
21

Proceedings of the 9th Brazilian Symposium in Information and Human Language Technology, pages 21–29,

Fortaleza, CE, Brazil, October 21–23, 2013. c©2013 Sociedade Brasileira de Computação

Improving CoGrOO: the Brazilian Portuguese Grammar
Checker

William D. Colen M. Silva1, Marcelo Finger1

1Instituto de Matemática e Estatı́stica – Universidade de São Paulo (IME/USP)
Rua do Matão, 1010 – Cidade Universitária – São Paulo – SP – Brasil – CEP 05508-090

{colen,finger}@ime.usp.br

Abstract. This paper highlights the main results obtained in an effort to im-
prove the grammar checker CoGrOO, a hybrid system which initially annotates
the text using statistical Natural Language Processing (NLP) techniques, and
then apply a rule-based analysis to identify possible grammar errors. The goal
was to reduce omissions and false alarms while improving true positives with-
out adding new error rules. The work contributed with a detailed evaluation
of low-level NLP modules and the results were compared to state-of-the-art re-
sults. The low-level NLP modules are available as open source software, thus
improvements on their effectiveness will make them robust, free and ready-to-use
alternatives for other systems.

1. Introduction
Apache OpenOffice is a multi-platform and multilingual office suite, and an open source
project1. As with its sister project LibreOffice, it is the successor of the OpenOffice.org
project, whose first release dates back to 2002. OpenOffice.org did not possess grammar-
checking functionality, which made it less competitive compared to other non-open source
alternatives. This motivated some NLP researchers to create CoGrOO2, a Brazilian Por-
tuguese grammar checker, a project initially sponsored by FINEP (a Research and Projects
Funding agency). This research on CoGrOO began in 2004, and since its first release in
2006 it has been adopted by important companies like Petrobras - the biggest company in
Brazil and the 8th biggest in the world in market value - and Celepar - the Paraná State
information technology company, responsible for deploying software for government of-
fices and public schools. CoGrOO accumulated over a hundred thousand downloads from
its official website.

CoGrOO is an open source project. It is capable of identifying Portuguese mis-
takes like pronoun placement, noun agreement, subject-verb agreement, usage of the ac-
cent stress marker (‘), and other common errors found in Brazilian Portuguese writing.

The CoGrOO grammar checker takes the user’s text as input, and outputs a list
of possible errors. To accomplish this, it performs a shallow parsing followed by rule-
based checking. Initially it analyzes the text using Natural Language Processing (NLP)
techniques. The text goes through a pipeline of annotators to identify sentence and token
boundaries, to assign a part-of-speech (POS) tag for each word and to find phrase chunks

1Apache OpenOffice - Free and Open Productivity suite, http://openoffice.org, last accessed
on 09/04/2013

2CoGrOO official website, http://cogroo.org, last accessed on 09/04/2013



22

and subject-verb relationships. The tagset is based on the Floresta tagset [Afonso 2003].
Then it matches a set of man-made error rules with the resultant structure. An error rule
consists of a pattern of words, POS tags, or phrase tags, and some other information, like
a description of the error and how an alternative suggestion can be generated.

Although CoGrOO is a successful project considering the number of downloads,
which already surpasses 180 thousands3, its internal components could benefit from sev-
eral improvements, and that was the work proposed by [Silva 2013], which is surveyed in
this work. The main contribution was an analysis of each module of the grammar checker
(e.g. the sentence detector, tokenizer, POS tagger, chunker, shallow parser) to determine
possible effectiveness bottlenecks and to propose changes to overcome them. To verify
the effects of improvements in each module, no new error rules were created to improve
coverage; the work focused only on the statistical modules of CoGrOO. Improvements in
CoGrOO’s modules have further impact in other free software that are based on them, as
discussed in Section 6. Expanding the number of error rules was left for future studies.

As reviewed texts are expected to have very few grammar errors, the grammar
checker was evaluated against false errors using the reviewed part of the Floresta corpus
[Afonso 2003], which is extracted from newspaper articles.

The coverage of grammatical errors is checked with 3 corpora: a) a new cor-
pus assembled from real texts submitted by CoGrOO users; b) the Metro corpus
[Menezes et al. 2006], composed of authentic texts with manually annotated grammar
errors; and c) the PROBI corpus [Martins 2002], composed of both correct and incor-
rect sentences, assembled to evaluate ReGra, a proprietary Brazilian Portuguese grammar
checker.

The following sections describe the main results; for full details, see [Silva 2013].
Section 2 defines the problem and the objectives. Section 3 presents the architecture of
the system, and Section 4 the dictionaries and corpora used during his work. Section 5
describes the development and the experimental results and Section 6 why these improve-
ments in CoGrOO’s modules have further impact in other free software. Finally, Section
7 shows future work opportunities and the conclusion.

2. Problem statement and objectives

A written text is subject to errors such as [Kinoshita et al. 2006]:

• Spelling errors: when a word is misspelled, for example as in sugeito, while
the correct spelling is sujeito (subject);
• Grammatical errors: when grammatical rules are not observed, for example in
Nós vai para casa. (We goes home). This error relates to subject-verb
agreement.

Automatic proofreaders are useful to help write documents with fewer mistakes.
Currently, CoGrOO only handles grammar error, checking if the text complies with some
grammar rules. The task is difficult and complex. There is no established best strategy

3CoGrOO downloadscount from Source Forge, http://sourceforge.net/projects/
cogroo/files/stats/timeline?dates=2006-11-13+to+2013-04-09, last accessed on
09/04/2013



23

for assembling this kind of application. It requires a number of dictionaries and language
models, and it must be computationally efficient.

Grammar checker effectiveness can be evaluated by measuring the number of false
alarms versus correctly pointed out error; the former occurs when the grammar checker
points out an error where there is none, the latter means the program’s goal was achieved.
False alarms are known as false positives and the fewer the better. Correctly pointed out
errors are known as true positives, and the higher the better.

The goal was to increase the number of true positives and decrease the number of
false positives, without creating any new error rule, which was left for future studies.

3. Proposed system architecture
The Grammar Checker CoGrOO is a hybrid NLP system, in the sense that it employs
statistical analysis to perform text segmentation and categorization, and uses hand-written
rules to find error patterns. The system is composed of the following modules organized
as a pipeline:

1. Sentence Boundary Detector: receives a text as input and divides it into sentences;
2. Tokenizer: receives a sentence and divides it into words and punctuation marks;
3. Name Finder: receives the sentence tokens and identifies the potential proper

nouns, such as person, places and organization names, and merges them as one
token;

4. Contraction Finder: receives the sentence tokens and identifies Portuguese con-
tractions, such as na which is the contraction of em + a, and expands them;

5. Part-of-Speech Tagger: receives a sentence and assigns the most probable mor-
phological tag to its lexical items, according to their context;

6. Featurizer: receives the tokens and the morphological tags associated to them, and
outputs features such as gender, number, tense and person;

7. Chunker: receives a tagged text and finds its noun phrases, verbal phrases, prepo-
sitional phrases and adverbial phrases;

8. Chunk-Head Finder: receives a tagged sentence with the associated chunks and
searches for the head of each chunk;

9. Shallow Parser: receives a tagged sentence with the associated chunks and
searches for structures such as the predicate, subject and object of the sentence;

10. Grammar Error Detector: this module looks for grammar errors in the input sen-
tence. It is activated after all the previous sentence analysis steps have been done.

This architecture, which is shown in Figure 1, differs from previous versions of
the grammar checker. A Contraction Finder was already available, but it was unable to
use contextual information to decide whether ambiguous tokens are contractions. For
example, the token consigo can be the contraction of the preposition com and the
pronoun sigo, or the present form of the verb conseguir, but previous version would
always split it as if it were a contraction.

Another change is the introduction of the dedicated Featurizer module. In the
previous versions, the featurizaton task was performed by the POS Tagger, which suffered
from data sparseness due to the augmented tagset. Similarly with the Chunk-Head Finder,
whose functionality was previously handled by the Chunker. A deeper justification for
these changes can be found in [Silva 2013].



24

Sentence
Boundary
Detector

Text

Tokenizer Name
Finder

POS
Tagger Chunker Shallow

Parser

Lexical
Dictionary

Grammar
Error

DetectorLanguage
Models

Error
Patterns

Suggestions

Chunk-Head
Finder

Contraction
Finder

Figure 1. Grammar checker processing pipeline

A chunk-head is used by the algorithm of the Grammar Error Detector to assign
a gender and a number to noun phrases. The module was trained using a binary tagset,
which simply denotes whether a token is a chunk-head or not. The training data could be
easily derived from the Portuguese corpora detailed in the next section.

All modules but the Grammar Error Detector were built using statistical machine
learning techniques; more specifically, the Maximum Entropy [Ratnaparkhi 1996] and
Perceptron [Collins 2002] frameworks. For most of the tasks, Perceptron proved con-
sistently more effective compared to Maxent. CoGrOO relies on implementations from
Apache OpenNLP framework.

The Grammar Error Detector is responsible for detecting possible errors in the
input sentence through the use of hand-written error rules. An error rule is just a pattern
that is searched in the input sentence. The rule patterns are compiled into a Finite State
Machine and applied to the text. Aiming to observe how the other modules affect the
effectiveness of the Grammar Error Detector, this module is not changed in this work.

4. Linguistic resources

A number of linguistic resources were used to develop the grammar checker: corpora,
which are used both for training the machine learning modules, as well as to evaluate the
grammar checker; and lexical dictionaries, which are used to support the POS Tagger and
Featurizer tasks.

4.1. Corpora

Two different types of corpora were used during the development of this work: a) corpora
annotated with morphology and syntax; and b) corpora annotated with grammar errors.
The first type was used to train the statistical machine learning modules of the grammar
checker, while the latter to evaluate the grammar checker effectiveness.

To train the statistical machine learning modules two corpora were effectively
used. The first was Floresta Virgem (Virgin Forest), which is a set of trees automatically



25

created from the Constraint Grammar (CG) output of the PALAVRAS parser4. It is a
96,000-sentence corpus, with both Brazilian and European variants of Portuguese, but
only the Brazilian variant was used. The Brazilian portion is called the CETENFolha,
and is a subset of the NILC Corpus. Its text material comes from the Folha de São Paulo
newspaper. This corpus is useful for training and test modules when quantity is better
than quality.

The second was Bosque (Grove) which is a subset of Floresta Virgem, with fully
revised annotations of 186,000 words and 9,368 sentences, again with both Brazilian
and European variants of Portuguese, but only the Brazilian variant were used. It is
available in flat CG format, or as trees in Árvores Deitadas format (Lying Trees) (AD)
[Afonso 2006] according to the Floresta Symbolset5. From AD format, it is easier to ex-
tract structural information, like chunks and clauses. This corpus is useful to train and test
modules when quality is better than quantity.

To evaluate the grammar checker four corpora were used. The first is the previ-
ously mentioned Bosque corpus, which being a professionally revised text is supposed
to have very few grammar errors. This corpus is used to measure the number of false
positives.

PROBI [Martins 2002] is the second used corpus. Developed to evaluate the Re-
Gra grammar checker, it is composed of 11,625 sentences supposedly verifiable in the
written record of Brazilian Portuguese users. It provides: a) a set of correct and legiti-
mate sentences; b) a set of sentences which, although belonging to dialectal varieties of
Brazilian Portuguese and practised by a significant subset of native speakers, are not con-
sidered standard Portuguese nor recommended or tolerated by dictionaries and grammars;
c) a set of sentences with typos or editing mistakes that do not belong to any variety of
Portuguese. 2,616 of its sentences have mistakes, which are categorized.

The third is the Metrô Corpus, which was assembled to evaluate an old version of
CoGrOO grammar checker [Menezes et al. 2006]. The texts were extracted from the São
Paulo subway company’s institutional website [Metro 2011], in December 2006. From
its 781 sentences, 53 were manually annotated as having grammar errors.

Finally, the CoGrOO Community Corpus. CoGrOO Community is a web appli-
cation that provides collaborative tools for grammar-checker users. Users of CoGrOO
were invited to join the Community portal and submit sentences that caused CoGrOO to
fail, indicating whether it is a false negative or false positive. In each case the user pro-
vides relevant classification details. The corpus has 457 sentences from which 188 were
manually annotated as having grammar errors.

4.2. Dictionary

The lexical dictionaries are used to support the POS tagging task, for example, by restrict-
ing which tags should be assigned to tokens. The entries in a lexical dictionary include
word class and inflection information.

4The Constraint Grammar category set of Palavras http://beta.visl.sdu.dk/visl/pt/
info/portsymbol.html, last accessed on 09/04/2013

5Grammatical categories (tags) used in the Floresta project http://beta.visl.sdu.dk/visl/
pt/info/symbolset-floresta.html, last accessed on 09/04/2013



26

The CoGrOO lexical dictionary derives from JSpell, which is a morphological
analysis tool created by the Natura Project [Almeida 2011]. Jspell.br is an initiative of
the CoGrOO team and its contributors which objective is to translate the JSpell dictionary
to the Brazilian variant of Portuguese. The work is currently under development, but the
dictionaries are already available and can be used by CoGrOO modules. Both dictionary
and sources are available online6.

5. Experiments and development
The objective of the experimental phase was to spot bottlenecks of the grammar checker
processing pipe, especially those causing false positives. The experiments were divided
into three phases:

Initial evaluation In this phase the current version of CoGrOO, version 3.1.2, is tested
for true positives and false positives using the evaluation corpora.

NLP Development and Evaluation During this phase, each of the CoGrOO proposed
modules was individually developed and tested. The development consists of the creation
of a new implementation module, followed by an evaluation of each different imple-
mentation using a 10-fold cross-validation. Finally, each implementation is evaluated by
measuring its impact in the grammar checker effectiveness. After this process, the best
module is added to the new grammar checker baseline, which is used in the development
of the following modules.

Final evaluation The final evaluation measured how the new modules impacted the
grammar checker effectiveness and compares the results with the initial evaluation.

A detailed discussion of all experiments can be found in [Silva 2013], but due to space
restrictions, only the final results are shown here.

5.1. Low-level NLP modules

Table 1 highlights the evaluation results of the low-level NLP components, and Table 2
the configuration which obtained the best result. It is important to notice that for this
work not only the best F1 or accuracy score was important, but also the impact of the
configuration in the grammar checker effectiveness.

According to Table 2, Perceptron models performed better than Maximum En-
tropy (Maxent) for all modules but for Chunk Head Finder. The modules that benefited
from the size of Floresta Virgem CETENFolha (VCF) were Sentence Detector, Tokenizer
and Contraction Finder, while the others were more effective while trained with Bosque
CETENFolha (CF).

The Apache OpeNLP defaults were sufficient to train efficient models for Name
Finder and Chunker, but others required some additional tuning. This was the case of the
Sentence Detector, which F1 raised from 98.928% to 99.237% with the additional con-
textual predicates (ACP) designed for Portuguese and the abbreviation dictionary (ABB).

6JSpell.br website, http://github.com/cogroo/jspell.br, last accessed on 09/04/2013



27

Module Accuracy Precision Recall F1

Sentence Detector 99.215 99.259 99.237
Tokenizer 99.949 99.933 99.941

Name Finder 89.019 86.002 87.484
Contraction Finder 99.948 99.945 99.947

POS Tagger 96.291
Featurizer 96.743
Chunker 96.341 96.431 96.386

Chunk Head Finder 99.777
Shallow Parser 83.818 82.493 83.150

Table 1. Final 10-fold cross-validation score for each of the CoGrOO models.

Tokenizer also benefited by the abbreviation dictionary and by the alphanumeric opti-
mization (AO), which skips tokens composed only by alphanumeric characters, and the
F1 raised from 99.921% to 99.941%. To the default POS Tagger were added: the JSpell.br
dictionary (DIC), as well as a dictionary based on the training data (MDIC); additional
context from the Name and Contraction Finder modules (AC), which allows using deci-
sions taken by that modules as features; and a custom context generator (CCG) to boost
the handling of the tokens a and que. This improved the accuracy from 94.672% to
96.291%. All these values refer to 10-fold cross-validation experiments.

Contraction Finder, Featurizer, Chunker Head Finder and Shallow Parser were
implemented from scratch because there are no OpenNLP modules for such tasks.

Module Algorithm Cutoff Corpus Options
Sentence Detector Perceptron 0 VCF ACP, ABB

Tokenizer Perceptron 0 VCF ABB, AO
Name Finder Perceptron 0 CF

Contraction Finder Perceptron 8 VCF
POS Tagger Perceptron 0 CF DIC, MDIC, CCG, AC
Featurizer Perceptron 0 CF DIC, WHNCS
Chunker Perceptron 0 CF

Chunk Head Finder Maxent 8 CF
Shallow Parser Perceptron 0 CF

Table 2. The configurations which generated the best models.

Table 3 shows how the changes in the low-level modules affected the grammar
checker effectiveness. The changes affected especially the precision. For PROBI cor-
pus the precision raised from 23.21% to 60.03%, and for Metro corpus from 19.28% to
44.12%. For Bosque corpus, which have been proof-read, the number of false positives
decreased from 245 to 69 in 9,368 sentences. This improvement is significant to the user
experience because the less false positives, the less the user is interrupted by the grammar
checker and the higher is the user’s trust in it.

Recall values did not improve significantly. To improve recall it would be required
adding new error rules, which was left for future studies.



28

Category Version Precision Recall F1 Target TP FP

PROBI 3.1.2 23.21% 13.65% 17.19% 2616 357 1181
4.0.0 60.03% 14.41% 23.24% 377 251

Metrô 3.1.2 19.28% 30.19% 23.53% 53 16 67
4.0.0 44.12% 28.30% 34.48% 15 19

Comunidade 3.1.2 2.47% 3.85% 3.01% 104 4 158
4.0.0 44.12% 28.30% 34.48% 24 61

Bosque 3.1.2 245
4.0.0 69

Table 3. Effectiveness results for each corpus. CoGrOO Version 3.1.2 was origi-
nal without improvements, and 4.0.0 is the improved version with modifications
proposed in [Silva 2013].

6. Impact

Improving the grammar checker not only benefited its community of users, which now
has access to a more accurate software, but also to a number of other projects, because its
internal modules are in use by a range of projects.

For example, OnAIR (Ontology Aided Information Retrieval) is a system devel-
oped for searching within digital video databases. CoGrOO POS Tagger and Chunker
is used as part of the computational tools to analyse audio transcription linguistic infor-
mation [Torres 2012], and also as part of a pipeline to analyse natural language queries
[Luz 2012].

In health informatics, a study applies CoGrOO annotators to the task of Informa-
tion Retrieval on Clinical Data [Oleynik 2012], another to perform pattern identification
in discharge summaries [Souza 2012], and finally to a study which classifies whether there
is continuity of care in hospital discharge summaries [Oliveira et al. 2012].

In linguistic research, CoGrOO is used to annotate texts with morphology and
syntactic information, and later allow researchers to use these annotations in semiotic
research [Matte et al. 2012].

7. Future Work and Conclusion

The work of [Silva 2013] left a large number of future work opportunities. For example,
the work did not cover the introduction of new error rules to improve coverage. Adding a
machine learning component trained to identify grammar errors is a challenge that would
also improve coverage. Finally, an individual and deep study of key modules, like the
shallow parser, or the introduction of new modules, like a clause identifier, would boost
the analysis power and consequently the grammar checker effectiveness.

The work presented was broad in the sense that it covers many of the basic Natural
Language Processing tasks, but it is also shallow because it does not deepen any of these
tasks, even though frequently the effectiveness of the modules achieved values close to the
state-of-the-art. The main purpose of his work was to improve the Portuguese grammar
checker by tuning its language processing modules, which as shown, was very effective.



29

References
Afonso, S. (2003). A floresta sintá(c)tica como recurso. Documentaçao disponıvel na

Linguateca.

Afonso, S. (2006). Árvores deitadas: Descrição do formato e descrição das opções de
análise na floresta sintá(c)tica. Technical report, Floresta Sintática.

Almeida, J. (2011). Natura project, natural language processing group. http://
natura.di.uminho.pt/wiki/doku.php?id=projectonatura.

Collins, M. (2002). Discriminative training methods for hidden markov models: Theory
and experiments with perceptron algorithms. In Proceedings of the ACL-02 conference
on Empirical methods in natural language processing-Volume 10, pages 1–8. Associ-
ation for Computational Linguistics.

Kinoshita, J., Salvador, L. N., and de Menezes, C. E. D. (2006). Cogroo: a brazilian-
portuguese grammar checker based on the cetenfolha. In Proceedings LREC 2006.

Luz, F. F. (2012). Consulta à ontologias em lı́ngua portuguesa através do português con-
trolado. Master’s thesis, Computer Science Department, University of São Paulo.

Martins, R. (2002). Probi: um corpus de teste para o revisor gramatical regra. http:
//www.nilc.icmc.usp.br/nilc/download/NILC-TR-02-10.zip.

Matte, A. C. F., Ribeiro, R. T., de Moura Silva, W. D. C., and Canalli, H. L. (2012).
Dadossemiotica: coleta e processamento de análises semióticas de texto escrito. In
WSL Workshop Internacional de Software Livre.

Menezes, C. E. D., Gusukuma, F. W., and Uliano, S. (2006). Uma análise do cogroo,
um corretor gramatical acoplável ao openoffice. http://www.pcs.usp.br/

˜cogroo/papers/analise-cogroo-corpus-metro.html.

Metro (2011). http://www.metro.sp.gov.br.

Oleynik, M. (2012). Extração de informações de narrativas clı́nicas. Master’s thesis,
Computer Science Department, University of São Paulo.

Oliveira, L. E. S., Moro, C. M. C., Souza, A. C., Nohama, P., and Cancian, P. S. (2012).
Identificação de continuidade de cuidado em sumários de alta hospitalar. In XIII Con-
gresso Brasileiro em Informática em Saúde.

Ratnaparkhi, A. (1996). A maximum entropy model for part-of-speech tagging. In Pro-
ceedings of the conference on empirical methods in natural language processing, vol-
ume 1, pages 133–142.

Silva, W. D. C. M. (2013). Refining the CoGrOO grammar checker. Master’s thesis,
Computer Science Department, University of São Paulo.

Souza, A. C. (2012). Identificação do Conteúdo Padronizado do Sumário de Alta. Mas-
ter’s thesis, PUCPR.

Torres, C. E. A. (2012). Uso de informação linguı́stica e análise de conceitos formais no
aprendizado de ontologias. Master’s thesis, Computer Science Department, University
of São Paulo.


