
Proceedings of the Workshop on Continuous Vector Space Models and their Compositionality, pages 11–19,
Sofia, Bulgaria, August 9 2013. c©2013 Association for Computational Linguistics

Learning from errors: Using vector-based compositional semantics for
parse reranking

Phong Le, Willem Zuidema, Remko Scha
Institute for Logic, Language, and Computation

University of Amsterdam, the Netherlands
{p.le,zuidema,scha}@uva.nl

Abstract

In this paper, we address the problem of
how to use semantics to improve syntac-
tic parsing, by using a hybrid reranking
method: a k-best list generated by a sym-
bolic parser is reranked based on parse-
correctness scores given by a composi-
tional, connectionist classifier. This classi-
fier uses a recursive neural network to con-
struct vector representations for phrases in
a candidate parse tree in order to classify
it as syntactically correct or not. Tested on
the WSJ23, our method achieved a statisti-
cally significant improvement of 0.20% on
F-score (2% error reduction) and 0.95% on
exact match, compared with the state-of-
the-art Berkeley parser. This result shows
that vector-based compositional semantics
can be usefully applied in syntactic pars-
ing, and demonstrates the benefits of com-
bining the symbolic and connectionist ap-
proaches.

1 Introduction

Following the idea of compositionality in formal
semantics, compositionality in vector-based se-
mantics is also based on the principle of composi-
tionality, which says that “The meaning of a whole
is a function of the meanings of the parts and of
the way they are syntactically combined” (Partee,
1995). According to this principle, composing the
meaning of a phrase or sentence requires a syntac-
tic parse tree, which is, in most current systems,
given by a statistical parser. This parser, in turn, is
trained on syntactically annotated corpora.

However, there are good reasons to also con-
sider information flowing in the opposite direc-
tion: from semantics to syntactic parsing. Per-
formance of parsers trained and evaluated on the
Penn WSJ treebank has reached a plateau, as many

ambiguities cannot be resolved by syntactic infor-
mation alone. Further improvements in parsing
may depend on the use of additional sources of in-
formation, including semantics. In this paper, we
study the use of semantics for syntactic parsing.

The currently dominant approach to syntactic
parsing is based on extracting symbolic grammars
from a treebank and defining appropriate proba-
bility distributions over the parse trees that they
license (Charniak, 2000; Collins, 2003; Klein
and Manning, 2003; Petrov et al., 2006; Bod et
al., 2003; Sangati and Zuidema, 2011; van Cra-
nenburgh et al., 2011). An alternative approach,
with promising recent developments (Socher et
al., 2010; Collobert, 2011), is based on us-
ing neural networks. In the present paper, we
combine the ‘symbolic’ and ‘connectionist’ ap-
proaches through reranking: a symbolic parser
is used to generate a k-best list which is then
reranked based on parse-correctness scores given
by a connectionist compositional-semantics-based
classifier.

The idea of reranking is motivated by anal-
yses of the results of state-of-the-art symbolic
parsers such as the Brown and Berkeley parsers,
which have shown that there is still considerable
room for improvement: oracle results on 50-best
lists display a dramatic improvement in accuracy
(96.08% vs. 90.12% on F-score and 65.56% vs.
37.22% on exact match with the Berkeley parser).
This suggests that parsers that rely on syntactic
corpus-statistics, though not sufficient by them-
selves, may very well serve as a basis for sys-
tems that integrate other sources of information by
means of reranking.

One important complementary source of infor-
mation is the semantic plausibility of the con-
stituents of the syntactically viable parses. The ex-
ploitation of that kind of information is the topic
of the research we report here. In this work,
we follow up on a proposal by Mark Steedman

11



(1999), who suggested that the realm of seman-
tics lacks the clearcut hierarchical structures that
characterise syntax, and that semantic information
may therefore be profitably treated by the clas-
sificatory mechanisms of neural nets—while the
treatment of syntactic structures is best left to sym-
bolic parsers. We thus developed a hybrid system,
which parses its input sentences on the basis of a
symbolic probabilistic grammar, and reranks the
candidate parses based on scores given by a neural
network.

Our work is inspired by the work of Socher and
colleagues (2010; 2011). They proposed a parser
using a recursive neural network (RNN) for en-
coding parse trees, representing phrases in a vec-
tor space, and scoring them. Their experimental
result (only 1.92% lower than the Stanford parser
on unlabelled bracket F-score for sentences up to a
length of 15 words) shows that an RNN is expres-
sive enough for syntactic parsing. Additionally,
their qualitative analysis indicates that the learnt
phrase features capture some aspects of phrasal se-
mantics, which could be useful to resolve semantic
ambiguity that syntactical information alone can
not. Our work in this paper differs from their work
in that we replace the parsing task by a reranking
task, and thus reduce the object space significantly
to a set of parses generated by a symbolic parser
rather than the space of all parse trees. As a result,
we can apply our method to sentences which are
much longer than 15 words.

Reranking a k-best list is not a new idea.
Collins (2000), Charniak and Johnson (2005), and
Johnson and Ural (2010) have built reranking sys-
tems with performances that are state-of-the-art.
In order to achieve such high F-scores, those
rerankers rely on a very large number of features
selected on the basis of expert knowledge. Unlike
them, our feature set is selected automatically, yet
the reranker achieved a statistically significant im-
provement on both F-score and exact match.

Closest to our work is Menchetti et al. (2005)
and Socher et al. (2013): both also rely on sym-
bolic parsers to reduce the search space and use
RNNs to score candidate parses. However, our
work differs in the way the feature set for rerank-
ing is selected. In their methods, only the score at
the tree root is considered whereas in our method
the scores at all internal nodes are taken into ac-
count. Selecting the feature set like that gives us a
flexible way to deal with errors accumulated from

the leaves to the root.
Figure 1 shows a diagram of our method. First,

a parser (in this paper: the Berkeley parser) is used
to generate k-best lists of the Wall Street Jour-
nal (WSJ) sections 02-21. Then, all parse trees in
these lists and the WSJ02-21 are preprocessed by
marking head words, binarising, and performing
error-annotation (Section 2). After that, we use
the annotated trees to train our parse-correctness
classifier (Section 3). Finally, those trees and the
classifier are used to train the reranker (Section 4).

2 Experimental Setup

The experiments presented in this paper have the
following setting. We use the WSJ corpus with
the standard splits: sections 2-21 for training, sec-
tion 22 for development, and section 23 for test-
ing. The latest implementation (version 1.7) of the
Berkeley parser1 (Petrov et al., 2006) is used for
generating 50-best lists. We mark head words and
binarise all trees in the WSJ and the 50-best lists
as in Subsection 2.1, and annotate them as in Sub-
section 2.2 (see Figure 2).

2.1 Preprocessing Trees

We preprocess trees by marking head words and
binarising the trees. For head word marking,
we used the head finding rules of Collins (1999)
which are implemented in the Stanford parser.
To binarise a k-ary branching, e.g. P →
C1 ... H ... Ck where H is the top label of the
head constituent, we use the following method. If
H is not the left-most child, then

P → C1 @P ; @P → C2 ... H ... Ck

otherwise,

P → @P Ck ; @P → H ... Ck−1

where @P , which is called extra-P , now is the
head of P . We then apply this transformation
again on the children until we reach terminal
nodes. In this way, we ensure that every internal
node has one head word.

2.2 Error Annotation

We annotate nodes (as correct or incorrect) as fol-
lows. Given a parse tree T in a 50-best list and
a corresponding gold-standard tree G in the WSJ,

1https://code.google.com/p/berkeleyparser

12



Figure 1: An overview of our method.

Figure 2: Example for preprocessing trees. Nodes marked with (*) are labelled incorrect whereas the
other nodes are labelled correct.

we first attempt to align their terminal nodes ac-
cording to the following criterion: a terminal node
t is aligned to a terminal node g if they are at
the same position counting from-left-to-right and
they have the same label. Then, a non-terminal
node P [wh] with children C1, ..., Ck is aligned to
a gold-standard non-terminal node P ∗[w∗h] with
children C∗1 , ..., C

∗
l (1 ≤ k, l ≤ 2 in our case)

if they have the same word head, the same syn-
tactical category, and their children are all aligned
in the right order. In other words, the following
conditions have to be satisfied

P = P ∗ ; wh = w∗h ; k = l

Ci is aligned to C∗i , for all i = 1..k

Aligned nodes are annotated as correct whereas
the other nodes are annotated as incorrect.

3 Parse-Correctness Classification

This section describes how a neural network
is used to construct vector representations for

phrases given parse trees and to identify if those
trees are syntactically correct or not. In order to
encode tree structures, we use an RNN2 (see Fig-
ure 3 and Figure 4) which is similar to the one
proposed by Socher and colleagues (2010). How-
ever, unlike their RNN, our RNN can handle unary
branchings, and also takes head words and syntac-
tic tags as input. It is worth noting that, although
we can use some transformation to remove unary
branchings, handling them is helpful in our case
because the system avoids dealing with so many
syntactic tags that would result from the transfor-

2The first neural-network approach attempting to operate
and represent compositional, recursive structure is the Recur-
sive Auto-Associative Memory network (RAAM), which was
proposed by Pollack (1988). In order to encode a binary tree,
the RAAM network contains three layers: an input layer for
two daughter nodes, a hidden layer for their parent node, and
an output layer for their reconstruction. Training the network
is to minimise the reconstruction error such that we can de-
code the information captured in the hidden layer to the orig-
inal tree form. Our RNN differs from the RAAM network in
that its output layer is not for reconstruction but for classifi-
cation.

13



mation. In addition, using a new set of weight ma-
trices for unary branchings makes our RNN more
expressive without facing the problem of sparsity
thanks to a large number of unary branchings in
the treebank.

Figure 3: An RNN attached to the parse tree
shown in the top-right of Figure 2. All unary
branchings share a set of weight matrices, and all
binary branchings share another set of weight ma-
trices (see Figure 4).

An RNN processes a tree structure by repeat-
edly applying itself at each internal node. Thus,
walking bottom-up from the leaves of the tree to
the root, we compute for every node a vector based
on the vectors of its children. Because of this
process, those vectors have to have the same di-
mension. It is worth noting that, because informa-
tion at leaves, i.e. lexical semantics, is composed
according to a given syntactic parse, what a vec-
tor at each internal node captures is some aspects
of compositional semantics of the corresponding
phrase. In the remainder of this subsection, we
describe in more detail how to construct composi-
tional vector-based semantics geared towards the
parse-correctness classification task.

Similar to Socher et al. (2010), and Col-
lobert (2011), given a string of words (w1, ..., wl),
we first compute a string of vectors (x1, ..., xl)
representing those words by using a look-up table
(i.e., word embeddings) L ∈ Rn×|V |, where |V | is
the size of the vocabulary and n is the dimension-
ality of the vectors. This look-up table L could
be seen as a storage of lexical semantics where
each column is a vector representation of a word.
Hence, let bi be the binary representation of word
wi (i.e., all of the entries of bi are zero except the
one corresponding to the index of the word in the
dictionary), then

xi = Lbi ∈ Rn (1)

We also encode syntactic tags by binary vectors
but put an extra bit at the end of each vector to
mark if the corresponding tag is extra or not (i.e.,
@P or P ).

Figure 4: Details about our RNN for a unary
branching (top) and a binary branching (bottom).
The bias is not shown for the simplicity.

Then, given a unary branching P [wh]→ C, we
can compute the vector at the node P by (see Fig-
ure 4-top)

p = f
(
Wuc+Whxh +W−1x−1 +

W+1x+1 +Wttp + bu
)

where c, xh are vectors representing the child C
and the head word, x−1, x+1 are the left and right
neighbouring words of P , tp encodes the syn-
tactic tag of P , Wu,Wh,W−1,W+1 ∈ Rn×n,
Wt ∈ Rn×(|T |+1), |T | is the size of the set of
syntactic tags, bu ∈ Rn, and f can be any acti-
vation function (tanh is used in this case). With
a binary branching P [wh] → C1 C2, we simply
change the way the children’s vectors added (see
Figure 4-bottom)

p = f
(
Wb1c1 +Wb2c2 +Whxh +W−1x−1 +

W+1x+1 +Wttp + bb
)

Finally, we put a sigmoid neural unit on the
top of each internal node (except pre-terminal
nodes because we are not concerned with POS-
tagging) to detect the correctness of the subparse
tree rooted at that node

y = sigmoid(Wcatp+ bcat) (2)

where Wcat ∈ R1×n, bcat ∈ R.

14



3.1 Learning
The error on a parse tree is computed as the sum
of classification errors of all subparses. Hence, the
learning is to minimise the objective

J(θ) =
1

N

∑
T

∑
(y(θ),t)∈T

1

2
(t− y(θ))2 + λ‖θ‖2

(3)
where θ are the model parameters, N is the num-
ber of trees, λ is a regularisation hyperparameter,
T is a parse tree, y(θ) is given by Equation 2, and
t is the class of the corresponding subparse (t = 1
means correct). The gradient ∂J∂θ is computed ef-
ficiently thanks to backpropagation through the
structure (Goller and Kuchler, 1996). L-BFGS
(Liu and Nocedal, 1989) is used to minimise the
objective function.

3.2 Experiments
We implemented our classifier in Torch73 (Col-
lobert et al., 2011a), which is a powerful Matlab-
like environment for machine learning. In order to
save time, we only trained the classifier on 10-best
parses of WSJ02-21. The training phase took six
days on a computer with 16 800MHz CPU-cores
and 256GB RAM. The word embeddings given by
Collobert et al. (2011b)4 were used as L in Equa-
tion 1. Note that these embeddings, which are the
result of training a language model neural network
on the English Wikipedia and Reuters, have been
shown to capture many interesting semantic simi-
larities between words.

We tested the classifier on the development
set WSJ22, which contains 1, 700 sentences, and
measured the performance in positive rate and
negative rate

pos-rate =
#true pos

#true pos + #false neg

neg-rate =
#true neg

#true neg + #false pos

The positive/negative rate tells us the rate at which
positive/negative examples are correctly labelled
positive/negative. In order to achieve high per-
formance in the reranking task, the classifier must
have a high positive rate as well as a high nega-
tive rate. In addition, percentage of positive exam-
ples is also interesting because it shows the unbal-
ancedness of the data. Because the accuracy is not

3http://www.torch.ch/
4http://ronan.collobert.com/senna/

a reliable measurement when the dataset is highly
unbalanced, we do not show it here. Table 1, Fig-
ure 5, and Figure 6 show the classification results.

pos-rate (%) neg-rate (%) %-Pos
gold-std 75.31 - 1
1-best 90.58 64.05 71.61
10-best 93.68 71.24 61.32
50-best 95.00 73.76 56.43

Table 1: Classification results on the WSJ22 and
the k-best lists.

Figure 5: Positive rate, negative rate, and percent-
age of positive examples w.r.t. subtree depth.

3.3 Discussion

Table 1 shows the classification results on the
gold-standard, 1-best, 10-best, and 50-best lists.
The positive rate on the gold-standard parses,
75.31%, gives us the upper bound of %-pos when
this classifier is used to yield 1-best lists. On the 1-
best data, the classifier missed less than one tenth
positive subtrees and correctly found nearly two
third of the negative ones. That is, our classi-
fier might be useful for avoiding many of the mis-
takes made by the Berkeley parser, whilst not in-
troducing too many new mistakes of its own. This
fact gave us hope to improve parsing performance
when using this classifier for reranking.

Figure 5 shows positive rate, negative rate, and
percentage of positive examples w.r.t. subtree
depth on the 50-best data. We can see that the pos-
itive rate is inversely proportional to the subtree
depth, unlike the negative rate. That is because the

15



Figure 6: Positive rate, negative rate, and percentage of positive samples w.r.t. syntactic categories
(excluding POS tags).

deeper a subtree is, the lower the a priori likeli-
hood that the subtree is positive (we can see this
in the percentage-of-positive-example curve). In
addition, deep subtrees are difficult to classify be-
cause uncertainty is accumulated when propagat-
ing from bottom to top.

4 Reranking

In this section, we describe how we use the above
classifier for the reranking task. First, we need to
represent trees in one vector space, i.e., µ(T ) =(
µ1(T ), ..., µv(T )

)
for an arbitrary parse tree T .

Collins (2000), Charniak and Johnson (2005), and
Johnson and Ural (2010) set the first entry to the
model score and the other entries to the number of
occurrences of specific discrete hand-chosen prop-
erties (e.g., how many times the word pizza comes
after the word eat) of trees. We here do the same
with a trick to discretize results from the classifier:
we use a 2D histogram to store predicted scores
w.r.t. subtree depth. This gives us a flexible way to
penalise low score subtrees and reward high score
subtrees w.r.t. the performance of the classifier at
different depths (see Subsection 3.3). However,
unlike the approaches just mentioned, we do not
use any expert knowledge for feature selection; in-
stead, this process is fully automatic.

Formally speaking, a vector feature µ(T ) is
computed as following. µ1(T ) is the model score

(i.e., max-rule-sum score) given by the parser,(
µ2(T ), ..., µv(T )

)
is the histogram of a set of

(y, h) where y is given by Equation 2 and h is the
depth of the corresponding subtree. The domain
of y (i.e., [0, 1]) is split into γy equal bins whereas
the domain of h (i.e., {1, 2, 3, ...}) is split into γh
bins such that the i-th (i < γh) bin corresponds to
subtrees of depth i and the γh-th bin corresponds
to subtrees of depth equal or greater than γh. The
parameters γy and γh are then estimated on the de-
velopment set.

After extracting feature vectors for parse trees,
we then find a linear ranking function

f(T ) = w>µ(T )

such that

f(T1) > f(T2) iff fscore(T1) > fscore(T2)

where fscore(.) is the function giving F-score, and
w ∈ Rv is a weight vector, which is efficiently
estimated by SVM ranking (Yu and Kim, 2012).
SVM was initially used for binary classification.
Its goal is to find the hyperplane which has the
largest margin to best separate two example sets. It
was then proved to be efficient in solving the rank-
ing task in information retrieval, and in syntactic
parsing (Shen and Joshi, 2003; Titov and Hender-
son, 2006). In our experiments, we used SVM-

16



Rank5 (Joachims, 2006), which runs extremely
fast (less than two minutes with about 38, 000 10-
best lists).

4.1 Experiments

Using the classifier in Section 3, we implemented
the reranker in Torch7, trained it on WSJ02-21.
We used WSJ22 to estimate the parameters γy and
γh by the grid search and found that γy = 9 and
γh = 4 yielded the best F-score.

Table 2 shows the results of our reranker on
50-best WSJ23 given by the Berkeley parser, us-
ing the standard evalb. Our method improves
0.20% on F-score for sentences with all length,
and 0.22% for sentences with ≤ 40 words.
These differences are statistically significant6 with
p-value < 0.003. Our method also improves ex-
act match (0.95% for all sentences as well as for
sentences with ≤ 40 words).

Parser LR LP LF EX
all

Berkeley parser 89.98 90.25 90.12 37.22
This paper 90.10 90.54 90.32 38.17

Oracle 95.94 96.21 96.08 65.56
≤ 40 words

Berkeley parser 90.43 90.70 90.56 39.65
This paper 90.57 91.01 90.78 40.50

Oracle 96.47 96.73 96.60 68.51

Table 2: Reranking results on 50-best lists on
WSJ23 (LR is labelled recall, LP is labelled pre-
cision, LF is labelled F-score, and EX is exact
match.)

Table 3 shows the comparison of the three
parsers that use the same hybrid reranking ap-
proach. On F-score, our method performed 0.1%
lower than Socher et al. (2013), and 1.5% better
than Menchetti et al. (2005). However, our method
achieved the least improvement on F-score over its
corresponding baseline. That could be because our
baseline parser (i.e., the Berkeley parser) performs
much better than the other two baseline parsers;
and hence, detecting errors it makes on candidate
parse trees is more difficult.

5www.cs.cornell.edu/people/tj/svm light/svm rank.html
6We used the “Significance testing for evalua-

tion statistics” software (http://www.nlpado.de/ sebas-
tian/software/sigf.shtml) given by Padó (2006).

Parser LF (all) K-best
parser

Menchetti et
al. (2005)

88.8 (0.6) Collins
(1999)

Socher et
al. (2013)

90.4 (3.8) PCFG Stan-
ford parser

This paper 90.3 (0.2) Berkeley
parser

Table 3: Comparison of parsers using the same hy-
brid reranking approach. The numbers in the blan-
kets indicate the improvements on F-score over the
corresponding baselines (i.e., the k-best parsers).

5 Conclusions

This paper described a new reranking method
which uses semantics in syntactic parsing: a sym-
bolic parser is used to generate a k-best list which
is later reranked thanks to parse-correctness scores
given by a connectionist compositional-semantics-
based classifier. Our classifier uses a recursive
neural network, like Socher et al., (2010; 2011), to
not only represent phrases in a vector space given
parse trees, but also identify if these parse trees are
grammatically correct or not.

Tested on WSJ23, our method achieved a
statistically significant improvement on F-score
(0.20%) as well as on exact match (0.95%).
This result, although not comparable to the re-
sults reported by Collins (2000), Charniak and
Johnson (2005), and Johnson and Ural (2010),
shows an advantage of using vector-based com-
positional semantics to support available state-of-
the-art parsers.

One of the limitations of the current paper is the
lack of a qualitative analysis of how learnt vector-
based semantics has affected the reranking results.
Therefore, the need for “compositional seman-
tics” in syntactical parsing may still be doubted.
In future work, we will use vector-based seman-
tics together with non-semantic features (e.g., the
ones of Charniak and Johnson (2005)) to find out
whether the semantic features are truly helpful or
they just resemble non-semantic features.

Acknowledgments

We thank two anonymous reviewers for helpful
comments.

17



References

Rens Bod, Remko Scha, and Khalil Sima’an. 2003.
Data-Oriented Parsing. CSLI Publications, Stan-
ford, CA.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-fine n-best parsing and MaxEnt discriminative
reranking. In Proceedings of the 43rd Annual Meet-
ing on Association for Computational Linguistics,
pages 173–180. Association for Computational Lin-
guistics.

Eugene Charniak. 2000. A maximum-entropy-
inspired parser. In Proceedings of the 1st North
American chapter of the Association for Computa-
tional Linguistics, pages 132–139. Association for
Computational Linguistics.

Michael Collins. 1999. Head-Driven Statistical Mod-
els for Natural Language Parsing. Ph.D. thesis,
University of Pennsylvania.

Michael Collins. 2000. Discriminative reranking for
natural language parsing. In Proceedings of the In-
ternational Workshop on Machine Learning (then
Conference), pages 175–182.

Michael Collins. 2003. Head-driven statistical mod-
els for natural language parsing. Computational lin-
guistics, 29(4):589–637.

Ronan Collobert, Koray Kavukcuoglu, and Clément
Farabet. 2011a. Torch7: A matlab-like environment
for machine learning. In BigLearn, NIPS Workshop.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011b. Natural language processing (almost) from
scratch. The Journal of Machine Learning Re-
search, 12:2493–2537.

Ronan Collobert. 2011. Deep learning for efficient
discriminative parsing. In International Conference
on Artificial Intelligence and Statistics (AISTATS).

Christoph Goller and Andreas Kuchler. 1996. Learn-
ing task-dependent distributed representations by
backpropagation through structure. In IEEE Inter-
national Conference on Neural Networks, volume 1,
pages 347–352. IEEE.

Thorsten Joachims. 2006. Training linear SVMs in lin-
ear time. In Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery
and data mining, pages 217–226. ACM.

Mark Johnson and Ahmet Engin Ural. 2010. Rerank-
ing the Berkeley and Brown parsers. In Human Lan-
guage Technologies: The 2010 Annual Conference
of the North American Chapter of the Association
for Computational Linguistics, pages 665–668. As-
sociation for Computational Linguistics.

Dan Klein and Christopher D Manning. 2003. Ac-
curate unlexicalized parsing. In Proceedings of the
41st Annual Meeting on Association for Computa-
tional Linguistics, Volume 1, pages 423–430. Asso-
ciation for Computational Linguistics.

Dong C Liu and Jorge Nocedal. 1989. On the limited
memory BFGS method for large scale optimization.
Mathematical programming, 45(1-3):503–528.

Sauro Menchetti, Fabrizio Costa, Paolo Frasconi, and
Massimiliano Pontil. 2005. Wide coverage natu-
ral language processing using kernel methods and
neural networks for structured data. Pattern Recogn.
Lett., 26(12):1896–1906, September.

Sebastian Padó, 2006. User’s guide to sigf: Signifi-
cance testing by approximate randomisation.

Barbara Partee. 1995. Lexical semantics and compo-
sitionality. In L. R. Gleitman and M. Liberman, ed-
itors, Language. An Invitation to Cognitive Science,
volume 1, pages 311–360. MIT Press, Cambridge,
MA.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and
interpretable tree annotation. In Proceedings of
the 21st International Conference on Computational
Linguistics and the 44th annual meeting of the Asso-
ciation for Computational Linguistics, pages 433–
440. Association for Computational Linguistics.

Jordan B Pollack. 1988. Recursive auto-associative
memory. Neural Networks, 1:122.

Federico Sangati and Willem Zuidema. 2011. Ac-
curate parsing with compact tree-substitution gram-
mars: Double-DOP. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing, pages 84–95. Association for Computa-
tional Linguistics.

Libin Shen and Aravind K Joshi. 2003. An SVM based
voting algorithm with application to parse reranking.
In Proceedings of the seventh conference on Natural
language learning at HLT-NAACL 2003-Volume 4,
pages 9–16. Association for Computational Linguis-
tics.

Richard Socher, Christopher D Manning, and An-
drew Y Ng. 2010. Learning continuous phrase
representations and syntactic parsing with recursive
neural networks. In Proceedings of the NIPS-2010
Deep Learning and Unsupervised Feature Learning
Workshop.

Richard Socher, Cliff C Lin, Andrew Y Ng, and
Christopher D Manning. 2011. Parsing natural
scenes and natural language with recursive neu-
ral networks. In Proceedings of the 26th Inter-
national Conference on Machine Learning (ICML),
volume 2.

18



Richard Socher, John Bauer, Christopher D. Manning,
and Andrew Y. Ng. 2013. Parsing With Composi-
tional Vector Grammars. In Proceedings of the ACL
conference (to appear).

Mark Steedman. 1999. Connectionist sentence
processing in perspective. Cognitive Science,
23(4):615–634.

Ivan Titov and James Henderson. 2006. Loss mini-
mization in parse reranking. In Proceedings of the
2006 Conference on Empirical Methods in Natural
Language Processing, pages 560–567. Association
for Computational Linguistics.

Andreas van Cranenburgh, Remko Scha, and Federico
Sangati. 2011. Discontinuous Data-Oriented Pars-
ing: A mildly context-sensitive all-fragments gram-
mar. In Proceedings of the Second Workshop on Sta-
tistical Parsing of Morphologically Rich Languages,
pages 34–44. Association for Computational Lin-
guistics.

Hwanjo Yu and Sungchul Kim. 2012. SVM tutorial:
Classification, regression, and ranking. In Grzegorz
Rozenberg, Thomas Bäck, and Joost N. Kok, ed-
itors, Handbook of Natural Computing, volume 1,
pages 479–506. Springer.

19


