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Introduction

The Workshop on Cognitive Aspects of Computational Language Learning (CogACLL) took place on
April 26, 2014 in Gothenburg, Sweden, in conjunction with the 14th Conference of the European Chapter
of the Association for Computational Linguistics. The workshop was endorsed by ACL Special Interest
Group on Natural Language Learning (SIGNLL). This is the fifth edition of related workshops that was
first held at ACL 2007 in Prague, EACL 2009 in Athens, EACL 2012 in Avignon and as a standalone
event in Paris 2013.

The workshop is targeted at anyone interested in the relevance of computational techniques for
understanding first, second and bilingual language acquisition and change or loss in normal and
pathological conditions.

The human ability to acquire and process language has long attracted interest and generated much debate
due to the apparent ease with which such a complex and dynamic system is learnt and used on the face
of ambiguity, noise and uncertainty. This subject raises many questions ranging from the nature vs.
nurture debate of how much needs to be innate and how much needs to be learned for acquisition to be
successful, to the mechanisms involved in this process (general vs specific) and their representations in
the human brain. There are also developmental issues related to the different stages consistently found
during acquisition (e.g. one word vs. two words) and possible organizations of this knowledge. These
have been discussed in the context of first and second language acquisition and bilingualism, with cross
linguistic studies shedding light on the influence of the language and the environment.

The past decades have seen a massive expansion in the application of statistical and machine learning
methods to natural language processing (NLP). This work has yielded impressive results in numerous
speech and language processing tasks, including e.g. speech recognition, morphological analysis,
parsing, lexical acquisition, semantic interpretation, and dialogue management. The good results have
generally been viewed as engineering achievements. Recently researchers have begun to investigate the
relevance of computational learning methods for research on human language acquisition and change.
The use of computational modeling is a relatively recent trend boosted by advances in machine learning
techniques, and the availability of resources like corpora of child and child-directed sentences, and data
from psycholinguistic tasks by normal and pathological groups. Many of the existing computational
models attempt to study language tasks under cognitively plausible criteria (such as memory and
processing limitations that humans face), and to explain the developmental stages observed in the
acquisition and evolution of the language abilities. In doing so, computational modeling provides insight
into the plausible mechanisms involved in human language processes, and inspires the development of
better language models and techniques. These investigations are very important since if computational
techniques can be used to improve our understanding of human language acquisition and change, these
will not only benefit cognitive sciences in general but will reflect back to NLP and place us in a better
position to develop useful language models.

We invited submissions on relevant topics, including:

• Computational learning theory and analysis of language learning and organization

• Computational models of first, second and bilingual language acquisition

• Computational models of language changes in clinical conditions

• Computational models and analysis of factors that influence language acquisition and use in
different age groups and cultures
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• Computational models of various aspects of language and their interaction effect in acquisition,
processing and change

• Computational models of the evolution of language

• Data resources and tools for investigating computational models of human language processes

• Empirical and theoretical comparisons of the learning environment and its impact on language
processes

• Cognitively oriented Bayesian models of language processes

• Computational methods for acquiring various linguistic information (related to e.g. speech,
morphology, lexicon, syntax, semantics, and discourse) and their relevance to research on human
language acquisition

• Investigations and comparisons of supervised, unsupervised and weakly-supervised methods for
learning (e.g. machine learning, statistical, symbolic, biologically-inspired, active learning,
various hybrid models) from a cognitive perspective.

Submissions included works on specific languages like English, Portuguese and German, along with
crosslinguistic studies. Besides paper presentations the technical program included two invited talks by
Philippe Blache, from Aix-Marseille Université and CNRS (France) and Alexander Clark, from King’s
College London (UK).
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Challenging incrementality in human language processing: two
operations for a cognitive architecture

Philippe Blache
Aix-Marseille Université & CNRS

LPL (UMR7309), 13100, Aix-en-Provence, France
blache@blri.fr

The description of language complexity and the
cognitive load related to the different linguistic
phenomena is a key issue for the understanding
of language processing. Many studies have fo-
cused on the identification of specific parameters
that can lead to a simplification or on the con-
trary to a complexification of the processing (e.g.
the different difficulty models proposed in (Gib-
son, 2000), (Warren and Gibson, 2002), (Hawkins,
2001) ). Similarly, different simplification fac-
tors can be identified, such as the notion of activa-
tion, relying on syntactic priming effects making it
possible to predict (or activate) a word (Vasishth,
2003). Several studies have shown that complex-
ity factors are cumulative (Keller, 2005), but can
be offset by simplification (Blache et al., 2006). It
is therefore necessary to adopt a global point of
view of language processing, explaining the inter-
play between positive and negative cumulativity,
in other words compensation effects.

From the computational point of view, some
models can account more or less explicitly for
these phenomena. This is the case of the Surprisal
index (Hale, 2001), offering for each word an as-
sessment of its integration costs into the syntactic
structure. This evaluation is done starting from the
probability of the possible solutions. On their side,
symbolic approaches also provide an estimation
of the activation degree, depending on the num-
ber and weight of syntactic relations to the current
word (Blache et al., 2006); (Blache, 2013).

These approaches are based on the classical idea
that language processing is incremental and oc-
curs word by word. There are however several ex-
perimental evidences showing that a higher level
of processing is used by human subjects. Eye-
tracking data show for example that fixations are
done by chunks, not by words (Rauzy and Blache,
2012). Similarly, EEG experiments have shown
that processing multiword expressions (for exam-
ple idioms) relies on global mechanisms (Vespig-

nani et al., 2010); (Rommers et al., 2013).
Starting from the question of complexity and its

estimation, I will address in this presentation the
problem of language processing and its organiza-
tion. I propose more precisely, using computa-
tional complexity models, to define a cohesion in-
dex between words. Such an index makes it possi-
ble to define chunks (or more generally units) that
are built directly, by aggregation, instead of syn-
tactic analysis. In this hypothesis, parsing consists
in two different processes: aggregation and inte-
gration.
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from Université de Provence and a MSc in Com-
puter Science from Université de la Méditerranée,
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ber of the “Comité National de la Recherche Sci-
entifique” in computer science and he chairs the
TALN conference standing committee.

References
Philippe Blache, Barbara Hemforth, and Stéphane
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Abstract 

The paper presents a system for tran-

scribing and annotating phonological in-

formation in Brazilian Portuguese, in-

cluding syllabification. An application of 

this system for the assessment of lan-

guage understanding and production is 

described, following a child longitudi-

nally, comparing expected production 

with observed production. 

1 Introduction 

We present an application of a phonological-

prosodic algorithm which converts Brazilian Por-

tuguese graphemes to phonological symbols. For 

a better understanding, a brief report about the 

origin of the algorithm, altogether with some 

theoretical comments are presented, before the 

case study of the phonological processes found 

in the speech samples of a child. Sessions were 

recorded, until the complete acquisition of all 

Portuguese phonemes by the child, which oc-

curred in the fifth session.  

In 2008, we created the first version of a pho-

nological-prosodic algorithm for Brazilian Por-

tuguese. Actually, it is the functional algorithm 

of the grapheme to phoneme converter Nhenhém 

(Vasilévski, 2008, 2012a, 2012b). It has all writ-

ten Portuguese spelling rules, and also the entire 

Portuguese prosodic system. When that algo-

rithm was built, we kept in mind its usefulness to 

different fields deeply related to phonology, such 

as speech therapy, allowing the study of children 

phonological disorders, and language acquisition. 

We focus here on its application to language 

acquisition, allowing the study of children pho-

nological acquisition processes. Hence, our ob-

jective is to show the phonological-prosodic al-

gorithm usefulness to language survey, from a 

practical point of view, by showing the process 

involved in the last stages of the acquisition of 

Portuguese phonology.  

For a better understanding of the application 

and of the case study, the paper starts with some 

theory on phonological acquisition, then, some 

aspects of Brazilian Portuguese acquisition are 

presented.  

2 Phonological Development 

Studies of first language acquisition tend to sup-

port the view that the ability for language is in-

nate in healthy human beings, and that its ap-

pearance can be predicted as part of the normal 

development of any child, given the right envi-

ronment (Beaken, 1971).  

The greatest expansion of the phonological 

system is observed from 1 year and six months 

old up to 4 years old, when there is an increase of 

the phonetic inventory of most complex syllable 

structures and, therefore, a period characterized 

by the occurrence of omissions, substitutions, as 

well as other phonological processes (Wertzner, 

2004). 

A phonological process is a mental operation 

that applies in speech to substitute, for a class of 

sounds or sound sequences presenting a specific 

common difficulty to the speech capacity of the 

individual, an alternative class identical but lack-

ing the difficult property (Stampe, 1973). 

It is worth remembering that, at the richest 

stage of normal language development (1 year 

and a half to 4 years old, as said), inappropriate 

sound gestures are expected phonological proc-

esses that relate to children’s adaptations, until 

they automate the adult speech patterns. Thus, 

the phonological processes – that are natural and 

inborn – guide the facilitation of complex vocal 
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gestures and their planning, until children reach 

the adult performance. 

Moreover, the early-acquired competence is 

filtered through an increasing number of phono-

logical transformations to produce, finally, a ma-

ture performance. Although the mature phonemic 

system is acquired at an early stage, articulation 

may not be completely mature until after 7 years. 

Even though most children can be said to have 

mastered the complete set of potential phonemic 

oppositions of adult language by the age of 4 

years – in other words, their phonological com-

petence is established – yet, in adult terms, their 

performance falls short of their competence, in 

that they are unable to produce many of the ges-

tures of mature articulation of the phonemes. 

Development after this stage takes place in the 

maturing of articulation, and in the acquisition of 

the complex transformations which operate on 

the basic acquired competence, to produce forms 

of speech similar to those heard from mature 

speakers (Beaken, 1971). 

2.1 Some Aspects of Brazilian Portuguese 
Phonological Acquisition 

Regarding phonemes, Brazilian Portuguese has 

21 consonants (/p/, /b/, /f/, /v/, /m/, /n/, /t/, /d/, /s/, 

/z/, /l/, /λ/, /r/, /ʀ/, /ʃ/, /ʒ/, /ɲ/, /k/, /g/, and the ar-

chiphonemes |R|, |S|), and 14 vowels (/a/, /e/, /ɛ/, 

/i/, /o/, /ɔ/, /u/, /j/, /w/, /ã/, /ẽ/, /ĩ/, /õ/, /ũ/) (Scliar-

Cabral, 2003a; Câmara Jr., 1986, 1977; Va-

silévski, 2012a).  

Lateral liquid phonemes /l/ and /λ/ and non-

lateral liquid /r/ and /ʀ/ are the latest to be ac-

quired in Brazilian Portuguese. Furthermore, 

such acquisition is marked by intense use of di-

versified phonological processes. What perhaps 

justifies this late acquisition, in Brazilian Portu-

guese as well as in other systems, is that this 

class is very complex, both in articulation and 

phonological aspects (Lamprecht, 2004).  

Within this group of sounds, lateral phonemes 

are acquired before the non-lateral ones. The first 

lateral phoneme to be stabilized by children is /l/, 

which is subdued before the emergence of the 

first non-lateral liquid phoneme /ʀ/. This occurs 

with the phonemes /λ/ – graphically lh – and /r/, 

being the first acquired before the second (Her-

nandorena and Lamprecht, 1997). In Portuguese, 

the phoneme /r/ occurs: 1) forming a syllable 

with an oral or nasal vowel (simple onset); 2) in 

second position of inseparable consonant clus-

ters, preceding oral or nasal vowel (complex on-

set); and 3) in syllable ending (coda, when it is 

the archiphoneme |R|). See Tab.1 for examples. 

In most cases, the acquisition of the phoneme 

/r/ happens initially in the position of simple on-

set (by 4 years old) and then in the position of 

complex onset (by 5 years old), the acquisition of 

the phoneme /r/ in coda position (that is, |R|) oc-

curs by 4 years old (Lamprecht, 2004) either.  

Another linguistic phenomenon to be taken 

into account is diphthongization. It happens 

when one vowel breaks into two segments, 

where the first one matches the original vowel 

and the second (/j/ or /w/) is harmonic with the 

nature of the triggering vowel. In Brazilian Por-

tuguese, one of the conditions when diphthongi-

zation occurs, and that matters here, is thus de-

fined: a stressed vowel, followed by a devoiced 

alveolar fricative [s], in the ending syllable of a 

word, becomes diphthongized by the addition of 

a second segment, an [i] (Cagliari, 2002). Since 

diphthongization is a strengthening process, it 

occurs preferentially with strong vowels, and, in 

Romance languages, /a/ is the strongest vowel, 

and /i/, the weakest (Foley, 1977). The semivow-

els of stressed syllables can be either produced or 

not in speech, both options belonging to Portu-

guese language system (Vasilévski, 2012a). 

From the linguistic point of view, diphthongiza-

tion is strongly related to the geographical dia-

lectal variation (Leiria, 2000).  

3 A Program for Helping Language 

Acquisition Research 

By using Nhenhém phonological-prosodic algo-

rithm, we built Nhenhém Fonoaud – NhFonoaud 

–, an application for assisting speech therapy, 

and so language acquisition. We began covering 

just one phonological process, called “unvoiced-

ness”: a substitution of a voiced sound for an 

unvoiced one (e.g. /b/ → /p/) (Blasi and Va-

silévski, 2011). Soon, we realized that the phono-

logical-prosodic algorithm could cover much 

more. 

 One of the motivations for creating such a 

system is that many Brazilian language acquisi-

tion researchers record their collected data using 

orthographic representation. As a result, those 

transcriptions are idiosyncratic and cannot be 

properly generalized, since they lack patterns. 

Data must be recorded in a phonologic-phonetic 

format, essential for these studies, since they ad-

dress phonological processes.  

According to researchers and speech thera-

pists, there is no similar work in Brazilian Portu-

guese. Probably, there are similar initiatives for 
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other languages, and we expect to make com-

parisons soon.  

3.1 The decoder Nhenhém Phonological-
prosodic Algorithm 

Nhenhém (/ɲẽ.ˈɲẽϳ/) is a computational program 

that decodes Brazilian’s official writing system 

into phonological symbols and marks prosody 

(Vasilévski, 2008, 2012a). In 2010, we aug-

mented its main algorithm, so the system became 

able of providing the phonological syllabic divi-

sion and the spelling syllabic division, with at 

least 99% of accuracy (see Vasilévski, 2012a, 

2012b for more details). Then we developed an 

automatic syllable parsing (Vasilévski, 2010).  

In 2012, we made some adjustments regarding 

morphology, and solved the unpredictable situa-

tions brought, for example, by the prefix “trans-” 

that can be either decoded as /trãz/ or /trãs/, in 

consequence of resyllabification (see Vasilévski, 

2012a). NhFonoaud benefits of all improvements 

obtained by the basic algorithm.  

3.2 Nhenhém Fonoaud 

The application of Nhenhém phonological-

prosodic algorithm to language acquisition and 

speech therapy has been presented (Blasi and 

Vasilévski, 2011, Vasilévski, 2012a, 2012b), but 

this is the first time that a case study is discussed.  

The first major challenge of working with 

phonemic transcription is the consistency of data. 

Different research questions require different 

levels of representation (Albert et al., 2013). In 

this regard, relying on an orthographic represen-

tation of speech, when dealing with language 

acquisition, does not make sense. 

The program supports the analysis of proc-

esses that occur in the child’s phonological sys-

tem, through the automatic phonological tran-

scription simultaneously to samples of the child 

speech recording. Thus, data relies on a phone-

mic representation of speech, automatically done 

by the algorithm, through Nhenhém Fonoaud.  

NhFonoaud is designed for dealing with pho-

nological tests, using words wittingly grouped to 

analyze specific aspects of speech and phenom-

ena involved in its development. One of the tools 

of the program was the tests battery called Re-

ception and Production of Spoken Language As-

sessment (Scliar-Cabral, 2003b). These tests 

were elaborated for assessing overt symptoms of 

spoken language reception and production prob-

lems. The first step is assessing phonetic features 

perception, namely, the ability of distinguishing 

minimal pairs, what means distinguishing Brazil-

ian Portuguese words.  

The battery is composed by 81 pictures that 

represent specific words in Portuguese. The pic-

tures are grouped into cards of six elements each. 

There are 15 cards, and some pictures appear in 

more than one. Each card is assembled to address 

the perception and production of one specific 

phonetic feature: 1) /v/-/f/, /p/-/b/, /t/-/d/; 2) /k/-

/g/, /ʃ/-/ʒ/, /s/-/z/; 3) /m/-/n/, /t/-/d/, /s/-/f/; 4) /b/-

/g/, /f/-/r/, /k/-/p/; 5) /t/-/k/, |R|-/s/, /l/-/λ/; 6) /t/-

/s/, /k/-|R|, /p/-/f/; 7) /d/-/t/, /t/-/r/, /d/-/s/; 8) /m/-

/b/, /n/-/r/, /z/-/n/; 9) /ɲ/-/λ/, /d/-/n/, /n/-/l/; 10) /r/-

/l/ (in three different contexts); 11) /ɛ/-/ɔ/, /i/-/u/, 

/e/-/o/; 12) /i/-/e/, /ĩ/-/ẽ/, /u/-/o/; 13) /e(j)/-/ɛ/, /o/-

/ɔ/, /ɔ/-/o(w)/; 14) /ɔ/-/a/, /m/-/b/ (in two different 

contexts)/; 15) /ẽ/-/e/, /o/-/õ/, /a/-/ã/.  

In the reception battery, the speech therapist, 

behind the child, says the word and the child 

must point to one of the six pictures in each card. 

In the production battery, the speech therapist 

points to one of the six pictures in each card and 

the child must label it. 

While the child labels the picture, the re-

searcher can edit the canonical transcription pro-

vided by the program to match the child’s pro-

duction. For example, writing the lateral pho-

neme, when the child produces it, instead of the 

vibrating one.  

In principle, four situations may happen dur-

ing the assessment (Fig.1): the child does not 

recognize the  picture  (NR); the  child  gives  the  

 

 
 

Figure 1. A register screen of Nhenhém Fonoaud 
Picture: Beauty and the Beast. Disney©.  
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expected response (Correspondeu); the child 

gives an unexpected response (deviation – Des-

vio); the child translates the word into his/her 

sociolinguistic variety (not deviation – Sócio).  

NhFonoaud stores the records and compares 

them with the transcription expected, for generat-

ing reports. Hence, it is possible to build a cor-

pus, to retrieve it, grouping it according to date, 

situation, child’s age, type of card (test); then it 

is possible the conversion into numbers, using 

different formats, comparing the phonological 

transcription and the correspondent audio, and 

the recorded sessions. Therefore, it facilitates 

child’s progress monitoring. 

In spite of working with words, NhFonoaud 

can be adjusted to work with bigger texts, 

formed by many sentences. For the purpose of 

assessing the child phonemic system, using min-

imal pairs and small sentences is enough. 

3.3 Testing Nhenhém Fonoaud  

The data analysis that we now present refers to a 

child in a clear process of language acquisition. 

It is based on oral emissions of a girl that we will 

call Inês. The 15 cards (Scliar-Cabral, 2003b) 

were applied, covering all the Brazilian Portu-

guese phonemes. Five sessions were recorded, 

starting when Inês was 2 years, 11 months, and 8 

days; until she was 3 years, 8 months and 29 

days.  

Inês was born in Curitiba, Brazil, of Brazilian 

parents. She was not considered to have signifi-

cant hearing loss. The child had developed some 

computer skills. Data was collected by her par-

ents, by showing her the cards at the computer, 

during a daily conversation. Inês had already 

contact with the pictures, and had learned some 

names that were not part of her daily life. The 

sessions were recorded by using the audio re-

sources of the same computer, and the records 

were clear enough to be used in this study.  

3.3.1 Testing results 

The results reveal the phonological processes 

used by Inês. Four were observed in her emis-

sions: two of substitution, one of deletion, and 

one of adding. From the reports generated by 

Nhenhém Fonoaud, we created Tab 1. 

So, at the age of 2y11m8d, three phonological 

processes relate to a single phoneme of her 

mother tongue, the non-lateral, vibrating /r/, and 

another one to diphthongization. Thus, Inês is 

only unable to produce the most complex Portu-

guese phoneme, in anyone of the three cases in 

which it occurs. The first session reveals that the 

child is able to produce all the vowels (14) of her 

mother tongue and 20 consonantal phonemes 

among the 21 of Brazilian Portuguese. No 

changes are observed for about 4 months, but 

this is expected, since progress in language is 

Emitted sounds 
Spelling Meaning 

Expected 

sounds 2y11m8d 3y2m23d 3y6m25d 3y7m24d 3y8m29d 

porta door /pˈɔRta/ [pˈɔjta] [pˈɔjta] [pˈɔjta] [pˈɔrta] [pˈɔrta] 

torta pie /tˈɔRta/ [tˈɔjta] [tˈɔjta] [tˈɔjta] [tˈɔjta] [tˈɔrta] 

porco pig /pˈoRku/  [pˈojku] [pˈojku] [pˈojku] [pˈorku] [pˈorku] 

Process: A A A A - 

barata cockroach /barˈata/ [balˈata] [balˈata] [balˈata] [barˈata] [barˈata] 

pera pear /pˈera/ [pˈela] [pˈela] [pˈela] [pˈera] [pˈera] 

mureta a low wall /murˈeta/  [mulˈeta]  [mulˈeta]  [murˈeta]  [murˈeta]  [murˈeta]  

perada pear jelly /perˈada/  [pelˈada] [pelˈada] [perˈada] [perˈada] [perˈada] 

vara fish rod /vˈara/ [vˈala] [vˈala] [vˈala] [vˈara] [vˈara] 

feira street market /fˈera/  [fˈela]  [fˈela]  [fˈera]  [fˈera]  [fˈera]  

fera beast /fˈɛra/ [fˈɛla] [fˈɛla] [fˈɛra] [fˈɛra] [fˈɛra] 

Process: B B B - - 

traça bookworm /trˈasa/  [tˈasa]  [tˈasa]  [tˈlasa]  [tˈrasa]  [tˈrasa]  

trança braid /trˈãsa/  [tˈãsa]  [tˈãsa]  [tˈlãsa]  [tˈrãsa]  [tˈrãsa]  

trens trains /trẽϳS/  [tẽϳs] [tẽϳs] [tlẽϳs] [tlẽϳs] [trẽϳs] 

três three /treS/ [tejs] [tejs] [tlejs] [trejs] [trejs] 

Process: C/D C/D B/D B/D D 
Phonological processes 

A Substitution of the non-lateral, vibrating sound |R| or /r/ for the glide sound /j/ (semivowelization) 

B Substitution of the non-lateral, vibrating sound /r/ for the lateral liquid sound /l/ 

C Reduction of the consonant cluster plosive+non-lateral /tr/ to the single sound /t/ 

D Diphthongization through insertion of a vowel in the last syllable of words ending with vowel+|S|. 
 

Table 1. Phonological processes used by Inês. 
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never regular; it may proceed at a fast rate for 

some periods while at others very little seems to 

be happening (Beaken, 1971). Then, the sound /r/ 

is emerging, only in simple onset, and she pro-

duces the cluster, but says /tl/ instead of /tr/ 

(3y6m25d). One month later (3y7m24d), she 

starts producing /r/ in coda position and the clus-

ter /tr/, with some difficult yet. The sound /r/ in 

simple onset is naturally produced. One more 

month (3y8m29d), and she is able to naturally 

produce /r/ in all the contexts it happens in Por-

tuguese, and keeps diphthongization.  

Regarding diphthongization, it happens when 

the child inserts the semivowel /j/ between a 

vowel and the coda |S|, creating a diphthong. 

This circumstance advises that the child is ad-

justing her speech according to adult speech, 

since the region where Inês lives is where this 

phonological phenomenon occurs most, consid-

ering the South of Brazil (Leiria, 2000). It is a 

trait of the child’s sociolinguistic variety, de-

pendent upon geographic factor, and so she 

keeps saying it. 

Hence, this research found that Inês completed 

the acquisition of the phonemes of her native 

language at 3 years and 8 months approximately, 

in normal development. 

4 Conclusion and Outlooks 

We briefly presented a system for dealing with 

phonological information in Brazilian Portu-

guese, and a case study from it, that is, the lon-

gitudinal speech recording of a child – the girl 

called Inês. Data allowed to know the last 

processes involved in the acquisition of the 

phonemes of her mother tongue.   
From the preliminary results obtained, it is 

possible to conclude that Nhenhém Fonoaud can 

be helpful to language acquisition research. Nev-

ertheless, the usefulness of the phonological pro-

sodic algorithm has to be proven, by testing it in 

different situations, such as deviant language 

acquisition, speech therapy, and also other re-

searches. This will be our next step. 
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Abstract 

Statistical learning has been proposed as one of the 

earliest strategies infants could use to segment 

words out of their native language because it does 

not rely on language-specific cues that must be 

derived from existing knowledge of the words in 

the language. Statistical word segmentation 

strategies using Bayesian inference have been 

shown to be quite successful for English 

(Goldwater et al. 2009), even when cognitively 

inspired processing constraints are integrated into 

the inference process (Pearl et al. 2011, Phillips & 

Pearl 2012). Here we test this kind of strategy on 

child-directed speech from seven languages to 

evaluate its effectiveness cross-linguistically, with 

the idea that a viable strategy should succeed in 

each case. We demonstrate that Bayesian inference 

is indeed a viable cross-linguistic strategy, 

provided the goal is to identify useful units of the 

language, which can range from sub-word 

morphology to whole words to meaningful word 

combinations. 

 

1 Introduction 

Word segmentation is one of the first tasks 

children must complete when learning their 

native language, and infants are able to identify 

words in fluent speech by around 7.5 months 

(Jusczyk & Aslin 1995; Echols et al. 1997; 

Jusczyk et al., 1993)). Proposals for learning 

strategies that can accomplish this (Saffran et al. 

1996) have centered on language-independent cues 

that are not derived from existing knowledge of 

words. Bayesian inference is a statistical strategy 

operating over transitional probability that has been 

shown to be successful for identifying words in 

English, whether the salient perceptual units are 

phonemes (Goldwater et al. 2009 [GGJ], Pearl et al. 

2011 [PGS]) or syllables (Phillips & Pearl 2012 

[P&P]), and whether the inference process is 

optimal (GGJ, PGS) or constrained by cognitive 

limitations that children may share (PGS, P&P). It 

may, however, be the case that these strategies work 

well for English, but not other languages (Fourtassi 

et al. 2013). Therefore, we evaluate this same 

learning strategy on seven languages with different 

linguistic profiles: English, German, Spanish, Italian, 

Farsi, Hungarian, and Japanese. If Bayesian 

inference is a viable strategy for word segmentation, 

it should succeed on all languages. While some 

attempts have been made to evaluate Bayesian word 

segmentation strategies on languages other than 

English (e.g., Sesotho: Johnson 2008, Blanchard et 

al. 2010), this is the first evaluation on a significant 

range of languages that we are aware of. 

   We assume the relevant perceptual units are 

syllables, following previous modeling work 

(Swingly 2005, Gambell & Yang 2006, Lignos & 

Yang 2010, Phillips & Pearl 2012) that draws from 

experimental evidence that infants younger than 7.5 

months are able to perceive syllables but not 

phonemes (Werker & Tees 1984, Juszyck & Derrah 

1987, Eimas 1999). We demonstrate that Bayesian 

word segmentation is a successful cross-linguistic 

learning strategy, provided we define success in a 

more practical way than previous word 

segmentation studies have done. We consider a 

segmentation strategy successful if it identifies units 

useful for subsequent language acquisition 

processes (e.g., meaning learning, structure 

learning). Thus, not only is the orthographic gold 

standard typically used in word segmentation tasks 

acceptable, but also productive morphology and 

coherent chunks made up of multiple words. This 

serves as a general methodological contribution 

about the definition of segmentation success, 

especially when considering that the meaningful 

units across the world’s languages may vary. 

2 The Bayesian learning strategy 

Bayesian models are well suited to questions of 

language acquisition because they distinguish 

between the learner’s pre-existing beliefs (prior) 
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and how the learner evaluates incoming data 

(likelihood), using Bayes’ theorem: 

 ( | )   ( | ) ( ) 

   The Bayesian learners we evaluate are the 

optimal learners of GGJ and the constrained 

learners of PGS. All learners are based on the 

same underlying models from GGJ. The first of 

these models assumes independence between 

words (a unigram assumption) while the second 

assumes that a word depends on the word before 

it (a bigram assumption). To encode these 

assumptions into the model, GGJ use a Dirichlet 

Process (Ferguson, 1973), which supposes that 

the observed sequence of words w1 … wn is 

generated sequentially using a probabilistic 

generative process. In the unigram case, the 

identity of the ith word is chosen according to: 

 (    |       )  
    ( )    ( )

     
  (1) 

where ni-1(w) is the number of times w appears in 

the previous i – 1 words, α is a free parameter of 

the model, and P0 is a base distribution 

specifying the probability that a novel word will 

consist of the perceptual units x1 … xm: 

 (       )  ∏  (  )
 
      (2) 

In the bigram case, a hierarchical Dirichlet 

Process (Teh et al. 2006) is used. This model 

additionally tracks the frequencies of two-word 

sequences and is defined as: 

 (    |               )  

                   
    ( 

   )    ( )

    ( 
 )  

    (3) 

   (    )  
    ( )    ( )

      
   (4) 

where ni-1(w’,w) is the number of times the 

bigram (w’,w) has occurred in the first i – 1 

words, bi-1(w) is the number of times w has 

occurred as the second word of a bigram, bi-1 is 

the total number of bigrams, and β and γ are free 

model parameters.
1
  

                                                           

1
 Parameters for the unigram and bigram models underlying 

all learners were chosen to maximize the performance of the 

BatchOpt learner, discussed below. English: α=1, β=1, 

γ=90; German: α=1, β=1, γ=100; Spanish: α=1, β=200, 

γ=50; Italian: α=1, β=20, γ=200; Farsi: α=1, β=200, γ=500; 

Hungarian: α=1, β=300, γ=500; Japanese: α=1, β=300, 

γ=100 

   In both the unigram and bigram case, the 

model implicitly incorporates preferences for 

smaller lexicons by preferring words that appear 

frequently (due to (1) and (3)) and preferring 

shorter words in the lexicon (due to (2) and (4)). 

   The BatchOpt learner for this model is taken 

from GGJ and uses Gibbs sampling (Geman & 

Geman 1984) to run over the entire input in a 

single batch, sampling every potential word 

boundary 20,000 times. We consider this learner 

“optimal” in that it is unconstrained by cognitive 

considerations. We also evaluate the constrained 

learners developed by PGS that incorporate 

processing and memory constraints into the 

learning process. 

   The OnlineOpt learner incorporates a basic 

processing limitation: linguistic processing 

occurs online rather than in batch after a period 

of data collection. Thus, the OnlineOpt learner 

processes one utterance at a time, rather than 

processing the entire input at once. This learner 

uses the Viterbi algorithm to converge on the 

local optimal word segmentation for the current 

utterance, conditioned on all utterances seen so 

far. 

   The OnlineSubOpt learner is similar to the 

OnlineOpt learner in processing utterances 

incrementally, but is motivated by the idea that 

infants are not optimal decision-makers. Infants 

may not always select the best segmentation, and 

instead sample segmentations based on their 

perceived probabilities. The OnlineSubOpt 

learners will often choose the best segmentation 

but will occasionally choose less likely 

alternatives, based on the probability associated 

with each segmentation. The Forward algorithm 

is used to compute the likelihood of all possible 

segmentations and then a segmentation is chosen 

based on the resulting distribution. 

   The OnlineMem learner also processes data 

incrementally, but uses a Decayed Markov Chain 

Monte Carlo algorithm (Marthi et al. 2002) to 

implement a kind of limited short-term memory. 

This learner is similar to the original GGJ ideal 

(BatchOpt) learner in that it uses something like 

Gibbs sampling. However, the OnlineMem 

learner does not sample all potential boundaries; 

instead, it samples some number s of previous 

boundaries using the decay function b
-d

 to select 

the boundary to sample; b is the number of 

potential boundary locations between the 

boundary under consideration bc and the end of 
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the current utterance while d is the decay rate. 

Thus, the further bc is from the end of the current 

utterance, the less likely it is to be sampled. 

Larger values of d indicate a stricter memory 

constraint. All our results here use a set, non-

optimized value for d of 1.5, which was chosen 

to implement a heavy memory constraint (e.g., 

90% of samples come from the current utterance, 

while 96% are in the current or previous 

utterances). Having sampled a set of boundaries
2
, 

the learner can then update its beliefs about those 

boundaries and subsequently update its lexicon.
 
 

3 Cross-linguistic input 

We evaluate the Bayesian learner on input 

derived from child-directed speech corpora in 

seven languages: English, German, Spanish, 

Italian, Farsi, Hungarian and Japanese. All 

corpora were taken from the CHILDES database 

(MacWhinney, 2000). When corpora were 

available only in orthographic form, they were 

first converted into the appropriate phonemic 

form. Afterwards, the corpora were syllabified. 

Where possible, we utilized adult syllabification 

judgments. All other words were syllabified 

using the Maximum-Onset principle, which 

states that the beginning of a syllable should be 

as large as possible, without violating the 

language’s phonotactic constraints. 

   Our corpora vary in a number of important 

ways. Although we attempt to limit our corpora 

to early child-directed speech, some of our 

corpora contain speech directed to children as 

old as age five (e.g. Farsi). Many of our corpora 

do, however, consist entirely of early child-

directed speech (e.g., English, Japanese). 

Similarly, the same amount of data is not always 

easily available for each language. Our shortest 

corpus (German) consists of 9,378 utterances, 

while the longest (Farsi) consists of 31,657.  

   The languages themselves also contain many 

differences that potentially affect syllable-based 

word segmentation. While our English and 

Hungarian corpora contain 2,330 and 3,029 

unique syllables, respectively, Japanese and 

Spanish contain only 526 and 524, respectively. 

Some languages may be easier to segment than 

others based on distributional factors. Fourtassi 

                                                           

2  All OnlineMem learners sample s=20,000 boundaries 

per utterance. For a syllable-based learner, this works out to 

approximately 74% less processing than the BatchOpt 

learner (P&P). 

et al. (2013) show, for example, that English has 

less ambiguous segmentation than Japanese. In 

addition, the languages also have differences in 

their syntax and morphology. For example, 

Hungarian and Japanese are both agglutinative 

languages that have more regular morphological 

systems, while English, German, Spanish, Italian 

and Farsi are all fusional languages to varying 

degrees. If a language has regular morphology, 

an infant might reasonably segment out 

morphemes rather than words. This highlights 

the need for a more flexible metric of 

segmentation performance: A segmentation 

strategy which identifies units useful for later 

linguistic analysis should not be penalized. 

4 Learning results & discussion 

We analyze our results in terms of word token F-

scores, which is the harmonic mean of token 

precision and recall, where precision is the 

probability that a word segmented by the model 

is a true word (# identified true / # identified) and 

recall measures the probability that any true 

word was correctly identified (# identified true / 

total # true). F-scores range from 0 to 100, with 

higher values indicating better performance. 

Performance on all languages is presented in 

Table 1. An error analysis was conducted where 

we systematically counted the following 

“reasonable errors” as successful segmentation: 

(i) Mis-segmentations resulting in real words. 

For example, the word “alright” might be 

oversegmented as “all right”, resulting in two 

actual English words. Most languages show 

errors of this type, with more occurring for the 

bigram model, with the least in English 

(BatchOpt: 4.52%) and most in Spanish 

(BatchOpt: 23.97%). We restrict these errors to 

words which occur minimally ten times in the 

corpus in order to avoid accepting errors in the 

corpora or nonsense syllables as real words. 

(ii) Productive morphology. Given the syllabic 

nature of our corpora, only syllabic morphology 

can be identified. Languages like English, 

Spanish and Italian have relatively few errors 

that produce morphemes (e.g., BatchOpt: 0.13%, 

0.05%, and 1.13% respectively), while Japanese, 

with more syllabic morphology has many such 

errors (e.g., BatchOpt: 4.69%). 
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  English German Spanish Italian Farsi Hungarian Japanese 

Unigram 

BatchOpt 55.70 73.43 64.28 70.48 72.48 64.01 69.11 

OnlineOpt 60.71 58.41 74.98 65.05 75.66 56.77 71.56 

OnlineSubOpt 65.76 70.95 77.15 66.48 74.89 60.21 71.73 

OnlineMem 58.68 73.85 67.78 66.77 67.31 60.07 70.49 

Bigram 

BatchOpt 80.19 84.15 80.34 79.36 76.01 70.87 73.11 

OnlineOpt 78.09 82.08 82.71 75.78 79.23 69.67 73.36 

OnlineSubOpt 80.44 82.03 80.75 73.59 67.54 65.48 66.14 

OnlineMem 89.58 88.83 83.27 74.08 73.98 69.48 73.24 

Table 1. Token F-scores (presented as percents, from 0 to 100) for each learner across every language. 

Higher Token F-scores indicate better performance. 

 (iii) Common sequences of function words. 

For example, a learner might identify “is that a” 

as a single word, “isthata”. These errors tend to 

be more common for unigram learners than 

bigram learners, which makes sense from a 

statistical standpoint since the unigram learner 

is unable to account for commonly occurring 

sequences of words and must do so by positing 

the collocation as a single word. Still, function 

word sequence errors are relatively uncommon 

in every language except German (e.g., 

BatchOpt: 21.73%) 

   Table 2 presents common examples of each 

type of acceptable error in English. 

 True Word(s) Model Output 

Real words  something some   thing 

alright all   right 

Morphology  going go   ing 

really rea   lly 

Function 

word  

you   can youcan 

are   you areyou 

Table 2. Example reasonable errors of each 

type from English that result in real words, 

morphology, or function word collocations. 

   Generally speaking, the bigram learners tend 

to outperform the unigram learners, suggesting 

that the knowledge that words depend on 

previous words continues to be a useful one (as 

GGJ, PGS, and P&P found for English), 

though this difference may be small for some 

languages (e.g., Farsi, Japanese). Overall, 

performance for English and German is very 

high (best score: ~90%), while for other 

languages the learners tend to fare less well 

(best score: 70-83%), though still quite good. 

These results match previous work which 

indicated that English is particularly easy to 

segment compared to other languages (Johnson 

2008; Blanchard et al. 2010; Fourtassi et al. 

2013)  

   Importantly, the goal of early word 

segmentation is not for the infant to entirely 

solve word segmentation, but to get the word 

segmentation process started. Given this goal, 

Bayesian word segmentation seems effective 

for all these languages. Moreover, because our 

learners are looking for useful units, which can 

be realized in different ways across languages, 

they can identify foundational aspects of a 

language that are both smaller and larger than 

orthographic words. 

5 Conclusion 

We have demonstrated that Bayesian word 

segmentation performs quite well as an initial 

learning strategy for many different languages, 

so long as the learner is measured by how 

useful the units are that it identifies. This not 

only supports Bayesian word segmentation as 

a viable cross-linguistic strategy, but also 

suggests that a useful methodological norm for 

word segmentation research should be how 

well it identifies units that can scaffold future 

language acquisition. By taking into account 

reasonable errors that identify such units, we 

bring our model evaluation into alignment with 

the actual goal of early word segmentation.   
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Abstract

We perform hyperparameter inference
within a model of morphology learn-
ing (Goldwater et al., 2011) and find
that it affects model behaviour drastically.
Changing the model structure successfully
avoids the unsegmented solution, but re-
sults in oversegmentation instead.

1 Introduction

Bayesian models provide a sound statistical
framework in which to explore aspects of language
acquisition. Explicitly specifying the causal and
computational structure of a model enables the in-
vestigation of hypotheses such as the feasibility of
learning linguistic structure from the available in-
put (Perfors et al., 2011), or the interaction of dif-
ferent linguistic levels (Johnson, 2008a). However,
these models can be sensitive to small changes in
(hyper-)parameters settings. Robustness in this re-
spect is important, since positing specific parame-
ter values is cognitively implausible.

In this paper we revisit a model of morphol-
ogy learning presented by Goldwater and col-
leagues in Goldwater et al. (2006) and Goldwa-
ter et al. (2011) (henceforth GGJ). This model
demonstrated the effectiveness of non-parametric
stochastic processes, specifically the Pitman-Yor
Process, for interpolating between types and to-
kens. Language learners are exposed to tokens,
but many aspects of linguistic structure are lexical;
identifying which tokens belong to the same lexi-
cal type is crucial. Surface form is not always suf-
ficient, as in the case of ambiguous words. More-
over, morphology in particular is influenced by
vocabulary-level type statistics (Bybee, 1995), so
it is important for a model to operate on both lev-
els: token statistics from realistic (child-directed)
input, and type-level statistics based on the token
analyses.

The GGJ model learns successfully given fixed
hyperparameter values in the Pitman-Yor Process.
However, we show that when these hyperparam-
eters are inferred, it collapses to a token-based
model with a trivial morphology. In this paper
we discuss the reasons for this problematic be-
haviour, which are relevant for other models based
on Pitman-Yor Processes with discrete base dis-
tributions, common in natural language tasks. We
investigate some potential solutions, by chang-
ing the way morphemes are generated within the
model. Our results are mixed; we avoid the hyper-
parameter problem, but learn overly compact mor-
pheme lexicons.

2 The Pitman-Yor Process

The Pitman-Yor Process G ∼ PYP(a, b,H0) (Pit-
man and Yor, 1997; Teh, 2006) generates distribu-
tions over the space of the base distribution H0,
with the hyperparameters a and b governing the
extent of the shift from H0. Draws from G have
values from H0, but with probabilities given by
the PYP. For example, in a unigram PYP language
model with observed words, H0 may be a uni-
form distribution over the vocabulary, U( 1

T ). The
PYP shifts this distribution to the power-law dis-
tribution over tokens found in natural language,
allowing words to have much higher (and lower)
than uniform probability. We will continue using
the language model example in this section, since
the subsequent morphology model is effectively a
complex unigram language model in which word
types correspond to morphological analyses. In
our presentation, we pay particular attention to the
role of the hyperparameter a, since this value gov-
erns the power-law behaviour of the PYP (Buntine
and Hutter, 2010).

When G is marginalised out, the result is the
PYP Chinese Restaurant Process, which is a use-
ful representation of the distribution of observa-
tions (word tokens) to values from H0 (types). In
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this restaurant, customers (tokens) arrive and are
seated at one of a potentially infinite number of
tables. Each table receives a dish (type) from the
base distribution when the first customer is seated
there; thereafter all subsequent customers adopt
the same dish. The probability of customer zi be-
ing seated at a table k depends on the number of
customers already seated at that table nk. Popu-
lar tables will attract more customers, generating a
Zipfian distribution over customers at tables.

This Zipfian/power-law behaviour can be simi-
lar to that of the natural language data, and is the
principal motivation behind using the PYP. How-
ever, it is only valid for the distribution of cus-
tomers to tables. When the base distribution is dis-
crete — as in our language model example and
the morphology model — the same dish may be
served at multiple tables. In most cases, the dis-
tribution of interest is generally that of customers
(tokens) to dishes (types), rather than to tables,
suggesting a preference for a setting in which each
dish appears at few tables. This is dependent on a
(constrained to be 0 ≤ a < 1), and to a lesser ex-
tent on b: If a is small, each dish will be served at
a single table, resulting in the type-token and the
table-customer power-laws matching. If a is near
1, however, the probability of more than a single
customer being seated at a table is small, and the
distribution of dishes being eaten by the customers
will match the base distribution, rather than being
adapted by the caching mechanism of the PYP.

The expected number of tables K grows as
O(Na) (see Buntine and Hutter (2010) for an ex-
act formulation). The number of word types in
the data gives us a minimum number of tables,
K ≥ T . When a is small (less than 0.5), the num-
ber of expected tables is significantly less than the
number of types in a non-trivial dataset, suggest-
ing a lower bound for values of a.

In our language model, the posterior probability
of assigning a wordwi to a table k with dish `k and
nk previous customers is:

p(wi = k|w1 . . . wi−1, a, b) ∝ (1){
(nk − a)I(wi = `k) if 1 ≤ k ≤ K
(Ka+ b)H0(wi) if k = K + 1

where I(wi = `k) returns 1 if the token and the
dish match, and 0 otherwise. We see that in order
to prefer assigning customers to already occupied
tables, we need H0(w)(Ka+ b) < nk − a. Given

K ≥ T , and setting H0 = 1
T , we can approxi-

mate this with 1
T (Ta + b) < nk − a. From this

we obtain a < 1
2(nk − b

T ), which indicates that in
order for tables with a single customer (nk = 1) to
attract further customers, a must be smaller than
0.5. Thus, there is a tension between the number
of tables required by the data and our desire to
reuse tables. One solution is to fix a to an arbi-
trary, sufficiently small value, as GGJ do in their
experiments. In contrast, in this paper we infer a
and b along with the other parameters, and change
the other free variable, the base distribution H0.

3 Morphology

The morphology model introduced by GGJ has a
base distribution that generates not simply word
types, as in the language model example, but mor-
phological analyses. These are relatively simple,
consisting of stem+suffix segmentation and a clus-
ter membership. The probability of a word is the
sum of the probability of all cluster c, stem s, suf-
fix f tuples:

H0(w) =
∑

(c,s,f)

p(c)p(s|c)p(f |c)I(w = s.f)

(2)
with the stems and the suffixes being gener-
ated from cluster-specific distributions. In the
GGJ model, all three distributions (cluster, stem,
suffix) are finite conjugate symmetric Dirichlet-
Multinomial (DirMult) distributions. We retain the
DirMult over clusters, but change the morpheme-
generating distributions.

The DirMult is equivalent to a Dirichlet Process
prior (DP) with a finite base distribution; we use
this representation because it allows us to replace
the base distributions flexibly. A DP(α,H0) is also
equivalent to a PYP with a = 0, and thus also can
be represented with a Chinese Restaurant Process,
but in this case we sum over all tables to obtain the
predictive probability of a (say) stem:

p(s|αs, HS) =
ms + αsHS∑

s′ ms′ + αs
(3)

Note that the counts ms refer to stems generated
within the base distribution, not to token counts
within the PYP.

The original GGJ model, ORIG, is equivalent to
setting HS for stems to U( 1

S ), and likewise HF =
U( 1

F ), where S and F are the number of possible
stems and suffixes in the dataset (i.e., all possible
prefix and suffix strings, including a null string).
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There are two difficulties with this model.
Firstly, it assumes a closed vocabulary and re-
quires setting S and F in advance, by looking at
the data. As a cognitive model, this is awkward,
since it assumes a fixed, relatively small number
of possible morphemes.

Secondly, when the PYP hyperparameters are
inferred, a is set to be nearly 1, resulting in a model
with as many tokens as tables. This behaviour is
due to the interaction between vocabulary size and
base distribution probabilities outlined in the pre-
vious section: this base distribution assigns rel-
atively high probability to words, so new tables
have high probability; as the number of tables in-
creases (from its fairly large minimum), the op-
timal a for this table configuration also increases,
resulting in convergence at the token-based model.

We investigate two alternate base distribution
over stems and suffixes, both of which extend the
space of possible morphemes, thereby lowering
the overall probability of the observed words.

DP-CHAR generates morphemes by first gener-
ating a length l ∼ Poisson(λ). Characters
are then drawn from a uniform distribution,
c0...l ∼ U(1/|Chars|). A morpheme’s prob-
ability decreases exponentially by length, re-
sulting in a strong preference for shorter mor-
phemes.

DP-UNI simply extends the original uniform dis-
tribution to s and f ∼ U(1/1e6), in effect
moving probability mass to a large number
of unseen morphemes. It is thus similar to
DP-CHAR without the length preference.

4 Inference

We follow the same inference procedure as GGJ,
using Gibbs sampling. The sampler iterates be-
tween inferring each token’s table assignment and
resampling the table labels (see GGJ for details).

Within the morphology base distribution, the
prior for the DirMult over clusters is set to αk =
0.5. To replicate the original DirMult model1, we
set αs = 0.001S and αf = 0.001F . In the other
models, αs = αf = 1. Within DP-CHAR, λ = 6
for stems, 0.5 for suffixes.

1In this model, the predictive posterior is defined as
p(s|α, S) = ms+α

m.+Sα
, using an alternate definition of α.

Eve (Orth.) Ornat (Orth.)
a Tables/Type a Tables/Type

ORIG 0.96 21.2 0.97 10.64
DP-CHAR 0.46 1.4 0.56 1.17
DP-UNI 0.81 7.3 0.70 2.33

Table 1: Final values for a on the orthographic En-
glish and Spanish datasets, as well as the average
number of tables for each word type. The 95%
confidence interval across three runs is ≤ 0.01.
(Phonological Eve is similar to Orthographic Eve.)

4.1 Sampling Hyperparameters

We sample PYP a and b hyperparameters using
a slice sampler2. Previous work with this model
has always fixed these values, generally finding
small a to be optimal and b to have little effect.
In experiments with fixed hyperparameters, we set
a = b = 0.1.

To sample the hyperparameters, we place vague
priors over them: a ∼ Beta(1, 1) and b ∼
Gamma(10, 0.1). The slice sampler samples a new
value for a and b after every 10 iterations of Gibbs
sampling.

5 Experiments

5.1 Datasets

Our datasets consist of the adult utterances
from two morphologically annotated corpora from
CHILDES, an English corpus, Eve (Brown, 1973),
and a Spanish corpus, Ornat (Ornat, 1994). Mor-
phology is marked by a grammatical suffix on the
stem, e.g. doggy-PL. Words marked with irregular
morphology are unsegmented.

The two languages, while related, have differ-
ing degrees of affixation: the English Eve corpus
consists of 63 315 tokens (5% suffixed) and 1 988
types (28% suffixed); the Ornat corpus has 43 796
tokens (23% suffixed) and 3 157 types (50% suf-
fixed). The English corpus has 17 gold suffix
types, while Spanish has 72.

We also use the phonologically encoded Eve
dataset used by GGJ. This dataset does not ex-
actly correspond to the orthographic version, due
to discrepancies in tokenisation, so we are unable
to evaluate this dataset quantitatively.

2Mark Johnson’s implementation, available at
http://web.science.mq.edu.au/˜mjohnson/
Software.htm
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Eve (Orth.) Ornat (Orth.) Eve (Phon.)
% Seg |L| VM % Seg |L| VM % Seg |L|

Gold 5 23 (5)
ORIG Fix 7 1680 46.42(10.8) 14 2488 46.63(2.7) 17 1619
ORIG Inf 1 1893 9.94(1.0) 4 2769 17.80(3.7) 1 1984
DP-CHAR Fix 52 1331 15.33(0.3) 83 1828 35.76(1.1) 47 1289
DP-CHAR Inf 50 1330 16.15(0.4) 85 1824 36.47(0.5) 33 1317
DP-UNI Fix 38 1394 17.28(1.7) 51 1874 39.58(0.8) 36 1392
DP-UNI Inf 15 1574 31.54(3.1) 31 1983 42.48(1.1) 21 1500

Table 2: Final morphology results. ‘Fix’ refers to models with fixed PYP hyperparameters (a = b = 0.1),
while ‘Inf’ models have inferred hyperparameters. % Seg shows the percentage of tokens that have a non-
null suffix, while |L| is the size of the morpheme lexicon. VM is shown with 95% confidence intervals.

5.2 Results

For each setting, we report the average over three
runs of 1000 iterations of Gibbs sampling without
annealing, using the last iteration for evaluation.

Table 1 shows what happens when hyperpa-
rameters are inferred: ORIG finds a token-based
solution, with as many tables as tokens, while
DP-CHAR is the opposite, with a small a allowing
for just over one table for each word type. DP-UNI

is between these two extremes. b is consistently
between 1 and 3, confirming it has little effect.

The effect of the hyperparameters can be seen
in the morphology results, shown in Table 2.
DP-CHAR is robust across hyperparameter val-
ues, finding the same type-based solution with
fixed and inferred hyperparameters, while the
other models have very different results depending
on the hyperparameter settings. ORIG with fixed
hyperparameters performs best, with the highest
VM score (a clustering measure, Rosenberg and
Hirschberg (2007)) and a level of segmentation
close to the correct one. However, with inferred
hyperparameters, this model severely underseg-
ments: it finds the unsegmented maximum likeli-
hood solution, where all tokens are generated from
the stem distribution (Goldwater, 2007).

The models with alternate base distributions go
to the other extreme, oversegmenting the corpus.
As generating new morphemes becomes less prob-
able, the pressure to find the most compact mor-
pheme lexicon grows. This leads to oversegmen-
tation due to many spurious suffixes. The length
penalty in DP-CHAR exacerbates this problem, but
it can be seen in the DP-UNI solutions as well,
particularly when hyperparameters are fixed to en-
courage a type-based solution.

6 Conclusion

The base distribution in the original GGJ model
assigned a relatively high probability to unseen
morphemes, allowing the model to generate new
analyses for seen words instead of reusing old
analyses and leading to undersegented token-
based solutions. The alternative base distributions
proposed here were effective in finding type-based
solutions. However, these over-segmented solu-
tions clearly do not match the true morphology,
indicating that the model structure is inadequate.

One reason may be that the model structure
is overly simple. The model is faced with an ar-
guably more difficult task than a human learner,
who has access to semantic, syntactic, and phono-
logical cues. Adding these types of information
has been shown to help morphology learning in
similar models (Johnson, 2008b; Sirts and Gold-
water, 2013; Frank et al., 2013).

Similarly, the morphological ambiguity that is
captured by a model operating over tokens (and
ignored in better-performing models that allow
only a single analysis for each word type: Poon
et al. (2009); Lee et al. (2011); Sirts and Alumäe
(2012)) can often be disambiguated using seman-
tic and syntactic information. A model that gener-
ates a single analysis per meaningful (semantically
and syntactically distinct) word-form could avoid
the potential problems of spurious re-generation
seen in the original GGJ model as well as the
converse problem of under-generation in our al-
ternatives. Such a model might also map onto the
human lexicon (which demonstrably avoids both
problems) in a more realistic way.
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Abstract

This paper presents an unsupervised and
incremental model of learning segmenta-
tion that combines multiple cues whose
use by children and adults were attested by
experimental studies. The cues we exploit
in this study are predictability statistics ,
phonotactics , lexical stress and partial lex-
ical information . The performance of the
model presented in this paper is competi-
tive with the state-of-the-art segmentation
models in the literature, while following
the child language acquisition more faith-
fully. Besides the performance improve-
ments over the similar models in the liter-
ature, the cues are combined in an explicit
manner, allowing easier interpretation of
what the model learns.

1 Introduction

Segmenting the continuous speech stream into lex-
ical units is one of the challenges we face while lis-
tening to other speakers. For competent language
users, probably the biggest aid in identifying the
word boundaries is the knowledge of the words.
Not surprisingly, the models of adult word recog-
nition depend heavily on a lexicon (see Dahan and
Magnuson, 2006, for a recent review). The same
can be observed in speech and language technol-
ogy where all automatic speech recognition sys-
tems make use of a comprehensive lexicon.

Even with a comprehensive lexicon and an
error-free representation of the acoustic input, the
problem is not trivial, since the input is often com-
patible with multiple segmentations spanning the
complete utterance. The problem, however, is
even more difficult for a learner who starts with
no lexicon. Fortunately, the lexicon is not the
only aid for segmentation. Experimental research
within last two decades has revealed an array of
cues that are used by adults and children for lexi-
cal segmentation. These cues include, but are not

limited to, lexical stress (Cutler and Butterfield,
1992; Jusczyk, Houston, et al., 1999), phonotac-
tics (Jusczyk, Cutler, et al., 1993), predictability
statistics (Saffran et al., 1996), allophonic differ-
ences (Jusczyk, Hohne, et al., 1999), coarticula-
tion (E. K. Johnson and Jusczyk, 2001), and vowel
harmony (Suomi et al., 1997). The relative utility
or dominance of these cues is a matter of current
debate. However, it seems uncontroversial that
none of these cues solves the segmentation prob-
lem alone and, when available, they are used in
conjunction.

Along with experimental research on segmen-
tation, a large number of computational models
have been proposed in the literature. The early
studies typically made use of connectionist mod-
els (e.g., Elman, 1990; Christiansen et al., 1998).
Of these studies, Christiansen et al. (1998) is par-
ticularly interesting for the present study since it
incorporates most of the cues used in this study.
Using a simple recurrent network (SRN, Elman,
1990), Christiansen et al. (1998) demonstrated the
usefulness of lexical stress, predictability statistics
(included implicitly in any SRN model), and utter-
ance boundaries, and showed that combining the
cues improves the performance. The connection-
ist models have been instrumental in investigating
a large number of cognitive phenomena. However,
they have also been subject to the criticism that
what a connectionist model learns is rather dif-
ficult to interpret. Furthermore, the performance
achieved using connectionist models is far lower
than that is expected from humans.

Models that use explicit representations in com-
bination with statistical procedures (e.g., Brent
and Cartwright, 1996; Brent, 1999; Venkatara-
man, 2001; Goldwater et al., 2009; M. Johnson
and Goldwater, 2009) avoid both problems: these
models perform better, and it is easier to reason
about what they learn. Although these models
were also instrumental in our understanding of the
problem, they lack at least two aspects of con-
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nectionist models that fit human processing better.
First, even though we know that human segmen-
tation is incremental and predictive, most of these
models process their input either in a batch fash-
ion, or they require the complete utterance to be
presented before attempting to segment the input.
Second, it is generally difficult to incorporate ar-
bitrary cues into most of these models.

Models that use explicit representations with
incremental models exist (e.g., Monaghan and
Christiansen, 2010; Lignos, 2011), but are rather
rare. Furthermore, the investigation of cues and
cue combination in segmentation is also relatively
scarce within the recent studies (exceptions in-
clude the investigation of various suprevised mod-
els by Jarosz and J. A. Johnson, 2013).

The present paper introduces a strictly incre-
mental, unsupervised method for learning seg-
mentation where the learning method and internal
representations are explicitly defined. Crucially,
we use a set of cues demonstrated to be used by
humans in solving the segmentation problem. The
simulations results that we present are based on
the same child-directed speech input used by many
other studies in the literature.

The rest of this article is organized as follows:
in the next section, we present a method for com-
bining cues. Section 3 describes the cues used in
this study. The simulations are described and re-
sults are presented in Section 4. A general discus-
sion of the modeling framework and the simula-
tion results are given in Section 5.

2 A cue combination method

We know that there is no single cue that always
gives the correct answer in the lexical segmenta-
tion task. We also know that humans combine
multiple cues when available. In this section we
define a method to segment a given utterance using
multiple boundary indicators, or cues, and learn
to segment better by estimating usefulness of each
indicator. In essence, each indicator makes a de-
cision on each potential boundary location. The
method combines these indicators’ decisions to ar-
rive at a hopefully more accurate decision. In ma-
chine learning terms, we formulate a number of
binary classifiers, and aim to get a better classi-
fier using a combination of them. This problems
is a relatively well-studied subject in the machine
learning literature (e.g., Bishop, 2006, chapter 14).
Here a simple and well-known method, major-

ity voting , will be used for combining multiple
boundary indicators.

Majority voting is a common (and arguably ef-
fective) method in everyday social and political
life. As a result, it has been well studied, and
known to work well especially if each voter’s de-
cision is better than random on average, and votes
are cast independently. In practice, even though
the votes are almost never independent, majority
voting is still an effective way of combining mul-
tiple classifiers (see Narasimhamurthy, 2005, for a
discussion of the effectiveness of the method).

The majority voting combines each vote
equally. Even though this may be a virtue in the
social and political context, it is a shortcoming for
a computational procedure that incorporates infor-
mation from multiple sources with varying useful-
ness. We will use a simple augmentation of ma-
jority voting to model, weighted majority voting
(Littlestone and Warmuth, 1994), that weighs the
utility of the information provided by each source.

In weighted majority voting, the voters that
make fewer errors get higher weights. In an un-
supervised setting as ours, we do not know for
certain when a voter makes an mistake. Instead,
we take a voter’s decision to be correct if it agrees
with the majority. Initially we set all the weights
to 1, trusting all the voters equally. We adopt an
incremental version of the algorithm, where we
keep the count of ‘errors’ made by each voter i,
ei, which is incremented every time the voter dis-
agrees with the majority. After every boundary de-
cision, first, the error counts are updated for each
voter. Then, the weight, wi, of each voter is up-
dated using,

wi ← 2
(
0.5−

ei

N

)
where N is the number of boundary decisions
made so far, including the current one.

This update rule sets the weight of a voter that
is half the time wrong (a voter that votes at ran-
dom) to zero, eliminating the incompetent voters.
If the votes of a voter are in accordance with the
weighted majority decision almost all the time, the
weight stays close to one.

3 Cues and boundary indicators

The combination method above allows us to com-
bine an arbitrary number of boundary indicators.
In our setting, each psychologically motivated cue
is represented by multiple boundary indicators that
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differ based on the source of information used and
the way this information is turned into a quantita-
tive measure. This section introduces all of these
cues, and the boundary indicators that stem from
quantification of these cues in different ways.

3.1 Predictability statistics

At least as early as Harris (1955), it was known
that a simple property of natural language utter-
ances can aid identifying the lexical units that
form an utterance: predictability within the units
is high, predictability between the units is low.
However, until the influential study by Saffran,
Aslin, and Newport (1996), the idea was not in-
vestigated in developmental psycholinguistics as a
possible source of information that children may
use for segmentation. After Saffran et al. (1996)
showed that 8-month-old infants make use of pre-
dictability statistics to extract word-like units from
an artificial language stream, a large number of
studies confirmed that predictability based strate-
gies are used by adults and children for learning
different aspects of language (e.g., Thiessen and
Saffran, 2003; Newport and Aslin, 2004; Graf
Estes et al., 2007; Thompson and Newport, 2007;
Perruchet and Desaulty, 2008).

To use in our cue combination system, we need
to quantify the notion of predictability. In this
study, we use two information theoretic measures
of predictability (or surprise), to define a set of
boundary indicators. The first one, pointwise mu-
tual information (MI) is defined as

MI(l, r) = log2
P(l, r)

P(l)P(r)

where l and r are strings of phonemes to the left
and right of the possible boundary location. We
define our second measure, boundary entropy (H)
of a potential boundary after string l as

H(l) = −
∑
r∈A

P(r|l) log2 (P (r|l))

where the sum ranges over all phonemes in the al-
phabet, A.1

The use of both the MI and the H is moti-
vated by the finding that combination multiple pre-
dictability measures result in better segmentation

1The input to children is better represented by ‘segments’
or ‘phones’. However, since the data used in our simulations
does not contain any phonetic variation, in this paper, we use
the term phoneme when referring to the basic input unit.

(see Çöltekin, 2011, p.101, for an analysis). Fur-
thermore, for asymmetric measures, like entropy,
H(l) is clearly not the same asH(r). Motivated by
the finding that children use ‘reverse predictabil-
ity’ (Pelucchi et al., 2009), we also incorporate a
reverse entropy measure in the present study.

In most studies in the literature, the context l
and r are single basic units (phonemes in our case).
The different phoneme context sizes may capture
regularities that exist because of different linguis-
tic units. The relation between the phoneme con-
text size and the linguistic units, of course, is not
clear-cut. However, for example, we expect con-
text size of one to capture the regularities between
the phonemes, while context size of two or three
to capture regularities between larger units, such
as syllables.

The above parameters result in an array of in-
dicators. However, none of the indicators we use
have a natural threshold to decide whether a given
position is a boundary or not. To get a boundary
decision out of a single measure (MI or H), we
adopt a method similar to a commonly used unsu-
pervised method that decides for a boundary at the
‘peaks’ of unpredictability. A particular shortcom-
ing of this strategy, however, is that it can never
find both boundaries of a single-phoneme word,
as there cannot be two peaks one after another. To
remedy this, the partial-peak strategy we employ
here makes use of two sets of boundary indicators
for each potential boundary: one posits a bound-
ary after an increase in H (or a decrease in MI)
and the other posits a boundary before a decrease
in H.

3.2 Utterance boundaries

An attractive aspect of the predictability-based
segmentation is that it does not require any lexical
knowledge in advance—unlike other cues noted in
Section 1. However, certain aspects of phonotac-
tics, such as the regularities found at the beginning
and end of words, can be induced from the bound-
aries already marked in the input without the need
for a lexicon. As a result, clearly marked lexical
unit boundaries may serve as another source of in-
formation that can bootstrap the acquisition of lex-
ical units.2

2There are a number of acoustic cues (e.g., pauses) that
are highly correlated with lexical unit boundaries. However,
we do not make use of them in this study since they are con-
sidered to be unreliable, and they are not marked in the cor-
pora at hand.
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All models of segmentation in the literature
use utterance boundaries implicitly by assuming
that the words cannot straddle utterance bound-
aries. The explicit use of utterance boundaries
to discover regularities about words is common
in connectionist models (e.g., Aslin et al., 1996;
Christiansen et al., 1998; Stoianov and Nerbonne,
2000). Similar use of utterance boundaries in non-
connectionist models is rather rare. Three excep-
tions to this are the models described by Brent
(1996), Fleck (2008) and Monaghan and Chris-
tiansen (2010). The method described in this sec-
tion is similar to Fleck’s method, where the model
estimates the probability of observing a boundary
given its left and right context, P(b|l, r), where b
represents boundary, and as before, l and r rep-
resent left and right contexts, respectively. If this
probability is greater than 0.5, the model inserts
a boundary. Using utterance boundaries and the
pauses, Fleck (2008) presents a batch algorithm
with a few ad hoc corrections that estimates the
probabilities P(b), P(l|b), P(r|b), P(l), P(r), and
uses Bayesian inversion to estimate P(b|l, r).

In this work, instead of P(b|l, r), we estimate
probabilities of utterance beginnings, P(ub|r),
and probabilities of utterance ends, P(ub|l),
where ub stands for utterance boundary. These
probabilities can directly be estimated from the
utterance edges in the input corpus, and can be
used as cues for discovering non-initial or non-
final boundaries. Similar to the predictability, us-
ing different length l and r we obtain a set of indi-
cators for P(ub|r) and P(ub|l).

Unlike P(b|l, r), for P(ub|r) and P(ub|l) we
do not have a straightforward threshold to make
a boundary decision. Instead, we appeal to the
familiar solution, and use ‘partial peaks’ in these
values as boundary indications.

3.3 Lexical stress

Lexical stress is one of the cues for segmentation
that is well supported by psycholinguistic research
(e.g., Cutler and Butterfield, 1992; Jusczyk, Hous-
ton, et al., 1999; Jusczyk, 1999). Lexical stress
is used in many languages for marking the promi-
nent syllable in a word. For languages that exhibit
lexical stress, the prominent syllable will typically
be in a particular position in the word, allowing
discovery of the boundaries based on the position
of stressed syllable.

Despite the prominence of stress as a cue for

segmentation, there are relatively few computa-
tional studies that investigate use of stress. Chris-
tiansen et al. (1998) incorporates stress as a cue
in their connectionist cue combination system.
Swingley (2005) provides a careful analysis of
stress patterns of the bisyllabic words found by
a discovery procedure on mutual information and
frequency. Gambell and Yang (2006) present sur-
prisingly good segmentation results with a rule-
based learner whose main source of information
is lexical stress. One of the major problems with
the these studies, which has also been carried over
to the present study, is the lack of corpora with re-
alistic stress assignment (see Section 4.1).

Our stress-based strategy is similar to the strat-
egy used for learning phonotactics described in
Section 3.2. Instead of collecting statistics about
phoneme n-grams, we collect statistics over stress
assignments on phoneme n-grams. However, the
probabilities are estimated over already known
lexical units. Given stress patterns l and r, we es-
timate P(b|l) from endings of the known lexical
units, and P(b|r) from the beginnings of the lexi-
cal units. Again we use these quantities as indica-
tors for variable length l and r. Using the partial-
peak boundary decision strategy in combination
with the weighted majority voting algorithm, as
before, we define a set of boundary indicators and
operationalize lexical stress as another cue for seg-
mentation.

3.4 Lexicon

For adults, a comprehensive lexicon is probably
the most useful cue for segmentation. We do
not expect infants to have a lexicon at the begin-
ning. However, as they build their lexicon, or
‘proto-lexicon’, they may put it in use for discov-
ering novel lexical units. This is the main strat-
egy behind the majority of state-of-the-art compu-
tational models of segmentation (e.g., Brent, 1999;
Venkataraman, 2001; Goldwater et al., 2009). The
models that guess boundaries rarely build and use
an explicit lexicon (exceptions include Monaghan
and Christiansen, 2010).

In this study we also experiment with an (admit-
tedly naive) set of lexical cues to word boundaries.
The idea is to indicate a boundary when there are
word-like strings on both sides of the boundary
candidate. In our usual majority voting frame-
work, these form two additional sets of boundary
indicators. First, given a possible boundary loca-
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tion, we simply count the frequencies of already
known words beginning or ending at the position
in question. The second indicator is based on
the number of times the phoneme sequences sur-
rounding the boundary found at the beginnings or
ends of the previously discovered words. The sec-
ond indicator is essentially the same as the phono-
tactics component discussed in Section 3.2, ex-
cept that it is calculated using already known word
types instead of utterance boundaries.

Similar to the other asymmetric indicators dis-
cussed previously, we have two flavors for each in-
dicator. One indicating the existence of words to
the right of the boundary candidate (words begin-
ning at the boundary), and the other indicating the
existence of words the left of the boundary can-
didate (word ending at the boundary). As with the
other cues, these result in a set of indicators whose
primary source of information is the potential lexi-
cal units in the learner’s incomplete and noisy lex-
icon.

4 Experiments

4.1 Data

We use a child-directed speech corpus from the
CHILDES database (MacWhinney and Snow,
1985). It was collected by Bernstein Ratner (1987)
and the original orthographic transcription of the
corpus was converted to a phonemic transcription
by Brent and Cartwright (1996). The same corpus
has been used by many recent studies. Following
the convention in the literature the corpus will be
called the BR corpus .

For the results reported for segmentation strate-
gies that make use of lexical stress, the BR corpus
was marked for lexical stress semi-automatically
following the procedure described by Christiansen
et al. (1998) for annotating the Korman corpus
(Korman, 1984). The stress assignment is done
according to stress patterns in the MRC psycholin-
guistic database. All single-syllable words are
coded as having primary stress, and the words that
were not found or did not have stress assignment
in the MRC database were annotated manually.

4.2 Evaluation metrics

Two quantitative measures, precision (P), recall
(R) and their harmonic mean F1-score (F-score, or
F, for short), have become the standard evaluation
measures for computational simulations. Follow-
ing recent studies in the literature we present pre-

cision recall and F-scores for boundaries (BP, BR,
BF), word tokens (WP, WR, WF) and word types
or lexicon (LP, LR, LF). Besides precision and
recall, we also present two error measures, over-
segmentation (Eo) and undersegmentation (Eu) er-
rors, defined as Eo = FP/(FP + TN) and Eu =

FN/(FN + TP), where TP, FP, TN and FN are true
positives, false positives, true negatives, and false
negatives respectively.

In plain words, Eo is the number of the false
boundaries inserted by the model divided by the
total number of word internal positions in the
corpus. Similarly, Eu is the ratio of boundaries
missed to the total number of boundaries. Al-
though these error measures are related to preci-
sion and recall, they provide different, and some-
times better, insights into the model’s behavior.

4.3 Reference models
In this paper, we compare the results obtained by
the cue combination model with two baselines.
The first baseline is a random model (RM) that
assigns boundaries with the probability of bound-
aries in the input corpus. The RM is more in-
formed than a completely random classifier, but it
has been customary (since Brent and Cartwright,
1996) in segmentation literature to set the bar a
little bit higher. The second reference model is a
lexicon-building model similar to many state-of-
the-art models. The model described here, which
we call LM, assigns probabilities to possible seg-
mentations as described in Equations 1 and 2.

P(s) =

n∏
i=1

P(wi) (1)

P(w) =

{
(1− α)f(w) if w is known
α
∏m
i=1 P(ai) if w is unknown

(2)

where s is a sequence of phonemes (e.g., an ut-
terance or a corpus), wi is the ith word in the se-
quence, ai is the ith sound in the word, f(w) is the
relative frequency of the wordw,m is the number
of known words, and 0 ≤ α ≤ 1 is the only pa-
rameter of the model. In all experiments reported
in this paper, we will fix α at 0.5.

For the incremental model defined here, a word
is ‘known’, if it was used in a previous segmenta-
tion. The model accepts whole utterances as single
words if the utterance does not contain any known
words.
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boundary word lexicon

model P R F P R F P R F

Brent (1999) 80.3 84.3 82.3 67.0 69.4 68.2 53.6 51.3 52.4
Venkataraman (2001) 81.7 82.5 82.1 68.1 68.6 68.3 54.5 57.0 55.7
Goldwater et al. (2009) 90.3 80.8 85.2 75.2 69.6 72.3 63.5 55.2 59.1
Blanchard et al. (2010) 81.4 82.5 81.9 65.8 66.4 66.1 57.2 55.4 56.3

RM 27.4 27.0 27.2 12.6 12.5 12.5 6.0 43.6 10.5
LM 84.1 82.7 83.4 72.0 71.2 71.6 50.6 61.0 55.3

Table 1: Performance scores of the reference mod-
els LM and RM in comparison with some of the
earlier scores reported in the literature. If there
were multiple models reported in a study, the re-
sult with the highest lexicon F-score is presented.
All scores are obtained on the BR corpus.

Table 1 compares the performances of some re-
cent models in the literature using the BR corpus
with the two reference models. The LM performs
similar to the state-of-the-art models presented in
this table. Hence, to aid comparison of the mod-
els proposed in this study with the others in the
literature, we will (re)report the result of the two
baseline models in the rest of this paper. Note
that the scores presented in Table 1 can be mis-
leading since the batch models have an advantage
due to the way scores are calculated. The scores
of the batch models are calculated at the end of
training, while scores of the incremental models
include initial (presumably bad) choices made be-
fore enough exposure to the input. For example,
the LM achieves boundary, word and lexicon F-
scores of 89%, 81% and 74% respectively, towards
the end of the BR corpus. These scores are higher
than all of the scores presented in Table 1 (see Ta-
ble 4 for details the way these scores are calcu-
lated).

4.4 Experiments and results

This section reports results of a set of simulations
using the modeling framework described so far.
All experiments are run on the BR corpus. For
all the results reported below, each cue is repre-
sented by a set indicators as described in Section 3,
multiple indicators for each phoneme n-gram of
length one and three are used for left (l) and right
(r) contexts, for all measures that are calculated
over phoneme n-grams surrounding the potential
boundary. The use of lexical information and lex-
ical stress as standalone strategies are similar to
the ‘lexicon-building’ strategy. The learner inserts
complete utterances to the lexicon when the strat-
egy cannot segment the utterance. As the learner
starts to learn (from the edges of the sequences in

the lexicon) what the edges of words look like, it
uses this information to segment later utterances
in the input.3

We first report the performance results of indi-
vidual cues, namely, predictability (P), utterance
boundaries (U), lexical information (W) and lexi-
cal stress (S) in Table 2.

Using the predictability cue alone leads to a
segmentation performance lower than but close to
the state-of-the-art reference model LM. Although
these results are not directly comparable to the
earlier studies in the literature, the performance
scores presented in Table 2 are the best scores pre-
sented to date for models using the predictability
cue alone. Graphs presented by Brent (1999) in-
dicates about 50%–60% WP and WR and 20%–
30% LP for his baseline model utilizing mutual
information on the BR corpus. Cohen et al. (2007)
report 76% BP, and 75% BR on George Orwell’s
1984. Christiansen et al. (1998) report 37% WP
and 40% WR with an SRN using phonotactics and
utterance boundary cues on another child-directed
speech corpus (Korman, 1984).

The model that learns from the utterance bound-
aries seems to perform the best. The results are
comparable, and in some cases better than the LM.
Furthermore, the overall scores are also higher
than the scores reported by Fleck (2008), where
the boundary, word and lexical F-scores were
82.9%, 70.7% and 36.6%, respectively.

Although it is somewhat behind both pre-
dictability and utterance boundary cues, the lexical
information alone certainly performs better than
random. The lower performance of this model in
comparison to ‘U’ suggests that, at least in this set-
ting, phonotactics learned from word tokens found
at the utterance edges leads to a better perfor-
mance compared to the phonotactics learned from
the word types in the learner’s lexicon.

The experiment that takes only the stress cue
into account yields the worst overall results. It
seems, when the cue indicates a boundary, it is
extremely precise. However, it is also very con-
servative. This seems to be due to the fact that
the model learns to segment at weak–strong tran-
sitions, which is expected to be precise. However,
since majority of the stress transitions are strong–
strong, this covers rather a small portion of the
boundaries.

3The source code of the application and the data used in
this study can be found at https://bitbucket.org/
coltekin/seg/.
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boundary word lexicon error

model P R F P R F P R F Eo Eu

P 69.6 92.5 79.5 56.9 70.2 62.9 36.7 49.8 42.3 15.3 7.5
U 82.9 84.8 83.8 70.5 71.7 71.1 33.8 66.9 44.9 6.6 15.2
W 77.5 71.3 74.3 60.6 57.2 58.9 18.3 47.7 26.4 7.8 28.7
S 78.2 8.2 14.8 26.5 9.7 14.2 8.2 38.7 13.5 0.9 92.8

RM 27.4 27.0 27.2 12.6 12.5 12.5 6.0 43.6 10.5 27.1 73.0
LM 84.1 82.7 83.4 72.0 71.2 71.6 50.6 61.0 55.3 5.9 17.3

Table 2: Results of simulations using individual
cues: predictability (P), utterance boundaries (U),
lexicon (W) and lexical stress (S). The rows la-
beled LM and RM are scores of reference models
repeated for ease of comparison.

boundary word lexicon error

model P R F P R F P R F Eo Eu

PU 82.6 90.7 86.5 72.4 77.4 74.8 42.8 65.3 51.7 7.2 9.3
PUW 83.7 91.2 87.3 74.1 78.8 76.4 43.9 67.7 53.3 6.7 8.8
PUWS 92.8 75.7 83.4 78.3 68.1 72.9 26.8 62.7 37.5 2.2 24.3

RM 27.4 27.0 27.2 12.6 12.5 12.5 6.0 43.6 10.5 27.1 73.0
LM 84.1 82.7 83.4 72.0 71.2 71.6 50.6 61.0 55.3 5.9 17.3

Table 3: Results of combination of strategies
based on four cues: starting with predictability
and utterance boundaries (PU), addition of lexi-
con (PUW) and lexical stress (PUWS). The rows
labeled LM and RM are scores of reference mod-
els repeated for ease of comparison.

Table 3 presents combination of predictability
and utterance boundaries, followed by lexical in-
formation and stress. Here all indicators are com-
bined in a flat, non-hierarchical manner. The com-
bination of predictability and utterance bound-
aries results in higher F-scores, and it results in
more balanced under- and over-segmentation er-
rors. The addition of the lexical information pro-
vide a small but consistent improvement. How-
ever, adding stress information seems to have an
adverse effect. Despite the increased boundary
and word precision, all other performance scores
go down substantially when we add the stress cue.

The scores in Table 3 are obtained over the com-
plete corpus. As noted in Section 4.3, these scores
do not reflect the ‘learned’ state of the models.
Furthermore, we are interested in the progress of a
learner as more input is provided. To demonstrate
both, Eo and Eu for all combined models are plot-
ted in Figure 1 for each 500 utterances.

An interesting observation that can be made
in these graphs is that the models without the
stress cue make fewer undersegmentation errors,
with the cost of slightly higher oversegmentation.
However, the strategy that combines all cues keeps

boundary word lexicon error

model P R F P R F P R F Eo Eu

PU 85.6 96.7 90.8 78.7 86.0 82.2 71.8 75.9 73.8 6.6 3.3
PUW 83.3 97.2 89.7 75.6 84.5 79.8 69.8 75.5 72.5 7.9 2.8
PUWS 92.5 89.3 90.9 84.2 82.2 83.2 70.9 77.6 74.1 2.9 10.7

Table 4: The same results presented in Table 3, but
measured for the last 290-utterances (last block in
an incremental experiment with 500-utterance in-
crements).

oversegmentation errors low throughout the learn-
ing process, and towards the end, it makes fewer
undersegmentation errors as well. This suggests
that the model combining all cues, including the
stress, may be doing better as it collects more
evidence. To demonstrate this further, Table 4
presents the same results presented in Table 3, cal-
culated on the last block of an experiment where
performance scores were calculated after every
500 input utterances. Besides demonstrating the
increase in performance scores when calculated at
later stages of learning, the differences between
tables 3 and 4 show clearly that despite the fact
that it has a detrimental affect when scores are cal-
culated over the complete corpus, the stress cue
has a positive effect at the end of the learning pro-
cess. This suggests that the combined model using
stress cue learns slower and makes more mistakes
at the beginning. However as evidence accumu-
lates, it starts to be useful, and increases the over-
all performance of the combined model.

5 General discussion

This paper introduced an unsupervised and in-
cremental model of segmentation that focuses on
combining multiple cues relevant to child lan-
guage acquisition as attested by earlier studies in
psycholinguistics. Unsupervised and incremen-
tal models of segmentation that combine multiple
cues are not new. There have been many models
sharing these properties to some extent. In partic-
ular, the model presented in this paper has many
similarities with an earlier connectionist model
of segmentation presented by Christiansen et al.
(1998). However, unlike connectionist models, the
model presented here uses accessible explicit rep-
resentations, and an concrete learning procedure.

Most recent models with explicit representa-
tions and statistical learning procedures tend to be
models that process their input in ‘batch’. These
models typically perform better when measured at
the overall best performance level, and the insights
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Figure 1: Progression of (a) over- and (b) under-segmentation errors of the combined strategies.

we get from these models are undeniably useful.
However, these models typically provide explana-
tions at Marr’s (1982) computational level . The
modeling practice we follow is similar to these
models in many ways, and can provide explana-
tions for the same type of questions. However,
it may also provide explanations at lower levels
(e.g., Marr’s algorithmic level ). This is not to
claim that children learn exactly the way the model
learns. However, the type of models presented in
this paper follow human behavior more faithfully,
and, at least in principle, more detailed predictions
can be tested on these models. Naturally, rele-
vance of the findings for human cognition will be
increased as we constrain our models further in ac-
cordance with what we know about the cognitive
processes.

The first contribution of this study is the de-
scription of a modeling framework that follows
what we know about human segmentation process
with high fidelity while keeping the benefits of a
model with explicit representations and statistical
learning methods.

Besides the performance scores that are com-
petitive with the state-of-the-art models in the lit-
erature, the simulations also provide some insights
regarding the cues commonly studied in the psy-
cholinguistics literature. Some of the findings con-
firm the previous results. Indeed, it seems that
combining multiple cues help. However, the prop-
erties of the modeling framework presented in this
paper allows us to make some other interesting ob-
servations, for example, the effect of stress cue
presented in Section 4.4.

When we look at the overall effect of the stress
cue throughout the complete simulations, it seems
stress degrades the performance. However, if we

take a look at the models’ performances at the end
of the learning, we see that effect of the stress cue
is actually positive. In other words, once ‘boot-
strapped’ by the other cues, stress becomes a use-
ful cue. Furthermore, the way the stress cue is use-
ful for the model is also in line with the findings in
the literature where stress is commonly found to
be a dominant cue (Jusczyk, Cutler, et al., 1993;
Thiessen and Saffran, 2003). Given the findings
here that stress is rather a precise cue (despite its
low recall), it is understandable why it dominates
the boundary decisions when available.

The segmentation model presented in this pa-
per demonstrates a way to achieve good segmenta-
tion performance using more cognitively relevant
and transparent strategies. It is also instrumental
at investigating some of the interesting issues re-
garding cue combination in segmentation, and it is
a first step towards models that are more faithful
to the human segmentation process. Among other
things, we consider two important improvements
to the model described here for future work. First,
although the combination method used (weighted
majority voting) has been successful, other meth-
ods such as Bayesian cue combination used for
modeling other cognitive processes may be a bet-
ter approach for segmentation as well. The sec-
ond improvement we plan is regarding the input.
Even though we used a standard corpus as used
by many other studies in the literature, it is ide-
alized (e.g., contains no phonetic variation), and
poor (e.g., lacking some cues that are available to
children) at the same time. Hence, as well as bet-
ter input representations, using input with varia-
tion and noise, and the use of different languages
are steps we would like to take in future studies
towards a better modeling of segmentation.
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1 Abstract

In recent years, a theory of distributional learning
of phrase structure grammars has been developed
starting with the simple algorithm presented in
(Clark and Eyraud, 2007). These ideas are based
on the classic ideas of American structuralist lin-
guistics (Wells, 1947; Harris, 1954). Since that
initial paper, the algorithms have been extended to
large classes of grammars, notably to the class of
Multiple Context-Free grammars by (Yoshinaka,
2011).

In this talk we will sketch a theory of language
acquisition based on these techniques, and con-
trast it with other proposals, such as the semantic
bootstrapping and parameter setting models. This
proposal is based on three recent results: first, a
weak learning result for a class of languages that
plausibly includes all natural languages (Clark and
Yoshinaka, 2013), secondly, a strong learning re-
sult for some context-free grammars, that includes
a general strategy for converting weak learners to
strong learners (Clark, 2013a), and finally a theo-
retical result that all minimal grammars for a lan-
guage will have distributionally definable syntac-
tic categories (Clark, 2013b). We argue that we
now have all of the pieces for a complete and ex-
planatory theory of language acquisition based on
distributional learning and sketch some of the non-
trivial predictions of this theory about the syntax
and syntax-semantics interface.
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Abstract

This paper describes the design and ac-
quisition of a German multimodal cor-
pus for the development and evaluation of
computational models for (grounded) lan-
guage acquisition and algorithms enabling
corresponding capabilities in robots. The
corpus contains parallel data from multi-
ple speakers/actors, including speech, vi-
sual data from different perspectives and
body posture data. The corpus is designed
to support the development and evalua-
tion of models learning rather complex
grounded linguistic structures, e.g. syn-
tactic patterns, from sub-symbolic input.
It provides moreover a valuable resource
for evaluating algorithms addressing sev-
eral other learning processes, e.g. concept
formation or acquisition of manipulation
skills. The corpus will be made available
to the public.

1 Introduction

Children acquire linguistic structures through ex-
posure to (spoken) language in a rich context and
environment. The semantics of language may be
learned by establishing connections between lin-
guistic structures and corresponding structures in
the environment, i.e. in different domains such
as the visual one (Harnad, 1990). Both with re-
spect to modeling language acquisition in chil-
dren and with respect to enabling corresponding
language acquisition capabilities in robots, which
may ideally be also grounded in their environment,
it is hence of great interest to explore i) how lin-
guistic structures of different levels of complexity,

e.g. words or grammatical phrases, can be derived
from speech input, ii) how structured representa-
tions for entities observed in the environment can
be derived, e.g. how concepts and structured rep-
resentations of actions can be formed, and iii) how
connections can be established between structured
representations derived from different domains. In
order to gain insights concerning the mechanisms
at play during language acquisition (LA), which
enable children to solve these learning tasks, mod-
els are needed which ideally cover several learning
tasks. For instance, they may cover the acquisition
of both words and grammatical rules as well as the
acquisition of their grounded meanings. Comple-
mentarily, data resources are needed which enable
the design and evaluation of these models by pro-
viding suitable parallel data.
Aiming to provide a basis for the development
and evaluation of LA models addressing the ac-
quisition of rather complex and grounded linguis-
tic structures, i.e. syntactic patterns, from sub-
symbolic input, we designed a German multi-
modal input corpus. The corpus consists of data of
multiple speakers/actors who performed actions in
front of a robot and described these actions while
executing them. Subjects were recorded, i.e. par-
allel data of speech, stereo vision (including the
view-perspective of the “infant”/robot) and body
postures were gathered. The resulting data hence
allow grounding of linguistic structures in both
vision and body postures. Among others, learn-
ing processes that may be evaluated using the cor-
pus include: acquisition of several linguistic struc-
tures, acquisition of visual structures, concept for-
mation, acquisition of generalized patterns which
abstract over different speakers and actors, estab-
lishment of correspondences between structures
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from different domains, acquisition of manipula-
tion skills, and development of appropriate models
for the representations of actions.
This paper is organized as follows. Next, we
will provide background information concerning
computational models of LA. In Section 3, we
will then describe the corpus design and acqui-
sition, including the desired properties of the
collected data, corresponding experimental set-
tings and technical implementation. We will then
present the resulting data set and subsequently
conclude..

2 Background

To date, several models addressing LA learning
tasks have been proposed and evaluated using dif-
ferent copora. Yet, these models typically focus on
a subset or certain aspects of the LA learning tasks
mentioned in the previous section, often assuming
other learning tasks, e.g. those of lower complex-
ity, as already solved by the learner. For instance,
models addressing the acquisition of grammatical
constructions and their meaning (Kwiatkowski et
al., 2012; Alishahi and Stevenson, 2008; Gaspers
and Cimiano, in press; Chang and Maia, 2001)
typically learn from symbolic input. In particu-
lar, assuming that the child is already able to seg-
ment a speech signal into a stream of words and to
extract structured representations from the visual
context, such models typically explore learning
from sequences of words and symbolic descrip-
tions of the non-linguistic context. Models ad-
dressing the acquisition of word-like units directly
from a speech signal (Räsänen, 2011; Räsänen et
al., 2009) have also been explored. These, how-
ever, typically do not address learning of more
complex linguistic structures/constructions.
Taken together, lexical acquisition from speech
and syntactic acquisition have been mainly stud-
ied independently of each other, often assuming
that syntactic acquisition follows from knowledge
of words. However, learning processes might ac-
tually be interleaved, and top-down learning pro-
cesses may play an important role in LA. For
instance, with respect to computational learn-
ing from symbolic input, it has been shown that
knowledge of syntax can facilitate word learning
(Yu, 2006). Children may, for instance, also make
use of syntactic cues during speech segmentation
and/or word learning, but models addressing lexi-
cal acquisition from speech have to date mainly ig-

nored syntax (Räsänen, 2012). Models addressing
the acquisition of syntactic patterns directly from
speech provide a basis for exploring to what extent
learning mechanisms might be interleaved in early
LA. Moreover, they allow to investigate the pos-
sible role of several top-down learning processes
which have to date been little explored.
Several corpora comprising interactions of chil-
dren with their caregivers have been collected. A
large such resource is the CHILDES data base
(MacWhinney, 2000), which contains transcribed
speech. Data from CHILDES have been often
used to evaluate models learning from symbolic
input, in particular models for syntactic acquisi-
tion from sequences of words; additional accom-
panying symbolic context representations have
been often created (semi–)automatically. More-
over, multimodal corpora containing caregiver-
child interactions have been recorded and anno-
tated (Björkenstam and Wirn, 2013; Yu et al.,
2008), thus also allowing to study the role of social
interaction and extra-linguistic cues in language
learning. By contrast, in this work we aim to pro-
vide a basis for developing and evaluating models
which address the acquisition of syntactic patterns
from speech. Hence, allowing to derive general-
ized patterns, linguistic units as well as the objects
and actions they refer to have to re-appear in the
data several times. Thus, in line with the CARE-
GIVER corpus (Altosaar et al., 2010) we did not
record caregiver-child interactions but attempted
to approximate speech used by caregivers with re-
spect to the learning task(s) at hand. However,
the focus of the CAREGIVER corpus is on mod-
els learning word-like units from speech. Thus,
a number of keywords were spoken in different
carrier sentences; speech is accompanied by only
limited non-linguistic context information in the
corpus. In contrast to CAREGIVER, we did not
restrict language use directly and recorded paral-
lel context information from different modalities,
focusing not only on the acquisition of word-like
units from speech and word-to-object mapping but
moreover on the acquisition of simple syntactic
patterns and mapping language to actions.

3 Corpus design and acquisition

In this section, we will first describe the desired
properties of the corpus. Subsequently, we will
present the corresponding experimental settings,
used stimuli and procedure, the technical imple-
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mentation of the robot behavior and the data ac-
quisition as well as the resulting corpus.

3.1 Desired properties

Our goal was to design a corpus comprising multi-
modal data which supports the evaluation of com-
putational models addressing several LA learn-
ing tasks, and in particular the acquisition of
grounded syntactic patterns from sub-symbolic in-
put only as well as the development of compo-
nents supporting the acquisition of language by
robots. Thus, the main focus was to design the
corpus in such a way that the data acquisition
scenario was simplified enough to allow solving
the task of learning grounded syntactic patterns
from sub-symbolic input with the resulting data
set (which of course contains much less data when
compared to the innumerable natural language ex-
amples children receive when acquiring language
over several years). In particular, since the ac-
quisition of rather complex structures should be
enabled using sub-symbolic information, several
(repeated) examples for contained structures were
needed, allowing the formation of generalized rep-
resentations. Thus, we opted for a rather sim-
ple scenario. Specifically, the following properties
were taken into account:

• Rather few objects and actions were included
that could moreover be differentiated rather
easily from a visual point of view. How-
ever, in order to reflect differences between
actions, these differed i) with respect to
the number of their referents as well as ii)
with respect to their specificity to certain
objects. In particular, we included actions
which could be performed on different sub-
sets of the objects, ranging from specificity
to one certain object to being executed with
all of the objects.

• Objects and actions reappeared several times,
yielding several examples for each of them.
Repeated appearance is an essential aspect,
since the formation of generalized represen-
tations starting from continuous input re-
quires several observations in order to allow
abstraction over observed examples/different
actors and speakers.

• The scenario was designed such that it en-
couraged human subjects to use rather simple

syntactic patterns/short sentences. Yet, lan-
guage use was in principle unrestricted in or-
der to acquire rather natural data and to cap-
ture speaker-dependent differences. This also
reflects the input children receive in that par-
ents use rather simple language when talking
to children.

• Data were gathered from several human sub-
jects in order to allow for the evaluation of
generalization over different speakers (with
different acoustic properties and different
language use, e.g. different words for ob-
jects, different syntactic patterns with differ-
ent complexity, etc) as well as over different
actors in case of actions, since children inter-
act with different people and are able to solve
this task. Moreover, generalization to dif-
ferent speakers/actors is also important with
respect to learning in artificial agents which
should preferably not be operable by a single
person only.

• Parallel data were gathered in which ob-
jects and actions were explicitly named when
they were used. This is an important as-
pect because the corpus should allow learn-
ing connections between vision, i.e. objects
and actions, and speech (segments) referring
to these objects/actions, i.e. (sequences of
words) and syntactic patterns. It reflects the
input children receive in that caregivers also
explain/show objects directly to their chil-
dren and may show them how to use ob-
jects/perform actions in front of them (Rolf
et al., 2009; Schillingmann et al., 2009).

We opted for the collection of parallel data con-
cerning vision and body postures for human tutors.
Hence, the corpus allows grounding of linguistic
structures in both vision and body postures. In-
cluding body postures moreover allows the eval-
uation of algorithms showing manipulation skills
which is of interest with respect to learning in
robots.
We used stereo vision to allow computational
learners to reliably track object movement and in-
teraction using both visual and depth information.
With respect to vision, four cameras with two dif-
ferent perspectives were used: two static external
cameras as well as the robot’s two internal moving
cameras. The latter basically mimics the “infant”
view, i.e. while the external cameras were static,
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the robot moved its eyes (and thus the cameras)
and focused on the tutor’s hand performing the ac-
tions, thus reflecting how a child may focus her/his
attention to the important aspects of a scene/a per-
formance of her/his caregiver.

3.2 Participants
A total of 27 adult human subjects participated in
data collection (7 male, 20 female, mean age: 26).
Subjects were paid for their participation.

3.3 Experimental setting
Human subjects performed pre-defined actions
and simultaneously described their performances
in front of the robot iCub (Metta et al., 2008); Fig.
1 depicts a human subject interacting with iCub.
While interacting with iCub, human subjects’ be-

Figure 1: A human subject interacting with iCub.

havior was recorded. In particular, the following
data were recorded simultaneously:

• Speech/Audio (via a headset microphone)

• Vision/Video, static perspective (via two
cameras, allowing for stereo vision)

• iCub-Vision/Video, iCub’s (attentive) per-
spective (via iCub’s two internal cameras,
again allowing for stereo vision)

• Body postures (via a Kinect).

An experimental sketch showing the experimental
setting including the positions of the human sub-
ject and iCub, as well as camera and Kinect po-
sitions, is illustrated in Fig. 2. As can be seen,
the human subject was placed directly opposite to
iCub. The two external cameras and the Kincet
were placed slightly sloped opposite to the sub-
ject. Subjects were instructed about which actions
should be performed via a computer screen which
was operated by an experimentator.
In order to encourage subjects to perform the tu-
toring task rather naturally, i.e. just like they were

Figure 2: Experimental sketch.

interacting with a human (child), iCub provided
feedback (Nagai and Rohlfing, 2009; Fischer et
al., 2011). In particular, a gazing behavior was
implemented to make the robot appear attentively
following the tutoring.

3.4 Stimuli

Data were gathered in the framework of a toy
cooking scenario. In particular, subjects prepared
several dishes in front of iCub using toy objects.
Specifically, 21 toy objects were chosen such that

Figure 3: Utilized objects.

they were rather easy to differentiate with respect
to color and/or form. The chosen objects were:
pizza, pita bread, plate, bowl, spaghetti, pepper,
vinegar, red pepper, lettuce leafs, tomato, onion,
cucumber, cheese, toast, salami, chillies, egg, an-
chovy, cutting board, knife, and mushrooms. The
objects are depicted in Fig. 3. Moreover, six dif-
ferent actions were chosen which could be exe-
cuted using these objects. Again, the goal was
to support rather easy identification visually (with
respect to their trajectories). The chosen actions
were: showing an object, cutting an object (egg
or tomato) into two pieces (with knife), placing
an object onto another one (plate, pizza, cutting
board, toast), putting an object into another one
(bowl, pita bread), pour vinegar, and strew pep-
per. Thus, most actions were object-specific to a
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certain degree, i.e. they were to be executed with
a certain subset of the objects each. The show ac-
tion was to be executed using each of the objects.
Furthermore, 20 different dishes, i.e. preparation
processes each consisting of a sequence of actions,
were created (four dishes including salad, pizza,
pita bread, spaghetti and sandwich/toast, respec-
tively). This was done in order to gather rather
fluent/consistent courses of action and rather flu-
ent communication in case of descriptions. For in-
stance, one sequence for preparing a salad started
as follows: showing bowl, showing lettuce leafs,
putting lettuce leafs into bowl, showing cutting
board, showing knife, showing tomato, putting
tomato onto cutting board, cutting tomato into two
pieces, putting tomato pieces into bowl, etc.

3.5 Procedure

Subjects first prepared one dish while not being
recorded in order to get familiar with the task.
They were instructed to perform presented actions
and to describe their performance simultaneously.
Moreover, they were asked to name objects and
actions explicitly, since a goal of the corpus is to
allow learning connections between speech, vision
and body postures. Subjects were not asked to
use particular words or phrases, but were free to
make own choices. For instance, when being ex-
posed to a picture of the pita bread, they were sup-
posed to explicitly name the pita bread. Yet, they
were free to choose a suitable word (or sequence
of words), e.g. “Pita”, “Pitatasche”, “Teigtasche”,
“Dönertasche”, “Brottasche”, etc.
Actions to be performed were presented to the
subjects via a computer screen; either one action
was presented or – in most cases – two actions
were presented at once to be executed one after
another. In most cases two actions were presented
in order to gain more fluent communications and
courses of action. In no case more than two ac-
tions were presented together because we wanted
subjects to focus on performance and not on re-
membering a certain course of action. Actions
were presented only in the form of pictures in or-
der to elicit rather natural language use. In par-
ticular, as mentioned previously, subjects could
choose freely how to name objects and actions. An
example for a screen/picture showing two actions
to be performed one after another is presented in
Fig. 4. An experimentator operated the screen,
i.e. guided the subjects through the sequences of

Figure 4: Example screen showing the actions
show red pepper and put red pepper into bowl.

actions. Subjects participated for approximately
one hour; only subject’s actual performances were
recorded, yielding approximately 20–30 minutes
of usable material per subject.

3.6 Robot behavior

As mentioned previously, a gazing behavior was
implemented to make the robot appear attentively
following the tutoring. In particular, the robot’s
gaze followed a subject’s presentation of an action
by gazing at her/his right wrist. At times when
subjects did not move their hands (to present ac-
tions) the robot was looking around, i.e. it gazed
at random targets. In the following, the implemen-
tation of the robot behavior will be described in
more detail.
The experimental setup shown in Fig. 2 allows the
system to observe a person in front of the robot
iCub. While the presentation task was performed
by the person, the robot was supposed to gaze at
the right wrist of this person. Via the Kinect data
it was possible to acquire the body posture of the
robot’s interaction partner. We extracted the loca-
tion of the wrist and represented the Cartesian po-
sition in the coordinate system of the robot. This
position was then used as the target to generate
the head and eye movements. The movement was
executed by the iKinGaze module available in the
iCub software repository (Pattacini, 2010).
Next to this “tracking” behavior of the robot we
also used a “background” behavior. The “back-
ground” behavior then drew randomly new tar-
gets xtarg(in meter) from the uniform distribution
Ω ∈ [−1.5,−1, 5] × [−0.2, 0.2] × [0.2, 0, 4] in
front of the robot. After convergence to the tar-
get the behavior waited for t = 3 seconds before
a new target was drawn. The switch from “back-
ground” behavior to “tracking” behavior was trig-
gered if new targets arrived from the Kinect-based
tracking component. This behavior stayed active
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as long as targets were received. If no targets were
arriving during t = 2 sec. after the gazing con-
verged on the last target, the “background” behav-
ior took over. Due to the difference in distance
between targets, the motion duration was different
as well. Therefore, time delays were added to the
target generation, which resulted in a more natural
behavior of the robot gazing.

4 Acquired data

In order to record synchronized data from the
external sensors, the robot system and the ex-
perimental control software, we utilized a ded-
icated framework for the acquisition of multi-
modal human-robot interaction data sets (Wienke
et al., 2012). The framework and the underly-
ing technology (Wienke and Wrede, 2011) allows
to directly capture the network communication of
robotics software components. Through this ap-
proach, system-internal data from the iCub such as
its proprioception and stereo cameras images can
be synchronously captured and transformed into
an RETF1-described log-file format with explicit
time and type information. Moreover, additional
recording devices such as the Kinect sensors, the
external pair of stereo cams or the audio input
from a close-talk microphone are captured directly
with this system and stored persistently. An exam-
ple of the acquired parallel data is provided by Fig.
5 while Table 6 summarizes the technical aspects
of the acquired data.
The applied framework also supports the auto-
matic export and conversion of synchronized parts
of the multimodal data set to common formats
used by other 3rd party tools such as the annota-
tion tool ELAN (Sloetjes and Wittenburg, 2008)
used for ground truth annotation of the acquired
corpus. In this experiment, we additionally cap-
tured the logical state of the experiment control
software which allowed us to efficiently post-
process the raw data and, e.g., automatically pro-
vide cropped video files containing only single ut-
terances. A logical state corresponds to the image
seen at the screen by a human subject at a certain
time, showing the action(s) to be performed.

The acquired corpus contains in total 11.45
hours / approx. 2.3 TB of multimodal input data
recorded in 27 trials. Each trial was recorded in
about 1 hour of wallclock time and cropped to 20–
30 minutes of effective parallel data. While in 5

1Robot Engineering Task-Force, cf. http://retf.info/

a)

b)

c) d)

Figure 5: Example of acquired parallel data com-
prising a) visual data from two static cameras, b)
visual data from two cameras contained in the
robot’s eyes, c) audio and d) body posture data
recorded by the Kinect. In this example the sub-
ject is preparing a sandwich, and currently strew-
ing pepper onto it.

cases not all of the parallel data streams are avail-
able due to difficulties with the robot and the wire-
less microphones, we decided to leave this data
in the corpus to evaluate machine learning pro-
cesses addressing learning from one or a subset of
the modalities only, e.g. blind segmentation of a
speech stream.
From the data logs, we exported audio (in AAC
format) and the 4 synchronized video (with H.264
encoding) files (MP4 container format) for each
trial with an additional ELAN project file for an-
notation. This annotation is currently carried out;
a screenshot of acquired data and corresponding
annotations in ELAN is depicted in Fig. 7. It
comprises annotation of errors, as well as start-
ing and end points for both presented actions and
spoken utterances. In particular, in case of speech
word transcriptions are added, while in case of vi-
sion actions are annotated in the form of predicate
logic formulas. Hence, once the corpus is prepro-
cessed, it is also suitable for the evaluation of mod-
els learning from symbolic input with respect to
data from one or more domains. For instance, one
could explore the acquisition of syntactic patterns
from speech by providing parallel visual context
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# Device Description Data type Frequency Dimension Throughput
1 Cam 1 Scene video rst.vision.Image ≈ 30 Hz 640× 480× 3 ≈ 28 MB/s
2 Cam 2 Scene video rst.vision.Image ≈ 30 Hz 640× 480× 3 ≈ 28 MB/s
3 Mic 1 Speech rst.audition.SoundChunk ≈ 50 kHz 1-2 ≈ 0.5 MB/s
4 iCub Cam 1 Ego left bottle/yarp::sig::Image ≈ 30 Hz 320× 240× 3 ≈ 7 MB/s
5 iCub Cam 2 Ego right bottle/yarp::sig::Image ≈ 30 Hz 320× 240× 3 ≈ 7 MB/s
6 Kinect Body posture TrackedPosture3DFloat2 ≈ 30 Hz 36 ≈ 6 kB/s
7 Control Logical state string ≈ 0.05 Hz - ≈ 5 B/s

Figure 6: Description of acquired data streams, type specifications, average frequency, data dimension
and throughput as measured during recording.

information either in sub-symbolic form or in the
form of predicate logic formulas.

Figure 7: Example of acquired data and corre-
sponding annotations in ELAN.

Word transcriptions for utterances for the whole
data set are not yet available. According to the ex-
perimentators’ impressions, most subjects indeed
used, as desired, rather short sentences. Further-
more, a few subjects tried to vary their linguis-
tic descriptions, i.e. to use different sentences
for each description. Thus, the corpus appears
to cover not only several examples of rather sim-
ple linguistic constructions with variations across
speakers, but moreover input examples with a
rather large degree of linguistic variation for a sin-
gle speaker, hence providing examples of more
challenging data.
We will make the corpus available to the public
once post-processing is completely finished.

5 Conclusion

In this paper, we have described the design and
acquisition of a German multimodal data set for
the development and evaluation of grounded lan-
guage acquisition models and algorithms enabling
corresponding abilities in robots. The corpus con-
tains parallel data including speech, visual data
from four different cameras with different per-
spectives and body posture data from multiple
speakers/actors. Among others, learning pro-
cesses that may be evaluated using the corpus in-
clude: acquisition of several linguistic structures,
acquisition of visual structures, concept forma-
tion, acquisition of generalized patterns which ab-
stract over different speakers and actors, establish-
ment of correspondences between structures from
different domains and acquisition of manipulation
skills.
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Abstract

Languages use different lexical inven-
tories to encode information, ranging
from small sets of simplex words to
large sets of morphologically complex
words. Grammaticalization theories
argue that this variation arises as
the outcome of diachronic processes
whereby co-occurring words merge
to one word and build up complex
morphology. To model these pro-
cesses we present a) a quantitative
measure of lexical diversity and b) a
preliminary computational model of
changes in lexical diversity over several
generations of merging higly frequent
collocates.

1 Introduction

All languages share the property of being car-
riers of information. However, they vastly dif-
fer in terms of the exact encoding strategies
they adopt. For example, German encodes in-
formation about number, gender, case, tense,
aspect, etc. in a multitude of different articles,
pronouns, nouns, adjectives and verbs. This
abundant set of word forms contrasts with a
smaller set of uninflected words in English.

Crucially, grammaticalization theories
(Heine and Kuteva, 2007, 2002; Bybee 2006,
2003; Hopper and Traugott, 2003; Lehmann,
1985) demonstrate that complex morpho-
logical marking can derive diachronically by
merging originally independent word forms
that frequently co-occur. Over several gen-
erations of language learning and usage such
grammaticalization and entrenchment pro-
cesses can gradually increase the complexity
of word forms and hence the lexical diversity
of languages.

To model these processes Section 2 will
present a quantitative measure of lexical diver-
sity based on Zipf-Mandelbrots law, which is
also used as a biodiversity index (Jost, 2006).
Based on this measure we present a prelimi-
nary computational model to reconstruct the
gradual change from lexically constrained to
lexically rich languages in Section 3. We
therefore use a simple grammaticalization al-
gorithm and show how historical developments
towards higher lexical diversity match the vari-
ation in lexical diversity of natural languages
today. This suggests that synchronic variation
in lexical diversity can be explained as the out-
come of diachronic language change.

The computational model we present will
therefore help to a) understand the diver-
sity of lexical encoding strategies across lan-
guages better, and b) to further uncover the
diachronic processes leading up to these syn-
chronic differences.

2 Zipf’s law as a measure of lexical
diversity

Zipf-Mandelbrot’s law (Mandelbrot, 1953;
Zipf, 1949) states that ordering of words ac-
cording to their frequencies in texts will render
frequency distributions of a specific shape: in
general, few words have high frequencies, fol-
lowed by a middle ground of medium frequen-
cies and a long tail of low frequency items.

However, a series of studies pointed out that
there are subtle differences in frequency dis-
tributions for different texts and languages
(Bentz et al., forthcoming; Ha et al., 2006;
Popescu and Altmann, 2008). Namely, lan-
guages with complex morphology tend to have
longer tails of low frequency words than lan-
guages with simplex morphology. The param-
eters of Zipf-Mandelbrot’s law reflect these dif-
ferences, and can be used as a quantitative
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measure of lexical diversity.

2.1 Method

We use the definition of ZM’s law as captured
by equation (1):

f(ri) =
C

β + rαi
,

C > 0, α > 0, β > −1, i = 1, 2, . . . , n (1)

where f(ri) is the frequency of the word
of the ith rank (ri), n is the number of ranks,
C is a normalizing factor and α and β are
parameters. To illustrate this, we use parallel
texts of the Universal Declaration of Human
Rights (UDHR) for Fijian, English, German
and Hungarian. For frequency distributions
of these texts (with tokens delimited by
white spaces) we can approximate the best
fitting parameters of the ZM law by means
of maximum likelihood estimation (Izsák,
2006; Murphy, 2013). In double logarithmic
space (see Figure 1) the normalizing factor
C would shift the line of best fit upwards or
downwards, α is the slope of this line and β
is Mandelbrot’s (1953) corrective for the fact
that the line of best fit will deviate from a
straight line for higher frequencies (upper left
corner in Figure 1).

As can be seen in Figure 1 Fijian has higher
frequencies towards the lowest ranks (upper
left corner) but the shortest tail of words with
frequency one (horizontal bars in the lower
right corner). For Hungarian the pattern runs
the other way round: it has the lowest frequen-
cies towards the low ranks and a long tail of
words with frequency one. German and En-
glish lie between these. These patterns are re-
flected in ZM parameter values. Namely, Fi-
jian has the highest parameters, followed by
English, German and Hungarian. By trend
there is a negative relationship between ZM
parameters and lexical diversity: low lexical
diversity is associated with high parameters,
high diversity is associated with low param-
eters. Cross-linguistically this effect can be
used to measure lexical diversity by means of
approximating the parameters of ZM’s law for
parallel texts.

In the following, we will present a compu-
tational model to elicit the diachronic path-
ways of grammaticalization through which a

Figure 1: Zipf frequency distributions for four
natural languages (Fijian, English, German,
Hungarian). Plots are in log-log space, val-
ues 0.15, 0.1 and 0.05 were added to Fijian,
English and German log-frequencies to avoid
overplotting. Values for the Zipf-Mandelbrot
parameters are given in the legend. The
straight black line is the line of best fit for
Fijian.

low lexical diversity language like Fijian might
develop towards a high diversity language like
Hungarian.

3 Modelling changes in lexical
diversity

Grammaticalization theorists have long
claimed that synchronic variation in word
complexity and lexical diversity might be the
outcome of diachronic processes. Namely, the
grammaticalization cline from content item
>grammatical word >clitic >inflectional affix
is seen as a ubiquitous process in language
change (Hopper and Traugott, 2003: 7).
In the final stage frequently co-occurring
words merge by means of phonological fusion
(Bybee, 2003: 617) and hence ’morphologize’
to built inflections and derivations.

Typical examples of a full cline of grammat-
icalization are the Old English noun l̄ıc ’body’
becoming the derivational suffix -ly, the inflec-
tional future in Romance languages such as
Italian canterò ’I will sing’ derived from Latin
cantare habeo ’I have to sing’, or Hungarian
inflectional elative and inessive case markers
derived from a noun originally meaning ‘in-
terior’ (Heine and Kuteva, 2007: 66). These
processes can cause languages to distinguish
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between a panoply of different word forms. For
example, Hungarian displays up to 20 different
noun forms where English would use a single
form (e.g. ship corresponding to Hungarian
hajó ’ship’, hajóban ’in the ship’, hajóba ’into
the ship’, etc.).

As a consequence, once the full grammati-
calization cline is completed this will increase
the lexical diversity of a language. Note,
however, that borrowings (loanwords) and ne-
ologisms can also increase lexical diversity.
Hence, a model of changes in lexical diversity
will have to take both grammaticalization and
new vocabulary into account.

3.1 The model

Text: We use the Fijian UDHR as our start-
ing point for two reasons: a) Fijian is a lan-
guage that is well known to be largely lack-
ing complex morphology, b) the UDHR is a
parallel text and hence allows us to compare
different languages by controlling for constant
information content. Fijian has relatively low
lexical diversity and high ZM parameter val-
ues (see Figure 1). The question is whether
we can simulate a simple merging process over
several generations that will transform the fre-
quency distribution of the original Fijian text
to fit the frequency distribution of the mor-
phologically and lexically rich Hungarian text.
To answer this question, we simulate the out-
come of grammaticalization on the frequency
distributions in the following steps:

Simulation: Our program takes a given
text of generation i, calculates a frequency
distribution for this generation, changes the
text along various operations given below, and
gives the frequency distribution of the text for
a new generation i+ 1 as output.

We take the original UDHR in Fijian as our
starting point in generation 0 and run the pro-
gram for consecutive generations. We simulate
the change of this text over several generations
of language learning and usage by varying the
following variables:

• pm: Rank bigrams according to their fre-
quency and merge the highest pm per-
cent of them to one word. This simu-
lates a simple grammaticalization process
whereby two separate words that are fre-
quent collocates are merged to one word.

• pv: Percentage of words replaced by new
words. Choose pv of words randomly and
replace all instances of these words by in-
verting the letters. This simulates neolo-
gisms and loanwords replacing deprecated
words.

• rR: Range of ranks to be included in pv
replacements. If set to 0, vocabulary from
anywhere in the distribution will be ran-
domly replaced.

• nG: Number of generations to simulate.

This simulation essentially allows us to vary
the degree of grammaticalization by means of
varying pm, and also to control for the fact
that frequency distributions might change due
to loanword borrowing and introduction of
new vocabulary (pv). Additionally, rR allows
us to vary the range of ranks where new words
might replace deprecated ones. For frequency
distributions calculated by generations we ap-
proximate ZM parameters by maximum likeli-
hood estimations and therefore document the
change of their shape.

Results: Figure 2 illustrates a simulation
of how the low lexical diversity language Fi-
jian approaches quantitative lexical properties
similar to the Hungarian text just by means of
merging high-frequent collocates. While the
frequency distribution of Fijian in generation
0 still reflects the original ZM values, the
ZM parameter values after 6 generations of
grammaticalization have become much closer
to the values of the Hungarian UDHR:

Fij (nG = 0): α = 1.21,β = 2.1,C = 812
Fij (nG = 6): α = 0.70,β = −0.22,C = 73
Hun (nG = 0): α = 0.76,β = −0.31,C = 90

Note, that in this model there is actu-
ally no replacement of vocabulary necessary
to arrive at frequency distributions that
correspond to high lexical diversity variants.
After only six generations of merging 2.5% of
bigrams to a single grammaticalized word the
Fijian UDHR has ZM parameter properties
very close to the Hungarian UDHR. However,
in future research we want to scrutinize the
effect of parameter changes on frequency
distributions in more depth and in accordance
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Figure 2: Simulation of grammaticalization processes and their reflections in Zipf distributions
for variable values pm = 2.5, pv = 0, rR = 0,nG = 10. Changes of α are shown in the upper left
panel, changes in β are shown in the upper right panel, changes in C are shown in the lower left
panel, and changes in log-transformed frequency distributions are illustrated in the lower right
panel.

with estimations derived from historical
linguistic studies.

4 Discussion

We have pointed out in Section 2 that lexical
diversity can be measured cross-linguistically
by means of calculating frequency distribu-
tions for parallel texts and approximating the
corresponding ZM parameters in a maximum
likelihood estimation.

It is assumed that cross-linguistic variation
is the outcome of diachronic processes of gram-
maticalization, whereby highly frequent bi-
grams are merged into a single word. The
preliminary computational model in Section 3
showed that indeed even by a strongly sim-
plified grammaticalization process a text with
low lexical diversity (Fijian UDHR) can gain
lexical richness over several generations, and
finally match the quantitative properties of a
lexically rich language (Hungarian UDHR).

However, there are several caveats that need
to be addressed in future research:

• More models with varying parameters
need to be run to scrutinize the interac-
tion between new vocabulary (loanwords,
neologisms) and grammaticalization.

• The grammaticalization algorithm used is
overly simplified. A more realistic pic-
ture is possible by using POS tagged and
parsed texts to ensure that only certain
parts of speech in certain syntactic con-
texts grammaticalize (e.g. pre- and post-
positions in combination with nouns).

• The model could be elaborated by consid-
ering not only bigram frequencies but also
frequencies of the individual words and
more complex frequency measures (see
Schmid, 2010).
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5 Conclusion

Languages display an astonishing diversity
when it comes to lexical encoding of informa-
tion. This synchronic variation in encoding
strategies is most likely the outcome of di-
achronic processes of language change. We
have argued that lexical diversity can be mea-
sured quantitatively with reference to the pa-
rameters of Zipf-Mandelbrot’s law, and that
pathways of change in lexical diversity can be
modelled computationally. Elaboration and
refinement of these models will help to bet-
ter understand linguistic diversity as the out-
come of processes on historical and evolution-
ary time scales.
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Abstract 

Free word associations are the words 
people spontaneously come up with in re-
sponse to a stimulus word. Such informa-
tion has been collected from test persons 
and stored in databases.  A well known 
example is the Edinburgh Associative 
Thesaurus (EAT). We will show in this 
paper that this kind of knowledge can be 
acquired automatically from corpora, en-
abling the computer to produce similar 
associative responses as people do. While 
in the past test sets typically consisted of 
approximately 100 words, we will use 
here a large part of the EAT which, in to-
tal, comprises 8400 words. Apart from 
extending the test set, we consider differ-
ent properties of words: saliency, fre-
quency and part-of-speech. For each fea-
ture categorize our test set, and we com-
pare the simulation results to those based 
on the EAT. It turns out that there are 
surprising similarities which supports our 
claim that a corpus-derived co-occur-
rence network can simulate human asso-
ciative behavior, i.e. an important part of 
language acquisition and verbal behavior. 

1 Introduction 

Word associations in general and free word asso-
ciation in particular (Galton, 1879) have been 
used by psychologists of various schools1 to un-
derstand the human mind (memory, cognition, 
language) and the hidden mechanisms driving 
peoples’ thoughts, utterances, and actions. In the 
case of free word associations, a person typically 
hears or reads a word, and is asked to produce 
the first other word coming to mind. Kent & Ro-
sanoff (1910) have used this method for compar-

                                                
1  For example, cognitive psychology (Collins and 

Loftus, 1975,), psycholinguistics (Clark, 1970) and 
psychoanalysis (Freud, 1901; Jung & Riklin, 1906). 

isons, introducing to this end 100 emotionally 
neutral test words. Having conducted the first 
large scale study of word associations (1000 test 
persons) they reached the conclusion that there 
was a great uniformity concerning people's asso-
ciations, that is, speakers of a language share sta-
ble, comparable associative networks (Istifci, 
2010).  

In this paper, we are mainly interested in the 
automatic acquisition of associations by com-
puter. More precisely, we want to check whether 
a corpus-based method allows us to build auto-
matically an associative network akin to the one 
in peoples’ mind, that is, a network able to mim-
ic human behavior. This means, given a stimulus 
word the system is supposed to produce the same 
responses as people do. We know since the old 
Greeks that thoughts and their expressions 
(words) are linked via associations. Yet, what we 
still do not know is the nature of these links. Al-
so, links vary in terms of strength. Associationist 
learning theory (Schwartz & Reisberg, 1991) ex-
plains how these strengths (or weights) are ac-
quired. The strength between two perceived 
events increases by a constant fraction of a max-
imally possible increment at each co-occurrence, 
and decreases in the opposite case.  

Wettler et al. (2005) have shown that this 
mechanism can be replicated by looking at word 
co-occurrence frequencies in large text collec-
tions. But there had been earlier corpus-linguistic 
work: For example, Wettler & Rapp (1989) com-
pared several association measures in order to 
find search terms to be used for queries in infor-
mation retrieval. Church & Hanks (1990) sug-
gested to use mutual information, an information 
theoretic measure, for computing association 
strength. Prior to this, a lot of work had been 
done without reliance of corpora. For example, 
Collins & Loftus (1975) used associative seman-
tic networks to show the distance between words. 
Others (Rosenzweig, 1961:358; Ekpo-Ufot, 
1978) tried to show the universal status of a large 
subset of associations. While all these findings 
are important, we will not consider them further 
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here. Rather we will focus on the claim that a -
corpus-derived co-occurrence network is able to 
mimic human associative behavior. 

Such a network consists of nodes, which in 
our case correspond to words (or lemmas), and 
of weights connecting the nodes. The strengths 
of these weights are computed on the basis of 
word co-occurrence data, and by optionally ap-
plying an association measure. But there are 
many association measures. Given their number 
and diversity some researchers (Evert & Krenn, 
2001) felt that there was a need to define some 
criteria and methods in order to allow for quanti-
tative comparisons via task-based evaluations. 
Pursuing a similar goal, Pecina & Schlesinger 
(2006) compared 82 different association 
measures for collocation extraction, while Hoang 
et al. (2009) classified them. Michelbacher et al. 
(2011) investigated the potential of asymmetric 
association measures, i.e. "associations whose 
associational strength is significantly greater in 
one direction (e.g., from Pyrrhic to victory) than 
in the other (e.g., from victory to Pyrrhic)". 
Washtell & Markert (2009) tried to determine 
whether word associations should be computed 
via window-based co-occurrence counts or rather 
via a windowless approach measuring the dis-
tances between words. 

Our work is related to previous studies com-
paring human word associations with those de-
rived from corpus statistics (e.g. Wettler et al., 
2005; Tamir, 2005, Seidensticker, 2006). The 
main differences are that we categorize our stim-
ulus words and present results for each class, and 
that we have a stronger focus on the graph aspect 
of our network. 

2 Resources and processing 

In order to simulate human associative behavior 
via corpora, we need them to encode knowledge 
that people typically have, that is, encyclopedic 
or universally shared knowledge (e.g. Paris capi-
tal of France) and episodic knowledge (i.e. 
knowledge momentarily true: Nadal winner of 
the French Open). To meet these goals we de-
cided to use the British National Corpus (BNC, 
Burnard & Aston, 1998) as it is well balanced 
and relatively large (about 100 million words of 
contemporary British English). 

To lemmatize the corpus we used the NLTK 
(Bird et al., 2009) which for this purpose utilizes 
information from WordNet. Hence, inflected 
forms (e.g. wheels or bigger) were replaced by 
their base forms (e.g. wheel or big). This reduces 

noise and data sparsity while improving speed 
and accuracy during evaluation. Since this latter 
is based on exact string matching, our system 
would consider wheels, produced in response to 
car, as a mistake as the primary associative re-
sponse of the test persons is wheel, the singular 
form. Lemmatization solves this problem. Since 
we were interested here only in content words 
(nouns, verbs, and adjectives) we removed all 
other words from the BNC. 

To evaluate the performance of our system we 
compared its results with the associations col-
lected by Kiss et al. (1973), the Edinburgh Asso-
ciative Thesaurus. The association norms of the 
EAT were produced by presenting each stimulus 
word to 100 subjects, and by collecting their re-
sponses. The subjects were 17 to 22 year old 
British students. Table 1 shows the associations 
produced by at least five participants in response 
to the stimulus words bath and cold together with 
the number of participants producing them. 
 

bath cold 
observed 
response 

number of 
subjects 

observed 
response 

number of 
subjects 

water 
tub 

clean 
hot 

20 
8 
5 
5 

hot 
ice 

warm 
water 

34 
10 
7 
5 

Table 1: Extracts from the EAT for the stimulus words bath 
and cold. 

The EAT lists the associations to 8400 stimu-
lus words. Since we were only interested in 
nouns, verbs, and adjectives, we eliminated all 
other words and also multiword units (e.g. a lot). 
After having lemmatized the data with the NLTK 
we obtained a list of 5910 test items which is 
considerably more than the usual 100 used in 
many previous studies (e.g. Wettler et al., 2005). 

3 A graph-based approach for comput-
ing word associations 

Unlike previous work (Wettler et al. 2005; 
Church & Hanks, 1990) which is described in the 
terminology of the well known vector space 
model, in the construction of the current system 
we had a graph-based approach in mind so we 
describe the system in such terms. We built up a 
graph on the basis of the nouns, verbs, and adjec-
tives occurring in the corpus, these tokens being 
the nodes of the graph.2 The links (also called 
                                                
2  As preliminary experiments have shown, including func-

tion words in the graph can create noise in the retrieval of 
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weights, connections, or edges) between these 
nodes are zero at the beginning, and are incre-
mented by one whenever the two connected 
words co-occur in the corpus as direct neigh-
bors.3 Put differently, the weight of each link 
represents the number of times two words 
(nodes) co-occur in the corpus. 

The associations to a given stimulus word are 
calculated by searching the nodes which are di-
rect neighbors of this stimulus word, and by 
ranking them according to the weights of the 
connections. Given a graph G=V,E with 
V={i,j,…,n} as its set of vertices and E as its set 
of edges linking pairs of nodes over V, we ex-
press by N(i) the neighborhood of a node i ∈V, 
where N(i) is defined as every j∈V | ei,j ∈E. 

4 Results 

Given the way this network is built, one could 
expect the system to retrieve only syntagmati-
cally related words, i.e. words often occurring in 
close proximity (e.g. blue → sky). Yet, to our 
surprise, the system also retrieves many paradig-
matic associations, that is, words which can sub-
stitute each other (e.g. blue → red). 

Table 2 shows some results. While not all 
computed primary responses are identical to the 
ones produced by humans (in the EAT), the re-
sponses seem perfectly plausible. This raises the 
question whether the answers are within the 
bandwidth of variation of human associative be-
havior. 

We measured the quality of our results by 
counting (for all 5910 items) the number of times 
the subjects participating in the creation of the 
EAT had given the same answer as our system. 
This number is 6.2 on average. In comparison, 
the number of other subjects giving the same an-
swer as an average test person is 5.8. If the two 
numbers were identical, our system would be 
perfectly within the range of variation of the hu-
man associative responses, i.e. our system's an-
swers could hardly be distinguished from the 
ones given by a human. This is actually the case. 
The answers of our system are, on average, even 
slightly closer to the ones given by the test per-
sons than the answers of a randomly selected test 
person.  

                                                                       
associations. Hence we preferred to keep only these three 
categories. 

3  Note that this refers to the pre-processed corpus where all 
stopwords have been removed. 

Stimulus 
Word 

Human Prima-
ry Response 

Computed Pri-
mary Response 

afraid fear person 
anger hate frustration 
baby boy mother 
bath water shower 
beautiful ugly woman 
bed sleep hospital 
bible book God 
bitter sweet taste 
black white white 
blossom flower white 

 
Table 2: Comparison between human and computed associ-
ations for the 10 alphabetically first words of the Kent/Ro-
sanoff (1910) list. 

 
In the following subsections we split our set of 

5910 test items into three categories to check 
how well each one of them matches our intuition 
that a corpus-derived co-occurrence network can 
indeed simulate human associative behavior. 

4.1 Word saliency 

Our goal is twofold: find out to what extend the 
saliency of a stimulus word has an effect on the 
homogeneity of human responses, and whether 
these findings can also be replicated in our com-
puter simulation. 

To this end we divided our 5910 EAT stimu-
lus words into six categories, i.e. saliency classes 
(SC). Saliency is defined here as the proportion 
of subjects producing the Primary Associative 
Response (PAR), this latter being the response 
produced by the largest number of subjects.  
  
SC 1:  less than 10% producing the PAR (10.7%)  
SC 2:  10 to 20% producing the PAR (36.0%) 
SC 3:  20 to 30% producing the PAR (24.3%) 
SC 4:  30 to 40% producing the PAR (13.3%) 
SC 5:  40 to 50% producing the PAR (8.0%) 
SC 6:  more than 50% producing the PAR (7.6%) 
 
The percentages at the end of each line denote 
the proportion of words belonging to the respec-
tive saliency class. All classes are reasonably 
well covered. Here are some representative 
words for each class:  
 
SC 1:  leader, professor, yellow  
SC 2:  horse, mountain, semaphore  
SC 3:  chief, jungle, kiss  
SC 4:  driver, monarchy, tornado  
SC 5:  aid, cell, gasoline 
SC 6:  black, aunt, woman  
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As can be seen from these examples, our intui-
tions do not easily allow us to make predictions 
concerning the saliency classifications of words.  

Figure 1 (blue curve) shows how well our sys-
tem performs for each class. For the words in 
each class we counted the average number of 
times a human subject had come up with the 
same associative response as the system. It ap-
pears that the system's performance is best for 
very salient words, performing less well in the 
opposite case. Note that this correlates perfectly 
well with the observed human associative behav-
ior: Our system tends to produce the same an-
swers as people for stimulus words yielding ho-
mogeneous human responses. Likewise, the sys-
tem’s answers tend to differ in cases where peo-
ples’ answers are heterogeneous. 

The red curve in Figure 1 shows for each sali-
ency class the number of persons giving the same 
associative answer as an average test person. As 
can be seen this line is almost identical to the one 
representing the system's performance, which 
means that the system's behavior is very similar 
to human behavior with respect to saliency.  

 

  
 
Fig. 1: Quality of our system's (blue curve) and an average 
test person's (red curve) performance (measured as the num-
ber of matching responses found in the EAT) with respect to 
saliency. 

4.2 Word frequency 

Encouraged by the findings for saliency, we con-
ducted a similar experiment for word frequency. 
In this case the EAT stimulus words were split 
into frequency classes according to their corpus  
frequencies in the BNC.  

Since a logarithmic scale seems to be appro-
priate for word frequencies (Rapp, 2005; van 
Heuven et al., in press), we used the following 
six frequency classes (FC):  
 
FC1: 1 occurrence BNC (0.5%)  
FC2: from 1 to 10 occurrences BNC (9.2%)  
FC3: form 10 to 100 occurrences BNC (30.2%) 
FC4: from 100 to 1000 occurrences BNC (42.6%) 

FC5: from 1000 to 10000 occurrences BNC (17.3%) 
FC6: from 10000 to 100000 occurrences BNC (0.1%) 
 
As can be seen from the percentages at the end of 
each line, extremes, i.e. very high and very low 
frequencies are covered only marginally.  

In the first group we find words like cornuco-
pia, jewelry4 and quaff, each appearing only once 
in the corpus, while the frequency class 6 con-
tains only high frequency words such as the 
(auxiliary) verbs be, do, have, and make.  

The results obtained for the frequency classes 
are shown in Figure 2.  As can be seen, the gen-
eral tendency is that the results improve with de-
creasing frequency. Our explanation for this is 
that frequent words tend to be more polysemous, 
and that increased ambiguity tends to yield more 
heterogeneous responses. For example, the am-
biguous stimulus word palm is likely to evoke 
not only responses related to its tree sense, but 
also to its hand sense. 

 

 
 

Fig. 2: Quality of our system's (blue curve) and an average 
test person's (red curve) performance with respect to fre-
quency. 
 

Whereas for mid frequency words the results 
for the test persons and in the simulation show a 
high agreement, this is not the case for high fre-
quency and for low frequency words. For high 
frequency words (FC 6) a plausible explanation 
might be the sampling error due to the low sam-
ple size of only 0.1% of the stimulus words in 
the EAT test set. However, for low frequency 
words the sample sizes are larger and the dis-
crepancy is clearly systematic. Our explanation 
is that in this case we might have a systematic 
sampling error concerning the observed frequen-
cies. The simulation has an advantage because 
the frequency classes were set up according to 

                                                
4  Note that this is the American spelling which is rare in the 

BNC. The British spelling is jewellery. 
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the BNC frequencies rather than according to the 
subjective frequencies (= word familiarities) of 
the test persons. For example, the words of FC 1 
are guaranteed to occur in the BNC, while it is 
not certain at all that the test persons ever en-
countered them. This leads to a systematic bias 
in favor of the simulation results. 

4.3 Part of speech 

In a last experiment we considered the results for 
the three parts of speech used in our system, 
namely nouns, verbs, and adjectives. We as-
signed to each word in the EAT test set its part of 
speech. Syntactically ambiguous words (which 
can belong to several parts of speech) were as-
signed to their most frequently occurring part of 
speech. Of the 5910 EAT items, 89.2% were 
classified as nouns, 2.4% as verbs, and 8.4% as 
adjectives. 
 

 
 
Fig. 3: Quality of our system's (blue curve) and an average 
test person's (red curve) performance with respect to parts 
of the speech. 
 

For the three categories we obtained the re-
sults shown in Figure 3. The results are best for 
nouns and worst for verbs. Our explanation for 
this is once again average word ambiguity which 
is higher for verbs than it is for nouns. As with 
the saliency classes, we have again a high corre-
lation between the results produced by humans 
and the ones produced by machine. 

5 Discussion and conclusion 

We have presented a novel graph-based algo-
rithm for the computation of word associations. 
The goal was to check whether and to what ex-
tent an automatically built association network 
based on a large text corpus would yield similar 
results to the ones produced by humans. The re-
sults were evaluated with a test set comprising all 
nouns, verbs, and adjectives of the EAT stimulus 

words. This test set is considerably larger than 
the ones used in most previous computational as-
sociation studies. 

Contrary to what could be expected our sys-
tem predicts not only syntagmatic but also para-
digmatic relations. For instance, the pairs black 
→ white, bread → butter and boy → girl are cor-
rectly computed. This shows that texts contain 
not only word pairs encoding syntagmatic rela-
tions but also pairs encoding paradigmatic rela-
tions. The results also show that statistical co-
occurrence-based methods are suitable for tasks 
that traditionally were supposed to require more 
sophisticated symbolic approaches. 

In sum, our approach allows not only to cor-
rectly predict thousands of associations, it also 
matches human performance in other respects: 
For the first time it was shown that the predic-
tions for salient words are much better than for 
non-salient ones. Similarly, concerning word 
frequency and part of speech the simulated re-
sults also closely mimic the behavior as found in 
the human data.  

Altogether, our results provide evidence that 
human associative behavior as observed in the 
classical association experiments can be modeled 
by exploiting the co-occurrences of words in 
large text corpora. There seems to be a circulari-
ty: (a) the word co-occurrences found in text and 
speech5 appear to be externalized forms of the 
associations stored in the human brain, and (b) 
the associations stored in the brain appear to be 
internalized forms of the co-occurrences as found 
in text and speech. This contradiction disappears 
as soon as we realize that time has elapsed be-
tween these two events. Hence, one network may 
be fed by the other, and this may go on. 

Note that our corpus-based approach has fur-
ther virtues: (a) it allows to generate associations 
from corpora covering particular time spans; (b) 
it can produce associations based on corpora 
covering specific topics; (c) it accounts for the 
fact that languages, hence associations, change 
over time. Think of the ideas associated with 
Dominique Strauss-Kahn, one of the top candi-
dates before the last presidential campaign in 
France. While the associations prior to May 18, 
2011 were probably IMF, politics or election, the 
ones after the Sofitel event were probably quite 
different, shifting towards a much more delicate 
topic.  

 
                                                
5  Note that the BNC also contains transcribed speech. 
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Abstract

Agent-based models of language evolution
have received a lot of attention in the last
two decades. Researchers wish to under-
stand the origin of language, and aim to
compensate for the lacking empirical evi-
dence by utilizing methods from computer
science and artificial life. The paper looks
at the main theories of language evolution:
biological evolution, learning, and cultural
evolution. In particular, the Baldwin effect
in a naming game model is elaborated on
by describing a set of experimental simu-
lations. This is on-going work and ideas
for further investigating the social aspects
of language evolution are also discussed.

1 Introduction

What is language? It is interesting how we can
take a train of thought and transfer this into an-
other person’s mind by pushing the air around us.
Human language, this complex medium that dis-
tinctly separates humans from animals, has baf-
fled scientists for centuries. While animals also
use language, even with a degree of syntax (Kako,
1999), spoken human language exhibits a vastly
more complex structure and spacious variation.

To understand how language works — how it
is used, its origin and fundamentals — our best
information sources are the languages alive (and
some extinct but documented ones). Depending on
definition, there are 6,000–8,000 languages world-
wide today, showing extensive diversity of syntax,
semantics, phonetics and morphology (Evans and
Levinson, 2009). Still, these represent perhaps
only 2% of all languages that have ever existed
(Pagel, 2000). As this is a rather small window, we
want to look back in time. But there is a problem
in linguistic history: our reconstruction techniques
can only take us back some 6,000 to 7,000 years.

Beyond this point, researchers can only speculate
on when and how human language evolved: either
as a slowly proceeding process starting millions
of years (Ma) ago, e.g., 7 Ma ago with the first
appearance of cognitive capacity or 2.5 Ma ago
with the first manufacture of stone implements; or
through some radical change taking place about
100 ka ago with the appearance of the modern hu-
mans or 50–60 ka ago when they started leaving
Africa (Klein, 2008; Tattersall, 2010).

The rest of this introduction covers some key
aspects of language evolution. Section 2 then fo-
cuses on computational models within the field,
while Section 3 describes a specific naming game
model. Finally, Section 4 discusses the results and
some ideas for future work.

1.1 Theories of origin: the biological aspect

There are two main ideas in biological evolution
as to why humans developed the capacity to com-
municate through speech. The first states that lan-
guage (or more precisely the ability to bear the full
structure of language) came as an epiphenomenon,
a by-product (spandrel) of an unrelated mutation.
This theory assumes that a mental language fac-
ulty could not by itself evolve by natural selection;
there would simply be too many costly adaptations
for it to be possible. Thus there should exist an in-
nate capacity in the form of a universal grammar
(Chomsky, 1986), which can hold a finite number
of rules enabling us to carry any kind of language.

According to the second idea, language
emerged in a strictly adaptational process (Pinker
and Bloom, 1990). That is, that language evolu-
tion can be explained by natural selection, in the
same way as the evolution of other complex traits
like echolocation in bats or stereopsis in monkeys.
Both ideas — innate capacity vs natural selection
— have supporters, as well as standpoints that
hold both aspects as important, but at different lev-
els (Deacon, 2010; Christiansen and Kirby, 2003).
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1.2 Theories of origin: the cultural aspect

Biology aside, the forces behind the emergence of
human language are not strictly genetic (and do
not operate only on a phylogenetic time scale).
Kirby (2002) argues that, in addition to biological
evolution, there are two more complex adaptive
(dynamical) systems influencing natural language;
namely cultural evolution (on the glossogenetic
time scale) and learning (which operates on a in-
dividual level, on the ontogenetic time scale).

In addition, there is the interesting Darwinian
idea that cultural learning can guide biological
evolution, a process known as the Baldwin effect
(Baldwin, 1896; Simpson, 1953). This theory ar-
gues that culturally learned traits (e.g., a univer-
sal understanding of grammar or a defense mech-
anism against a predator) can assimilate into the
genetic makeup of a species. Teaching each mem-
ber in a population the same thing over and over
again comes with great cost (time, faulty learn-
ing, genetic complexity), and the overall popula-
tion saves a lot of energy if a learned trait would
become innate. On the other hand, there is a cost
of genetic assimilation as it can prohibit plastic-
ity in future generations and make individuals less
adaptive to unstable environments.

There has been much debate recently whether
language is a result of the Baldwin effect or not
(Evans and Levinson, 2009; Chater et al., 2009;
Baronchelli et al., 2012, e.g.), but questions, hypo-
theses, and simulations fly in both directions.

2 Language evolution and computation

Since the 90s, there has been much work on sim-
ulation of language evolution in bottom-up sys-
tems with populations of autonomous agents. The
field is highly influenced by the work of Steels and
Kirby, respectively, and has been summarized and
reviewed both by themselves and others (Steels,
2011; Kirby, 2002; Gong and Shuai, 2013, e.g.).

Computational research in this field is limited
to modeling very simplified features of human
language in isolation, such as strategies for nam-
ing colors (Bleys and Steels, 2011; Puglisi et al.,
2008), different aspects of morphology (Dale and
Lupyan, 2012), and similar. This simplicity is im-
portant to keep in mind, since it is conceivable that
certain features of language can be highly influ-
enced by other features in real life.

A language game simulation (Steels, 1995) is
a model where artificial agents interact with each

other in turn in order to reach a cooperative goal;
to make up a shared language of some sort, all
while minimizing their cognitive effort. All agents
are to some degree given the cognitive ability to
bear language, but not given any prior knowledge
of how language should look like or how consen-
sus should unfold. No centralized anchors are in-
volved: a simulation is all self-organized.

Agents are chosen (mostly at random) as hearer
and speaker, and made to exchange an utterance
about a certain arbitrary concept or meaning in
their environment. If the agents use the same lan-
guage (i.e., the utterance is understood by both
parties), the conversation is a success. If the
speaker utters something unfamiliar to the hearer,
the conversation is termed a failure. If an agent
wants to express some concept without having any
utterances for it, the agent is assumed to have the
ability to make one up and add this to its memory.
While interpretation in real life is a complex af-
fair, it is mostly assumed that there is a fairly direct
connection between utterance and actual meaning
in language game models (emotions and social sit-
uations do not bias how language is interpreted).

A simple language game normally is charac-
terized by many synonyms spawning among the
agents. As agents commence spreading their own
utterances around, high-weighted words start to be
preferred. Consensus is reached when all agents
know the highest weighted word for each concept.
Commonly, the agents aim to reach a single co-
herent language, but the emergence of multilin-
gualism has also been simulated (Lipowska, 2011;
Roberts, 2012). Cultural evolution can be captured
by horizontal communication between individuals
in the same generation or vertical communication
from adults to children. The latter typically lets the
agents breed, age and die, with the iterated learn-
ing model (Smith et al., 2003) being popular.

A variety of language games exist, from sim-
ple naming games, where the agents’ only topic
concerns one specific object (Lipowska, 2011), to
more cognitive grounding games (Steels and Loet-
zsch, 2012). There have also been studies on some
more complex types of interaction, such as spa-
tial games (Spranger, 2013), factual description
games (van Trijp, 2012) and action games (Steels
and Spranger, 2009), where the agent communi-
cation is about objects in a physical environment,
about real-world events, and about motoric behav-
iors, respectively.
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3 The Baldwin effect in a naming game

Several researchers have created simulations to in-
vestigate the Baldwin effect, starting with Hinton
and Nowlan (1987). Cangelosi and Parisi (2002)
simulate agents who evolve a simple grammatical
language in order to survive in a world filled with
edible and poisonous mushrooms. Munroe and
Cangelosi (2002) used this model to pursue the
Baldwin effect, with partially blind agents initially
having to learn features of edible mushrooms, but
with the learned abilities getting more and more
assimilated into the genome over the generations.
Chater et al. (2009) argue that only stable parts of
language may assimilate into the genetic makeup,
while variation within the linguistic environment
is too unstable to be a target of natural selection.
Watanabe et al. (2008) use a similar model, but in
contrast state that genetic assimilation not neces-
sarily requires a stable linguistic environment.

Lipowska (2011) has pursued the Baldwin ef-
fect in a simple naming game model with the in-
tention of mixing up a language game in a simu-
lation that incorporates both learning, cultural and
biological evolution. The model places a set of
agents in a square lattice of a linear size L, where
every agent is allowed — by a given probability p
— to communicate with a random neighbor.

At each time step, a random agent is chosen and
p initially decides whether the agent is allowed to
communicate or will face a “population update”.
Every agent has an internal lexicon of N words
with associated weights (wj : 1 ≤ j ≤ N ). When-
ever a chosen speaker is to utter a word, the agent
selects a word i from its lexicon with the probabil-
ity wi/

∑N
j=1 wj . If the lexicon is empty (N = 0),

a word is made up. A random neighbor in the lat-
tice is then chosen as the hearer. If both agents
know the uttered word, the dialog is deemed a
success, and if not, a failure. Upon success, both
agents increase the uttered word’s weight in their
lexica by a learning ability variable. Each agent k
is equipped with such a variable l (0 < lk < 1).
This learning ability is meant to, in its simplicity,
reflect the genetic assimilation.

Instead of engaging in communication, the cho-
sen agent is occasionally updated, by a probability
1− p. Agents die or survive with a probability ps

which is given by an equation that takes into ac-
count age, knowledge (lexicon weights in respect
to the population’s average weights), and simula-
tion arguments. If the agent has a high-weighted

lexicon and is young of age, and therefore survives
at a given time step, the agent is allowed to breed
if there are empty spaces in its neighborhood.

All in all, each time step can terminate with
eight different scenarios: in addition to the two
communication scenarios (success or failure), the
scenario where the agent dies, as well as the one
where the agents lives but only has non-empty
neighbors (so that no change is possible), there are
four possibilities for breeding. If the agent breeds,
the off-spring either inherit the parent’s learning
ability or gain a new learning ability, with a proba-
bility pm. With the same mutation probability, the
off-spring also either gains a new word or inherits
the parent’s highest-weight word.

This model was implemented with the aim to
reproduce Lipowska’s results. She argues that her
model is fairly robust to both population size and
her given arguments; however, our experiments
do not support this: as the Baldwin effect unfold,
it does not follow the same abrupt course as in
Lipowska’s model. This could be due to some as-
sumptions that had to be made, since Lipowska
(2011), for instance, presents no details on how
age is calculated. We thus assume that every time
an agent is allowed to communicate, its age gets
incremented. Another possibility could be to in-
crement every agent’s age at every time step, so
that agents get older even if they do not commu-
nicate. Furthermore, the initial values for learn-
ability are not clearly stated. Lipowska uses sev-
eral different values in her analysis. We have used
0.5, which makes a decrease in learnability a part
of the evolutionary search space as well.

Simulations with parameters similar to those
used by Lipowska (2011) [iterations = 200, 000,
mutationchance = 0.01, L = 25, p = 0.4, l = 0.5],
produce results as in Figure 1, showing the highest
weighted word per agent after 50k and 150k time
steps, with each agent being a dot in a “heat map”;
black dots indicate dead agents (empty space).
The number of groups are reduced over time, and
their sizes grow, as more agents agree on a lex-
icon and as favorable mutations spread through
the population, (as indicated by agent learnability;
Figure 2). Even after 200k iterations, consensus is
not reached (which it was in Lipowska’s simula-
tion), but the agent population agrees on one word
if the simulation is allowed to run further. It is nat-
ural to assume that the difference lays in the details
of how age is calculated, as noted above.
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Figure 1: Ca 16 different words dominate the pop-
ulation at iteration 50k and nine at iteration 150k.

Figure 2: Mutations favoring learnability at itera-
tion 50k spread substantially by iteration 150k.

Diverting from Lipowska’s parameters and
skewing towards faster turnover (higher mutation
rate, higher possibility of survival with richer lex-
icon/higher age, etc.), gives behavior similar to
hers, with faster and more abrupt genetic assim-
ilation, as shown Figure 3. The upper line in the
figure represents the fraction of agents alive in the
lattice. It is initially fully populated, but the popu-
lation decreases with time and balances at a point
where death and birth are equally tensioned.

Agents with higher learnability tend to live
longer, and the lower graph in Figure 3 shows the
average learnability in the population. It is roughly
sigmoid (S-shaped; cf. Lipowska’s experiment) as
a result of slow mutation rate in the first phase,
followed by a phase with rapid mutation rate (ca
100k–170k) as the learnability also gets inherited,
and decreasing rate towards the end when mu-
tations are more likely to ruin agent learnability
(when the learning ability l is at its upper limit).
As can be seen in Figure 4, the agents rapidly get
to a stable weighted lexicon before the Baldwin
effect shows itself around time step 100k.

As mentioned, Lipowska’s model did not reflect
the robustness argued in her paper: for other val-
ues of p, the number of empty spots in the popu-
lation lattice starts to diverge substantially, and for
some values all agents simply die. As population
sizes vary, the number of iterations must also be
adjusted to get similar results. If not, the agents
will not reach the same population turn-over as

Figure 3: Fraction of agents alive in the lattice and
average learnability in the population (s-shaped).

Figure 4: Average sum of weights in agent lexica.

for smaller population sizes since only one agent
may be updated per iteration. Lipowska (2011)
compensated with higher mutation rate on simu-
lations with different population sizes; however,
these could be two variables somewhat more inde-
pendent of each other. The model would have been
much more stable if it contained aspects of a typi-
cal genetic algorithm, where agents are allowed to
interact freely within generations. This way, the
model could be acting more upon natural selec-
tion (and in search of the Baldwin effect), instead
of relying on well-chosen parameters to work.

4 Discussion and future work

Language is a complex adaptive system with nu-
merous variables to consider. Thus we must make
a number of assumptions when studying language
and its evolution, and can only investigate certain
aspects at a time through simplifications and ab-
stractions. As this paper has concentrated on the
agent-based models of the field, many studies re-
flecting such other aspects had to be left out.

In addition, there has lately been a lot of work
studying small adjustments to the agent-based
models, in order to make them more realistic by,
for example, having multiple hearers in a lan-
guage game conversations (Li et al., 2013), dif-
ferent topologies (Lei et al., 2010; Lipowska and
Lipowski, 2012), and more heterogeneous popula-
tions (Gong et al., 2006).
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In general, though, simulations on language
evolution tend to have relatively small and fixed
sizes (Baronchelli et al., 2006; Vogt, 2007) — and
few studies seem to take social dynamics (Gong et
al., 2008; Kalampokis et al., 2007) or geography
into account (Patriarca and Heinsalu, 2009).

Further work is still needed to make existing
models more realistic and to analyze relations be-
tween different models (e.g., by combining them).
Biological evolution could be studied with more
flexible (or plastic) neural networks. Cultural evo-
lution could be investigated under more realistic
geographical and demographical influence, while
learning could be analyzed even further in light of
social dynamics, as different linguistic phenom-
ena unfold. Quillinan (2006) presented a model
concerning how a network of social relationships
could evolve with language traits. This model
could be taken further in combination with exist-
ing language games or it could be used to show
how language responds to an exposure of continu-
ous change in a complex social network.

Notably, many present models have a rather
naı̈ve way of selecting cultural parents, and a
genetic algorithm for giving fitness to agents in
terms of having (assimilated) the best strategies
for learning (e.g., memory efficiency), social con-
ventions (e.g., emotions, popularity), and/or sim-
ple or more advanced grammar could be explored.

A particular path we aim to pursue is to study a
language game with a simple grammar under so-
cial influence (e.g., with populations in different
fixed and non-fixed graphs, with multiple hearers),
contained within a genetic algorithm. In such a
setting, the agents must come up with strategies
for spreading and learning new languages, and
need to develop fault-tolerant models for speaking
with close and distant neighbors. This could be a
robust model where a typical language game could
be examined, in respect to both biological and cul-
tural evolution, with a more realistic perspective.
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Abstract 

Recent years have witnessed a growing interest in 
usage-based models of language, which 
characterize linguistic knowledge in terms of 
emerging generalizations derived from experience 
with language via processes of similarity-based 
distributional analysis and analogical reasoning. 
Language learning then involves building the right 
generalizations, i.e. the recognition and recreation 
of the statistical regularities underlying the target 
language. Focusing on the domain of relativization, 
this study examines to what extent the 
generalizations of advanced second language 
learners pertaining to the usage of complex 
constructions differ from those of experts in 
written production. We approach this question 
through supervised machine learning employing as 
a primary modeling tool random forests with 
conditional inference trees as base learners. 
 

1 Introduction 

One of the central questions in second (L2) 
language learning is how L2 learners construct a 
new language system on the basis of only limited 
exposure to the target language. While formalist 
(generative, syntax-based) approaches have 
emphasized the reliance on innate mechanisms 
and principles, functionalist (emergentist, usage-
based (UB)) approaches have highlighted 
processes of bottom-up induction of grammatical 
knowledge from input by way of complex 
automatic distributional analyses of perceived 
utterances at many grain-sizes (cf. Harrington, 
2010 for an overview). The capacity to detect 
statistical regularities in the perceived input and 
to exploit these for purposes of building up more 
abstract generalizations is at work not only in 

earlier stages of language acquisition, but 
remains throughout life (cf. Farmer, Fine & 
Jaeger, 2011), and is operative not only in the 
acquisition of L1 but also L2 (see, MacWhinney, 
2013 for an overview). Grammatical knowledge 
then emerges through iterative categorization, in 
which the categories formed by grouping 
together similar exemplars at one level form the 
input of subsequent categorization processes at 
the next higher level of organization. In this 
view, language learning involves the task of 
identifying those variables that are involved in 
defining the generalizations that characterize 
conventional language use. In earlier stages of 
development, learners are found to establish 
generalizations along easily detectable, salient 
variables (MacWhinney, 2008). With growing 
experience, learners detect additional defining 
features and relationships among features and 
continue to refine their knowledge, resulting in 
their own productions become more and more 
target-like. 
 The resulting knowledge is likely to 
comprise both stored exemplars as well as 
generalizations derived through processes of 
analogical reasoning (see, e.g., Tomasello, 2003; 
Daelemans & van den Bosch, 2005; Goldberg, 
2006; Ellis & Larsen-Freeman, 2009). At 
present, there is no general consensus as to what 
form the resulting knowledge takes and to what 
extent (if any) human linguistic knowledge is 
characterized by representational redundancy (cf. 
Wiechmann. Kerz. Snider & Jaeger, 2013 for a 
recent overview). Theoretical constructs to 
capture the units of linguistic regularity resulting 
from such processes of inductive learning 
include local associations and memorized chunks 
(Ellis, 2002), computational routines (O’Grady, 

55



2005), and constructions (Tomasello, 2003; 
Goldberg, 2006; Langacker, 2008). In this paper, 
we assume the latter and follow a UB 
constructionist approach, in which all linguistic 
knowledge is characterized in terms of pairings 
of form and meaning, so called constructions. In 
this view, language learning concerns the 
emergence of symbolic units from the intricate 
interplay between “the memories of all the 
utterances a learner’s entire history of language 
use and the frequency-biased abstraction of 
regularities within them” (Ellis and Freeman, 
2009:92). The emerging constructional patterns 
assume various degrees of abstraction and 
internal complexity and range from morphemes, 
to words and idiomatic expressions, to partially 
schematic (Kay and Fillmore, 1999) to fully 
schematic constructional patterns, such as clause-
level argument structure constructions 
(Goldberg, 2006). Constructionist accounts are 
thus committed to the belief that “[a]n adequate 
model of human language processing must allow 
for a heterogeneous store of elementary units, 
ranging from single words, and basic 
combinatory rules, to multiword constructions 
with various open slots and complete sentences” 
Beekhuizen, Bod & Zuidema (2013:267). 

This study investigates knowledge about 
patterns at the sentential level, specifically 
knowledge about complex constructions 
involving relative clauses (henceforth RCs). RCs 
have played a pivotal role in the development of 
modern psycholinguistic theorizing and a lot of 
attention has been devoted to studying their 
acquisition and online processing (cf. Sheldon, 
1974; Goodluck and Tavakolian, 1982; Diessel, 
2004; Rohde, Levy & Kehler, 2011; Levy & 
Gibson, 2013; inter alia). In the domain of first 
language acquisition, UB constructionist 
accounts have portrayed the development of 
relative constructions types in terms of clause 
expansion, i.e. in terms of gradual 
transformations of simple (non-embedded) 
sentences into multiple-clause units (cf. Diessel 
& Tomasello, 2000; Tomasello, 2003; Diessel, 
2004). In the domain of L2 learning, research on 
relativization has generally focused on assessing 
the degree to which L2 learning reflects the 
developmental pathways of L1 learning (Gass, 
1979; Doughty, 1991; Abdomanafi & Rezaee, 
2012). Largely based on comprehension tasks, 
these studies investigated if the learner 
proficiency in RCs decreases at lower positions 
of the accessibility hierarchy (Keenan and 
Comrie, 1977) and/or investigated related 

proposals revolving around the internal syntax of 
relative clauses (e.g. the Non-Interruption 
Hypothesis, Slobin, 1973; the Parallel Function 
Hypothesis, Sheldon, 1974, or the Perceptual 
Difficulty Hypothesis, Kuno, 1975). This 
research has primarily addressed questions 
targeted at beginning and/or intermediate stages 
of L2 development of RCs. In recent years, there 
has been an increased interest in advanced stages 
L2 learning and harder to detect aspects of 
linguistic knowledge, which has resulted in a 
shift towards written production as  “[…] in 
writing, rather than in speaking, the learner can 
[…] better show what he or she is capable of 
doing in and with L2 because writing allows far 
more reflection and is therefore usually 
somewhat more complex linguistically than 
speaking” Verspoor, Schmid and Xu (2010:239). 
A growing availability of learner corpora of 
advanced L2 written productions gave rise to a 
number of studies whose main aim was to reveal 
factors of “foreign-soundingness even in the 
absence of downright errors” (Granger 
2004:132). It was shown that - irrespective of 
their L1 background - advanced L2 learners face 
similar challenges on their way to near-native 
proficiency (DeKeyser, 2005; Wiechmann & 
Kerz, 2014) in connection with (a) a lack of 
register awareness and (b) an incomplete 
understanding of the complex probabilistic 
regularities underlying optional linguistic 
phenomena, which typically includes the 
integration of generalizations from various levels 
of organization (lexical, structural, discourse-
pragmatic, etc.). 

Focusing on advanced L2 learners’ written 
productions, the present study sets out to 
investigate a complex domain of grammar, viz. 
relativization. Specifically, we seek to 
understand the conditions in which experts prefer 
a reduced, non-finite RC over a more explicit, 
finite RC. The examples in (1) to (4) - taken 
from our expert data - illustrate the target 
structures. The modified nominal in the MC is 
referred to as the head of the RC.  

(1) The [head results] ] [RC that/which are 
shown in Tables IV and V] add to the 
picsture […] 

(2) The [head results] [RC shown in Tables IV 
and V] add to the picture […] 

(3) The [head factors ] [RC that/which are 
contributing to the natural destruction of 
microbes] [...] 
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(4) The [head factors ] [RC contributing to the 
natural destruction of microbes] [...] 

We focus on the register of academic writing as 
it is characterized by a very condensed style (cf. 
Biber and Gray, 2010), which invites the 
increased usage of non-finite RCs. Furthermore, 
highly specialized domains, such as academic 
writing, afford specific register-contingent 
constructions (Kerz & Wiechmann, accepted). 

2 Data 

The data were retrieved from a corpus of 20 term 
papers produced by German students of English 
linguistics at RWTH Aachen University in their 
second and third year of study (Nwords ~ 80,000) 
and a same-sized control expert corpus of 10 
peer-reviewed articles appearing in various 
journals on language studies. Manual extraction 
of all subject RC gave rise to a set of roughly 
1,500 data points, of which 713 instances were 
produced by learners and 793 were produced by 
experts. All instances were manually annotated 
with respect to eight variables that have been 
shown to affect the online processing of RC 
constructions (cf. Fox and Thompson, 1990; 
Wiechmann, 2010 for a comprehensive 
discussion). 

Variable Description Values 

GROUP item sampled from 
which group 

advanced learner 
/ expert 

ID source text 

10 sources expert 
writing, 20 

sources advanced 
learners 

FINITE.RC finiteness of RC finite / non-finite 

EXT.SYN modified nominal in 
the MC 

SU, DO, PN 
(predicate 

nominal), lower 

LENGTH.BIN length of sentence in 
words 

dichotomized 
around the mean 

ADD.MOD 
presence of 

additional modifier 
(AP or PP) 

yes / no 

HEAD.TYPE morphosyntactic 
type of head 

lexical, 
pronominal, 
proper name 

DEFINITE.HEAD definiteness of head 
noun 

definite / 
indefinite 

ANIMACY.HEAD animacy of head 
noun 

animate / 
inanimate 

GENERIC.HEAD contentfulness of 
head noun generic / specific 

FREQUENT.AC 

element of 100 most 
frequent heads in 

register 
(COCA/BNC) 

yes / no 

Table 1: Variables used in data description 

The variables in Table 1 concern features of (a) 
the overall sentence (e.g. which grammatical role 
in the main clause is being modified by way of 
an RC, how long is the overall sentence, etc.) and 
(b) features of the head of the RC (e.g. does it 
refer to an animate or inanimate referent, is the 
nominal definite of indefinite, etc.). 

3 Method 

To assess to what extent the learners have 
successfully captured the regularities underlying 
the target system, we fit classification models to 
each data set that were geared to discriminate 
between finite or non-finite RC constructions 
based on the distributional information about the 
variables listed in Table 1. If learners have 
indeed successfully induced the right 
generalizations, then the models should reveal 
similar structures for both experts and learners. 
As a primary modeling tool, we used a random 
forest (RF) technique utilizing conditional 
inference trees as base learners (for details, cf. 
Hothorn, Hornik, & Zeileis, 2006; Strobl, 
Boulesteix, Kneib, Augustin, & Zeileis, 2008; 
Strobl, Hothorn, Zeileis, 2009). We focused on 
this ensemble method for its ability to (a) 
produce reliable estimates of variable importance 
in scenarios of correlating predictors (Belsley et 
al., 1980) – which are the norm rather than the 
exception for linguistic choice phenomena like 
the one investigated here –, (b) for its ability to 
avoid biases towards categorical variables that 
have more levels, and (c) for their ease of 
interpretability. The criterion for stopping of an 
individual tree’s growth was based on 
multiplicity Bonferroni adjusted p-values from 
permutation tests suggested in Strasser & Weber 
(1999). Recursion was stopped when a 
hypothesis of independence could not be rejected 
at α = 0.05. We evaluated the RF model on the 
basis of classification accuracy via repeated 
random sub-sampling validation (100 iterations; 
random split: 70% training data – 30% test data) 
and compared its performance with a logistic 
regression model (GLM) including only main 
effects and a support vector machine (SVM) with 
an RBF kernel. Average classification accuracy 
for the expert data ranged from 69% for the 
GLM, to 70% for the RF technique to 72% for 
the SVM. The performance of identical models 
on the learner data was about 5% higher on 
average. To estimate the degree of heterogeneity 
of the RC productions that is due to individual 
author(s) and L2 learners respectively, we also fit 
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generalized linear mixed models (GLMM) to the 
data that in addition to the variables of interest 
also contained the variable ID (indicating the 
source text) as a random effect and investigated 
the adjustments to the intercept as an estimate of 
the degree of heterogeneity of the RC 
productions. 

4 Results 

Figure 1 presents an overview of the 
distributions of the descriptive variables in expert 
and learner productions. 

4.1 Target-like productions 

Figure 2 presents the results of a single 
conditional inference tree fit to all available data 
points from the expert set. In this model, the 
most important variable concerns the animacy of 
the head of the RC: in target-like productions, 
non-finite variants are more likely to be chosen 
when the modified nominal is inanimate (split at 
Node 1). Within the set of modifications of 
inanimate head nouns (Node 2), RCs non-finite 
variants are strongly preferred when the modified 
nominal functions as the subject of the 
dominating clause (Node 4). Within the subset of 

non-subject modifications, the likelihood of an 
RC to be non-finite is greater when it is definite 
(Node 5). The model asserts additional structure 
with reference to the external syntax of the RC 
and the presence of an additional modifier to 
create a total of eleven partitions before tree 
growth is stopped. As individual trees are 
susceptible to small changes in the data, which 
typically leads to trees exhibiting high degrees of 
variability in their predictions, we checked the 
structure reported in Figure 2 against the relative 
variable importance derived from 500 trees with 
three variables randomly sampled as candidates 
at each node. Following Strobl, Malley and Tutz 
(2009), we considered variables to be non-
important if their importance is negative, zero or 
has a small positive value that lies in the same 
range as the negative values The RF model 
supports the important roles of all variables in 
the reported tree (relative importance in 
ascending order: FREQUENT.AC -0.002, 
HEAD.TYPE: 0.002, GENERIC.HEAD: 0.004, 
LENGTH: 0.005, ADD.MOD: 0.013, EXT.SYN: 
0.013, DEFINITENESS.HEAD: 0.018, 
ANIMACY.HEAD: 0.036). We next estimated the 
variation that is due to individual stylistic 
differences in the ten texts that constitute our 

 

Figure 1: Distributions RC features: learners vs. experts 
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expert data using a GLLM that contained ID 
(source text) as a random effect. To avoid 
unnecessary model complexity, we excluded 
FREQUENT.AC, which was demonstrably 
unimportant for the constructional choice. As 
shown in Table 2, all effects were statistically 
significant at α = 0.05 (no 2-way nor 3-way 
interactions was significant at α = 0.05). The 
variability in the intercept between the texts in 
the expert corpus is negligible, suggesting that 
the relationships between the variables are rather 
robust in the target register (ID intercept variance 
= 0.07, SD = 0.26). Figure 3 shows the 
conditional modes of the random effect ID. 

  Coef SE z Pr(>|z|) 
(Intercept) 0.31 0.21 1.45 0.15 
ANIMATE.HEAD – no:yes 2.38 0.36 6.64 0.00 
EXT.SYN – DO:lower -0.12 0.20 -0.62 0.53 
EXT.SYN – DO:PN 0.57 0.30 1.89 0.06 
EXT.SYN – DO:SU -0.48 0.22 -2.16 0.03 
HEAD.TYPE – lex:pron 0.69 0.87 0.80 0.42 
HEAD.TYPE – lex:name 0.91 0.38 2.38 0.02 
LENGTH – long:short -0.43 0.16 -2.68 0.01 
ADD.MOD – no:yes 0.43 0.16 2.62 0.01 
GENERIC.HEAD – no:yes 1.15 0.41 2.77 0.01 
DEFINITE.HEAD – no:yes -0.73 0.17 -4.24 0.00 

Table 2: Generalized linear mixed logit model fit 
by the Laplace approximation (expert data) 

 

Figure 3: Conditional modes for the random 
effect ID in GLMM fit to expert data 

4.2 Learner productions 

We applied the exact same procedure to the 
learner data. We first present the results of a tree-
based model fit to all exemplars in the learner 

Figure 2:  Conditional inference tree for expert data. Nodes contain Bonferroni-adjusted P-values 
(alpha = 0.05 as stopping criterion) 
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data (Figure 4). We found that the structure 
underlying the learner data is (a) simpler than the 
expert structure and also (b) different than the 
expert structure. At the top level, the data are 
split relative to whether or not there is an 
additional element to modify the head noun: the 
likelihood of a non-finite RC is slightly greater in 
the presence of an additional modifier and in 
particular with lexical heads that are not generic. 
The variable importance estimates derived from 
a model comprising 500 trees supported the 
importance of ADD.MOD, DEFINITENESS.HEAD, 
and HEAD.TYPE but not the importance of 
GENERIC.HEAD (relative importance in ascending 
order: GENERIC.HEAD = 0.002, ANIMACY.HEAD = 
0.003, FREQUENT.AC = 0.003, LENGTH = 0.003, 
EXT.SYN = 0.004, DEFINITENESS.HEAD = 0.006, 
HEAD.TYPE  = 0.006, ADD.MOD = 0.0205). The 
GLMM presented an overall similar picture 
supporting the importance of GENERIC.HEAD. 

  Coef SE z Pr(>|z|) 
(Intercept) 0.92 0.36 2.52 0.01 
ANIMATE.HEAD – no:yes -0.32 0.38 -0.85 0.40 
EXT.SYN – DO:lower 0.05 0.29 0.15 0.88 
EXT.SYN – DO:PN 0.02 0.32 0.05 0.96 
EXT.SYN – DO:SU -0.25 0.30 -0.85 0.39 
HEAD.TYPE – lex:pron 0.79 1.25 0.63 0.53 
HEAD.TYPE – lex:name 3.70 0.77 4.81 0.00 
LENGTH – long:short -0.12 0.23 -0.52 0.60 
ADD.MOD – no:yes 1.14 0.21 5.33 0.00 
GENERIC.HEAD – no:yes 3.42 1.16 2.94 0.00 
DEFINITE.HEAD – no:yes -0.67 0.23 -2.94 0.00 
Table 3: Generalized linear mixed logit model fit 

by the Laplace approximation (learner data) 

Furthermore, the variability in the intercept 
between learners is a more pronounced than that 
of the experts (Figure 5). 

  
Figure 5: Conditional modes for the random 

effect ID in GLMM fit to learner data 

5 Discussion 

Our results indicated that advanced learners have 
clearly not yet built up the generalizations that 
characterize expert productions of non-finite RC 
constructions: firstly, the learners clearly 
underused non-finite variants of RCs relative to 
finite ones as evidenced by an observed ratio of 

 

Figure 4: Conditional inference tree for learner data. Nodes contain Bonferroni-adjusted P-values 
(alpha = 0.05 as stopping criterion) 
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finite RC to non-finite RC of roughly 2:1 in 
learner language (compared to almost even 
proportions in expert language). As learners 
typically seek to maximize the transfer of 
knowledge from their L1 (MacWhinney, 2013), 
we assume that the underuse is at least partly due 
to the fact that there is no transferrable 
isomorphic translational equivalent to English 
nonfinite RCs in their L1 (German). However, 
this assessment clearly goes beyond the available 
evidence and falls outside the scope of this study. 
Secondly, our learners have derived 
generalizations that are less complex than those 
characterizing expert productions. Thirdly, they 
have assigned too much importance to some 
generalizations, e.g. the role of additional 
modifiers, and too little importance to others, e.g. 
animacy of the head noun and the external syntax 
of the RC. A linguistic analysis of relative 
constructions, which we will sketch only very 
briefly here, revealed that all variables to 
distinguish non-finite from finite subject 
relatives in expert language are semantically 
motivated. For example, in expert language non-
finite RCs were strongly preferred in contexts 
where the RC modifies an inanimate, definite, 
lexical head that is the grammatical subject of the 
main clause as in (5). 

(5) The logic [used to resolve errors here] 
comes from the Cancellation/ 
Domination Lemma of Prince and 
Smolensky (1993:148) [...] 

In such contexts the RC is almost invariably non-
restrictive, i.e. its function is not to restrict the set 
of possible referents of the nominal, but rather to 
attribute a secondary predication to an already 
established discourse referent, while the main 
predication about that referent is encoded on the 
main clause (Wiechmann, 2010). The marginal 
adjustments to the intercept in the GLLM fit to 
the expert data suggested that the effects of these 
variables on the choice of RC are robust in the 
target register. In contrast, none of the 
constitutive features of this construction 
characterized non-finite RCs in learner language. 
The variable to distinguish the contrasted 
structural realizations of RCs in learner language 
most strongly was the presence of an additional 
modifier. An RC modifying a nominal that 
contains further pre- or post-modification was 
more likely to be realized in full finite form. 
Closer inspection of the data suggested that this 
preference does not reflect a semantic motivation 

but rather reflects the tendency of language users 
to prefer explicit variants over reduced ones in 
contexts of greater complexity (Rohdenburg, 
2003). Outside the context of semantically 
motivated constructions, expert language 
exhibited this preference as well, but its effect on 
the structural choice was noticeably less 
pronounced. We also found that the variability in 
the intercept is not very high suggesting that the 
generalizability of our findings is not threatened 
by the variability of the subjects’ abilities to 
identify relevant generalizations. We found that 
about 80% of the learners formed a rather 
homogeneous group resulting in marginal 
adjustments to the intercept. 
 On a methodological note, we would like 
to briefly address two points: First, our approach 
to investigate (missing) generalizations does not 
speak to the issue of what exactly are the 
productive units in language and how exactly the 
operations of combinations are to be conceived 
of (for discussion cf. Bod 2009 and references 
therein) and does thus not constrain the 
computational realization of the statistical 
induction processes underlying language learning 
(cf. Clark, 2001; Klein and Manning, 2002; 
Zuidema, 2006; Bod & Smets, 2012; inter alia). 
In this paper, we were interested to what extent 
advanced L2 learners have succeeded in 
identifying generalizations pertaining to 
variables that figure in psycholinguistic accounts 
of sentence-level processing (e.g. animacy and 
definiteness of the head, type of embedding, 
etc.). Second, it was not the primary goal of our 
modeling to maximize predictive success. We 
address this point because we have also fit 
models based on much richer descriptions of the 
data (20+ variables) and some of these models 
reached levels of classification accuracy that 
exceeded that of the models reported here. 
However, we think that there are still good 
reasons to believe that their inclusion is actually 
detrimental to our attempts to understand the 
dynamics of language learning. To exemplify 
this: the variable ‘voice of the RC’ leads to an 
about 5% increase in classification accuracy of 
the expert model. However, its predictive value 
stems from the fact that it incorporates the effects 
of theoretically motivated variables thereby 
overshadowing their effects. Passive 
constructions tend to have inanimate subjects. As 
all RCs investigated here are subject relatives, 
this entails that the head of a passive RC tends to 
be inanimate. We find that 'voice of the RC' is 
more predictive than animacy of the head, but 
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the causal structure of the theory would have it 
that head animacy affects voice, rather than the 
other way round. With few exceptions, e.g. 
Baayen, Hendrix, and Ramscar (2013) on the 
reification of distributional effects, this general 
issue of predictors being robustly significant 
while lacking theoretical motivation has in our 
view not received the amount of attention it 
deserves. More generally, considerations like 
these motivate a shift towards the employment of 
causal models (cf. Pearl 2009). 
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