
Proceedings of the 4th Biennial International Workshop on Balto-Slavic Natural Language Processing, pages 43–47,
Sofia, Bulgaria, 8-9 August 2013. c©2010 Association for Computational Linguistics

GPKEX: Genetically Programmed Keyphrase Extraction
from Croatian Texts

Marko Bekavac and Jan Šnajder
University of Zagreb, Faculty of Electrical Engineering and Computing

Text Analysis and Knowledge Engineering Lab
Unska 3, 10000 Zagreb, Croatia

{marko.bekavac2,jan.snajder}@fer.hr

Abstract

We describe GPKEX, a keyphrase extrac-
tion method based on genetic programming.
We represent keyphrase scoring measures
as syntax trees and evolve them to pro-
duce rankings for keyphrase candidates ex-
tracted from text. We apply and evalu-
ate GPKEX on Croatian newspaper arti-
cles. We show that GPKEX can evolve
simple and interpretable keyphrase scoring
measures that perform comparably to more
complex machine learning methods previ-
ously developed for Croatian.

1 Introduction

Keyphrases are an effective way of summariz-
ing document contents, useful for text categoriza-
tion, document management, and search. Unlike
keyphrase assignment, in which documents are as-
signed keyphrases from a predefined taxonomy,
keyphrase extraction selects phrases from the text
of the document. Extraction is preferred in cases
when a taxonomy is not available or when its con-
struction is not feasible, e.g., if the set of possible
keyphrases is too large or changes often. Manual
keyphrase extraction is extremely tedious and in-
consistent, thus methods for automatic keyphrase
extraction have attracted a lot of research interest.

In this paper we describe GPKEX, a keyphrase
extraction method based on genetic programming
(GP), an evolutionary optimization technique in-
spired by biological evolution (Koza and Poli,
1992). GP is similar to genetic algorithms except
that the individual solutions are expressions, rather
than values. We use GP to evolve keyphrase scor-
ing measures, represented as abstract syntax trees.
The advantage of using GP over black-box ma-
chine learning methods is in the interpretability of
the results: GP yields interpretable expressions,

revealing the relevant features and their relation-
ships, thus offering some insight into keyphrase
usage. Furthermore, GP can evolve simple scoring
measures, providing an efficient alternative to more
complex machine learning methods.

We apply GPKEX to Croatian language and eval-
uate it on a dataset of newspaper articles with man-
ually extracted keyphrases. Our results show that
GPKEX performs comparable to previous super-
vised and unsupervised approaches for Croatian,
but has the advantage of generating simple and
interpretable keyphrase scoring measures.

2 Related Work

Keyphrase extraction typically consist of two steps:
candidate extraction and candidate scoring. Su-
pervised approaches include decision tree models
(Turney, 1999; Ercan and Cicekli, 2007), naı̈ve
Bayes classifier (Witten et al., 1999; McCallum
and Nigam, 1998; Frank et al., 1999), and SVM
(Zhang et al., 2006). Unsupervised approaches
include clustering (Liu et al., 2009), graph-based
methods (Mihalcea and Tarau, 2004), and language
modeling (Tomokiyo and Hurst, 2003). Many
more methods were proposed and evaluated within
the SemEval shared task (Kim et al., 2010). Re-
cent approaches (Jiang et al., 2009; Wang and Li,
2011; Eichler and Neumann, 2010) acknowledge
keyphrase extraction as a highly subjective task and
frame it as a learning-to-rank problem.

Keyphrase extraction for Croatian has been ad-
dressed in both supervised and unsupervised set-
ting. Ahel et al. (2009) use a naı̈ve Bayes clas-
sifier with phrase position and tf-idf (term fre-
quency/inverse document frequency) as features.
Saratlija et al. (2011) use distributional seman-
tics to build topically related word clusters, from
which they extract keywords and expand them to
keyphrases. Mijić et al. (2010) use filtering based
on morphosyntactic tags followed by tf-idf scoring.

43

To the best of our knowledge, GPKEX is the
first application of GP to keyphrase extraction. Al-
though we essentially approach the problem as a
classification task (we train on binary relevance
judgments), GPKEX produces continuous-valued
scoring measures, thus keyphrases can eventually
be ranked and evaluated in a rank-based manner.

3 GPKEX

GPKEX (Genetically Programmed Keyphrase Ex-
traction) consists of two steps: keyphrase candi-
date extraction and the genetic programming of
keyphrase scoring measures (KSMs).1

3.1 Step 1: Keyphrase candidate extraction

Keyphrase candidate extraction starts with text pre-
processing followed by keyphrase feature extrac-
tion. A keyphrase candidate is any sequence of
words from the text that (1) does not span over
(sub)sentence boundaries and (2) matches any of
the predefined POS patterns (sequences of POS
tags). The POS patterns are chosen based on the
analysis of the training set (cf. Section 4).

After the candidates have been extracted, each
candidate is assigned 11 features. We distinguish
between three groups of features. The first group
are the frequency-based features: the relative term
frequency (the ratio between the number of phrase
occurrences in a document and the total number
of phrases in the document), inverse document fre-
quency (the ratio between the total number of doc-
uments in the training set and the number of doc-
uments in which the phrase occurs), and the tf-idf
value. These features serve to eliminate the irrele-
vant and non-discriminative phrases. The second
group are the position-based features: the position
of the first occurrence of a phrase in the text (i.e.,
the number of phrases in the text preceding the first
occurrence of the candidate phrase), the position
of the last occurrence, the occurrence in document
title, and the number of occurrences in the first, sec-
ond, and the last third of the document. These fea-
tures serve to capture the relation between phrase
relevance and the distribution of the phase within
the document. The last group of features concerns
the keyphrase surface form: its length and the num-
ber of discriminative words it contains (these being
defined as the 10 words from the document with
the highest tf-idf score).

1GPKEX is freely available for download from
http://takelab.fer.hr/gpkex

3.2 Step 2: Genetic programming
Genetic expressions. Each keyphrase scoring
measure (KSM) corresponds to one genetic expres-
sion, represented as a syntax tree (see Fig. 1). We
use the above-described keyphrase features as outer
nodes of an expression. For inner nodes we use
binary (+, −, ×, and /) and unary operators (log ·,
·×10, ·/10, 1/·). We randomly generate the initial
population of KSMs and use fitness-proportionate
selection to guide the evolution process.

Fitness function. The fitness function scores
KSMs according to their ability to extract cor-
rect keyphrases. We measure this by comparing
the extracted keyphrases against the gold-standard
keyphrases (cf. Section 4). We experimented with a
number of fitness functions; simple functions, such
as Precision at n (P@n) or Mean Reciprocal Rank
(MRR), did not give satisfactory results. Instead,
we define the fitness of a KSM s as

f(s) =
1

|D|
∑
d∈D

|Ck

d |
minRank(Ck

d)
Ck

d 6= ∅,
1

minRank(C∞d) otherwise
(1)

where D is the set of training documents, Ck
d is

the set of correct keyphrases within top k-ranked
keyphrases extracted from document d ∈ D, and
minRank(Ck

d) is the highest rank (the smallest
number) of keyphrase from set Ck

d . Parameter k
defines a cutoff threshold, i.e., keyphrase ranked be-
low rank k are discarded. If two KSMs extract the
same number of correct keyphrases in top k results,
the one with the highest-ranked correct keyphrase
will be scored higher. To ensure that the gradient of
the fitness function is non-zero, a KSM that extracts
no correct keyphrases within the first k results is
assigned a score based on the complete set of cor-
rectly extracted keyphrases (denoted C∞d). The fit-
ness scores are averaged over the whole document
collection. Based on preliminary experiments, we
set the cutoff value to k = 15.

Parsimony pressure. Supervised models often
face the problem of overfitting. In GP, overfitting is
typically controlled by parsimony pressure, a regu-
larization term that penalizes complex expressions.
We define the regularized fitness function as

freg =
f

1 +N/α
(2)

where f is the non-regularized fitness function
given by (1), N is the number of nodes in the ex-
pression, and parameter α defines the strength of

44

parsimony pressure. Note that in both regularized
and non-regularized case we limit the size of an
expression to a maximum depth of 17, which is
often used as the limit (Riolo and Soule, 2009).

Crossover and mutation. Two expressions cho-
sen for crossover exchange subtrees rooted at ran-
dom nodes, resulting in a child expression with
parts from both parent expressions. We use a pop-
ulation of 500 expressions and limit the number
of generations to 50, as we observe that results
stagnate after that point. To retain the quality of
solution throughout the generations, we employ the
elitist strategy and copy the best-fitted individual
into the next generation. Moreover, we use muta-
tion to prevent early local optimum trapping. We
implement mutation as a randomly grown subtree
rooted at a randomly chosen node. Each expression
has a 5% probability of being mutated, with 10%
probability of mutation at inner nodes.

4 Evaluation

Data set and preprocessing. We use the dataset
developed by Mijić et al. (2010), comprising 1020
Croatian newspaper articles provided by the Croat-
ian News Agency. The articles have been manually
annotated by expert annotators, i.e., each document
has an associated list of keyphrases. The number of
extracted keyphrases per document varies between
1 and 7 (3.4 on average). The dataset is divided
in two parts: 960 documents each annotated by a
single annotator and 60 documents independently
annotated by eight annotators. We use the first part
for training and the second part for testing.

Based on dataset analysis, we chose the follow-
ing POS patterns for keyphrase candidate filtering:
N, AN, NN, NSN, V, U (N – noun, A – adjective, S
– preposition, V – verb, U – unknown). Although a
total of over 200 patterns would be needed to cover
all keyphrases from the training set, we use only
the six most frequent ones in order to reduce the
number of candidates. These patterns account for
cca. 70% of keyphrases, while reducing the num-
ber of candidates by cca. 80%. Note that we chose
to only extract keyphrases of three words or less,
thereby covering 93% of keyphrases. For lemmati-
zation and (ambiguous) POS tagging, we use the
inflectional lexicon from Šnajder et al. (2008), with
additional suffix removal after lemmatization.

Evaluation methodology. Keyphrase extraction
is a highly subjective task and there is no agreed-

upon evaluation methodology. Annotators are often
inconsistent: they extract different keyphrases and
also keyphrases of varying length. What is more,
an omission of a keyphrase by one of the annota-
tors does not necessarily mean that the keyphrase
is incorrect; it may merely indicate that it is less rel-
evant. To account for this, we use rank-based eval-
uation measures. As our method produces a ranked
list of keyphrases for each document, we can com-
pare this list against a gold-standard keyphrase
ranking for each document. We obtain the latter
by aggregating the judgments of all annotators; the
more annotators have extracted a keyphrase, the
higher its ranking will be.2 Following Zesch and
Gurevych (2009), we consider the morphological
variants when matching the keyphrases; however,
we do not consider partial matches.

To evaluate a ranked list of extracted keyphrases,
we use the generalized average precision (GAP)
measure proposed by Kishida (2005). GAP gener-
alizes average precision to multi-grade relevance
judgments: it takes into account both precision (all
correct items are ranked before all incorrect ones)
and the quality of ranking (more relevant items are
ranked before less relevant ones).

Another way of evaluating against keyphrases
extracted by multiple annotators is to consider
the different levels of agreement. We consider as
strong agreement the cases in which a keyphrase
is extracted by at least five annotators, and as
weak agreement the cases in which at least two
annotators have extracted a keyphrase. For both
agreement levels separately, we compare the ex-
tracted keyphrases against the manually extracted
keyphrases using rank-based IR measures of Pre-
cision at Rank 10 (P@10) and Recall at Rank 10
(R@10). Because GP is a stochastic algorithm, to
account for randomness we made 30 runs of each
experiment and report the average scores. On these
samples, we use the unpaired t-test to determine the
significance in performance differences. As base-
line to compare against GPKEX, we use keyphrase
extraction based on tf-idf scores (with the same
preprocessing and filtering setup as for GPKEX).

Tested configurations. We tested four evolution
configurations. Configuration A uses the param-
eter setting described in Section 3.2, but without
parsimony pressure. Configurations B and C use
parsimony pressure defined by (2), with α = 1000

2The annotated dataset is available under CC BY-NC-SA
license from http://takelab.fer.hr/gpkex

45

Strong agreement Weak agreement

Config. GAP P@10 R@10 P@10 R@10

A 13.0 8.3 28.7 28.7 8.4
B 12.8 8.2 30.2 28.4 8.5
C 12.5 7.7 27.3 27.3 7.7
D 9.9 5.1 25.9 20.4 7.3

tf-idf 7.4 5.8 22.3 21.5 12.4

UKE 6.0 5.8 32.6 15.3 15.8

Table 1: Keyphrase ranking results.

and α = 100, respectively. Configuration D is
similar to A, but uses all POS patterns attested for
keyphrases in the dataset.

Results. Results are shown in Table 1. Configu-
rations A and B perform similarly across all evalu-
ation measures (pairwise differences are not signif-
icant at p<0.05, except for R@10) and outperform
the baseline (differences are significant at p<0.01).
Configuration C is outperformed by configuration
A (differences are significant at p<0.05). Config-
uration D outperforms the baseline, but is outper-
formed by other configurations (pairwise differ-
ences in GAP are significant at p<0.05), indicating
that conservative POS filtering is beneficial. Since
A and B perform similar, we conclude that apply-
ing parsimony pressure in our case only marginally
improved GAP (although it has reduced KSM size
from an average 30 nodes for configuration A to
an average of 20 and 9 nodes for configurations B
and C, respectively). We believe there are two rea-
sons for this: first, the increase in KSM complexity
also increases the probability that the KSM will be
discarded as not computable (e.g., the right subtree
of a ‘/’ node evaluates to zero). Secondly, our fit-
ness function is perhaps not fine-grained enough
to allow more complex KSMs to emerge gradu-
ally, as small changes in keyphrase scores do not
immediately affect the value of the fitness function.

In absolute terms, GAP values are rather low.
This is mostly due to wrong ranking, rather than the
omission of correct phrases. Furthermore, the pre-
cision for strong agreement is considerably lower
than for weak agreement. This indicates that GP-
KEX often assigns high scores to less relevant
keyphrases. Both deficiencies may be attributed
to the fact that we do not learn to rank, but train on
dataset with binary relevance judgments.

The best-performing KSM from configuration
A is shown in Fig. 1 (simplified form). Length is
the length of the phrase, First is the position of the

1
Tf∗Tf + Tfidf ∗ (Length + First) + Rare

log(log Length)

Figure 1: The best-performing KSM expression.

first occurrence, and Rare is the number of discrim-
inative words in a phrase (cf. Section 3.1). Tfidf,
First, and Rare features seem to be positively cor-
related with keyphraseness. This particular KSM
extracts on average three correct keyphrases (weak
agreement) within the first 10 results.

Our results are not directly comparable to pre-
vious work for Croatian (Ahel et al., 2009; Mijić
et al., 2010; Saratlija et al., 2011) because we use
a different dataset and/or evaluation methodology.
However, to allow for an indirect comparison, we
re-evaluated the results of unsupervised keyphrase
extraction (UKE) from Saratlija et al. (2011); we
show the result in the last row of Table 1. GPKEX

(configuration A) outperforms UKE in terms of
precision (GAP and P@10), but performs worse
in terms of recall. In terms of F1@10 (harmonic
mean of P@10 and R@10), GPKEX performs bet-
ter than UKE at the strong agreement level (12.9
vs. 9.9), but worse at the weak agreement level
(13.0 vs. 15.6). For comparison, Saratlija et al.
(2011) report UKE to be comparable to supervised
method from Ahel et al. (2009), but better than the
tf-idf extraction method from Mijić et al. (2010).

5 Conclusion

GPKEX uses genetically programmed scoring mea-
sures to assign rankings to keyphrase candidates.
We evaluated GPKEX on Croatian texts and showed
that it yields keyphrase scoring measures that per-
form comparable to other machine learning meth-
ods developed for Croatian. Thus, scoring mea-
sures evolved by GPKEX provide an efficient alter-
native to these more complex models. The focus of
this work was on Croatian, but our method could
easily be applied to other languages as well.

We have described a preliminary study. The next
step is to apply GPKEX to directly learn keyphrase
ranking. Using additional (e.g., syntactic) features
might further improve the results.

46

Acknowledgments

This work has been supported by the Ministry of
Science, Education and Sports, Republic of Croatia
under the Grant 036-1300646-1986. We thank the
reviewers for their constructive comments.

References
Renee Ahel, B Dalbelo Bašic, and Jan Šnajder. 2009.

Automatic keyphrase extraction from Croatian news-
paper articles. The Future of Information Sciences,
Digital Resources and Knowledge Sharing, pages
207–218.

Kathrin Eichler and Günter Neumann. 2010. DFKI
KeyWE: Ranking keyphrases extracted from scien-
tific articles. In Proceedings of the 5th international
workshop on semantic evaluation, pages 150–153.
Association for Computational Linguistics.

Gonenc Ercan and Ilyas Cicekli. 2007. Using lexical
chains for keyword extraction. Information Process-
ing & Management, 43(6):1705–1714.

Eibe Frank, Gordon W. Paynter, Ian H. Witten, Carl
Gutwin, and Craig G. Nevill-Manning. 1999.
Domain-specific keyphrase extraction. In Proceed-
ings of IJCAI ’99, pages 668–673. Morgan Kauf-
mann Publishers Inc.

Xin Jiang, Yunhua Hu, and Hang Li. 2009. A ranking
approach to keyphrase extraction. In Proceedings
of the 32nd international ACM SIGIR conference on
Research and development in information retrieval,
pages 756–757. ACM.

Su Nam Kim, Olena Medelyan, Min-Yen Kan, and
Timothy Baldwin. 2010. SemEval-2010 task 5: Au-
tomatic keyphrase extraction from scientific articles.
In Proceedings of the 5th International Workshop on
Semantic Evaluation, pages 21–26. Association for
Computational Linguistics.

Kazuaki Kishida. 2005. Property of average precision
and its generalization: An examination of evaluation
indicator for information retrieval experiments. Na-
tional Institute of Informatics.

John R. Koza and Riccardo Poli. 1992. Genetic Pro-
gramming: On the programming of computers by
Means of Natural Selection. MIT Press.

Zhiyuan Liu, Peng Li, Yabin Zheng, and Maosong
Sun. 2009. Clustering to find exemplar terms for
keyphrase extraction. In Proceedings of EMNLP
2009, pages 257–266, Singapore. ACL.

Andrew McCallum and Kamal Nigam. 1998. A com-
parison of event models for Naı̈ve Bayes text classi-
fication. In AAAI-98 workshop on learning for text
categorization, pages 41–48. AAAI Press.

Rada Mihalcea and Paul Tarau. 2004. TextRank:
Bringing order into texts. In Proceedings of
EMNLP, volume 4. Barcelona, Spain.

Jure Mijić, B Dalbelo Bašic, and Jan Šnajder. 2010.
Robust keyphrase extraction for a large-scale Croa-
tian news production system. In Proceedings of
FASSBL, pages 59–66.

Rick Riolo and Terence Soule. 2009. Genetic Pro-
gramming Theory and Practice VI. Springer.

Josip Saratlija, Jan Šnajder, and Bojana Dalbelo Bašić.
2011. Unsupervised topic-oriented keyphrase ex-
traction and its application to Croatian. In Text,
Speech and Dialogue, pages 340–347. Springer.

Jan Šnajder, Bojana Dalbelo Bašić, and Marko Tadić.
2008. Automatic acquisition of inflectional lexica
for morphological normalisation. Information Pro-
cessing & Management, 44(5):1720–1731.

Takashi Tomokiyo and Matthew Hurst. 2003. A
language model approach to keyphrase extraction.
In Proceedings of the ACL 2003 workshop on
Multiword expressions: analysis, acquisition and
treatment-Volume 18, pages 33–40. Association for
Computational Linguistics.

Peter Turney. 1999. Learning to extract keyphrases
from text. Technical report, National Research
Council, Institute for In- formation Technology.

C. Wang and S. Li. 2011. CoRankBayes: Bayesian
learning to rank under the co-training framework
and its application in keyphrase extraction. In Pro-
ceedings of the 20th ACM international conference
on Information and knowledge management, pages
2241–2244. ACM.

Ian H Witten, Gordon W Paynter, Eibe Frank, Carl
Gutwin, and Craig G Nevill-Manning. 1999. Kea:
Practical automatic keyphrase extraction. In Pro-
ceedings of the fourth ACM conference on Digital
libraries, pages 254–255. ACM.

Torsten Zesch and Iryna Gurevych. 2009. Approxi-
mate matching for evaluating keyphrase extraction.
In Proceedings of the 7th International Conference
on Recent Advances in Natural Language Process-
ing, pages 484–489.

Kuo Zhang, Hui Xu, Jie Tang, and Juanzi Li. 2006.
Keyword extraction using support vector machine.
In Advances in Web-Age Information Management,
volume 4016 of LNCS, pages 85–96. Springer Berlin
/ Heidelberg.

47

