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Abstract

In web corpus construction, crawling is a
necessary step, and it is probably the most
costly of all, because it requires expen-
sive bandwidth usage, and excess crawl-
ing increases storage requirements. Ex-
cess crawling results from the fact that the
web contains a lot of redundant content
(duplicates and near-duplicates), as well
as other material not suitable or desirable
for inclusion in web corpora or web in-
dexes (for example, pages with little text
or virtually no text at all). An optimized
crawler for web corpus construction would
ideally avoid crawling such content in the
first place, saving bandwidth, storage, and
post-processing costs. In this paper, we
show in three experiments that two simple
scores are suitable to improve the ratio be-
tween corpus size and crawling effort for
web corpus construction. The first score
is related to overall text quality of the page
containing the link, the other one is related
to the likelihood that the local block en-
closing a link is boilerplate.

1 Crawl Optimization and Yield Ratios

Optimizing a crawling strategy consists in maxi-
mizing its weighted coverage WC(t) at any time
t during a crawl (Olston and Najork, 2010, 29),
i. e., the summed weight of the documents down-
loaded until t, where the weight of each crawled
document is calculated as a measure of the useful-
ness of the document relative to the purpose of the
crawl. To maximize WC, it is vital to guess the
weight of the documents behind harvested links
before download, such that documents with poten-

tially lesser weight have a lower probability of be-
ing downloaded. So-called focused crawlers (in a
broad sense) are designed to maximize WC with
respect to some specific definition of document
weight, for example when documents with a high
search-engine relevance (measured as its Page-
Rank or a similar score), documents about specific
subjects, or documents in a specific language are
desired (Chakrabarti et al., 1999; Menczer et al.,
2004; Baykan et al., 2008; Safran et al., 2012).
For our purpose, i. e., web corpus crawling, a doc-
ument with a high weight can simply be defined as
one which is not removed from the corpus by the
post-processing tools due to low linguistic qual-
ity and/or a document which contributes a high
amount of text to the corpus. Recently, an inter-
esting approach to crawl optimization along such
lines was suggested which relies on statistics about
the corpus yield from known hosts (Suchomel
and Pomikálek, 2012). Under this approach, the
weight (rather of a whole web host) is taken to be
the ratio of good documents from the host remain-
ing in the corpus after a specific post-processing
chain has been applied to the documents. Har-
vested URLs pointing to certain hosts are priori-
tized accordingly. We follow a similar route like
Suchomel and Pomikálek, but look at document-
local features instead of host statistics.

Throughout this paper, we refer to the yield ra-
tio instead of WC, although they are related no-
tions. We define the yield ratio Yd for a set Dc of
crawled unprocessed documents and a set Dr of
retained documents after filtering and processing
for inclusion in a corpus, with Dr ⊂ Dc, as:

Yd =
|Dr|
|Dc| (1)

For example, a document yield ratio Yd = 0.21
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means that 21% of the crawled documents sur-
vived the cleaning procedure (i. e., were not clas-
sified as duplicates or spam, were long enough,
written in the target language, etc.) and ended up
in the corpus. In order to maximize Yd, 79% of
the documents should not have been downloaded
in the first place in this example. A parallel defini-
tion is assumed for Yb for the respective amounts
of bytes. The document yield ratio is easier to in-
terpret because the byte yield ratio depends on the
amount of markup which has to be stripped, and
which might vary independently of the quality of
the downloaded web pages.

Obviously, the yield ratio – like the weighted
coverage – depends highly on the definition of
what a good document is, i. e., what the goal of
the crawl is. We assume, similar to Suchomel and
Pomikálek’s approach, that our tools reliably filter
out documents that are interesting documents for
inclusion a corpus, and that calculating a yield ra-
tio based on the output of those tools is therefore
reasonable.1

2 Experiment 1: Seed and Crawl Quality

In this experiment, we examine the correlation be-
tween the yield ratio of crawler seed URLs and
the yield ratio of short Breadth-First Search (BFS)
crawls based on those URLs. We used the Her-
itrix (1.14) web crawler (Mohr et al., 2004) and
an older version of the texrex web page clean-
ing toolkit (Schäfer and Bildhauer, 2012). The
tools perform, among other things, boilerplate de-
tection and text quality evaluation in the form of
the so-called Badness score (Schäfer et al., 2013).
A document receives a low Badness score if the
most frequent function words of the target lan-
guage have a high enough frequency in the doc-
ument. The Badness score is based on previous
ideas from language identification and web doc-
ument filtering (Grefenstette, 1995; Baroni et al.,
2009).

Originally, this experiment was carried out in
the context of an evaluation of sources of differ-
ent seed URLs for crawls. In a preliminary step,
we began by collecting seed URLs from various
sources:

1This claim should be backed up by forms of ex-
trinsic/task-based evaluation (Schäfer and Bildhauer, 2013,
p. 104 ff). Such an evaluation (in the form of a collocation ex-
traction task) was recently presented for our corpora in work
by Stefan Evert (Biemann et al., 2013).

1. the DMOZ directory
2. the Etools meta search engine
3. the FriendFeed social service aggregator
4. the identi.ca social bookmarking service
5. Wikipedia dumps

We scraped the content behind the URLs and
ran a state-of-the-art language identifier (Lui and
Baldwin, 2012) on it in order to obtain language-
classified seed URLs (Barbaresi, 2013).2 We then
looked specifically at the following languages as-
sociated as the single dominant language with at
least one top-level domain (TLD):

1. Dutch (.nl)
2. French (.fr)
3. Indonesian (.id)
4. Swedish (.se)

We randomly sampled 1, 000 seed URLs for
each of the 20 permutations of seed sources
and languages/TLDs, downloaded them and used
texrex to determine the document yield ratio
for the documents behind the 1, 000 seeds. The
software was configured to perform boilerplate re-
moval, removal of documents based on high Bad-
ness scores, perfect duplicate removal, and dele-
tion of documents shorter than 1, 000 characters
(after boilerplate removal). Then, we crawled
the respective TLDs, starting the crawls with the
1, 000 seed URLs, respectively. In each crawl, we
downloaded 2 GB of raw data, cleaned them, and
calculated the document yield ratio using the same
configuration of texrex as we used for cleaning
the seed documents. Figure 1 plots the data and an
appropriate linear model.

We see that there is a strong correlation (ad-
justed R2 = 0.7831) between the yield ratio of
the documents behind the seed URLs and the yield
ratio of the documents found by using the seeds
for BFS crawling. It follows that giving high pri-
ority to links from pages which are themselves
considered high-quality documents by the post-
processing tools will likely lead to more efficient
crawling. Since there is no fundamental distinc-
tion between initial URL seeds and URLs har-
vested at a later time during the crawl, this effect
is likely to extend to the whole run time of a crawl.

2See also Barbaresi, this volume.
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Figure 1: Yield ratio Yd of the crawls (y axis) plot-
ted against the yield ratio of the documents be-
hind the crawls’ 1,000 seeds (x axis). (Higher Yd

is better.) Linear model: Intercept = −0.0098,
Coefficient = 0.6332, R2 = 0.7831 (adjusted),
p < 0.001 (ANOVA).

3 Experiment 2: Crawling
with Cyclic URL Selection

Using the same configuration of tools as in Sec-
tion 2, we performed a crawl targeting Flem-
ish documents in the Belgian .be national TLD,
which hosts both Flemish and French documents
in substantial proportions. Usually, even under
more favorable conditions (i. e., when we crawl a
TLD which contains mostly documents in the tar-
get language), the yield ratio of a BFS crawl de-
creases rapidly in the initial phase, then staying at
a low level (Schäfer and Bildhauer, 2013, p. 31).
Figure 2 illustrates this with an analysis of a .de
BFS crawl from late 2011, also processed with the
same tools as mentioned in Section 2. Notice that
the .de domain hosts German documents almost
exclusively.

The interesting complication in this experiment
is thus the non-target language present in the
TLD scope of the crawler and the related question
whether, simply speaking, predominantly Flemish
documents link to other predominantly Flemish
documents rather than French documents. Since
the Badness score (calculated as described in Sec-
tion 2) includes a form of language identification,
the yield ratio takes into account this additional
complication.

We tested whether the decline of the yield ra-
tio could be compensated for by selecting “high
quality” URLs in the following manner: The crawl
progressed in five phases. In the first short burn-
in phase, we crawled 1, 000, 000 documents, and
in each of the second to fifth phase, we crawled
10, 000, 000 documents. After each phase, the
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Figure 2: Yield ratio (y axis) over time for a
BFS crawl in .de in November/December 2011
started with 231, 484 seed URLs scraped from
Bing. The yield ratio was calculated at 1, 000
snapshots of 400 MB of data (= one Heritrix ARC
file). For snapshots s1..s500: Yd = 0.141, for
snapshots s501..s1000: Yd = 0.071. The vertical
bar marks the point at which the seeds were ex-
hausted. (Schäfer and Bildhauer, 2013, p. 31)

crawl was halted, the crawler frontier was emptied,
and the crawl was then re-started with a selection
of the URLs harvested in the previous phase. Only
those URLs were used which came from docu-
ments with a Badness score of 10 or lower (= doc-
uments in which the distribution of the most fre-
quent function words fits the expected distribution
for Flemish very well, cf. Section 2), and from text
blocks with a boilerplate score (Schäfer and Bild-
hauer, 2012) in [0.5, 1] (= likely not boilerplate).
Additionally, it was made sure that no URLs were
re-used between the five phases. The very promis-
ing results are plotted in Figure 3.
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Figure 3: Yield ratio over crawl time with cyclic
URL selection in the .be TLD. The x axis shows
the crawl progression in snapshots of 400 MB of
raw crawled data (= one Heritrix ARC file). The y
axis shows the yield ratio for each snapshot. The
five phases are clearly distinguishable by the sud-
den increases in yield ratio.
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phase adjusted R2 p (ANOVA)
1 0.8288 < 0.001
2 0.9187 < 0.001
3 0.8308 < 0.001
4 0.9125 < 0.001
5 0.9025 < 0.001

Table 1: Fit of linear models for the decrease in
the yield ratios of the first 100 snapshots in each
of the five phases of the .be crawl. For the first
phase, only 50 snapshots were crawled and fitted.

The decline of the yield ratio is almost linear
for the first 100 snapshots in the five phases (cf.
Table 1), where each phase has roughly 500 snap-
shots in total, and one snapshot corresponds to
400 MB of downloaded raw data. After this de-
cline, the yield ratio remains at low levels around
0.05. Cyclic URL selection, however, repeatedly
manages to push the yield ratio to above 0.2 for a
short period. The subsequent sharp decline shows
that link selection/prioritization should rather be
implemented in the crawler frontier management
in order to achieve a constant effect over longer
crawls (cf. Section 5).

4 Experiment 3: Internal Crawl Analysis

For the last experiment, we used the most recent
version of the texrex toolkit, which writes full
link structures for the processed documents as a
by-product.3 An internal analysis of a small por-
tion of a crawled data set from the German TLD
was performed, which is part of the raw mate-
rial of the DECOW corpus (Schäfer and Bild-
hauer, 2012). The data set contains 11, 557, 695
crawled HTML documents and 81, 255, 876 http
links extracted from the crawled documents (only
<a> tags). Among the link URLs in the sam-
ple, 711, 092 are actually links to documents in
the sample, so we could analyze exactly those
711, 092 links. It should be noticed that we only
looked at links to different hosts, such that host-
internal links (navigation to “Home”, etc.) are not
included in the analysis.

In this experiment, we were interested specif-
ically in the many documents which we usually
discard right away simply because they are either
very short (below 2 KB of unstripped HTML) or
perfect duplicates of other documents. This is a

3The new version (release name hyperhyper) has been
released and documented at http://texrex.sf.net/.

positives negatives
true 69, 273 342, 430
false 237, 959 61, 430

Table 2: Confusion matrix for binary download
decisions based on the Badness of the document
containing the URL for the DECOW crawl sam-
ple described in Section 4. Badness threshold at
10. Precision=0.225, Recall=0.530, F1=0.316.

step of document selection which usually precedes
the cleansing used for the experiments described
in Sections 2 and 3. The analysis shows that of the
711, 092 link URLs in the sample, 130, 703 point
to documents which are not perfect duplicates of
other documents and which are over 2 KB long.
580, 389 of them point to documents which do not
satisfy these criteria. We then evaluated the quality
of the link environments in terms of their Badness
and boilerplate scores. The results are shown in
Figures 4 and 5.4

0.
2

0.
4

0.
6

0.
8

0 5 10 15 20 25 30 35 40 45 50

retained
deleted

Figure 4: Badness scores of the links in the crawl
analysis described in Section 4. The x axis shows
the Badness scores of the documents which linked
to the retained (“good”) and the deleted (“bad”)
documents. The y axis shows the proportion of
retained/deleted documents for which the Badness
score is ≥ x. (Lower Badness scores are better.)

The observable correlation between the quality
of a link’s context and the quality of the page be-
hind the link is stronger for the boilerplate score
than for the Badness score. For example, had
we only followed links from documents with a
Badness score of 10 or lower (= better), then

4Notice that the older version of texrex used in the
experiments described in Sections 2 and 3 assigns a boiler-
plate score of 1 to text blocks which are most likely good
text, while the new texrex-hyperhyper assigns 1 to text
blocks which are most likely boilerplate. Take this into ac-
count when comparing the thresholds mentioned there and
those reported here.
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Figure 5: Boilerplate scores of the links in the
crawl analysis described in Section 4. The x axis
shows the boilerplate scores of the blocks which
linked to the retained (“good”) and the deleted
(“bad”) documents. The y axis shows the propor-
tion of retained/deleted documents for which the
boilerplate score is≥ x. (Lower boilerplate scores
are better.)

positives negatives
true 83, 650 522, 350
false 58, 039 47, 053

Table 3: Confusion matrix for binary down-
load decisions based on the boilerplate score of
the block containing the URL for the DECOW
crawl sample described in Section 4. Boilerplate
threshold at 0.5. Precision=0.590, Recall=0.640,
F1=0.614.

0.59×580, 389 = 342, 430 bad documents would
not have been downloaded, but at the same time
0.47×130, 703 = 61, 430 good documents would
have been lost. Tables 2 and 3 show a confusion
matrix for a reasonable Badness threshold (10) and
a reasonable boilerplate threshold (0.5). Obvi-
ously, if we use Badness and boilerplate scores of
the link context to make a binary download deci-
sion, the accuracy is much too low, which is why
we suggest to merely prioritize URLs instead of
discarding them, cf. Section 5.

5 Conclusion and
Planned Crawler Architecture

We have shown that two standard cleaning algo-
rithms used in web corpus construction, i. e., text
quality evaluation based on frequent short words
and boilerplate detection (as implemented in the
texrex toolkit) have a high potential for optimiz-
ing web corpus crawling through the prioritization
of harvested URLs in a crawler system.

We are now in the process of designing a custom
web corpus crawler system called HeidiX, which
integrates the texrex post-processing tools for
weight estimation based on the methods described
in this paper. Cf. Figure 6, which schematically
shows the current design draft.5

HeidiX is designed with a system of ranked
URL back queues for harvested links (cf.
UrlQueues). Each queue holds URLs for which
the weight estimation is within a specifiable in-
terval, such that the most promising URLs are in
one queue, etc. The actual downloading is per-
formed by massively parallel fetcher threads in
the FetcherPool, which (in the final software) will
talk to a DNS cacher and a politeness manager,
which handles caching of Robots Exclusion In-
formation and politeness intervals. The fetcher
threads pop URLs from one of the ranked queues,
which is selected randomly with prior probabili-
ties inversely proportional to the rank of the queue.
Thus, promising URLs are popped more often and
less promising ones less often.

For guessing the weight, pluggable modules
can be used and combined in the Focused-
Walker container. Currently, we have the stan-
dard UrlSeenFilter, which is based on our own
self-scaling Bloom Filter implementation (Bloom,
1970; Almeida et al., 2007), and which pre-
vents any URL from being queued more than
once. We have plans for a URL-based language
guesser (Baykan et al., 2008) in the form of
the LanguagePredictor, and a prioritizer based
on the yield from specific hosts as described in
Suchomel and Pomikálek (2012) in the form of
the HostYieldPrioritizer, which reads statistics di-
rectly from the texrex module. The texrex
module extracts all hyperlinks from processed
documents and tags them with the quality scores
described in this paper, such that the QualityPri-
oritizer module can adjust the expected weight of
the document behind each URL.

The HeidiX architecture also features an al-
ternative queueing strategy in the form of the
RandomWalker, which allows users to obtain uni-
form random samples from the web based on ex-
isting algorithms (Henzinger et al., 2000; Rus-
mevichientong et al., 2001). Since obtaining such
samples is a goal which is mostly orthogonal to the

5Like texrex, it is written entirely in the FreePascal
dialect of ObjectPascal (http://freepascal.org/),
uses only very few additional C libraries, and will be released
under the GPL 3.
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Figure 6: HeidiX Crawler Architecture. Grayed modules are done as of March 2014. The Focused-
Walker implements an “efficiently locate good corpus document” URL prioritization scheme; the Ran-
domWalker implements bias-corrected Random Walk URL selection for obtaining uniform random sam-
ples.

one assumed in this paper, we do not discuss this
further here. Finally, a SnapshotKeeper module
allows users to halt and continue crawls by writ-
ing/reading the current state of the relevant com-
ponents to/from disk.

We hope that HeidiX will become a valuable
tool in both the efficient construction of very large
web corpora (FocusedWalker) and the construc-
tion of smaller unbiased reference samples as well
as web analysis (RandomWalker).
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