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Abstract

While words in documents are generally
treated as discrete entities, they can be
embedded in a Euclidean space which
reflects an a priori notion of similarity
between them. In such a case, a text
document can be viewed as a bag-of-
embedded-words (BoEW): a set of real-
valued vectors. We propose a novel
document representation based on such
continuous word embeddings. It con-
sists in non-linearly mapping the word-
embeddings in a higher-dimensional space
and in aggregating them into a document-
level representation. We report retrieval
and clustering experiments in the case
where the word-embeddings are computed
from standard topic models showing sig-
nificant improvements with respect to the
original topic models.

1 Introduction

For many tasks such as information retrieval (IR)
or clustering, a text document is represented by
a vector, where each dimension corresponds to
a given word and where each value encodes the
word importance in the document (Salton and
McGill, 1983). This Vector Space Model (VSM)
or bag-of-words (BoW) representation is at the
root of topic models such as Latent Semantic In-
dexing (LSI) (Deerwester, 1988), Probablistic La-
tent Semantic Analysis (PLSA) (Hofmann, 1999)
or Latent Dirichlet Allocation (LDA) (Blei et al.,
2003). All these topic models consist in “pro-
jecting” documents on a set of topics generally
learned in an unsupervised manner. During the
learning stage, as a by-product of the projec-
tion of the training documents, one also obtains
an embedding of the words in a typically small-
dimensional continuous space. The distance be-

tween two words in this space translates the mea-
sure of similarity between words which is captured
by the topic models. For LSI, PLSA or LDA, the
implicit measure is the number of co-occurrences
in the training corpus.

In this paper, we raise the following question:
if we were provided with an embedding of words
in a continuous space, how could we best use it in
IR/clustering tasks? Especially, could we develop
probabilistic models which would be able to bene-
fit from this a priori information on the similarity
between words? When the words are embedded
in a continuous space, one can view a document
as a Bag-of-Embedded-Words (BoEW). We there-
fore draw inspiration from the computer vision
community where it is common practice to rep-
resent an image as a bag-of-features (BoF) where
each real-valued feature describes local proper-
ties of the image (such as its color, texture or
shape). We model the generative process of em-
bedded words using a mixture model where each
mixture component can be loosely thought of as
a “topic”. To transform the variable-cardinality
BoEW into a fixed-length representation which is
more amenable to comparison, we make use of the
Fisher kernel framework of Jaakkola and Haussler
(Jaakkola and Haussler, 1999). We will show that
this induces a non-linear mapping of the embed-
ded words in a higher-dimensional space where
their contributions are aggregated.

We underline that our contribution is not the
application of the FK to text analysis (see (Hof-
mann, 2000) for such an attempt). Knowing that
words can be embedded in a continuous space,
our main contribution is to show that we can
consequently represent a document as a bag-of-
embedded-words. The FK is just one possible way
to subsequently transform this bag representation
into a fixed-length vector which is more amenable
to large-scale processing.

The remainder of the article is organized as fol-
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lows. In the next section, we review related works.
In section 3, we describe the proposed framework
based on embedded words, GMM topic models
and the Fisher kernel. In section 4, we report and
discuss experimental results on clustering and re-
trieval tasks before concluding in section 5.

2 Related Works

We provide a short review of the literature on those
topics which are most related to our work: topic
models, word embeddings and bag-of-patches rep-
resentations in computer vision.

Topic models. Statistical topic models build on
the idea of Latent Semantic Indexing (LSI) in a
probabilistic way. The PLSA model proposed by
Hoffman (Hofmann, 1999) can be thought of as a
constrained matrix factorization problem equiva-
lent to NMF (Lee and Seung, 1999; Gaussier and
Goutte, 2005). Latent Dirichlet Allocation (LDA)
(Blei et al., 2003) , the generative counterpart of
PLSA, has played a major role in the development
of probabilistic models for textual data. As a re-
sult, it has been extended or refined in a count-
less studies (Griffiths et al., 2004; Eisenstein et al.,
2011; Hoffman et al., 2010). Statistical topic mod-
els are often evaluated with the perplexity mea-
sure on a held-out dataset but it has been shown
that perplexity only correlates weakly with human
preference (Chang et al., 2009). Moreover, sev-
eral studies reported that LDA does not generally
outperform LSI in IR or sentiment analysis tasks
(Wang et al., 2011; Maas et al., 2011).

Nevertheless, LSI has known a resurging inter-
est. Supervised Semantic Indexing (SSI) (Bai et
al., 2009) learns low-rank projection matrices on
query-document pairs so as to minimize a rank-
ing loss. Similarly, (Wang et al., 2011) studies the
influence of `1 and `2 regularization on the pro-
jection matrices and shows how to distribute the
algorithm using Map-Reduce.

Word embeddings. Parrallel to the large devel-
opment of statistical topic models, there has been
an increasing amount of literature on word em-
beddings where it has been proposed to include
higher-level dependencies between words, either
syntactic or semantic. We note that topic mod-
els such as LSI, PLSA or LDA implicitly perform
such an embedding (jointly with the embedding of
documents) and that the measure of similarity is
the co-occurrence of words in the training corpus.

A seminal work in this field is the one by Col-

lobert and Weston (Collobert and Weston, 2008)
where a neural network is trained by stochastic
gradient descent in order to minimize a loss func-
tion on the observed n-grams. This work has later
then been refined in (Bengio et al., 2009). Proba-
bilistic methods have also been proposed to learn
language models such as the HLBL embedding
(Mnih and Hinton, 2007).

Similarly, (Maas et al., 2011) parametrizes a
probabilistic model in order to capture word repre-
sentations, instead of modeling individually latent
topics, which lead to significant improvements
over LDA in sentiment analysis. Furthermore,
(Dhillon et al., 2011) uses the Canonical Correla-
tion Analysis technique between the left and right
context vectors of a word to learn word embed-
dings. Lastly, (Turian et al., 2010) proposes an
empirical comparison of several word embedding
techniques in a named entity recognition task and
provides an excellent state-of-the-art of word rep-
resentation. Except (Maas et al., 2011) , there has
been very little work to your knowledge bridging
the statistical topic models with the word embed-
ding techniques.

Computer vision. In modern computer vision,
an image is usually described by a set of local de-
scriptors extracted from small image patches such
as SIFT. This local representation provides some
invariance to changes in viewpoint, lighting or
occlusion. The local descriptors characterize the
low-level properties of the image such as its color,
texture or shape. Since it is computationally in-
tensive to handle (e.g. to match) sets of descrip-
tors of variable cardinality, it has been proposed to
aggregate the local descriptors into a global vector
which is more amenable to retrieval and classifica-
tion.

The most popular aggregation mechanism was
directly inspired by the work in text analysis. It
makes use of an intermediate representation – the
visual vocabulary – which is a set of prototypical
descriptors – the visual words – obtained through a
clustering algorithm such as k-means (Leung and
Malik, 1999; Sivic and Zisserman, 2003; Csurka
et al., 2004). Given an image, each of its de-
scriptors is assigned to its closest visual word and
the image is described by the histogram of visual
words frequencies. This representation is referred
to as the Bag-of-Visual-words (BoV).

Some works pushed the analogy with text anal-
ysis even further. For instance, in large-scale re-
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trieval, Sivic and Zisserman proposed to use a tf-
idf weighting of the BoV vector and an inverted
file for efficient matching (Sivic and Zisserman,
2003). As another example, pLSA, LDA and their
many variations have been extensively applied to
problems such as image classification (Quelhas
et al., 2005) or object discovery (Russell et al.,
2006). However, it has been noted that the quan-
tization process mentioned above incurs a loss of
information since a continuous descriptor is trans-
formed into a discrete value (the index of the clos-
est visual word). To overcome this limitation, sev-
eral improvements have been proposed which de-
part from the pure discrete model. These improve-
ments include the soft assignment of descriptors
to visual words (Farquhar et al., 2005; Philbin et
al., 2008; Gemert et al., 2008) or the use of more
advanced coding techniques than vector quanti-
zation such as sparse coding (Yang et al., 2009)
or locality-constrained linear coding (Wang et al.,
2010).

All the previous techniques can be understood
(with some simplifications) as simple counting
mechanisms (computation of 0-order statistics). It
has been proposed to take into account higher-
order statistics (first and second order for instance)
which encode more descriptor-level information
and therefore incur a lower loss of information.
This includes the Fisher vector (Perronnin and
Dance, 2007; Perronnin et al., 2010), which was
directly inspired by the Fisher kernel of Jaakkola
and Haussler (Jaakkola and Haussler, 1999). In a
nutshell, the Fisher vector consists in modeling the
distribution of patches in any image with a Gaus-
sian mixture model (GMM) and then in describing
an image by its deviation from this average prob-
ability distribution. In a recent evaluation (Chat-
field et al., 2011), it has been shown experimen-
tally that the Fisher vector was the state-of-the-art
representation for image classification. However,
in this work we question the treatment of words
as discrete entities. Indeed, intuitvely some words
are closer to each other from a semantic standpoint
and words can be embedded in a continuous space
as is done for instance in LSA.

3 The Bag-of-Embedded-Words (BoEW)

In this work, we draw inspiration from the work
in the computer vision community: we model the
generation process of words with continuous mix-
ture models and use the FK for aggregation.

The proposed bag-of-embedded-words pro-
ceeds as follows: Learning phase. Given an un-
labeled training set of documents:

1. Learn an embedding of words in a low-
dimensional space, i.e. lower-dimensional
than the VSM. After this operation, each
wordw is then represented by a vector of size
e:

w → Ew = [Ew,1, . . . , Ew,e]. (1)

2. Fit a probabilistic model – e.g. a mixture
model – on the continuous word embeddings.

Document representation. Given a document
whose BoW representation is {w1, . . . , wT }:

1. Transform the BoW representation into a
BoEW:

{w1, . . . , wT } → {Ew1 , . . . , EwT } (2)

2. Aggregate the continuous word embeddings
Ewt using the FK framework.

Since the proposed framework is independent of
the particular embedding technique, we will first
focus on the modeling of the generation process
and on the FK-based aggregation. We will then
compare the proposed continuous topic model to
the traditional LSI, PLSA and LDA topic models.

3.1 Probabilistic modeling and FK
aggregation

We assume that the continuous word embeddings
in a document have been generated by a “univer-
sal” (i.e. document-independent) probability den-
sity function (pdf). As is common practice for
continuous features, we choose this pdf to be a
Gaussian mixture model (GMM) since any con-
tinuous distribution can be approximated with ar-
bitrary precision by a mixture of Gaussians. In
what follows, the pdf is denoted uλ where λ =
{θi, µi,Σi, i = 1 . . .K} is the set of parameters
of the GMM. θi, µi and Σi denote respectively
the mixture weight, mean vector and covariance
matrix of Gaussian i. For computational reasons,
we assume that the covariance matrices are diag-
onal and denote σ2

i the variance vector of Gaus-
sian i, i.e. σ2

i = diag(Σi). In practice, the
GMM is estimated offline with a set of continu-
ous word embeddings extracted from a represen-
tative set of documents. The parameters λ are es-
timated through the optimization of a Maximum
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Likelihood (ML) criterion using the Expectation-
Maximization (EM) algorithm.

Let us assume that a document contains T
words and let us denote by X = {x1, . . . , xT } the
set of continuous word embeddings extracted from
the document. We wish to derive a fixed-length
representation (i.e. a vector whose dimensionality
is independent of T ) that characterizes X with re-
spect to uλ. A natural framework to achieve this
goal is the FK (Jaakkola and Haussler, 1999). In
what follows, we use the notation of (Perronnin et
al., 2010).

Given uλ one can characterize the sampleX us-
ing the score function:

GXλ = ∇Tλ log uλ(X). (3)

This is a vector whose size depends only on the
number of parameters in λ. Intuitively, it describes
in which direction the parameters λ of the model
should be modified so that the model uλ better fits
the data. Assuming that the word embeddings xt
are iid (a simplifying assumption), we get:

GXλ =
T∑
t=1

∇λ log uλ(xt). (4)

Jaakkola and Haussler proposed to measure the
similarity between two samplesX and Y using the
FK:

K(X,Y ) = GXλ
′
F−1
λ GYλ (5)

where Fλ is the Fisher Information Matrix (FIM)
of uλ:

Fλ = Ex∼uλ
[
∇λ log uλ(x)∇λ log uλ(x)′

]
. (6)

As Fλ is symmetric and positive definite, it
has a Cholesky decomposition Fλ = L′λLλ and
K(X,Y ) can be rewritten as a dot-product be-
tween normalized vectors Gλ with:

GXλ = LλG
X
λ . (7)

(Perronnin et al., 2010) refers to GXλ as the Fisher
Vector (FV) of X . Using a diagonal approxima-
tion of the FIM, we obtain the following formula
for the gradient with respect to µi 1:

GXi =
1√
θi

T∑
t=1

γt(i)

(
xt − µi
σi

)
. (8)

1we only consider the partial derivatives with respect to
the mean vectors since the partial derivatives with respect to
the mixture weights and variance parameters carry little ad-
ditional information (we confirmed this fact in preliminary
experiments).

where the division by the vector σi should be un-
derstood as a term-by-term operation and γt(i) =
p(i|xt, λ) is the soft assignment of xt to Gaussian i
(i.e. the probability that xt was generated by Gaus-
sian i) which can be computed using Bayes’ for-
mula. The FV GXλ is the concatenation of the GXi ,
∀i . Let e be the dimensionality of the continuous
word descriptors and K be the number of Gaus-
sians. The resulting vector is e×K dimensional.

3.2 Relationship with LSI, PLSA, LDA
Relationship with LSI. Let n be the number of
documents in the collection and t be the number
of indexing terms. Let A be the t × n document
matrix. In LSI (or NMF), A decomposes as:

A ≈ UΣV ′ (9)

where U ∈ Rt×e, Σ ∈ Re×e is diagonal, V ∈
Rn×e and e is the size of the embedding space. If
we choose V Σ as the LSI document embedding
matrix – which makes sense if we accept the dot-
product as a measure of similarity between docu-
ments since A′A ≈ (V Σ)(V Σ)′ – then we have
V Σ ≈ A′U . This means that the LSI embedding
of a document is approximately the sum of the em-
bedding of the words, weighted by the number of
occurrences of each word.

Similarly, from equations (4) and (7), it is clear
that the FV GXλ is a sum of non-linear mappings:

xt → Lλ∇λ log uλ(xt) =[
γt(1)√
θ1

xt − µ1

σ1
, . . . ,

γt(K)√
θK

xt − µK
σK

]

]
(10)

computed for each embedded-word xt. When the
number of Gaussians K = 1, the mapping simpli-
fies to a linear one:

xt →
xt − µ1

σ1
(11)

and the FV is simply a whitened version of the
sum of word-embeddings. Therefore, if we choose
LSI to perform word-embeddings in our frame-
work, the Fisher-based representation is similar to
the LSI document embedding in the one Gaus-
sian case. This does not come as a surprise in
the case of LSI since Singular Value Decomposi-
tion (SVD) can be viewed as a the limite case of a
probabilistic model with a Gaussian noise assump-
tion (Salakhutdinov and Mnih, 2007). Hence, the
proposed framework enables to model documents
when the word embeddings are non-Gaussian.
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Another advantage is that the proposed framework
is rotation and scale invariant. Indeed, while it
“makes sense” to use V Σ as the document em-
bedding, in practice better results can be obtained
when using simply V . Our framework is indepen-
dent of such an arbitrary choice.

Relationship with PLSA and LDA. There is
also a strong parallel between topic models on dis-
crete word occurrences such as PLSA/LDA and
the proposed model for continuous word embed-
dings. Indeed, both generative models include a
latent variable which indicates which mixture gen-
erates which words. In the LDA case, each topic is
modeled by a multinomial distribution which indi-
cates the frequency of each word for the particu-
lar topic. In the mixture model case, each mixture
component can be loosely understood as a “topic”.

Therefore, one could wonder if the proposed
framework is not somehow equivalent to topic
models such PLSA/LDA. The major difference is
that PLSA, LDA and other topic models on word
counts jointly perform the embedding of words
and the learning of the topics. A major deficiency
of such approaches is that they cannot deal with
words which have not been seen at training time.
In the proposed framework, these two steps are de-
coupled. Hence, we can cope with words which
have not been seen during the training of the prob-
abilistic model. We will see in section 4.3.1 that
this yields a major benefit: the mixture model can
be trained efficiently on a small subset of the cor-
pus and yet generalize to unseen words.

In the same manner, our work is significantly
different from previous attempts at applying the
FK framework to topic models such as PLSA
(Hofmann, 2000; Chappelier and Eckard, 2009)
or LDA (Chandalia and Beal, 2006) (we will refer
to such combinations as FKPLSA and FKLDA).
Indeed, while FKPLSA and FKLDA can improve
over PLSA and LDA respectively, they inherit the
deficiencies of the original PLSA and LDA ap-
proaches, especially their unability to deal with
words unseen at training time. We note also that
FKPLSA is extremely computationally intensive:
in the recent (Chappelier and Eckard, 2009), the
largest corpus which could be handled contained
barely 7,466 documents. In contrast, we can eas-
ily handle on a single machine corpora containing
hundreds of thousands of documents (see section
4.2).

Collection #docs #terms #classes
20NG 19,995 32,902 20
TDT 4,214 8,978 18

(a) Clustering
Collection #docs #terms #queries
ROBUST 490,779 87,223 250

TREC1&-3 741,856 108,294 150
CLEF03 166,754 79,008 60

(b) IR

Table 1: Characteristics of the clustering and IR
collections

4 Experiments

The experiments aim at demonstrating that the
proposed continuous model is competitive with
existing topic models on discrete words. We focus
our experiments on the case where the embedding
of the continuous words is obtained by LSI as it
enables us to compare the quality of the document
representation obtained originally by LSI and the
one derived by our framework on top of LSI. In
what follows, we will refer to the FV on the LSI
embedding simply as the FV.

We assessed the performance of the FV on
clustering and ad-hoc IR tasks. We used two
datasets for clustering and three for IR. Using the
Lemur toolkit (Ogilvie and Callan, 2001), we ap-
plied a standard processing pipeline on all these
datasets including stopword removal, stemming or
lemmatization and the filtering of rare words to
speed up computations. The GMMs were trained
on 1,000,000 word occurences, which represents
roughly 5,000 documents for the collections we
have used. In what follows, the cosine similar-
ity was used to compare FVs and LSI document
vectors.

4.1 Clustering
We used two well-known and publicly avail-
able datasets which are 20 NewsGroup
(20NG) and a subset of one TDT dataset
(http://www.ldc.upenn.edu/ProjectsTDT2004,
2004). The 20NG is a classical dataset when
evaluating classifiers or clustering methods. For
the TDT dataset we retain only topics with more
than one hundred documents, which resulted in 18
classes. After preprocessing, the 20NG collection
has approximately 20,000 documents and 33,000
unique words and the TDT has approximately
4,000 documents and 9,000 unique words. Table
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Collection Model ARI NMI

20NG

PLSA 41.0 57.4
LDA 40.7 57.9
LSI 41.0 59.5
FV 45.2 60.7

TDT

PLSA 64.2 84.5
LDA 69.4 86.4
LSI 72.1 88.5
FV 70.4 88.2

Table 2: Clustering experiments on 20NG and the
WebKB TDT Corpus: Mean performance over 20
runs (in %).

1 (a) gives the general statistics of the two datasets
after preprocessing.

We use 2 standard evaluation metrics to assess
the quality of the clusters, which are the Adjusted
Rand Index (ARI) (Hubert and Arabie, 1985) and
Normalized Mutual Information (NMI) (Manning
and Schütze, 1999). These measures compare the
clusters with respect to the partition induced by
the category information. The ARI and NMI range
between 0 and 1 where 1 indicates a perfect match
with the categories. For all the clustering methods,
the number of clusters is set to the true number
of classes of the collections and the performances
were averaged over 20 runs.

We compared spherical k-means on the FV doc-
ument representations to topic models such as
PLSA and LDA2. We choose a priori an embed-
ding of size e = 20 for both datasets for LSI and
therefore for the FV. LDA and PLSA were trained
on the whole dataset. For the FV, we varied the
number of Gaussians (K) to analyze the evolution
of performances. Table 2 shows the best results
for the FV and compares them to LSI, PLSA and
LDA. First, LDA has lower performance than LSI
in our experiments as reported by several stud-
ies which showed that LDA does not necessarily
outperform LSI (Wang et al., 2011; Maas et al.,
2011). Overall, the FV outperforms all the other
models on 20NG and probabilistic topic models
on TDT.

2We use Blei’s implementation available at
http://www.cs.princeton.edu/ blei/lda-c/

4.2 Retrieval

We used three IR collections, from two evalua-
tion campaigns: TREC3 and CLEF4: Table 1 (b)
gives the statistics of the collections we retained:
(i) ROBUST (TREC), (ii) the English subpart of
CLEF03 AdHoc Task and (iii) the TREC 1&2 col-
lection, with 150 queries corresponding to topics
51 to 200. For the ROBUST and TREC 1&2 col-
lections, we used standard Porter stemming. For
CLEF, words were lemmatized. We removed rare
words to speed up the computation of LSI. Per-
formances were measured with the Mean Aver-
age Precision (MAP) over the top 1,000 retrieved
documents. All the collections have more than
80,000 unique words and approximately 166,000
documents for CLEF, 500,000 for ROBUST and
741,000 for TREC. LSI was computed on the
whole dataset and the GMMs were trained on a
random subset of 5,000 documents. We then com-
puted the FVs for all documents in the collection.
Note that we did not compute topic models with
LDA on these datasets as LSI provides similar per-
formances to LDA (Wang et al., 2011; Bai et al.,
2009).

Table 3 shows the evolution of the MAP for the
LSI baseline with respect to the size of the latent
space. Note that we use Matlab to compute sin-
gular valued decompositions and that some num-
bers are missing in this table because of the mem-
ory limitations of our machine. Figure 1 shows
the evolution of the MAP for different numbers of
Gaussians (K) for respectively the CLEF, TREC
and ROBUST datasets. For all these plots, FV per-
formances are displayed with a circle and LSI with
crosses. We tested an embedding of size e = 50
and e = 200 for the CLEF dataset, an embedding
of size e = 100 and e = 200 for the TREC dataset
and e = 100 and e = 300 for ROBUST. All these
figures show the same trend: a) the performance
of the FV increases up to 16 Gaussians and then
reaches a plateau and b) the FV significantly out-
performs LSI (since it is able to double LSI’s per-
formance in several cases). In addition, the LSI
results in table 3 (a) indicate that LSI with more
dimensions will not reach the level of performance
obtained by the FV.

3trec.nist.gov
4www.clef-campaign.org
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e 50 100 200 300 400 500
CLEF 4.0 6.7 9.2 11.0 13.0 13.9

TREC-1 &2 2.2 4.3 6.5 8.3 - -
ROBUST 1.3 2.4 3.6 4.5 - -

Table 3: LSI MAP (%) for the IR datasets for sev-
eral sizes of the latent subspace.

4.3 Discussion

In the previous section we validated the good be-
havior of the proposed continuous document rep-
resentation. In the following parts, we conduct ad-
ditional experiments to further show the strengths
and weaknesses of the proposed approach.

IR Baselines. If the FV based on LSI word em-
beddings significantly outperforms LSI, it is out-
performed by strong IR baselines such as Diver-
gence From Randomness (DFR) models (Amati
and Rijsbergen, 2002) or Language Models (Ponte
and Croft, 1998). This is what we show in table
4 with the PL2 DFR model compared to standard
TFIDF, the best FV and LSI.

Collection PL2 TFIDF FV LSI
CLEF’03 35.7 16.4 23.7 9.2

TREC-1&2 22.6 12.4 10.8 6.5
ROBUST 24.8 12.6 10.5 4.5

Table 4: Mean Average Precision(%) for the PL2
and TFIDF model on the three IR Collections
compared to Fisher Vector and LSI

These results are not surprising as it has been
shown experimentally in many studies that latent-
based approaches such as LSI are generally out-
performed by state-of-the-art IR models in Ad-
Hoc tasks. There are a significant gap in per-
formances between LSI and TFIDF and between
TFIDF and the PL2 model. The first gap is due to
the change in representation, from a vector space
model to latent based representation, while the
second one is only due to a ’better’ similarity as
both methods operate in a similar space. In a
way, the FV approach offers a better similarity
for latent representations even if several improve-
ments could be further proposed (pivoted docu-
ment length normalization, combination with ex-
act representation).
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Figure 1: MAP(%) for the FV with different num-
bers of Gaussians against LSI on the CLEF, TREC
and ROBUST datasets

4.3.1 Influence of Training Set Size and
Unseen Words.

One of the main benefits of our method is its abil-
ity to cope with unseen words: our framework
allows to assign probabilities for words unseen
while training the topic model assuming that they
can be embedded in the Euclidean space. Thus,
one can train the probabilistic model on a subpart
of the collection without having to discard unseen
words at test time. Therefore, we can easily ad-
dress large-scale collections as we can restrict the
GMM learning step on a subset of a collection of
documents. This is something that LDA cannot
cope with as the vocabulary is frozen at training
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Figure 2: NMI for the FV with different Number
of Gaussians against averaging word embeddings
on TDT with the Yule measure

time. We show in figure 5 that our model is robust
to the number of word occurences used for train-
ing the GMM. We illustrate this point using the
TREC 1-&2 collection with an embedding of size
e = 100. We varied the number of documents to
train the GMM. Figure 5 shows that increasing the
number of documents does not lead to improve-
ments and the performance remains stable. There-
fore, these empirical results indeed confirm that
we can adress large-scale collections as we can re-
strict the learning step on a small subset of a col-
lection of documents.

4.3.2 Beyond LSI Embedding
While we focused in the experimental section
on word embeddings obtained with LSI, we now
show that the proposed framework can be ap-
plied to other word embeddings. To do so, we
use a word embedding based on the Yule associ-
ation measure (Jagarlamudi et al., 2011) which is
closely related to the Mutual Information but relies
on the raw frequencies rather than on probabilities.
We use this measure to compute a similarity ma-
trix between words. Then, we applied a spherical
kmeans on this matrix to find e = 50 word clusters
and used the cluster centroids as the word embed-
ding matrix. A simple baseline is to use as docu-
ment representation the average word embedding
as is the case of LSI. The baseline gets 82% NMI
wherease the FV with 32 Gaussians reaches 88%.
The non-linear mapping induced by the FV always
outperforms the simple averaging. Therefore, it is
worthwhile to learn non-linear mappings.

5 Conclusion

In this work, we proposed to treat documents
as bags-of-embedded-words (BoEW) and to learn

M # docs MAP TREC
0.5M ≈ 2,700 11.0
1M ≈ 5,400 11.0
5M ≈ 27,000 10.6
10M ≈ 54,000 10.6

Table 5: Model performance for different subsets
used to train the GMM. M refers to a million word
occurences

probabilistic mixture models once words were em-
bedded in a Euclidean space. This is a signifi-
cant departure from the vast majority of the works
in the machine learning and information retrieval
communities which deal with words as discrete
entities. We assessed our framework on several
clustering and ad-hoc IR collections and the exper-
iments showed that our model is able to yield ef-
fective descriptors of textual documents. In partic-
ular, the FV based on LSI embedding was shown
to significantly outperform LSI for retrieval tasks.

There are many possible applications and gen-
eralizations of our framework. In this study, we fo-
cused on the LSI embedding and showed prelim-
inary results with the Yule embedding. Since we
believe that the word embedding technique is of
crucial importance, we would like to experiment
with recent embedding techniques such as the Col-
lobert and Weston embedding (Collobert and We-
ston, 2008) which has been shown to scale well in
several NLP tasks.

Moreover, another significant advantage of the
proposed framework is that we could deal seam-
lessly with collections of multilingual documents.
This requires the ability to embedd the words of
different languages and techniques exist to per-
form such an embedding including Canonical Cor-
relation Analysis. Finally, the GMM still has sev-
eral theoretical limitations to model textual docu-
ments appropriately so that one could design a bet-
ter statistical model for bags-of-embedded-words.
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