics per item.
The grades per test are then summed up to com-
pute an overall human grade in the range 0-14.
Each test was double graded and the final human
grade was computed by averaging. Our automatic
scoring system was also used to estimate an over-
all machine grade in the range 0-14 for each test,
after considering all student responses.

We define a test as non-scorable when the over-
all machine and human grades differ by more than
3 points. For our dataset of 6000 tests, only 308
(or approx. 5.1%) are non-scorable, according to
this definition. Inspecting a subset of those tests,
revealed various reasons that may cause a test to
be non-scorable. Those include poor audio qual-
ity (recording or background noise, volume too
loud or too soft), excessive mouth noises and vo-
calizations, foreign language, off-topic responses
and unintelligible speech (extremely disfluent and
mispronounced). As expected, the above issues
are more common among younger test takers. Al-
though the cases above can be very different, a
commonality is that their ASR results are unreli-
able, therefore making subsequent automatic scor-
ing inaccurate. In the following sections, we pro-
pose new methods for detecting problematic ASR
outputs and filtering out non-scorable tests.

4 Syllable based features

The intuition behind the syllable based features
is to compare information coming from the ASR
component with information that is derived di-
rectly from the speech signal. If these two sources
are inconsistent, this may indicate problems in the
recognition output, which often results in non-
scorable tests. Here, we focus on syllable loca-
tions as the type of information to compare. Sylla-
ble locations can be approximated as the vowel lo-

Figure 2: Two examples of mapping between
ASR-derived and signal-derived syllable loca-
tions.

cations of the speech recognition output. Alterna-
tively, they can be approximated using the speech
pitch and intensity signals. By examining inten-
sity, we may find intensity peaks that are preceded
by intensity dips, and by examining pitch, we may
select voiced intensity peaks as estimates of sylla-
ble locations. This method for identifying sylla-
bles was described by Jong and Wempe (2009),
and the number of syllables has been used as a
feature for non-scorable detection in Yoon et al.
(2011). In this work, we propose to use the sylla-
ble information in order to compute features that
measure similarities between signal-derived and
ASR-derived syllable locations.

Assume that we have a sequence of n ASR-
derived syllable locations: X = {x1, x2, . . . , xn}
and a sequence of m signal-derived locations:
Y = {y1, y2, . . . , ym}. The first step in com-
puting similarity features is finding a mapping be-
tween the two sequences. Specifically, we want
to find an appropriate mapping that pairs points
(xi, yj), xi ∈ X, yj ∈ Y such that the smallest
possible distances d(xi, yj) are preferred. Poten-
tially inconsistent points can be discarded. Two
examples are presented in Figure 2. In the up-
per example n > m, therefore some syllable lo-
cations of the longer sequence will be discarded
(here location x3). In the lower example, although
n = m, the mapping that produces location pairs
with the smallest distances is (x1, y2) and (x2, y3),
while locations y1, x3 will be discarded. A map-
ping (x3, y1) would be invalid as it violates time
constraints, given the existing mappings. We use a
greedy algorithm for finding the mapping, which
iteratively searches all available valid paired loca-
tions and finds the pair (xi, yj) with the smallest
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distance. A mapping (xi, yj) is valid if no time
constraints are violated, e.g., there is no previously
selected mapping (xk, yl), where k < i, l > j or
k > i, l < j.

The algorithm is described in Algorithm 1. Our
implementation is recursive: after finding the loca-
tions that define the best available mapping at each
step, the algorithm is recursively called to search
for mappings between points that are both either at
the right subsequences, or at the left subsequences,
with respect to the recent mapping. The right sub-
sequences contain points on the right of the se-
lected mapping (similarly for left subsequences).
That way we avoid searching for mappings that
would violate the time constraints.

Data: Syllable locations X = {x1, x2, . . . , xn} and
Y = {y1, y2, . . . , ym}

Result: Mapping between X and Y. Some locations in X or Y
may be discarded

Compute pairwise distances: d(xi, yj), xi ∈ X, yj ∈ Y ;
Set of pairs: E = mapping(1, n, 1, m);

function mapping(i, j, k, l) returns set of pairs ;
if i > j or k > l then

return empty set
end
Find min(d(xu, yv)), u ∈ [i, j], v ∈ [k, l];
Enow = (u, v);
//check left subsequences
Eleft = mapping(i, u− 1, k, v − 1);
//check right subsequences
Eright = mapping(u + 1, j, v + 1, l);
return union(Eleft, Enow, Eright);

Algorithm 1: Compute mapping between ASR-
based and signal-based syllable locations

Based on the mapping of Algorithm 1, we es-
timate a set similarity features including number
of pairs found, number of syllables that were not
paired, the absolute length difference between the
two sequences, as well as normalized versions of
these features (we normalize the features by divid-
ing with the maximum sequence length). For ex-
ample, in the lower part of Figure 2, there are two
pairs and the longest sequence has length three,
so the normalized number of pairs found is 2/3.
Other features include average, min, max and stan-
dard deviation of the distances of the pairs found,
as well as the lengths of the two sequences. These
features are a set of descriptions of the quality of
the mapping or, in other words, of the similarity
between the two syllable sequences.

Algorithm 1 follows a greedy approach, how-
ever, one could derive a similar mapping using dy-
namic programming (DP) to minimize the average
distance over all selected pairs. In practice, we do

(a) Number of syllable pairs found.

(b) Number of pairs over length of largest sequence.

Figure 3: Visualization of feature values across
tasks during a test, for sampled tests. Scorable
tests are in black, non-scorable in dashed red lines.
For tasks that contain multiple responses, we aver-
age the feature values of the responses of a task.

not expect the choice of greedy or DP approach
to greatly affect the final computed similarity fea-
tures, and we chose the greedy approach for sim-
plicity (although DP implementations could be ex-
plored in the future).

To visualize the feature information, we plot the
feature values across tasks of a test, for randomly
sampled tests. For tasks that contain multiple re-
sponses (multiple items), we average the feature
values of the responses of a task. Figure 3(a) visu-
alizes the number of pairs found. Each test is rep-
resented by a set of feature values (one per task)
connected by lines between tasks. Values of some
tasks may be missing if they are undefined, e.g.,
the student did not reply. Scorable tests are repre-
sented in black, and non-scorable tests in dashed
red lines. We notice that the number of pairs found
for non-scorable tests is consistently low through-
out the tasks of the test. This agrees with our
intuition that for non-scorable tests there will be
less similarity between the ASR-based and signal-
based syllable locations, thus there will be fewer
pairs between these two location sequences, com-
pared to scorable tests. Similarly, Figure 3(b) vi-
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sualizes the normalized pairs found, and again this
percentage is lower for non-scorable tests, indicat-
ing that fewer pairs were found for those tests.

In our implementation, we computed the ASR-
based syllable sequences by performing phoneme-
level forced alignment of the ASR, and approxi-
mating the syllable location as the center of each
vowel segment of the force aligned result. We
computed the signal-based syllable sequence by
augmenting the open source Praat script developed
by Jong and Wempe (2009) to output syllable lo-
cations. The syllable locations are approximate:
computing the syllable detection accuracy would
require human annotation of syllables in our cor-
pus, which is out of the scope of this work. Our
focus is to estimate syllables well enough, so as
to compute useful features. Based on Figures 3(a)
and (b) and the results of Section 9, our syllable
detection works sufficiently well for our purpose.

5 Language model based features

Language models (LMs) are used to model word
transition probabilities in ASR systems, and are
learnt using large text corpora. For cases where
the input speech belongs to a specific topic, it is
common to use constrained LMs, e.g., learn the
word transitions from corpora related to the topic
in question. Here we explore the idea of using dif-
ferent LMs for our ASR system, either highly con-
strained or unconstrained ones, and comparing the
corresponding recognition results. If the ASR re-
sults of the two LMs are very different, then it is
likely that the ASR result is problematic, which
may be indicative of a non-scorable test. To de-
tect those cases, we introduce a set of features that
measure the similarity between ASR results ob-
tained using different language models.

In our system, each item requires the user to talk
about a specific known topic. The default LM used
by our ASR component is item dependent and is
constrained on the topic of the item. In general,
this is beneficial to our system as it allows the ASR
to focus on words that have a high enough likeli-
hood of appearing given the item topic. However,
for some non-scorable tests, we noticed that this
approach may result in misrecognizing phrases
that are off-topic or non-English as valid on-topic
phrases. Therefore, we introduce an unconstrained
LM to detect cases where the constrained LM
causes our system to misrecognize topic specific
words that were not actually spoken. We create the

(a) Edit distance over longest sequence length.

(b) Length difference over longest sequence length.

Figure 4: Visualization of feature values across
tasks during a test, for sampled tests. Scorable
tests are in black, non-scorable in dashed red lines.

unconstrained LM independent of the vocabulary
used, by training a phoneme bigram LM that mod-
els phoneme transition probabilities. Hence, our
LM can handle out of vocabulary or non-English
words that often appear in non-scorable tests.

We use item specific training data to build a
standard bigram word LM for each item. For
the unconstrained LM, we perform phoneme-level
forced alignment of all training data, and build
a item independent bigram phoneme LM. We
perform recognition using both LMs and com-
pare the resulting phoneme-level recognition re-
sults. Comparison is performed by computing
the edit distance between the two phoneme se-
quences, obtained from the two LMs. Edit dis-
tance is a common metric for measuring similar-
ity between sequences and estimates the minimum
number of insertions, deletions or substitutions re-
quired to change one sequence to the other. We
compute a number of similarity features includ-
ing edit distance, length difference between the se-
quences, number of insertions, deletions and sub-
stitutions, as well as normalized versions of those
features (by dividing with the maximum sequence
length). We also include the two phoneme se-
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quence lengths as features.
Similarly to Section 4, we visualize feature in-

formation by plotting feature values across tasks,
for randomly sampled tests. The resulting plots
for edit distance and length difference between se-
quences, both normalized, are presented in Figures
4 (a) and (b) respectively. Scorable tests are in
black and non-scorable in red dashed lines. Intu-
itively, the more dissimilar the sequences from the
two LMs are, the larger the features values will be
for these two features. Looking at the plots, we
notice that, as expected, non-scorable tests tend
to have larger feature values compared to scorable
ones. This indicates that the proposed phoneme
LM can help detect cases of non-scorable tests.

6 Confidence features

The ASR component of the Pearson assessment
system assigns confidence scores to the recog-
nized words. Three variants of confidence scores
are computed: mconf (based on normalized acous-
tic scores), aconf (based on force alignment and
phoneme recognition) and lconf (lattice-based).
They are described in our previous work (Cheng
and Shen, 2011), where they were used for off-
topic detection. Here, we use them for non-
scorable detection, and compute them separately
using the ASR result obtained from either the
item specific word LM or the item independent
phoneme LM. For each confidence score, our fea-
ture set includes the average score value over
words of a response, and the maximum, mini-
mum and standard deviation. We also compute the
word-level recognition log-likelihood using each
of the two LMs, and include as features the aver-
age, minimum, maximum and standard deviation
of these log-likelihoods over words of a response.

Although the confidence scores are described in
Cheng and Shen (2011), here we compute them
using the proposed phoneme LM (in addition to
the standard word LM), thus they are significantly
different from prior work. Indeed, scores com-
puted by the proposed phoneme LM prove to be
highly informative (see Section 9, Table 3).

7 Signal derived and ASR features

A variety of signal-derived and ASR-based fea-
tures have been used in the literature for non-
scorable detection (Cheng and Shen, 2011; Yoon
et al., 2011; Chen and Mostow, 2011), as well as
related work on pronunciation and fluency assess-

ment (Bernstein et al., 2010; Higgins et al., 2011).
In this study, we extract and include a set of com-
mon features.

Signal-derived features typically describe prop-
erties of the pitch and energy of the speech sig-
nal. Our feature set includes maximum and mini-
mum energy, number of nonzero pitch frames and
average pitch. We also extract features that esti-
mate noise level, specifically Signal to Noise Ra-
tio (SNR). For SNR estimation we used the NIST
Speech Quality Assurance package (NIST, 2009)

Furthermore, we use features extracted from the
ASR result, including utterance duration, number
of words spoken, number of interword pauses, av-
erage interword pause duration, average pause du-
ration before the first spoken word (response la-
tency), and number of hesitations. Pauses, hesi-
tations and response latency have been found in-
formative of speaking fluency (Bernstein et al.,
2010), and could be indicative of problematic,
non-scorable tests. We also compute two varia-
tions of speech rate: words over total response
duration and words over duration of speech (ex-
cluding pauses). Other ASR features we use in-
clude recognition log-likelihood, average LM like-
lihood, number of phonemes pruned during recog-
nition, and average word lattice confidence. We
include some additional confidence-related fea-
tures, like percentage of low confidence words or
phonemes in the response (low confidence is de-
fined based on an experimental threshold).

We compute ASR features that are specific to
the task: either repeat or non-repeat. For the re-
peat tasks, where the student is asked to repeat a
prompt sentence, we compute the number of inser-
tions, deletions and substitutions of the recognized
response compared to the prompt, as well as the
number and percentage of the recognized prompt
words. For the open question (non-repeat) tasks,
where the student gives an open ended response
on a topic, we estimate the number of key words
recognized in the response, from a set of prede-
fined, topic key words.

Finally, we also include some features that are
not used in previous work, and were devised to
enhance earlier versions of our non-scorable de-
tection system. Specifically, we compute the num-
ber of clipped energy frames, where clipping hap-
pens when energy exceeds a max value (often be-
cause the student is speaking too close to the mi-
crophone). Also, we include an indicator feature
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that indicates when the number of non zero pitch
frames exceeds a certain threshold but the ASR
recognizes only silence. This is a rough way to
detect inconsistencies between the ASR and the
pitch signal, where pitch indicates the presence
of voiced speech, but the ASR recognizes silence.
Although these features are new, for simplicity, we
merge them in our baseline feature set.

Overall, we have extracted a diverse and pow-
erful set of representative features, which will be
referred as ‘base’ feature set, and is summarized
in Table 1.

Table 1: Summary of features included in the
‘Base’ feature set

description

signal max and min energy, nonzero pitch frames, avg. pitch, num-
ber of clipped frames, SNR

ASR
number of words spoken, pauses and hesitations, utterance
duration, speech rate (2 variations), avg. interword pause du-
ration, leading pause duration.
ASR log-likelihood, average LM likelihood, number of
phonemes pruned, average word lattice confidence, percent-
age of low confidence words and phonemes
Repeat types: number of insertions, deletions, substitutions,
number of recognized prompt words, percentage of recog-
nized prompt words.
Non repeat types: number of recognized key words

indicator indicator when number of zero pitch frames exceeds a thresh-
old while ASR recognizes silence

8 Random forest classification

We use a binary random forest classifier to decide
if a test is scorable or not. A random forest is
an ensemble of decision trees where each tree de-
cides using a subset of the features and the final
decision is computed by combining the tree deci-
sions (Breiman, 2001). Random forests can take
advantage of feature combinations to construct a
complex, non-linear decision region in the feature
space. In addition, they can be trained fast, have
good generalization properties and do not require
much parameter tuning, which makes them popu-
lar classifiers in the machine learning literature. In
our work, a variety of diverse reasons may cause
a test to be non-scorable, including background or
line/static noise, off-topic responses, non-English
or unintelligible speech. Random forests combine
a number of decision trees that could correspond
to the different sub-cases of our problem, there-
fore they seem well suited for non-scorable test
detection. According to our experiments, random
forests outperform decision trees and maximum
entropy classifiers. Therefore, all results of Sec-
tion 9 are based on random forest classification.

Up to now, we have described feature extraction

for each test response. The non-scorable detection
system needs to aggregate multiple response in-
formation to make an overall decision at the test
level. We can combine response-level features in
a straightforward manner by taking their average
over a test. However, responses may belong to
different types of tasks, either repeat or non repeat
ones, and some of the features are task specific.
Also, repeat task responses often resemble recited
speech, while non-repeat ones tend to be more
spontaneous. To preserve this information, we
separately average features that belong to repeat
responses and non-repeat responses of a test (two
averaged features are extracted per test and per
feature). There are cases where a feature cannot be
extracted for a response, because it is undefined,
i.e., for a response that is recognized as silence
the average interword pause duration is undefined.
Therefore, we also include the percentage of re-
peat or non-repeat responses used to compute the
average, i.e., two percentage features (for repeat
and non-repeat cases) are extracted per test and per
response. More statistics could be extracted when
combining response features, e.g., variance, max
and min values, and others. However, our pre-
liminary experiments indicated that including just
averages and corresponding percentages is suffi-
cient, and adding more statistics greatly increases
the feature vector size without significant perfor-
mance gains. Therefore, our final feature set in-
cludes only averages and percentages.

9 Experiments and results

9.1 Experimental setup

Our experiments are organized in 5-fold cross val-
idation: we randomly split the 6000 tests into five
sets, and each time we use three sets for training
the random forest classifier, one set as a develop-
ment for optimizing the number of trees, and one
set for testing non-scorable classification perfor-
mance. Performance is computed after merging
all test set results. Because the percentage of non-
scorable tests in our dataset is small (approx. 5%)
and random forests are trained with a degree of
randomness, different runs of an experiment can
cause small variations in performance. To mini-
mize this effect, we repeat each 5-fold cross vali-
dation experiment 10 times, and report the average
and standard deviation over the 10 runs.

Performance is estimated using the ROC curve
of false acceptance rate (FAR) versus false rejec-
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tion rate (FRR) for the binary (scorable vs non-
scorable) classification task. Our goal is to mini-
mize the area under the curve (AUC), e.g., achieve
low values for both FAR and FRR. Our exper-
iments were performed using the Python Scikit-
Learn toolbox (Scikit-Learn, 2014).

9.2 Results

Table 2 presents the average AUC performance
of non-scorable test detection over 10 experi-
ment runs, using different feature sets and ran-
dom forests. ‘Base’ denotes the set of standard
ASR-based and signal-based features described in
Section 7. Syllable based and LM based denote
the similarity features introduced in Sections 4
and 5 respectively. Finally, ‘confidence’ denotes
the confidence and log-likelihood features derived
from the standard and the proposed phoneme LM,
as described in Section 6. According to our results,
‘base’ features are the best performing. However,
it is encouraging that our proposed comparison-
based syllable and LM approaches, that approach
the problem from a different perspective and only
use similarity features, still achieve comparable
performance.

Table 2: Average and standard deviation of AUC
over 10 experiment runs for the different feature
sets, and combinations of feature sets.

features AUC (Avg ± Std.dev)

Base 0.102 ± 0.007
Syllable based 0.122 ± 0.011

LM based 0.123 ± 0.008
Confidence 0.106 ± 0.011

Feature Combination
Base+Syllable 0.091 ± 0.007

Base+LM 0.091 ± 0.011
Base+Confidence 0.094 ± 0.011

All 0.097 ± 0.011
Feature Combination (select top 300 features)

Base+Syllable 0.092 ± 0.008
Base+LM 0.088 ± 0.012

Base+Confidence 0.097 ± 0.010
All 0.092 ± 0.008
Classifier Decision Combination

Base+Syllable 0.087 ± 0.008
Base+LM 0.085 ± 0.007

Base+Confidence 0.084 ± 0.007
All 0.081 ± 0.006

Table 2 also presents the AUC performance af-
ter concatenating the feature vectors of different
feature sets, under ‘Feature Combination’. We no-
tice that adding separately each of our proposed
syllable based, LM based and confidence features
to the base features improves performance by de-
creasing AUC. This further indicates that the pro-

Figure 5: Test set ROC curves for different feature
sets, and their combination using decision fusion
(averaging), for one run of the experiment.

posed features carry useful information, which is
complementary to the ‘base’ feature set. Combin-
ing all features together leads to a relatively small
performance increase, possibly because the large
number of features may cause overfitting.

We also perform feature selection by selecting
the top 300 features from each feature set. Fea-
tures are ranked based on their positions in the
trees of the random forest: features closer to the
root of a tree contribute to the decision of a larger
number of input samples, thus, the expected frac-
tion of the samples that each feature contributes
to, can be used as an estimate of feature impor-
tance. We use Scikit-Learn to compute the fea-
ture importance for each feature, and rank features
based on their average importance over the 10 ex-
periment runs. The results, presented in Table 2,
show that feature selection helps for cases of large
feature sets, i.e., when combining all features to-
gether. However, for cases when fewer features
are used, the performance does not change much
compared to no feature selection.

Finally, instead of concatenating features, we
perform decision combination by averaging the
decisions of classifiers trained on different feature
sets. For simplicity, we perform simple averag-
ing (in future when a larger train set will be avail-
able, we can explore learning appropriate classifier
weights, and performing weighted average). From
the results of Table 2, we notice that this approach
is advantageous and leads to a significant perfor-
mance increase, especially when we combine all
four classifiers: one using existing ‘base’ features,
and the rest using our new features. Overall, we

96



Table 3: Top-10 ranked features from each feature
set. ‘Av’ and ‘prc’ denote that the feature is an av-
erage or percentage respectively, while ‘r’ and ‘nr’
denote that the feature is computed over repeat or
non-repeat responses, respectively. For the confi-
dence features, ‘wLM’ denotes the feature is com-
puted using regular bigram word LM and ‘pLM’
denotes proposed bigram phoneme LM.

feature set description

signal and ASR

n hesitations (av, r) indicator pitch asr (av,r)
min energy (av,r) n pitch frames (av, nr)
n pitch frames (av,r) asr loglik (av, nr)
asr loglik (av,r) min energy (av, nr)
avg pitch( av,nr) snr (av, nr)

syllable based

diff lengths norm (av,r) diff lengths norm (av,nr)
min pair distances(av,nr) diff lengths (av,r)
n pairs norm (av,nr) diff lengths(av,nr)
avg pair distances (av,r) min pair distances (av,r)
n pairs norm (av,r) max pair distances (av,nr)

LM based

edit dist norm (av,r) diff lengths norm (av,r)
n insert norm (av,r) edit dist norm (av,nr)
diff lengths norm (av, nr) n insert norm (av,nr)
n substitute norm (av,nr) min length (av,nr)
min length (av,r) n substitute (av, nr)

Confidence

avg aconf pLM (av,nr) min loglik pLM (av,r)
min loglik pLM (av,nr) max lconf pLM (av,r)
min aconf pLM (av,nr) stddev loglik pLM (av,nr)
min loglik wLM (av,r) min aconf pLM (av,r)
std loglik pLM (av,r) avg loglik pLM (av,r)

achieved a decrease in AUC from 0.102 to 0.081,
a 21% relative performance improvement.

Figure 5 presents the ROC curves for one run
of the experiment, for the four feature sets, and
their combination using averaging of the classifier
decisions. Combining all feature sets leads to a
lower AUC (thick black line). We notice improve-
ment especially in reducing false positives, e.g.,
misclassifying scorable test as non-scorable.

In Table 3, we present the top 10 selected fea-
tures from each feature set, based on their aver-
aged feature importance. Overall, we notice that
both repeat and non-repeat features are among the
top ranked, indicating that both types are infor-
mative. Only average features are among the top
ranked, which suggests that averages carry more
information than percentage features. For the syl-
lable and LM features, we can see many intuitive
similarity features being at the top, such as differ-
ence of sequence lengths, edit distance and num-
ber of insertions (LM based feature set), and aver-
age, min and max of the distances of paired sylla-
bles (syllable based feature set). For confidence,
we note that many log-likelihood features are at
the top (here log-likelihood statistics are computed
over words of a response). Also, note that the
great majority of top-ranked confidence features
are computed using our proposed item indepen-
dent phoneme LM, instead of the regular item de-

pendent word LM, indicating the usefulness of this
approach.

10 Conclusion and future work

In this work, we have proposed new methods for
detecting non-scorable tests in spoken language
proficiency assessment applications. Our meth-
ods compare information extracted from differ-
ent sources when processing a test, and compute
similarity features. Inconsistencies suggest prob-
lematic ASR, which is often indicative of non-
scorable tests. We extract two sets of features:
syllable based, which compare syllable location
information, and LM based, which compare ASR
obtained using item specific and item independent
LMs. Our proposed item independent LM is a
bigram phoneme LM, which can handle out-of-
vocabulary or non-English words, that often ap-
pear in non-scorable tests. By visualizing the pro-
posed similarity features, we verify that they can
highlight inconsistencies that are common in non-
scorable tests. We experimentally validate our
methods in a large, challenging dataset of young
ELLs interacting with the Pearson spoken assess-
ment system. Our features carry complementary
information to existing features, and when com-
bined with existing work, they achieve a 21% rel-
ative performance improvement. Our final, non-
scorable detection system combines the decisions
of four random forest classifiers: one using base-
line features, and the rest using proposed features.

We are currently collecting human annotations
for non-scorable tests in our dataset, which contain
additional annotation of the different non-scorable
subcases in these tests, e.g., noise, off-topic, non-
English, unintelligible speech etc. In the future,
we plan to use these annotations to further validate
our methods, as well as perform detailed evalua-
tion of the usefulness of our proposed feature sets
for each of the non-scorable test subcases.
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