
Proceedings of the Seventh SIGHAN Workshop on Chinese Language Processing (SIGHAN-7), pages 88–92,
Nagoya, Japan, 14 October 2013.

Graph Model for Chinese Spell Checking∗

Zhongye Jia, Peilu Wang and Hai Zhao†
MOE-Microsoft Key Laboratory for Intelligent Computing and Intelligent Systems,

Center for Brain-Like Computing and Machine Intelligence
Department of Computer Science and Engineering, Shanghai Jiao Tong University

800 Dongchuan Road, Shanghai 200240, China
jia.zhongye,plwang1990@gmail.com,zhaohai@cs.sjtu.edu.cn

Abstract

This paper describes our system in the
Bake-Off 2013 task of SIGHAN 7. We
illustrate that Chinese spell checking and
correction can be efficiently tackled with
by utilizing word segmenter. A graph
model is used to represent the sentence and
a single source shortest path (SSSP) algo-
rithm is performed on the graph to correct
spell errors. Our system achieves 4 first
ranks out of 10 metrics on the standard test
set.

1 Introduction and Task Description

Spell checking is a common task in every writ-
ten language, which is an automatic mechanism to
detect and correct human errors. However, spell
checking in Chinese is very different from that in
English or other alphabetical languages. In Bake-
Off 2013, the evaluation includes two sub-tasks:
detection and correction for Chinese spell errors.
The errors are collected from students’ written es-
says.

The object of spell checking is word, but “word”
is not a natural concept for Chinese since there are
no word delimiters between words. Most Chinese
natural language processing tasks require an addi-
tional word segmentation phase beforehand. When
a word is misspelled, the word segmentation could
not be processed properly. Another problem with
Chinese is that the difference between “characters”
and “words” is not very clear. Most Chinese char-
acters itself can also be words which are called

∗This work was partially supported by the National Nat-
ural Science Foundation of China (Grant No.60903119, Grant
No.61170114, and Grant No.61272248), and the National Ba-
sic Research Program of China (Grant No.2009CB320901
and Grant No.2013CB329401).

†Corresponding author

“single-character words” in Chinese. Thus Chi-
nese is a language that may never encounter “out-
of-vocabulary (OOV)” problem. Spell errors in al-
phabetical languages, such as English, are always
typically divided into two categories:

• The misspelled word is a non-word, for exam-
ple “come” is misspelled into “cmoe”;

• The misspelled word is still a legal word, for
example “come” is misspelled into “cone”.

Spell errors in Chinese are quite different. In Chi-
nese, if the misspelled word is a non-word, the
word segmenter will not recognize it as a word,
but split it into two or more words with fewer
characters. For example, if “你好世界 (hello
world)” is misspelled into “你好世节”, the word
segmenter will segment it into “你好/世/节” in-
stead of “你好/世节”. For non-word spell error,
the misspelled word will be mis-segmented.
Thus spell checking for Chinese cannot directly

use those edit distance based methods which are
commonly used for alphabetical languages. Spell
checking for Chinese have to deal with word seg-
mentation problem first, since misspelled sentence
cannot be segmented properly by a normal word
segmenter. And it is necessary to use information
beyond word level to detect and correct those mis-
segmented words.
In this paper, we describe the system submit-

ted from the team of Shanghai Jiao Tong Univer-
sity (SJTU). We are inspired by the idea of short-
est path word segmentation algorithm. A directed
acyclic graph (DAG) is built from the input sen-
tence similar to the shortest path word segmenta-
tion algorithm. The spell error detection and cor-
rection problem is transformed to the SSSP prob-
lem on the DAG.We also tried filters based on sen-

88

tence perplexity (PPL) and character mutual infor-
mation (MI).

2 System Architecture

We utilize a modified shortest path word seg-
menter as the core part of spell checker. The origi-
nal shortest path word segmentation algorithm is
revised for spell checking. Instead of the seg-
mented sentence, the output sentence of the modi-
fied word segmenter is both segmented and spell-
checked.

2.1 The Shortest Path Word Segmentation
Algorithm

Shortest path word segmentation algorithm (Casey
and Lecolinet, 1996) is based on the following as-
sumption: a reasonable segmentation should max-
imize the lengths of all segments or minimize the
total number of segments. For a sentence S of
m characters {c1, c2, . . . , cm}, the best segmented
sentence S∗ of n∗ words {w∗

1, w
∗
2, . . . , w

∗
n∗}

should be:

S∗ = argmin
{w1,w2,...,wn}

n. (1)

This optimization problem can be easily trans-
formed to a SSSP problem on a DAG.

First a graph G = (V,E) must be built to rep-
resent the sentence to be segmented. The ver-
tices of G are possible candidate words of adjacent
characters. The words are fetched from a dictio-
nary D. Two special vertices w−,0 = “<S>” and
wn+1,− = “</S>” are added to represent the start
and end of the sentence:

V = {wi,j |wi,j = ci . . . cj ∈ D}∪{w−,0, wn+1,−}.

The edges are from a word to the next word:

E = {< wi,j → wj+1,k, ω > |wi,j , wj+1,k ∈ V },

where ω is the weight of edge which is set to 1,
ω = ω0 ≡ 1.

For example, the Chinese sentence “床前明
月光” can be represented by the graph shown in
Figure 1. It can be easily proved that the graph G
is a DAG, and finding the best segmentation ac-
cording to Equation 1 is finding the shortest path
from “<S>” to “</S>”, which is an SSSP problem
on DAG.

The SSSP problem on DAG have an simple al-
gorithm (Eppstein, 1998) with time complexity of

<S> 床 前

明

明月

月

月光

光

</S>

Figure 1: A sample of graph for segmentation

Algorithm 1 SSSP algorithm for word segmenta-
tion
Require: sentence of characters S
Require: dictionary D
Ensure: segmented sentence s∗

1: Build DAG G = (V, E) from S with D
2: Topologically sort G into L
3: Init D[v]← −∞, ∀v ∈ V
4: Init B[v]← Φ, ∀v ∈ V
5: D[<S>]← 0
6: for u ∈ L do
7: for v, ω s.t. < u→ v, ω >∈ E do
8: if D[v] > D[u] + ω then
9: D[v]← D[u] + ω
10: B[v]← u
11: end if
12: end for
13: end for
14: S∗ = Φ
15: v ← </S>
16: while v ̸= Φ do
17: Insert v into the front of S∗

18: v ← B[V]
19: end while

O(|V | + |E|), The algorithm is shown in Algo-
rithm 1.
The segmented sentence of the above ex-

ample “床前明月光” is “床/前/明月/光” or
“床/前/明/月光” by using the SSSP algorithm.

2.2 Using SSSP Algorithm fo Spell Checking
The basic idea of using SSSP algorithm for spell
checking comes from the observation that a mis-
spelled word is often splitted into two or more
words by the shortest path word segmenter. If
we can substitute the misspelled character with the
correct one and provide it as a candidate word, then
the shortest path word segmenter will choose the
correct one, since it has less words.
Then there is no need to change the SSSP al-

gorithm. Only the graph of sentence is built in a
different way. The vertices consists not only candi-
date words composed of original adjacent charac-

89

ters, but also characters substituted by those similar
to the original ones. An additional map of similar
charactersC is needed. The revised vertices V are:

V ={wi,j |wi,j = ci . . . cj ∈ D}
∪ {wk

i,j |wk
i,j = ci . . . c

′
k . . . cj ∈ D,

τ ≤ j − i ≤ T,

c′k ∈ C[ck], k = i, i + 1, . . . , j}
∪ {w−,0, wn+1,−}.

The substitution is only performed on those words
with lenth between some thresholds τ and T . The
weight of edges are respectively changed:

ω = f(ω0, ωs),

where ωs measures the similarity between the two
characters and f(·, ·) is a function to be selected.

With the modified DAG G, the SSSP algo-
rithm can perform both segmentation task and
spell checking task. Suppose the sentence “床前
明月光” is misspelled as “床前名月光”, the mod-
ified graph is shown in Figure 2. The output of the

<S> 床

前

签名

名

明月

月

月光

光

</S>

Figure 2: A sample of graph for spell checking

spell checker is “床/签名/月光”, note this is not
the expected result.

2.3 Using Language Model with SSSP
Algorithm

The problem with simple SSSP spell chekcer is
that it only tries to merge short words into longer
ones without considering whether that is reason-
able. To reduce the false-alarm rate (Wu et al.,
2010), we add some statistical criteria to the SSSP
spell checker.

A natural statistical criteria is the conditional
probability between words, P , which can be given
by a language model (LM). The conditional prob-
ability are combined into the weights of edges by
some function g(·, ·, ·):

ω = g(ω0, ωs,
1

P
),

Note that the higher conditional probability means
the sentence is more reasonable, so for the SSSP
algorithm, the inverse of conditional probability 1

P
is used.

2.4 LM and MI Filter
In the sample set of Bake-Off 2013, we observed
that there is at most one error in each sentence
(Chen et al., 2011). But the spell checker may de-
tect multiple errors. To choose the best correction,
we run a filter and the one with lowest PPL or high-
est MI gain is selected.
For LM filter, sentence PPL is used as the met-

ric. The correction with lowest PPL is considered
as best.
MI indicates how possible two characters are

collocated together. Character based MI is used,
for two adjacent characters c1 and c2, the MI is:

MI(c1, c2) = log
P (c1)P (c2)

P (c1c2)

The correction with highest MI gain ∆MI is con-
sidered as best:

∆MI = max(MI(ci−1, c
′
i)−MI(ci−1, ci),

MI(c′i, ci+1)−MI(ci, ci+1)).

3 Experiments

3.1 Data Sets and Resources
The Bake-Off 2013 sample data, Sample, con-
sists 350 sentences without errors and 350 sen-
tences with one error per sentence. The official
test data, Test, consists of 1,000 unlabeled sen-
tences for subtask 1 and another 1,000 sentences
for subtask 2. All the sentences are collected from
students’ written essays. All the data are in tradi-
tional Chinese.
The dictionary used in SSSP algorithm is So-

gouW1 dictionary from Sogou inc., which is in
simplified Chinese. The OpenCC2 converter is
used to convert it into traditional Chinese. For
similar character map the data set provided by
(Liu et al., 2011) is used. The LM is built on
the Academia Sinica corpus (Emerson, 2005) with
IRSTLM toolkit (Federico et al., 2008). Prefix
tree data structure is used to speed up the dictio-
nary look-up. The implementation of Perl module
Tree::Trie3 is used with some modification.

3.2 Edge Weight Function selection
A series of experiments are performed to choose a
good edge weight function g(·, ·, ·). A simplified
metric is used to evaluate different functions:

1http://www.sogou.com/labs/dl/w.html
2http://code.google.com/p/opencc/
3http://search.cpan.org/~avif/Tree-Trie-1.

5/

90

• Correction precision:

P =
of correctly corrected characters

of all corrected characters
;

• Correction recall:

R =
of correctly corrected characters
of wrong characters of gold data

;

• F1 macro:
F =

2PR
P +R

.

The LM is set to 2-gram according to the obser-
vations of (Yang et al., 2012). Improved Kneser-
Ney (Chen and Goodman, 1999) algorithm is used
for LM smoothing.

Multiplication of similarity and log conditional
probability is firstly used as weight function:

ωM = −α(ω0 + ωs) logP

whereω0 ≡ 1, andωs for different kinds of charac-
ters are shown in Table 1. The settings of ωs is in-
spired by (Yang et al., 2012), in which pinyin4 edit
distance is used as weight. Word length threshold
is set to τ = 2 and T = 5. Experiments show that
the choice of α does not have notable influence on
the result which remains at P = 0.49, R = 0.61,
F = 0.55 on Sample.

Type ωs

same pronunciation same tone 0
same pronunciation different tone 0
similar pronunciation same tone 1
similar pronunciation different tone 1
similar shape 1

Table 1: ωs used in ωM

Linear combination of similarity and log condi-
tional probability is then tried:

ωL = ωs − β logP

where ω0 ≡ 0 which is omitted in the equation,
and ωs for different kinds of characters are shown
in Table 2.

We experimented with different β and observed
that with lager β, the spell checker tends to get
more reasonable corrections so P goes higher, but
R goes lower. The P , R and F on Sample of
different β are shown in Figure 3.

LM and MI filters slightly improves the result
of the spell checker. The results of applying two
filters are shown in Figure 4.

4Pinyin is the official phonetic system for transcribing the
sound of Chinese characters into Latin script.

Type ωs

same pronunciation same tone 1
same pronunciation different tone 1
similar pronunciation same tone 2
similar pronunciation different tone 2
similar shape 2

Table 2: ωs used in ωL

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14

P
re

ci
si

o
n
,
R

e
ca

ll
a
n
d
 F

1
 c

u
rv

e
s

β

Precision
Recall

F1

Figure 3: P ,R and F achieved by different β

3.3 Results

In the final test we submitted 3 runs, using edge
weight function ωL, of which β is set to 0, 6, and
10. Since there is no remarkable improvement by
applying filters and the final test data has no claim
that there’s only one error per sentence, no filters
are applied in the final test. The results on Test
are listed in Table 3 and Table 4, in which those
metrics that we got first rank are marked as bold.

Metric Run1 Run2 Run3
False-Alarm Rate 0.44 0.0957 0.0229
Detection Accuracy 0.662 0.856 0.844
Detection Precision 0.4671 0.769 0.9091
Detection Recall 0.9 0.7433 0.5333
Error Location Accuracy 0.522 0.805 0.809
Error Location Precision 0.2249 0.5931 0.7102
Error Location Recall 0.4333 0.5733 0.4167

Table 3: Final test results of subtask 1

Metric Run1 Run2 Run3
Location Accuracy 0.372 0.475 0.37
Correction Accuracy 0.338 0.442 0.356
Correction Precision 0.3828 0.636 0.705

Table 4: Final test results of subtask 2

4 Conclusion and Future Work

In this paper we presented the system from team of
Shanghai Jiao Tong University that participated in

91

the Bake-Off 2013 task. A graph model is utilized
to represent the spell checking problem and SSSP
algorithm is applied to solve it. By adjusting edge
weight function, a trade-off can be made between
precision and recall.

A problem with the current result is that the test
data set is a manually collected one with very high
error rate. In subtask 1, nearly 50% sentences con-
tains spell errors and in subtask 2, every sentence
contains at least one spell error. This error rate is
far higher than that in normal text. We may con-
sider using data from normal text in future work.

References
Richard G Casey and Eric Lecolinet. 1996. A sur-

vey of methods and strategies in character segmen-
tation. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 18(7):690–706.

Stanley F Chen and Joshua Goodman. 1999. An
empirical study of smoothing techniques for lan-
guage modeling. Computer Speech & Language,
13(4):359–393.

Yong-Zhi Chen, Shih-Hung Wu, Ping-Che Yang, and
Tsun Ku. 2011. Improve the detection of im-
properly used chinese characters in students’ essays
with error model. International Journal of Continu-
ing Engineering Education and Life Long Learning,
21(1):103–116.

Thomas Emerson. 2005. The second international chi-
nese word segmentation bakeoff. In Proceedings
of the Fourth SIGHAN Workshop on Chinese Lan-
guage Processing, pages 123–133.

David Eppstein. 1998. Finding the k shortest paths.
SIAM Journal on computing, 28(2):652–673.

Marcello Federico, Nicola Bertoldi, andMauro Cettolo.
2008. Irstlm: an open source toolkit for handling
large scale language models. In Interspeech, pages
1618–1621.

C.-L. Liu, M.-H. Lai, K.-W. Tien, Y.-H. Chuang,
S.-H. Wu, and C.-Y. Lee. 2011. Visually and
phonologically similar characters in incorrect chi-
nese words: Analyses, identification, and applica-
tions. 10(2):10:1–10:39, June.

Shih-Hung Wu, Yong-Zhi Chen, Ping-Che Yang, Tsun
Ku, and Chao-Lin Liu. 2010. Reducing the false
alarm rate of chinese character error detection and
correction. In CIPS-SIGHAN Joint Conference on
Chinese Language Processing.

Shaohua Yang, Hai Zhao, Xiaolin Wang, and Baoliang
Lu. 2012. Spell checking for chinese. In Interna-
tional Conference on Language Resources and Eval-
uation, pages 730–736, Istanbul, Turkey, May.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14

S
co

re

β

Original
LM Filter
MI Filter

(a) Precision

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0 2 4 6 8 10 12 14

S
co

re

β

Original
LM Filter
MI Filter

(b) Recall

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0 2 4 6 8 10 12 14

S
co

re

β

Original
LM Filter
MI Filter

(c) F1

Figure 4: Precision, recall and F1 scores with fil-
ters

92

