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Abstract
Recent work in computational psycholin-
guistics shows that morpheme lexica can
be acquired in an unsupervised man-
ner from a corpus of words by select-
ing the lexicon that best balances pro-
ductivity and reuse (e.g. Goldwater et
al. (2009) and others). In this paper,
we extend such work to the problem of
acquiring non-concatenative morphology,
proposing a simple model of morphology
that can handle both concatenative and
non-concatenative morphology and apply-
ing Bayesian inference on two datasets of
Arabic and English verbs to acquire lex-
ica. We show that our approach success-
fully extracts the non-contiguous triliteral
root from Arabic verb stems.

1 Introduction

What are the basic structure-building operations
that enable the creative use of language, and how
do children exposed to a language acquire the in-
ventory of primitive units which are used to form
new expressions? In the case of word forma-
tion, recent work in computational psycholinguis-
tics has shown how an inventory of morphemes
can be acquired by selecting a lexicon that best
balances the ability of individual sound sequences
to combine productively against the reusability of
those sequences (e.g., Brent (1999), Goldwater et
al. (2009), Feldman et al. (2009), O’Donnell et al.
(2011), Lee et al. (2011).) However, this work
has focused almost exclusively on one kind of
structure-building operation: concatenation. The
languages of the world, however, exhibit a variety
of other, non-concatenative word-formation pro-
cesses (Spencer, 1991).

Famously, the predominant mode of Semitic
word formation is non-concatenative. For exam-
ple, the following Arabic words, all related to

the concept of writing, share no contiguous se-
quences of segments (i.e., phones), but they do
share a discontinuous subsequence

√
ktb, which

has been traditionally analyzed as an independent
morpheme, termed the “root”.

kataba “he wrote”
kutiba “it was written”
yaktubu “he writes”
ka:tib “writer”
kita:b “book”
kutub “books”
maktab “office”

Table 1: List of Arabic words with root
√

ktb

Many Arabic words appear to be constructed
via a process of interleaving segments from dif-
ferent morphemes, as opposed to concatenation.

Concatenative
cook

PAST

c o o k e d

Non-concatenative
cook

PAST

T a b a x a

Figure 1: Schematic of concatenative vs non-
concatenative morphology

Such non-concatenative morphology is perva-
sive in the world’s languages. Even English,
whose morphology is fundamentally concatena-
tive, displays pockets of non-concatenative behav-
ior, for example in the irregular past tenses (see
Table 2).

In these words, the stem vowels undergo ablaut
changing between tenses. This cannot be han-
dled in a purely concatenative framework unless
we consider these words listed exceptions. How-
ever, such irregulars do show limited productiv-
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bite /bajt/ bit /bIt/
sing /sIN/ sang /sæN/
give /gIv/ gave /gejv/
feel /fil/ felt /fElt/

Table 2: Examples of English irregular verbs

ity (see Albright and Hayes (2003), Prasada and
Pinker (1993), Bybee and Slobin (1982), Bybee
and Moder (1983), Ambridge (2010)), and in other
languages such stem changing processes are fully
productive.

In Semitic, it is clear that non-concatenative
word formation is productive. Borrowings from
other languages are modified to fit the avail-
able non-concatenative templates. This has also
been tested psycholinguistically: Berman (2003),
for instance, shows that Hebrew-speaking pre-
schoolers can productively form novel verbs out
of nouns and adjectives, a process that requires the
ability to extract roots and apply them to existing
verbal templates.

Any model of word formation, therefore, needs
to be capable of generalizing to both concatenative
and non-concatenative morphological systems. In
this paper, we propose a computational model of
word formation which is capable of capturing both
types of morphology, and explore its ramifications
for morphological segmentation.

We apply Bayesian inference on a small cor-
pus of Arabic and English words to learn the mor-
phemes that comprise them, successfully learning
the Arabic root with great accuracy, but less suc-
cessfully English verbal inflectional suffixes. We
then examine the shortcomings of the model and
propose further directions.

2 Arabic Verbal Morphology

In this paper, we focus on Arabic verbal stem mor-
phology. The Arabic verbal stem is built from
the interleaving of a consonantal root and a vo-
calism that conveys voice (active/passive) and as-
pect (perfect/imperfect). The stem can then un-
dergo further derivational prefixation or infixation.
To this stem inflectional affixes indicating the sub-
ject’s person, number and gender are then added.
In the present work, we focus on stem morphol-
ogy, leaving inflectional morphology to future ex-
tensions of the model.

There are nine common forms of the Arabic ver-
bal stem, also known by the Hebrew grammati-

cal term binyan. In Table 3,
√

fQl represents the
triconsonantal root. Only the perfect forms are
given.

Form Active Passive
I faQal fuQil
II faQQal fuQQil
III faaQal fuuQil
IV PafQal PufQil
V tafaQQal tufuQQil
VI tafaaQal tufuuQil
VII PinfaQal -
VIII PiftaQal PiftiQil
X PistafQal PistufQil

Table 3: List of common Arabic verbal binyanim

Each of these forms has traditionally been asso-
ciated with a particular semantics. For example,
Form II verbs are generally causatives of Form I
verbs, as is kattab “to cause to write” (c.f. katab
“to write”). However, as is commonly the case
with derivational morphology, these semantic as-
sociations are not completely regular: many forms
have been lexicalized with alternative or more spe-
cific meanings.

2.1 Theoretical accounts
The traditional Arab grammarians’ account of the
Arabic verb was as follows: each form was asso-
ciated with a template with slots labelled C1, C2

and C3, traditionally represented with the conso-
nants

√
fQl, as described above. The actual root

consonants were slotted into these gaps. Thus the
template of the Form VIII active perfect verb stem
was taC1aC2C2aC3. This, combined with the tri-
consonantal root, made up the verbal stem.

Template t a C1 a C2 C2 a C3

Root f Q l

Figure 2: Traditional analysis of Arabic Form V
verb

The first generative linguistic treatment of Ara-
bic verbal morphology (McCarthy, 1979; Mc-
Carthy, 1981) adopted the notion of the root
and template, but split off the derivational pre-
fixes and infixes and vocalism from the template.
Borrowing from the technology of autosegmental
phonology (Goldsmith, 1976), the template was
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now comprised of C(onsonant) and V(owel) slots.
Rules governing the spreading of segments en-
sured that consonants and vowels appeared in the
correct positions within a template.

Under McCarthy’s model, the analysis for
[tafaQQal] would be as follows:

CV Template C V C V C C V C

Prefix
t Root

f Q l

Vocalism
a

Figure 3: McCarthy analysis of Arabic Form V
verb

While increasing the number of morphemes as-
sociated with each verb, the McCarthy approach
economized on the variety of such units in the lex-
icon. The inventory of CV templates was limited;
there were three vocalisms corresponding to active
and passive voice intersecting with perfect and im-
perfect aspect; and only four derivational prefixes
(/P/,/n/,/t/,/st/), one of which became an infix via
morphophonological rule in Form VIII.1

We adopt a middle ground between the tradi-
tional Arab grammarians’ description of the ver-
bal stem and McCarthy’s analysis as our starting
point. We describe this approach in the next sec-
tion.

3 The Approach

Our initial model of morphology adopts Mc-
Carthy’s notion of an abstract template, but coa-
lesces the prefixes and infixes with the vocalism
into what we term the “residue.” Each stem is
thus composed of two morphemes: the root and
the residue, and their interleaving is dictated by a
template with slots for root and residue segments.

For example, Piktatab = - - - r - - r - r (template)
+ ktb (root) + Pitaa (residue), where r indicates a
root segment and - a residue segment.

The residue may be of length 0, effectively mak-
ing the word consist of a single morpheme. Con-
catenative morphology may be modelled in this

1Other theories of Arabic morphology that reject the ex-
istence of the root are also extant in the literature; see e.g.
(Bat-El, 1994) for a stem modification and vowel overwriting
approach.

framework by grouping all the root segments to-
gether, for example cooked [kukt] = r r r - (tem-
plate) + kuk (root) + t (residue).

The template, root and residue are each drawn
from a separate sub-lexicon, modeled using tools
from Bayesian non-parametric statistics (see Sec-
tion 4). These tools put a prior distribution on the
lexica that biases them in favour of reusing exist-
ing frequent forms and small lexica by promoting
maximal sharing of morphemes.

When applied to data, we derive a segmentation
for each word into a root and a residue.

4 Model

Following earlier work on Bayesian lexicon learn-
ing (e.g. Goldwater et al. (2009), we use a distri-
bution over lexical items known as the Pitman–Yor
Process (PYP) (Pitman and Yor, 1995). LetG be a
distribution over primitive phonological elements
of the lexicon (e.g., words, roots, residues, tem-
plates, morphemes, etc.). The behavior of PYP
process PYP(a, b,G) with base measure G and pa-
rameters a and b can be described as follows. The
first time we sample from PYP(a, b,G) a new lex-
ical item will be sampled using G. On subsequent
samples from PYP(a, b,G), we either reuse an ex-
isting lexical item i with probability ni−a

N+b , where
N is the number of lexical items sampled so far, ni

is the number of times that lexical item i has been
used in the past, and 0 ≤ a ≤ 1 and b > −a are
parameters of the model. Alternatively, we sample
a new lexical item with probability aK+b

N+b , where
K is the number of times a new lexical item was
sampled in the past from the underlying distribu-
tionG. Notice that this process induces a rich-get-
richer scheme for sampling from the process. The
more a particular lexical item has been reused, the
more likely it is to be reused in the future. The
Pitman–Yor process also produces a bias towards
smaller, more compact lexica.

In our model, we maintain three sublexica for
templates (LTp), roots (LRt), and residues (LRs)
each drawn from a Pitman–Yor process with its
own hyperparameters.

LX ∼ PYP(aX, bX , GX) (1)

where X ∈ {Tp,Rt,Rs} Words are drawn by
first drawing a template, then drawing a root and
a residue (of the appropriate length) and inserting
the segments from the root and residue in the ap-
propriate positions in the word as indicated by the
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template. Our templates are strings in {Rt,Rs}∗
indicating for each position in a word whether that
position is part of the word’s root (Rt) or residue
(Rs). These templates themselves are drawn from
a base measure GTp which is defined as follows.
To add a new template to the template lexicon first
draw a length for that template, K, from a Poisson
distribution.

K ∼ POISSON(5) (2)

We then sample a template of length K by
drawing a Bernoulli random variable ti for each
position i ∈ 1..K is a root or residue position.

ti ∼ BERNOULLI(θ) (3)

The base measure over templates, GTp, is de-
fined as the concatenation of the ti’s.

The base distributions over roots and residues,
GRt and GRs, are drawn in the following manner.
Having drawn a template, T we know the lengths
of the root, KRt, and residue KRt. For each posi-
tion in the root or residue ri where i ∈ 1..KRt/Rs,
we sample a phone from a uniform distribution
over phones.

ri ∼ UNIFORM(|alphabet|) (4)

5 Inference

Inference was performed via Metropolis–Hastings
sampling. The sampler was initialized by assign-
ing a random template to each word in the training
corpus. The algorithm then sampled a new tem-
plate, root, and residue for each word in the corpus
in turn. The proposal distribution over templates
for our sampler considered all templates currently
in use by another word, as well as a randomly gen-
erated template from the prior. Samples from this
proposal distribution were corrected into the true
distribution using the Metropolis–Hastings crite-
rion.

6 Related work

The approach of this paper builds on previ-
ous work on Bayesian lexicon learning start-
ing with Goldwater et al. (2009). However,
to our knowledge, this approach has not been
applied to non-concatenative morphological seg-
mentation. Where it has been applied to Arabic
(e.g. Lee et al. (2011)), it has been applied to un-
vowelled text, since standard Arabic orthography

drops short vowels. However, this has the effect of
reducing the problem mostly to one of concatena-
tive morphology.

Non-concatenative morphology has been ap-
proached computationally via other research,
however. Kataja and Koskenniemi (1988) first
showed that Semitic roots and patterns could be
described using regular languages. This insight
was subsequently computationally implemented
using finite state methods by Beesley (1991) and
others. Roark and Sproat (2007) present a model
of both concatenative and non-concatenative mor-
phology based on the operation of composition
that is similar to the one we describe above.

The narrower problem of isolating roots from
Semitic words, for instance as a precursor to in-
formation retrieval, has also received much atten-
tion. Existing approaches appear to be mostly
rule-based or dictionary-based (see Al-Shawakfa
et al. (2010) for a recent survey).

7 Experiments

We applied the morphological model and infer-
ence procedure described in Sections 4 and 5 to
two datasets of Arabic and English.

7.1 Data

The Arabic corpus for this experiment consisted
of verbal stems taken from the verb concordance
of the Quranic Arabic Corpus (Dukes, 2011). All
possible active, passive, perfect and imperfect
fully-vowelled verbal stems for Forms I–X, ex-
cluding the relatively rare Form IX, were gener-
ated. We used this corpus rather than a lexicon as
our starting point to obtain a list of relatively high
frequency verbs.

This list of stems was then filtered in two ways:
first, only triconsonantal “strong” roots were con-
sidered. The so-called “weak” roots of Arabic ei-
ther include a vowel or semi-vowel, or a doubled
consonant. These undergo segmental changes in
various environments, which cannot be handled by
our current generative model.

Secondly, the list was filtered through the Buck-
walter stem lexicon (Buckwalter, 2002) to obtain
only stems that were licit according to the Buck-
walter morphological analyzer.

This process yielded 1563 verbal stems, com-
prising 427 unique roots, 26 residues, and 9 tem-
plates. The stems were supplied to the sampler in
the Buckwalter transliteration.
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The English corpus was constructed along sim-
ilar lines. All verb forms related to the 299 most
frequent lemmas in the Penn Treebank (Marcus et
al., 1999) were used, excluding auxiliaries such as
might or should. Each lemma thus had up to five
verbal forms associated with it: the bare form (for-
get), the third person singular present (forgets), the
gerund (forgetting), past tense (forgot), and past
participle (forgotten).

This resulted in 1549 verbal forms, compris-
ing 295 unique roots, 108 residues, and 55 tem-
plates. CELEX (Baayen et al., 1995) pronuncia-
tions for these words were supplied to the sampler
in CELEX’s DISC transliteration.

Deriving a gold standard analysis for English
verbs was less straightforward than in the Arabic
case. The following convention was used: The
root was any subsequence of segments shared by
all the forms related to the same lemma. Thus, for
the example lemma of forget, the correct template,
root and residue were deemed to be:

forget f@gEt r r r - r f@gt E
forgets f@gEts r r r - r - f@gt Es
forgot f@gQt r r r - r f@gt Q
forgetting f@gEtIN r r r - r - - f@gt EIN
forgotten f@gQtH r r r - r - f@gt QH

Table 4: Correct analyses under the root/residue
model for the lemma forget

37 templates were concatenative, and 18 non-
concatenative. The latter were necessary to ac-
commodate 46 irregular lemmas associated with
254 forms.

7.2 Results and Discussion

We ran 10 instances of the sampler for 200 sweeps
through the data. For the Arabic training set, this
number of sweeps typically resulted in the sam-
pler finding a local mode of the posterior, making
few further changes to the state during longer runs.
An identical experimental set-up was used for En-
glish. Evaluation was performed on the final state
of each sampler instance.

The correctness of the sampler’s output was
measured in terms of the accuracy of the tem-
plates it predicted for each word. The word-level
accuracy indicates the number of words that had
their entire template correctly sampled, while the
segment-level accuracy metric gives partial credit
by considering the average number of correct bits

r - r - r

r - - r - r

r - r - - r

r - - - r - r

- - r - r - r

- - r - r - - r
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Figure 4: Unweighted accuracy with which each
template was sampled

(r versus -) in each sampled template.
Table 5 shows the average accuracy of the 10

samples, weighted by each sample’s joint proba-
bility.

Accuracy Word-level Segment-level
Arabic 92.3% 98.2%
English 43.9% 85.3%

Table 5: Average weighted accuracy of samples

Arabic Analyses Figure 4 shows the average
unweighted accuracy with which each of the 9
Arabic templates was sampled.

Figure 4 reveals an effect of both the rarity and
the length of each template. For instance, the per-
formance on template r - - r - r (second bar from
left) is exceptionally low, but this is the result
of there being only one instance of this template
in the training set: Euwqib, the passive form of
the Form III verb of root Eqb, in the Buckwalter
transliteration.2 In addition, the longer the word,

2This is an artifact of Arabic orthography and the Buck-
walter transliteration, which puts the active form EAqab with
template r - r - r in correspondence with the passive template
r - - r - r.
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the poorer the performance of the model. This is
likely the result of the difficulty of searching over
the space of templates for longer forms. Since the
number of potential templates increases exponen-
tially with the length of the form, finding the cor-
rect template becomes increasingly difficult. This
problem can likely be addressed in future mod-
els by adopting an analysis similar to McCarthy’s
whereby the residue is further subdivided into vo-
calism, prefixes and infixes. Note that even in such
long forms, however, the letters belonging to the
root were generally isolated in one of the two mor-
phemes.

English Analyses The English experiment
yielded poorer results than the Arabic dataset.
The statistics of the datasets reveal the cause of the
failure of the English model: the English dataset
had several times more residues and templates
than the Arabic dataset did, thus lacking as much
uniform structure. Nevertheless, the relatively
high segment-level accuracy shows that the model
tended to find templates that were only incorrect
in 1 or 2 positions.

The dominant pattern of errors was in the di-
rection of overgeneralization of the concatenative
templates to the irregular forms. Out of the 254
words related to a lemma with an irregular past
form, 241 received incorrect templates, 232 of
which were concatenative, often correctly splitting
off the regular suffix where there was one. For
example, sing and singing were parsed as sing+∅
and sing+ing, while sung was parsed as a separate
root. Note that under an analysis of English ir-
regulars as separate memorized lexical items, the
sampler behaved correctly in such cases.

However, out of 1295 words related to perfectly
regular lemmas, the sampler determined 628 tem-
plates incorrectly. Out of these, 325 were given
concatenative templates, but with too much or too
little segmental material allocated to the suffix.
For example, the word invert was analyzed as in-
ver+t, with its other forms following suit as in-
ver+ted, inver+ting and inver+ts. This is likely
due to subregularities in the word corpus: with
many words ending with -t, this analysis becomes
more attractive.

The remaining 303 regular verbs were given
non-concatenative templates. For instance, iden-
tify was split up into dfy and ienti. No consistent
pattern could be discerned from these cases.

8 Conclusion

We have proposed a model of morpheme-lexicon
learning that is capable of handling concatena-
tive and non-concatenative morphology up to the
level of two morphemes. We have seen that
Bayesian inference on this model with an Ara-
bic dataset of verbal stems successfully learns the
non-contiguous root and residue as morphemes.

In future work, we intend to extend our sim-
plified model of morphology to McCarthy’s com-
plete model by adding concatenative prefixation
and suffixation processes and segment-spreading
rules. Besides being capable of handling the in-
flectional aspects of Arabic morphology, we an-
ticipate that this extension will improve the per-
formance of the model on Arabic verbal stems
as well, since the number of non-concatenative
templates that have to be learned will decrease.
For example, the template for the Form V verb
[tafaQQal] can be reduced to that for the Form II
verb [faQQal] plus an additional prefix.

We also anticipate that the performance on En-
glish will be vastly improved, since the dominant
mode of word formation in English is concate-
native, while the small number of irregular past
tenses and plurals that undergo ablaut can be han-
dled using the non-concatenative architecture of
the model. This would also be more in line with
native speakers’ intuitions and linguistic analyses
of English morphology.
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