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Abstract 

An increasing body of empirical evidence 

suggests that concreteness is a fundamental 

dimension of semantic representation. By im-

plementing both a vector space model and a 

Latent Dirichlet Allocation (LDA) Model, we 

explore the extent to which concreteness is re-

flected in the distributional patterns in corpora.  

In one experiment, we show that that vector 

space models can be tailored to better model 

semantic domains of particular degrees of 

concreteness.   In a second experiment, we 

show that the quality of the representations of 

abstract words in LDA models can be im-

proved by supplementing the training data 

with information on the physical properties of 

concrete concepts.  We conclude by discussing 

the implications for computational systems 

and also for how concrete and abstract con-

cepts are represented in the mind 

1 Introduction 

A growing body of theoretical evidence empha-

sizes the importance of concreteness to semantic 

representations.  This fact has not been widely 

exploited in NLP systems, despite its clear theo-

retical relevance to tasks such as word-sense in-

duction and compositionality modeling.  In this 

paper, we take a first step towards integrating 

concreteness into NLP by testing the extent to 

which it is reflected by the superficial (distribu-

tional) patterns in corpora.  The motivation is 

both theoretical and practical: We consider the 

implications for the development of computa-

tional systems and also for how concrete and ab-

stract concepts are represented in the human 

mind.  Experimenting with two popular methods 

of extracting lexical representations from text, 

we show both that these approaches are sensitive 

to concreteness and that their performance can be 

improved by adapting their implementation to 

the concreteness of the domain of application.  In 

addition, our findings offer varying degrees of 

support to several recent proposals about concep-

tual representation.   
In the following section we review recent 

theoretical and practical work. In Section 3 we 

explore the extent to which concreteness is re-

flected by Vector-Space Models of meaning 

(VSMs), and in Section 4 we conduct a similar 

analysis for (Bayesian) Latent Dirichlet Alloca-

tion (LDA) models.   We conclude, in Section 5, 

by discussing practical and theoretical implica-

tions.     

2 Related work 

2.1 Concreteness 

Empirical evidence indicates important cognitive 

differences between abstract concepts, such as 

guilt or obesity, and concrete concepts, such as 

chocolate or cheeseburger.  It has been shown 

that concrete concepts are more easily learned 

and remembered than abstract concepts, and that 

language referring to concrete concepts is more 

easily processed (Schwanenflugel, 1991).  There 

are cases of brain damage in which either ab-

stract or concrete concepts appear to be specifi-

cally impaired (Warrington, 1975), and function-

al magnetic resonance imaging (fMRI) studies 

implicate overlapping but partly distinct neural 

systems in the processing of the two concept 

types (Binder et al., 2005).  Further, there is in-

creasing evidence that concrete concepts are 

represented via intrinsic properties whereas ab-

stract representations encode extrinsic relations 

to other concepts (Hill et al., in press). However, 

while these studies together suggest that con-

creteness is fundamental to human conceptual 

representation, much remains to be understood 

about the precise cognitive basis of the ab-

stract/concrete distinction.  Indeed, the majority 

of theoretically motivated studies of conceptual 

representation focus on concrete domains, and 
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comparatively little has been established empiri-

cally about abstract concepts. 

Despite this support for the cognitive impor-

tance of concreteness, its application to computa-

tional semantics has been limited to date.  One 

possible reason for this is the difficulty in mea-

suring lexical concreteness using corpora alone 

(Kwong, 2008).  Turney et al. (2011) overcome 

this hurdle by applying a semi-supervised me-

thod to quantify noun concreteness.  Using this 

data, they show that a disparity in the concrete-

ness between elements of a construction can faci-

litate metaphor identification. For instance, in the 

expressions kill the process or black comedy, a 

verb or adjective that generally occurs with a 

concrete argument takes an abstract argument. 

Turney et al. show that a supervised classifier 

can exploit this effect to correctly identify 79% 

of adjective-noun and verb-object constructions 

as literal or metaphorical.  Although these results 

are clearly promising, to our knowledge Turney 

et al.‟s paper is unique in integrating corpus-

based methods and concreteness in NLP systems.   

1.2 Association / similarity 

A proposed distinction between abstract and 

concrete concepts that is particularly important 

for the present work relates to the semantic rela-

tions association and (semantic) similarity (see 

e.g. Crutch et al. 2009; Resnik, 1995). The dif-

ference between these relations is exemplified by 

the concept pairs {car, petrol} and {car, van}.  

Car is said to be (semantically) similar to van, 

and associated with (but not similar to) petrol.  

Intuitively, the basis for the similarity of car and 

bike may be their common physical features 

(wheels) or the fact that they fall within a clearly 

definable category (modes of transport).  In con-

trast, the basis for the association between car 

and petrol may be that they are often found to-

gether or the clear functional relationship be-

tween them.  The two relations are neither mu-

tually exclusive nor independent; bike and car 

are related to some degree by both association 

and similarity.  

Based on fresults of behavioral experiments, 

Crutch et al. (2009) make the following proposal 

concerning how association and similarity inte-

ract with concreteness: 

 

(C) The conceptual organization of abstract con-

cepts is governed by association, whereas the 

organization of concrete concepts is governed by 

similarity.   

 

Crutch et al.‟s hypothesis derives from experi-

ments in which participants selected the odd-one-

out from lists of five words appearing on a 

screen. The lists comprised either concrete or 

abstract words (based on ratings of six infor-

mants) connected either by similarity (e.g. dog, 

wolf, fox etc.; theft, robbery, stealing etc.) or 

association (dog, bone, collar etc.; theft, law, vic-

tim etc.), with an unrelated odd-one-out item in 

each list. Controlling for frequency and position, 

subjects were both significantly faster and more 

accurate if the related words were either abstract 

and associated or concrete and similar. These 

results support (C) on the basis that decision 

times are faster when the related items form a 

more coherent group, rendering the odd-one out 

more salient.  Hill et al. (in press) tested the same 

hypothesis on a larger scale, analyzing over 

18,000 concept pairs scored by human annotators 

for concreteness as well as the strength of associ-

ation between them.  They found a moderate in-

teraction between concreteness and the correla-

tion between association strength and similarity 

(as measured using WordNet), but concluded 

that the strength of the effect was not sufficiently 

strong to either confirm or refute (C). 

Against this backdrop, the present work ex-

amines how association, similarity and concrete-

ness are reflected in LDA models and, first, 

VSMs.  In both cases we test Hypothesis (C) and 

related theoretical proposals, and discuss whether 

these findings can lead to better performing se-

mantic models.   

3 Vector Space Models 

Vector space models (VSMs) are perhaps the 

most common general method of extracting se-

mantic representations from corpora (Sahlgren, 

2006; Turney & Pantel, 2010).  Words are 

represented in VSMs as points in a (geometric) 

vector space. The dimensions of the space cor-

respond to the model features, which in the sim-

plest case are high frequency words from the 

corpus.  In such models, the position of a word 

representation along a given feature dimension 

depends on how often that word occurs within a 

specified proximity to tokens of the feature word 

in the corpus.  The exact proximity required is an 

important parameter for model implementation, 

and is referred to as the context window.  Finally, 

the degree to which two word representations are 

related can be calculated as some function of the 

distance between the corresponding points in the 

semantic space.   
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3.1 Motivation 

VSMs are well established as a method of quan-

tifying relations between word concepts and have 

achieved impressive performance in related NLP 

tasks (Sahlgren, 2006; Turney & Pantel, 2010).  

In these studies, however, it is not always clear 

exactly which semantic relation is best reflected 

by the implemented models.  Indeed, research 

has shown that by changing certain parameter 

settings in the standard VSM architecture, mod-

els can be adapted to better reflect one relation 

type or another.  Specifically, models with 

smaller context windows are reportedly better at 

reflecting similarity, whereas models with larger 

windows better reflect association. (Agirre et al., 

2009; Peirsman et al., 2008) 

Our experiments in this section aim first to 

corroborate these findings by testing how models 

of varying context window sizes perform on em-

pirical data of both association and similarity.  

We then test if this effect differentially affects 

performance on concrete and abstract words.   

3.2 Method  

We employ a conventional VSM design, extract-

ing representations from the (unlemmatised) 

British National Corpus (Leech et al., 1994) with 

stopwords removed.   In the vector representation 

of each noun, our dimension features are the 

50,000 most frequently occurring (non-

stopword) words in the corpus.    We experiment 

with window sizes of three, five and nine (one, 

two and four words either side of the noun, 

counting stopwords).  Finally, we apply point-

wise mutual information (PMI) weighting of our 

co-occurrence frequencies, and measure similari-

ty between weighted noun vectors by the cosine 

of the angle between them in the vector space.    

To evaluate modeling of association, we use 

the University of South Florida (USF) Free-

association Norms (Nelson & McEvoy, 2012).  

The USF data consist of over 5,000 words paired 

with their free associates.  To elicit free asso-

ciates, more than 6,000 participants were pre-

sented with cue words and asked to “write the 

first word that comes to mind that is meaningful-

ly related or strongly associated to the presented 

word”.  For a cue word c and an associate a, the 

forward association strength (association) from 

c to a is the proportion of participants who pro-

duced a when presented with c.  association is 

thus a measure of the strength of an associate 

relative to other associates of that cue.  The USF 

data is well suited to our purpose because many 

cues and associates in the data have a concrete-

ness score, taken from either the norms of Paivio, 

Yuille and Madigan (1968) or Toglia and Battig 

(1978).  In both cases contributors were asked to 

rate words based on a scale of 1 (very abstract) to 

7 (very concrete).
1
  We extracted the all 2,230 

nouns from the USF data for which concreteness 

scores were known, yielding a total of 15,195 

noun-noun pairs together with concreteness and 

association values.   

Although some empirical word-similarity da-

tasets are publically available, they contain few if 

any abstract words (Finkelstein et al., 2002; Ru-

benstein & Goodenough, 1965).  Therefore to 

evaluate similarity modeling, we use Wu-Palmer 

Similarity (similarity) (Wu & Palmer, 1994), a 

word similarity metric based on the position of 

the senses of two words in the WordNet taxono-

my (Felbaum, 1998).  similarity can be applied to 

both abstract and concrete nouns and achieves a 

high correlation, with human similarity judg-

ments (Wu & Palmer, 1994).
2
     

3.3 Results 

In line with previous studies, we observed that 

VSMs with smaller window sizes were better 

able to predict similarity.  The model with win-

dow size 3 achieves a higher correlation with 

similarity (Spearman rank rs  = -0.29) than the 

model with window size 9 (rs  = -0.25).  Howev-

er, the converse effect for association was not 

observed: Model correlation with association 

was approximately constant over all window siz-

es.  These effects are illustrated in Fig. 1.  

 

                                                 
1Although concreteness is well understood intuitively, it 

lacks a universally accepted definition.  It is often described 

in terms of reference to sensory experience (Paivio et al., 

1968), but also connected to specificity; rose is often consi-

dered more concrete than flora.  The present work does not 

address this ambiguity.     
2 similarity achieves a Pearson correlation of r  = .80 on 

the  30 concrete word pairs in the Miller & Charles (1991) 

data.   
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Figure 1:  Spearman correlations between VSM out-

put and association and similarity for different win-

dow sizes. 

 

In addressing the theoretical Hypothesis (C) we 

focused on the output of our VSM of window 

size five, although the same trends were ob-

served over all three models.  Over all 18,195 

noun-noun pairs the correlation between the 

model output and association was significant (rs  

= 0.13, p < 0.001) but notably lower than the cor-

relation with similarity (rs  = -0.29, p < 0.001).  

To investigate the effect of concreteness, we 

ranked each pair in our sample by the total con-

creteness of both nouns, and restricted our analy-

sis to the 1000 most concrete and 1000 most ab-

stract pairs.  The models captured association 

better over the abstract pairs than concrete con-

cepts, but reflected similarity better over the con-

crete concepts.  The strength of this effect is illu-

strated in Fig. 2.   

 

 
Figure 2: Spearman correlation values between VSM 

output and similarity and association over subsets of 

concrete and abstract pairs. 

 

Given that small window sizes are optimal for 

modeling similarity, and that WSMs appear to 

model similarity better over concrete concepts 

than over abstract concepts, we explored whether 

different window sizes were optimal for either 

abstract or concrete word pairs. When comparing 

the model output to association, no interaction 

between window size and concreteness was ob-

served.  However, there was a notable interaction 

when considering performance in modeling simi-

larity.  As illustrated in Fig. 3, performance on 

concrete word pairs is better for smaller window 

sizes, whereas with abstract word pairs a larger 

window size is preferable.   

 

 
Figure 3:  Spearman correlation values between VSM 

output and similarity and association for different 

window sizes over abstract and concrete word pair 

subsets 

3.4 Conclusion 

Our results corroborate the body of VSM re-

search that reports better performance from small 

window sizes in modeling similarity.  A likely 

explanation for this finding is that similarity is a 

paradigmatic relation: Two similar entities can 

be plausibly exchanged in most linguistic con-

texts.  Small context windows emphasize prox-

imity, which loosely reflects structural relation-

ships such as verb-object, ensuring that paradig-

matically related entities score highly.  Models 

with larger context windows cannot discern pa-

radigmatically and syntagmatically related enti-

ties in this way.  The performance of our models 

on the association dataset did not support the 

converse conclusion that larger window sizes 

perform better.  Overall, each of the three models 

was notably better at capturing similarity than 

association.  This suggests that the core architec-

ture of WSMs is not well suited to modeling as-

sociation.  Indeed, „first order‟ models that di-

rectly measure word co-occurrences, rather than 

connecting them via features, seem to perform 

better at this task (Chaudhari et al., 2011).  This 

fact is consistent with the view that association is 

a more basic or fundamental semantic relation 

from which other more structured relations are 

derived.  

The fact that the USF association data re-

flects the instinctive first response of participants 

when presented with a cue word is important for 

interpreting the results with respect to Hypothe-

sis (C).  Our findings suggest that VSMs are bet-

ter able to model this data for abstract word pairs 

than for concrete word pairs.  This is consistent 

with the idea that language fundamentally deter-

mines which abstract concepts come to be asso-

ciated or connected in the mind.  Conversely, the 
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fact that the model reflects associations between 

concrete words less well suggests that the impor-

tance of extra-linguistic information is lower for 

connecting concrete concepts in this instinctive 

way.  Indeed, it seems plausible that the process 

by which concrete concepts become associated 

involves visualization or some other form of per-

ceptual reconstruction. Consistent with Hypothe-

sis (C), this reconstruction, which is not possible 

for abstract concepts, would naturally reflect si-

milarity to a greater extent than linguistic context 

alone.   

Finally, when modeling similarity, the ad-

vantage of a small window increases as the 

words become more concrete.  Similarity be-

tween concrete concepts is fundamental to cogni-

tive theories involving the well studied notions 

of prototype and categorization (Rosch, 1975; 

Rogers & McClelland, 2003).   In contrast, the 

computation of abstract similarity is intuitively a 

more complex cognitive operation.  Although the 

accurate quantification of abstract similarity may 

be beyond existing corpus-based methods, our 

results suggest that a larger context window 

could in fact be marginally preferable should 

VSMs be applied to this task.   

Overall, our findings show that the design of 

VSMs can be tailored to reflect particular seman-

tic relations and that this in turn can affect their 

performance on different semantic domains, par-

ticularly with respect to concreteness.  In the 

next section, we investigate whether the same 

conclusions should apply to a different class of 

distributional model.        

4 Latent Dirichlet Allocation Models 

LDA models are trained on corpora that are di-

vided into sections (typically documents), ex-

ploiting the principle that words appearing in the 

same document are likely to have similar mean-

ings.  In an LDA model, the sections are viewed 

as having been generated by random sampling 

from unknown latent dimensions, which are 

represented as probability distributions (Dirichlet 

distributions) over words.  Each document can 

then be represented by a probability distribution 

over these dimensions, and by considering the 

meaning of the dimensions, the meaning of the 

document can be effectively characterized.  More 

importantly, because each latent dimension clus-

ters words of a similar meaning, the output of 

such models can be exploited to provide high 

quality lexical representations (Griffiths et al., 

2007).  Such a word representation encodes the 

extent to which each of the latent dimensions 

influences the meaning of that word, and takes 

the form of a probability distribution over these 

dimensions.  The degree to which two words are 

related can then be approximated by any function 

that measures the similarity or difference be-

tween distributions.        

4.1 Motivation 

In recent work, Andrews et al. (2009) explore 

ways in which LSA models can be modified to 

improve the quality of their lexical representa-

tions.  They propose that concepts are acquired 

via two distinct information sources: experiential 

data – the perceptible properties of objects, and 

distributional data – the superficial patterns of 

language.  To test this hypothesis, Andrews et al. 

construct three different LDA models, one 

trained on experiential data, one trained in the 

conventional manner on running text, and one 

trained on the same text but with the experiential 

data appended.  They evaluate the quality of the 

lexical representations in the three models by 

calculating the Kulback-Leibler divergence be-

tween the representation distributions to measure 

how closely related two words are (Kullback & 

Leibler, 1951).  When this data was compared 

with the USF association data, the combined 

model performed better than the corpus-based 

model, which in turn performed better than the 

features-only model.  Andrews et al. concluded 

that both experiential and distributional data are 

necessary for the acquisition of good quality lex-

ical representations. 

     As well as suggesting a way to improve the 

performance of LDA models on NLP tasks by 

supplementing the training data, the approach 

taken by Andrews et al. may be useful for better 

understanding the nature of the abstract/concrete 

distinction.  In recent work, Hill et al. (in press) 

present empirical evidence that concrete con-

cepts are represented in terms of intrinsic fea-

tures or properties whereas abstract concepts are 

represented in terms of connections to other 

(concrete and abstract) concepts.  For example, 

the features [legs], [tail], [fur], [barks] are all 

central aspects of the concrete representation of 

dog, whereas the representation of the abstract 

concept love encodes connections to other con-

cepts such as heart, rose, commitment and hap-

piness etc.  If a feature-based representation is 

understood to be constructed from physical or 

perceptible properties (which themselves may be 

basic or fundamental concrete representations), 

Hill et al.‟s characterization of concreteness can 

be summarized as follows:  
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(H) Concreteness correlates with the degree to 

which conceptual representations are feature-

based 

 

Because such differences in representation struc-

ture would in turn entail differences in the com-

putation of similarity, (H) is closely related to a 

proposal of Markman and Stilwell (2001; see 

also Gentner & Markman, 2007):  

 

(M) Computing similarity among concrete con-

cepts involves a feature-comparison operation, 

whereas similarity between abstract concepts is 

a structural, analogy-like, comparison.   

 

The findings of Andrews et al. do not address 

(H) or (M) directly, for two reasons. Firstly, they 

evaluate their model on a set that includes no 

abstract concepts.  Secondly, they compare their 

model output to association data without testing 

how well it reflects similarity.  In this section we 

therefore reconstruct the Andrews models and 

evaluate how well they reflect both association 

and similarity across a larger set of abstract and 

concrete concepts.   

4.2  Method/materials 

We reconstruct two of the three models devel-

oped by Andrews et al. (2009), excluding the 

features-only model because of the present focus 

on corpus-based approaches.  However, while 

the experiential data applied in the Andrews et 

al. combined model was that collected by Vig-

liocco et al. (2004), we use the publicly available 

McRae feature production norms (McRae et al., 

2005).  The McRae data consist of 541 concrete 

noun concepts together with features for each 

elicited from 725 participants.  In the data collec-

tion, feature was understood in a very loose 

sense, so that participants were asked to list both 

physical and functional properties of the nouns in 

addition to encyclopedic facts.  However, for the 

present work, we filter out those features that 

were not perceptual properties using McRae et 

al.‟s feature classes, leaving a total of 1,285 fea-

ture types, such as [has_claws] and 

[made_of_brass].  The importance of each fea-

ture to the representation of a given concept is 

reflected by the proportion of participants who 

named that feature in the elicitation experiment.  

For each noun concept we therefore extract a 

corresponding probability distribution over fea-

tures. 

The model design and inference are identical 

to those applied by Andrews et al.  Our distribu-

tional model contains 250 latent dimensions and 

was trained using a Gibbs Sampling algorithm on 

approximately 7,500 sections of the BNC with 

stopwords removed.
3
  The combined model con-

tains 350 latent dimensions, and was trained on 

the same BNC data.  However, for each instance 

of one of the 541 McRae concept words, a fea-

ture is drawn at random from the probability dis-

tribution corresponding to that word and ap-

pended to the training data.  The latent dimen-

sions in the combined model therefore corres-

pond to probability distributions both over words 

and over features. This leads to an important dif-

ference between how words come to be related in 

the distributional model and in the combined 

model.  Both models infer connections between 

words by virtue of their occurrence either in the 

same document or in pairs of documents for 

which the same latent dimensions are prominent.  

In the distributional model, it is the words in a 

document that determines which latent dimen-

sions are ultimately prominent, whereas the in 

combined model it is both the words and the fea-

tures in that document.  Therefore, in the com-

bined model, two words can come to be related 

because they occur not only in documents whose 

words are related, but also in documents whose 

features are related.  For words in the McRae 

data, this has the effect of strengthening the rela-

tionship between words with common features.  

More interestingly, because it alters which latent 

dimensions are most prominent for each docu-

ment, it should also influence the relationship 

between words not in the McRae data.   

We evaluate the performance of our models in 

reflecting free association (association) and simi-

larity (similarity).  To obtain test items we rank 

the 18,195 noun-noun pairs from the USF data 

by the product of the two (BNC) word frequen-

cies and select the 5,000 highest frequency pairs.   

4.3 Results 

As expected, the correlation of the combined 

model output with association was greater than 

the correlation of the distributional model output.  

Notably, however, as illustrated in Fig. 4, we 

observed far greater differences between the 

combined and the distributional models when 

comparing to similarity.  Over all noun pairs, the 

addition of features in the combined model im-

                                                 
3 Code for model implementation was taken from Mark 

Andrews : http://www.mjandrews.net/code/index.html  
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proved the correlation with similarity from 

Spearman rs  =  0.09  to  rs  =  0.15.   

 
Figure 4:  Spearman correlations between distribu-

tional and combined model outputs, similarity and 

association  

 

In order to address Hypothesis (C) (Section 2.2), 

we analyzed the output of the combined model 

on subsets of the 1000 most abstract and concrete 

word pairs in our data as before.  Perhaps surpri-

singly, as shown in Fig. 5, when comparing with 

similarity, the model performed better over ab-

stract pairs, whereas when comparing with asso-

ciation the model performed better over concrete 

pairs.  However, when these concrete pairs were 

restricted to those for which at least one of the 

two words was in the McRae data, and hence to 

which features had been appended in the corpus, 

the ability of the model to reflect similarity in-

creased significantly.          

 
Figure 5:  Spearman correlations between combined 

model output and similarity and association on differ-

ent word pair subsets  

 

Finally, to address hypotheses (H) and (M) we 

compared the previous analysis of the combined 

model output to the equivalent output from the 

distributional model.  Surprisingly, as shown in 

Fig. 6, the ability of the model to reflect associa-

tion over abstract pairs seemed to reduce with the 

addition of features to the training data.  Never-

theless, in all other cases the combined model 

outperformed the distributional model.  Interes-

tingly, the combined model advantage when 

comparing with similarity was roughly the same 

over both abstract and concrete pairs.  However, 

when these pairs contained at least one word 

from the McRae data, the combined model was 

indeed significantly better at modeling similarity, 

consistent with Hypotheses (M) and (H). 

 
Figure 6:  Comparison between distributional 

model and combined model output correlations with 

similarity and association over different word pair 

subsets 

4.4 Conclusion 

Our findings corroborate the main conclusion of 

Andrews et al., that the addition of experiential 

data improves the performance of the LDA mod-

el in reflecting association.  However, they also 

indicate that the advantage of feature-based LDA 

models is far more significant when the objective 

is to model similarity. 

 The findings are also consistent with, if 

not suggestive of, the theoretical hypotheses (H) 

and (M).  Clearly, the property features in the 

combined model training data enable it to better 

model both similarity and association between 

those concepts to which the features correspond.  

However, this benefit is greater when modeling 

similarity than when modeling association.  This 

suggests that the similarity operation is indeed 

based on features to a greater extent than associa-

tion.  Moreover, this effect is far greater for the 

concrete words for which the features were add-

ed than over the other words pairs we tested.  

Whilst this is not a sound test of hypothesis (H) 

(no attempt was made to add „features‟ of ab-

stract concepts to the model), it is certainly con-

sistent with the idea that features or properties 

are a more important aspect of concrete represen-

tations than of abstract representations. 

0.13

0.09

0.14

0.15

0.00

0.05

0.10

0.15

Distributional Combined

Model type

C
o

rr
e

la
ti
o

n

Association

Similarity

0.01

0.16

0.2

0.08

0.14

0.36

0.0

0.1

0.2

0.3

Abstract Concrete McRae

Word pair category

C
o

rr
e

la
ti
o

n

Association

Similarity

0.03

0.093

0.15

0.018

0.11

0.025

0.01

0.16

0.2

0.08

0.14

0.36

0.0

0.1

0.2

0.3

Abstract Concrete 
 Distributional model

McRae Abstract_ Concrete_
 Combined model

McRae_

Word pair category

C
o

rr
e

la
ti
o

n

Association

Similarity

81



Perhaps the most interesting aspect of the 

combined model is how the addition of feature 

information in the training data for certain words 

influences performance on words for which fea-

tures were not added.  In this case, our findings 

suggest that the benefit when modeling similarity 

is marginally greater than when modeling associ-

ation, an observation consistent with Hypothesis 

(M).  A less expected observation is that, be-

tween words for which features were not added, 

the advantage of the combined model over the 

distributional model in modeling similarity was 

equal if not greater for abstract than for concrete 

concepts.  We hypothesize that this is because 

abstract representations naturally inherit any re-

liance on feature information from the concrete 

concepts with which they participate.  In con-

trast, highly concrete representations do not en-

code relations to other concepts and therefore 

cannot inherit relevant feature information in the 

same way.  Under this interpretation, the con-

crete information from the McRae words would 

propagate more naturally to abstract concepts 

than to other concrete concepts.  As a result, the 

highest quality representations in the combined 

model would be those of the McRae words, fol-

lowed by those of the abstract concepts to which 

they closely relate.    

5 Discussion  

This study has investigated how concreteness is 

reflected in the distributional patterns found in 

running text corpora. Our results add to the body 

of evidence that abstract and concrete concepts 

are represented differently in the mind.  The fact 

that VSMs with small windows are particularly 

adept at modeling relations between concrete 

concepts supports the view that similarity go-

verns the conceptual organization of concrete 

concepts to a greater extent than for abstract con-

cepts.  Further, the performance of our LSA 

models on different tasks and across different 

word pairs is consistent with the idea that con-

crete representations are built around features, 

whereas abstract concepts are not.  

More practically, we have demonstrated that 

vector space models can be tailored to reflect 

either similarity or association by adjusting the 

size of the context window.  This in turn indi-

cates a way in which VSMs might be optimized 

to either abstract or concrete domains.  Our expe-

riments with Latent Dirichlet Allocation corrobo-

rate a recent proposal that appending training 

data with perceptible feature or property infor-

mation for a subset of concrete nouns can signif-

icantly improve the quality of the model‟s lexical 

representations.  As expected, this effect was 

particularly salient for representations of words 

for which features were appended to the training 

data.  However, the results show that this infor-

mation can propagate to words for which fea-

tures were not appended, in particular to abstract 

words.   

The fact that certain perceptible aspects of 

meaning are not exhaustively reflected in linguis-

tic data is a potentially critical obstacle for cor-

pus-based semantic models.  Our findings sug-

gest that existing machine learning techniques 

may be able to overcome this by adding the re-

quired information for words that refer to con-

crete entities and allowing this information to 

propagate to other elements of language.  In fu-

ture work we aim to investigate specifically 

whether this hypothesis holds for particular parts 

of speech.  For example, we would hypothesize 

that verbs inherit a good degree of their meaning 

from their prototypical nominal arguments.     
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