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We discuss sequential tagging problems in natural language processing using statistical method-
ology. We propose an automatic and domain-independent approach to modeling out-of-
vocabulary (OOV) words, that is words that do not occur in training data. Our method is
based on using probabilistic letter n-gram models to model orthography of different tags. We
show how to combine the approach with two widely used statistical models Hidden Markov
Models and Conditional Random Fields. Instead of taking the common approach of directly
using sub-strings as features resulting in an explosion in the number of model parameters,
we compress orthographic information into a small number of parameters. Experiments in
biomedical entity recognition on the Genia corpus show that the approach can alleviate the
OOV problem resulting in improvement in overall model performance.
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1 Introduction
We discuss sequential tagging problems in natural language processing (NLP) including tasks
such as part-of-speech (POS) tagging (Brants, 2000), shallow parsing (Tjong Kim Sang and
Buchholz, 2000), and named entity recognition (NER) (Tjong Kim Sang and De Meulder, 2003).
Modern NLP approaches rely on data-driven statistical models trained using manually tagged
training corpora. Commonly applied models include Hidden Markov Models (HMMs) (Brants,
2000), Maximum Entropy Markov Models (MEMMs) (McCallum et al., 2000), and Conditional
Random Fields (CRFs) (Lafferty et al., 2001). In this work, we present preliminary work on
an automatic, domain-independent approach for extracting orthographic features useful for
modeling rare words and out-of-vocabulary words, that is words which were not observed in
the training data.

All existing supervised statistical models utilize some form of feature functions, which extract
relevant information from training sentences. In sequential word tagging problems, the word
forms themselves and the words surrounding them are by default the most useful features.
Consider for example POS tagging given a relatively large training corpus. For words that are
frequently observed during training, it is reasonable to assume that all of the possible tags
of the words are present in the training data. For these words, tagging is thus reduced to
disambiguation between a limited set of known tags based on neighboring words and their tags.

Unfortunately, the word form itself is not a useful feature for out-of-vocabulary (OOV) words.
For OOV words essentially all tags are possible, which makes disambiguation based on word and
tag context more difficult. The OOV problem is typically most severe when only a small amount
of data is available for model training, and when dealing with languages with rich morphology.
The OOV problem is important, because manually tagging large amounts of training data is
resource intensive. In order to alleviate the OOV problem, it is beneficial to enrich the model
with sub-word features which model word orthography and morphology.

In some modeling problems, designing the sub-word features requires little knowledge about the
domain of the problem. For example in POS tagging, simple features describing capitalized let-
ters, presence of digits and suffixes of varying lengths, are sufficient for many languages (Brants,
2000). However, for morphologically complex languages and tasks such as NER this approach is
inadequate. Instead, domain-specific knowledge is required for manually writing a set of regular
expressions, which are then used in feature extraction. An alternative domain independent and
automatic approach is to utilize sub-strings as features. In this work, we discuss a modification
of this approach. In contrast to using a large amount of sub-string features, out approach is
based on a small number of features utilizing letter n-gram models, which are easy to employ
using existing efficient toolkits. We describe how to incorporate the features with HMM and
CRF models.

In order to evaluate our method, we present experiments in biomedical entity recognition,
a special case of NER, on the Genia corpus (Kim et al., 2004). Our results show, that the
letter n-gram features can improve the model performance with small training sets. The
improvements are more notable with CRFs, which as a discriminative log-linear model can
naturally incorporate complex, non-independent features. Although the present work focuses
on biomedical entity extraction, we believe that the approach could be beneficial in other
domains as well.

The rest of the paper is as follows. In Section 2, we briefly discuss previous, related research. In
Section 3, we describe the letter n-gram models and how to use them to extract orthographic
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features for the HMM and CRF models. Experiments conducted in biomedical entity recognition
are described In Section 4 along with a discussion. We provide conclusions in Section 5.

2 Related Work

In the experimental section of this work, we provide results on the Genia corpus, the data set
used in the shared task of biomedical entity recognition in the joint workshop of BioNLP/NLPBA
2004 (Kim et al., 2004). Among the participants of this task, the most commonly adopted
approach to modeling OOV words was to use manually constructed regular expressions and
affixes combined with gazetteers and POS features. This was the approach taken by the best
performing system described by (Zhou and Su, 2004). We compare our n-gram-based feature
extraction approach with the regular expression set used in their system, originally described
by (Shen et al., 2003), and show that our method performs better1.

The idea of constructing a domain-independent set of orthographic features utilizing letter
n-grams is not new. Probabilistic letter n-gram models have been used in term recognition.
For example (Vasserman, 2004) employed them as classifiers in chemical name recognition
in a similar manner they have been utilized in language identification (Vatanen et al., 2010).
Our use of the n-gram models to capture word orthography closely resembles theirs. However,
we investigate incorporating letter n-gram models as feature extractors in statistical taggers.
Also, plain letter n-grams (raw sub-strings of words) have been used extensively as features in
taggers, see for example (Rössler, 2004). However, this approach results in an explosion in the
number of model parameters, which could be avoided by using the feature extraction approach
presented in this work.

Automatic and domain-independent orthographic feature extraction was recently discussed
by (Fujii and Sakurai, 2012). The central idea in their work was to employ combined tag level
and character level language models based on a hierarchical Bayesian approach. They also
described experiments on the Genia corpus. However, our CRF model appears to outperforms
their model. Additionally, although orthographic features are used to combat the OOV problem
and have little effect on recognition of frequent words, the discussion provided by (Fujii and
Sakurai, 2012) lacks this aspect completely.

To our knowledge, the highest performance on the Genia corpus has been reported by (Vish-
wanathan et al., 2006). Our work is similar to theirs in that we use a CRF model. The key
differences are that their results were obtained using an extensive regular expression set and
manually prepared features. Unfortunately, the description of the features in the work was
severely underspecified and we could not reproduce their results. This made it impossible to
compare the system to our system. Additionally, their evaluation is non-standard in that they
fitted model parameters directly to the test set instead of using a development set. This results
in overly optimistic performance. The reason for the non-standard evaluation in their work was
that they focused on comparing time complexities of model optimization algorithms instead of
model performances.

3 Methods

In this section, we describe the methods. We first describe the letter n-gram models. Then, we
go on to describe how to utilize the n-grams in the lexical model of an HMM and for feature
extraction in CRFs.

1Note, however, that their system incorporates a wide variety of other contextual features thus achieving higher
overall performance.
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3.1 Obtaining Tag-Specific Word Likelihoods Using Letter N-Grams

Letter-based language models are used to assign a probability for a word represented as a
sequence of letters (w1, w2, . . . , wm−1, wm). Given the sequential nature, a suitable approach
to obtaining the probability is to use a factorization

p(word) =
m∏

i=1

p(wi | w1, . . . , wi−1) , (1)

where p(wi | w1, . . . , wi−1) denotes the probability of letter wi given the context (w1, . . . , wi−1).
Due to sparsity, the context is usually approximated utilizing only the n− 1 previous letters
(Markov assumption) yielding the approximation

png(word)≈
m∏

i=1

png(wi | wi−n+1, . . . , wi−1) , (2)

where the distribution png(wi | wi−n+1, . . . , wi−1) is referred to as the letter n-gram model. The
individual probabilities png(wi | w1, . . . , wi−1) can be obtained using smoothed maximum
likelihood estimates (Chen and Goodman, 1999) or the maximum entropy model (Chen and
Rosenfeld, 2000).

The key idea of our approach for is to learn a separate letter n-gram model for each tag in the
tag set. This can be achieved by dividing the words observed in the training corpus into L sets,
where L is the number of tags, so that each set contains words that have been tagged at least
once with the corresponding tag. Then, a tag-specific n-gram model

png(wi | w1, . . . , wi−1, tag)

can be trained on each of the words sets. Hence, the likelihood of a word being generated by a
n-gram model corresponding to a particular tag can then be written as

png(word | tag) =
m∏

i=1

png(wi | wi−n+1, . . . , wi−1, tag) . (3)

3.2 Hidden Markov Models

Model. Hidden Markov Models (HMMs) are a well known generative statistical model suitable
for tagging and segmentation tasks (Brants, 2000). In this work, we employ a second degree
HMM. In a second degree HMM for sentence tagging, the estimate of the probability of a
sequence of tags y = (y1, . . . , yt , . . . , yT ) given an input sentence x = (x1, . . . , x t , . . . , xT )
is

p(y | x ) =
T∏

t=1

p(x t | yt)p(yt | yt−1, yt−2) . (4)

The estimates p(yt | yt−1, yt−2) are called transition probabilities and can be readily computed
from a training corpus. To deal with data sparseness, some form of smoothing is usually
necessary. We use deleted interpolation following (Brants, 2000).

Two extra tags y0 and y−1 are needed in formula (4) for the trigram estimates p(y2 | y1, y0)
and p(y1 | y0, y−1). These are so called buffer tags #, which are appended to tag sequence
boundaries.
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Lexical modeling utilizing letter n-grams. The conditional probabilities p(x t | yt) are called
lexical emission probabilities. They are determined by a lexical model. Our HMM implementation
uses a lexical model, which estimates p(x t | yt) for known words based on smoothed ML
estimates computed from training data. It estimates the conditional probability p(x t | yt) for
an OOV word x t and a tag yt as the probability png(x t | yt) given by the letter n-gram model
for tag yt . The lexical emission probability is thus

p(x t | yt) =

¨
(C(x t , yt) +α)/(C(x t) + Nα) if x t is known.

png(x t | yt) if x t is OOV.
(5)

The term N in formula 5 denotes the number of unique word forms in the training data and its
smoothing coefficient α is determined by minimizing the tagging error on a development data
set.

3.3 Linear-chain Conditional Random Fields

Model. Linear-chain Conditional Random Fields (CRFs) are a discriminative, log-linear model
for tagging and segmentation presented originally by Lafferty et al. (2001). The central idea of
the linear-chain CRF is to exploit the dependencies between the output variables using a chain
structured undirected graph, also referred to as a Markov random field.

Formally, the model for input x (words in sentence) and output y (tags) is written as

p (y | x ; w )∝
T∏

t=1

exp
�

w> f (yt , x , t)
� T∏

t=2

exp
�

w> f (yt−1, yt , x , t)
�

, (6)

where t indexes the characters, T denotes sentence length, w the model parameter vector, f
the vector-valued feature extraction function, and w> f dot product between w and f . The
purpose of f is to capture the co-occurrence behavior of the output configurations (yt) and
(yt−1, yt) and a set of features describing the input x at word position t.

As a discriminative log-linear model, the CRFs can naturally incorporate arbitrary, overlapping
features which might be useful for the prediction. The downside of this freedom in feature
design is the larger computational cost of model training compared to the HMM models.

Enriching Orthographic Feature Extraction With Letter N-Grams. The performance of the
CRF model depends heavily on the quality of the features included in the feature vector. As
our default feature set, we use binary-valued features describing the input x at position t with
word identities in position t − 2, . . . , t + 2. This feature set performs well if there exists ample
training data, or generally, if the number of OOV words is small.

In order to alleviate the OOV problem, we propose modeling word orthography utilizing tag-
specific letter n-gram models, png(word|tag), presented in section 3.1. They key idea is to to
represent any arbitrary word using L features, where L is the number of tags in tag set. The
value of each of these features is the posterior probability of the corresponding tag given the
word, png(tag|word). Therefore, instead of using the likelihoods, the CRFs exploit the posterior
probabilities which directly hold the relevant information when choosing best tags for words.
The features are combined with different tag configurations in a standard manner. The aim of
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these features is simply to associate a high tag posterior value to a high probability of assigning
the word with that particular tag.

Formally, the posterior probability of a word given a tag is given by the standard Bayes’ rule as

png(tag|word) =
png(word|tag)p(tag)∑

tag ′ png(word|tag ′)p(tag ′)
(7)

where the likelihoods png(word|tag) are obtained as presented in Section 3.1. The tag priors
p(tag) are simply the counts of tags in the training data normalized to sum up to one.

Parameter estimation. In general, the CRF model parameters w are estimated using a train-
ing set of annotated text using, for example, the maximum likelihood criterion as in (Lafferty
et al., 2001). In this work, we estimate the parameters using the averaged structured perceptron
algorithm presented by Collins (2002). The perceptron algorithm proceeds one training instance
at a time by performing maximum a posteriori (MAP) inference, that is prediction of most likely
output configuration over the graph, using the standard Viterbi search, and by updating the
model parameters using a simple additive rule if an erroneous prediction occurs. Subsequent to
training, test instances are tagged again using the Viterbi search. The structured perceptron has
a single hyper-parameter, namely the number of passes over training data, which is optimized
using a separate development set.

4 Experiments

We present experiments conducted in biomedical entity recognition on the extended GENIA
(version 3) corpus (Kim et al., 2004). We compare three feature sets, namely word identities
for baseline, word identities combined with a set of regular expressions adapted from the ones
used by (Shen et al., 2003), and word identities combined with letter n-gram based features
using HMM and CRF models as described in Section 3. Appendix A contains the complete set of
regular expressions that we used.

4.1 Setup

Task and data. Bio-entity recognition is the task of finding and classifying biological entities
such as the protein CD28 surface receptor in the sentence fragment “Activation of the CD28
surface receptor provides...”. The task is viewed as tagging the words in a sentence using three
basic tag types: beginning of an entity (B) , inside an entity (I) and outside an entity (O) as
illustrated in Figure 1.

MTIIa mRNA level increased significantly .
B-RNA I-RNA I-RNA O O O

Figure 1: Biological entities X are chains B-X I-X ...

The GENIA corpus (Kim et al., 2004) consists of biomedical abstracts with a manually prepared
named entity annotation. Each word token in the corpus is annotated with a bio-entity tag or
an O tag if the word does not belong to a bio-entity. The tag set consists of 11 entity tags: the O
tag and {B, I} tags for five entity classes corresponding to DNA, RNA, protein, cell line and cell
type respectively. Additionally, we assume sentence start and end tags and markers.
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Data Set Sentences Words
Train. 114 2798
Train. 229 5865
Train. 459 11667
Train. 918 23675
Train. 1836 48291
Train. 3672 97290
Train. 7345 194637
Train. 14690 390058
Devel. 3856 102493
Test 3856 101039

Table 1: Number of sentences and word tokens in training, development and test data sets.

By default, the corpus is divided into training (18,546 sentences, 492,551 tokens) and test
(3,856 sentences, 101,039 tokens) sets. We form a separate development set by extracting
the last 3,856 sentences (102,493 tokens) from the training set. In order to observe the effect
of training data set size on model performances, we form eight training sets by taking first n
sentences from the total 14,690 training instances for various values of n, see Table 1.

Model evaluation. The model performances are evaluated using the f-score. The f-score is
the geometric mean of micro-averaged precision (the percentage of correctly assigned entities
with respect to all assigned entities) and recall (the percentage of correctly assigned entities
with respect to the gold standard entities).

Feature extraction. We compare three different feature sets. The first set is the WORD set,
which includes only the current word to be tagged for HMMs and a five word window around
the current word for CRFs as described in Sections 3.2 and 3.3, respectively. The second set
is the REGEXP set, which additionally contains the regular expressions originally presented
by (Shen et al., 2003) (see Appendix A). The third set is the N-GRAM set, which consists of
the WORD features combined with letter n-gram features as described in Sections 3.2 and 3.3,
respectively.

N-gram model, CRF and HMM training. We trained the tag-specific letter n-gram models
on training sets of various sizes described in Table 1. We used the SRILM toolkit (Stolcke et al.,
2011) to implement the n-gram models. More specifically, we used n-grams of length 9 with
Witten-Bell smoothing, which appeared to work sufficiently well in preliminary experiments on
the development data set. The HMM and CRF models were trained on the training data sets
using three feature sets (WORD, REGEXP, N-GRAM) as described in Sections 3.2 and 3.3. As to
CRF model training, the perceptron algorithm is terminated when development set performance
has not improved during the last five passes over the training set.

Software. We used our own implementations of the CRF and HMM models. For training the
letter n-gram models, we used SRILM as described above.
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Train. OOV WORD REGEXP N-GRAM
114 35.8 34.1 22.7 27.3 33.2 26.8 29.7 29.4 37.5 33.0
229 28.3 41.5 28.2 33.5 40.4 33.2 36.4 33.1 46.1 38.5
459 22.1 48.8 35.5 41.1 48.0 40.1 43.7 41.2 47.8 44.2
918 17.4 52.8 41.0 46.1 52.3 40.1 48.7 46.0 53.0 49.3

1836 13.5 56.7 44.3 49.8 56.8 49.2 52.7 52.4 56.8 54.5
3672 10.0 61.1 51.2 55.7 59.8 54.8 57.2 57.0 61.7 59.3
7345 7.2 64.2 58.7 61.3 63.6 61.0 62.2 61.9 65.4 63.6

14690 5.2 67.5 64.2 66.5 65.8 65.5 66.0 65.5 69.4 67.4

Table 2: Results for the CRF model using varying training data set sizes (in sentences) and
feature sets. For each feature set, the figures are recall, precision and f-score.

Train. OOV WORD REGEXP N-GRAM
114 35.8 22.0 35.6 27.2 20.5 34.5 25.7 16.5 7.7 10.5
229 28.3 27.2 37.0 31.4 26.3 35.7 30.3 27.1 15.1 19.4
459 22.1 33.4 42.3 37.3 32.5 40.8 36.2 34.6 32.4 33.5
918 17.4 37.0 44.8 40.6 39.1 44.7 41.7 41.5 40.3 40.0

1836 13.5 40.5 47.7 43.8 42.8 47.8 45.1 47.1 45.9 46.5
3672 10.0 46.7 51.0 48.7 49.0 50.5 49.7 53.4 50.9 52.1
7345 7.2 52.0 53.8 52.9 53.5 53.0 53.3 57.1 55.1 56.1

14690 5.2 56.5 56.6 56.6 57.8 56.3 57.0 60.4 57.4 58.9

Table 3: Results for HMMs using varying training data set sizes (in sentences) and feature sets.
For each feature set, the figures are recall, precision and f-score.

4.2 Results

The results for varying training data set sizes are presented in Tables 2 and 3 for the CRF and
HMM models, respectively. The columns titled OOV correspond to the percentages of OOV
word tokens in the test set. The performance values obtained using different feature sets are in
order recall, precision, and f-score.

Using the CRF model, the regular expression feature set provided modest, yet consistent,
improvement over the word identity context baseline. Utilizing the letter n-gram features
yielded performance gains compared to both the word identity context baseline and the regular
expression feature set. This improvement took place when small training sets were used.

The results for the HMM models using the different feature sets differ somewhat from the results
of the CRF models. Both the REGEXP and N-GRAM features initially perform worse than the
WORD features. Roughly the same performance for all features is achieved when there are 918
sentences of training data and in the next training set of 1836 sentences the N-GRAM features
outperform the other feature sets. The result for the complete training set of 14690 sentences
shows that the N-GRAM feature set is the best one achieving f-score 58.9 versus 57.0 for the
REGEXP features and 56.6 for the WORD features. Overall, the HMMs consistently resulted in
considerably worse performance compared to the CRF models for all training sets and features.
The improvement given by the N-GRAM features is comparable to the improvements for the
CRF model.
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4.3 Discussion

For the complete data set, the letter n-gram features give the best results for both the HMM
and the CRF. However, the CRF model clearly outperforms the HMM for all training data set
sizes and all feature sets. The improvements given by the letter n-gram features are similar for
the CRF and HMM models. However the CRF model with letter n-gram features consistently
outperform the models with other feature sets for all training data set sizes. In contrast, the
HMM with letter n-gram features performs worse than the models with word and regex features
when the training set is smaller than 918 sentences.

Unfortunately, our baseline models are too weak to allow for a conclusive assessment of the
impact of our approach. A model trained on suffixes and prefixes or all sub-strings of words
should have been included in the evaluation. Such an approach could give higher performance,
but would also result in a substantially higher number of features implying a longer training
time and greater memory footprint.

The performance of the letter n-gram feature HMM clearly shows that the letter n-grams are
not very reliable on small training sets. Nevertheless the letter n-gram model of the CRF model
achieves improvements even for the smallest training set of 114 sentences. This is most likely a
direct result of the discriminative training of CRF models, which can successfully integrate the
uncertain information given by the letter n-grams.

The poor performance of the HMM compared to the CRF may partly be explained by the fact
that there are two useful information sources which the HMM cannot use, but the CRF can
utilize. Neighboring words cannot be used in the lexical model of the HMM. Our attempts to do
this in the development phase were unsuccessful.

Finally, direct comparison of our models with the hierarchical Bayesian approach reported
by (Fujii and Sakurai, 2012) is difficult because their model was trained using a semi-supervised
approach. In other words, when using small data set sizes, their model exploited the remainder
of the training corpus without the tagging information. Effectively, this means that compared
to our approaches, their model utilized more data in training. However, a fair comparison
can be made when all the models used the complete training data set of 18,546 sentences for
training and model development. Using this full data, our CRF model outperformed their model
regardless of the feature set. Additionally, the CRF model utilizing the letter n-gram features
appeared to yield at least comparable if not improved performance compared to their model on
smaller data sets.

5 Conclusions

We discussed biomedical entity recognition using statistical methodology. We proposed an
automatic and domain-independent approach to modeling OOV words utilizing probabilistic
letter n-gram models. We described how to combine the approach with Hidden Markov
Models and Conditional Random Fields. The motivation behind our approach was to compress
orthographic information captured by sub-strings in a small set of features. Experiments in
biomedical entity recognition showed that the approach did alleviate the OOV problem resulting
in improved overall model performance. Unfortunately, the true impact of the discussed
approach is left unclear due to the lack of strong baselines in this preliminary work.

In future work, we aim to extend the experimental results provided in this paper with additional
data sets, improved baseline models, and closer error analysis on OOV words.
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A Regular expression features

The regular expression features in Python Re-syntax adapted from (Shen et al., 2003).

Feature name Regular expression
Comma ^[,]$
Dot ^[.]$
Left Paren. ^[(]$
Right Paren. ^[)]$
Left Square Bracket ^[\[]$
Right Square Bracket ^[\]]$
Roman Numeral ^[IVXCM]+$
Greek Letter ^(Alpha| ... |Omega|alpha| ... |omega)$
Stop Word ^(a|about|...)$
ATCG Sequence ^[ATCG]+$
Digit ^[0-9]$
All Digits ^[0-9]+$
Digit Comma Digit ^[0-9]+[,][0-9]+$
Digit Dot Digit ^[0-9]+[.][0-9]+$
Capital ^[A-Z]$
All Capitals ^[A-Z]+$
Capital Low Alpha ^[A-Z][a-z]+$
Capital Mix Alpha ^[A-Z]([A-Za-z]*[a-z][A-Za-z]*[A-Z][A-Za-z]*|$

[A-Za-z]*[A-Z][A-Za-z]*[a-z][A-Za-z]*)$
Low Mix Alpha ^[a-z]([A-Za-z]*[a-z][A-Za-z]*[A-Z][A-Za-z]*|$

[A-Za-z]*[A-Z][A-Za-z]*[a-z][A-Za-z]*)$
Alpha Digit Alpha ^[A-Za-z][0-9]+[A-Za-z]$
Alpha Digit ^[A-Za-z][0-9]+$
Digit Alpha Digit ^[0-9]+[A-Za-z][0-9]+$
Digit Alpha ^[0-9]+[A-Za-z]$
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