
Proceedings of the 7th Linguistic Annotation Workshop & Interoperability with Discourse, pages 89–97,
Sofia, Bulgaria, August 8-9, 2013. c©2013 Association for Computational Linguistics

Making UIMA Truly Interoperable with SPARQL

Rafal Rak and Sophia Ananiadou
National Centre for Text Mining

School of Computer Science, University of Manchester
{rafal.rak,sophia.ananiadou}@manchester.ac.uk

Abstract
Unstructured Information Management
Architecture (UIMA) has been gaining
popularity in annotating text corpora. The
architecture defines common data struc-
tures and interfaces to support interoper-
ability of individual processing compo-
nents working together in a UIMA appli-
cation. The components exchange data by
sharing common type systems—schemata
of data type structures—which extend a
generic, top-level type system built into
UIMA. This flexibility in extending type
systems has resulted in the development of
repositories of components that share one
or several type systems; however, compo-
nents coming from different repositories,
and thus not sharing type systems, remain
incompatible. Commonly, this problem
has been solved programmatically by im-
plementing UIMA components that per-
form the alignment of two type systems,
an arduous task that is impractical with a
growing number of type systems. We al-
leviate this problem by introducing a con-
version mechanism based on SPARQL, a
query language for the data retrieval and
manipulation of RDF graphs. We pro-
vide a UIMA component that serialises
data coming from a source component
into RDF, executes a user-defined, type-
conversion query, and deserialises the up-
dated graph into a target component. The
proposed solution encourages ad hoc con-
versions, enables the usage of heteroge-
neous components, and facilitates highly
customised UIMA applications.

1 Introduction

Unstructured Information Management Architec-
ture (UIMA) (Ferrucci and Lally, 2004) is a frame-

work that supports the interoperability of media-
processing software components by defining com-
mon data structures and interfaces the compo-
nents exchange and implement. The architec-
ture has been gaining interest from academia and
industry alike for the past decade, which re-
sulted in a multitude of UIMA-supporting repos-
itories of analytics. Notable examples include
METANET4U components (Thompson et al.,
2011) featured in U-Compare1, DKPro (Gurevych
et al., 2007), cTAKES (Savova et al., 2010),
BioNLP-UIMA Component Repository (Baum-
gartner et al., 2008), and JULIE Lab’s UIMA
Component Repository (JCoRe) (Hahn et al.,
2008).

However, despite conforming to the UIMA
standard, each repository of analytics usually
comes with its own set of type systems, i.e., rep-
resentations of data models that are meant to be
shared between analytics and thus ensuring their
interoperability. At present, UIMA does not fa-
cilitate the alignment of (all or selected) types be-
tween type systems, which makes it impossible to
combine analytics coming from different reposito-
ries without an additional programming effort. For
instance, NLP developers may want to use a sen-
tence detector from one repository and a tokeniser
from another repository only to learn that the re-
quired input Sentence type for the tokeniser is
defined in a different type system and namespace
than the output Sentence type of the sentence
detector. Although both Sentence types repre-
sent the same concept and may even have the same
set of features (attributes), they are viewed as two
distinct types by UIMA.

Less trivial incompatibility arises from the same
concept being encoded as structurally different
types in different type systems. Figures 1 and 2
show fragments of some of existing type systems;

1http://nactem.ac.uk/ucompare/

89



(a) DKPro (b) JCoRe (c) ACE

Figure 1: UML diagrams representing fragments of type systems that show differences in encoding
coreferences.

specifically, they show the differences in encod-
ing coreferences and events, respectively. For in-
stance, in comparison to the JCoRe type system in
Figure 1(b), the DKPro type system in Figure 1(a)
has an additional type that points to the beginning
of the linked list of coreferences.

Conceptually similar types in two different type
systems may also be incompatible in terms of the
amount of information they convey. Compare, for
instance, type systems in Figure 2 that encode a
similar concept, event. Not only are they struc-
turally different, but the cTAKES type system in
Figure 2(a) also involves a larger number of fea-
tures than the other two type systems. Although,
in this case, the alignment of any two structures
cannot be carried out without a loss or deficiency
of information, it may still be beneficial to do so
for applications that consist of components that ei-
ther fulfill partially complete information or do not
require it altogether.

The available type systems vary greatly in size,
their modularity, and intended applicability. The
DKPro UIMA software collection, for instance,
includes multiple, small-size type systems organ-
ised around specific syntactic and semantic con-
cepts, such as part of speech, chunks, and named
entities. In contrast, the U-Compare project as
well as cTAKES are oriented towards having a sin-
gle type system. Respectively, the type systems
define nearly 300 and 100 syntactic and seman-
tic types, with U-Compare’s semantic types biased
towards biology and chemistry and cTAKES’s
covering clinical domain. Most of the U-Compare
types extend a fairly expressive higher-level type,
which makes them universally applicable, but at
the same time, breaks their semantic cohesion.
The lack of modularity and the all-embroiling
types suggest that the U-Compare type system is
developed primarily to work with the U-Compare

application.
The Center for Computational Pharmacology

(CCP) type system (Verspoor et al., 2009) is a
radically different approach to the previous sys-
tems. It defines a closed set of top-level types
that facilitate the use of external resources, such
as databases and ontologies. This gives the advan-
tage of having a nonvolatile type system, indiffer-
ent to changes in the external resources, as well as
greater flexibility in handling some semantic mod-
els that would otherwise be impossible to encode
in a UIMA type system. On the other hand, such
an approach shifts the handling of interoperability
from UIMA to applications that must resolve com-
patibility issues at runtime, which also results in
the weakly typed programming of analytics. Addi-
tionally, the UIMA’s native indexing of annotation
types will no longer work with such a type system,
which prompts an additional programming effort
from developers.

The aforementioned examples suggest that es-
tablishing a single type system that could be
shared among all providers is unlikely to ever take
place due to the variability in requirements and
applicability. Instead, we adopt an idea of us-
ing a conversion mechanism that enables align-
ing types across type systems. The conversion
has commonly been solved programmatically by
creating UIMA analytics that map all or (more
likely) selected types between two type systems.
For instance, U-Compare features a component
that translates some of the CPP types into the U-
Compare types. The major drawback of such a
solution is the necessity of having to implement
an analytic which requires programming skills and
becomes an arduous task with an increasing num-
ber of type systems. In contrast, we propose a
conversion based entirely on developers’ writing a
query in the well established SPARQL language,

90



(a) cTAKES (b) ACE

(c) Events Type System

Figure 2: UML diagrams representing fragments of type systems that show differences in encoding event
structures.

an official W3C Recommendation2. Our approach
involves 1) the serialisation of UIMA’s internal
data structures to RDF3, 2) the execution of a user-
defined, type-conversion SPARQL query, and 3)
the deserialisation of the results back to the UIMA
structure.

The remainder of this paper is organised as fol-
lows. The next section presents related work. Sec-
tion 3 provides background information on UIMA,
RDF and SPARQL. Section 4 discusses the pro-
posed representation of UIMA structures in RDF,
whereas Section 5 examines the utility of our
method. Section 6 details the available implemen-
tation, and Section 7 concludes the paper.

2 Related Work

In practice, type alignment or conversion is the
creation of new UIMA feature structures based
on the existing ones. Current efforts in this
area mostly involve solutions that are essentially

2http://www.w3.org/TR/2013/REC-sparql11-overview-
20130321

3http://www.w3.org/RDF/

(cascaded) finite state transducers, i.e., an in-
put stream of existing feature structures is being
matched against developers’ defined patterns, and
if a match is found, a series of actions follows and
results in one or more output structures.

TextMarker (Kluegl et al., 2009) is currently
one of the most comprehensive tools that de-
fines its own rule-based language. The language
capabilities include the definition of new types,
annotation-based regular expression matching and
a rich set of condition functions and actions. Com-
bined with a built-in lexer that produces basic to-
ken annotations, TextMarker is essentially a self-
contained, UIMA-based annotation tool.

Hernandez (2012) proposed and developed a
suite of tools for tackling the interoperability of
components in UIMA. The suite includes uima-
mapper, a conversion tool designed to work with
a rule-based language for mapping UIMA anno-
tations. The rules are encoded in XML, and–
contrary to the previous language that relies solely
on its own syntax—include XPath expressions for
patterns, constraints, and assigning values to new

91



feature structures. This implies that the input of
the conversion process must be encoded in XML.

PEARL (Pazienza et al., 2012) is a language for
projecting UIMA annotations onto RDF reposito-
ries. Similarly to the previous approaches, the lan-
guage defines a set of rules triggered upon encoun-
tering UIMA annotations. The language is de-
signed primarily to work in CODA, a platform that
facilitates population of ontologies with the output
of NLP analytics. Although it does not directly
facilitate the production or conversion of UIMA
types, the PEARL language shares similarities to
our approach in that it incorporates certain RDF
Turtle, SPARQL-like semantics.

Contrary to the aforementioned solutions, we
do not define any new language or syntax. Instead,
we rely completely on an existing data query and
manipulation language, SPARQL. By doing so,
we shift the problem of conversion from the def-
inition of a new language to representing UIMA
structures in an existing language, such that they
can be conveniently manipulated in that language.

A separate line of research pertains to the for-
malisation of textual annotations with knowledge
representations such as RDF and OWL4. Buyko et
al. (2008) link UIMA annotations to the reference
ontology OLiA (Chiarcos, 2012) that contains a
broad vocabulary of linguistic terminology. The
authors claim that two conceptually similar type
systems can be aligned with the reference ontol-
ogy. The linking involves the use of OLiA’s as-
sociated annotation and linking ontology model
pairs that have been created for a number of an-
notation schemata. Furthermore, a UIMA type
system has to define additional features for each
linked type that tie a given type to an annotation
model. In effect, in order to convert a type from an
arbitrary type system to another similar type sys-
tem, both systems must be modified and an anno-
tation and linking models must be created. Such
an approach generalises poorly and is unsuitable
for impromptu type system conversions.

3 Background

3.1 UIMA Overview
UIMA defines both structures and interfaces to
facilitate interoperability of individual processing
components that share type systems. Type systems
may be defined in or imported by a processing
component that produces or modifies annotations

4http://www.w3.org/TR/owl2-overview/

Figure 3: UML diagram representing relationships
between CASes, views, and feature structures in
UIMA. The shown type system is a fragment of
the built-in UIMA type system.

in a common annotation structure (CAS), i.e., a
CAS is the container of actual data bound by the
type system.

Types may define multiple primitive features as
well as references to feature structures (data in-
stances) of other types. The single-parent inheri-
tance of types is also possible. The resulting struc-
tures resemble those present in modern object-
oriented programming languages.

Feature structures stored in a CAS may be
grouped into several views, each of which hav-
ing its own subject of analysis (Sofa). For in-
stance, one view may store annotations about
a Sofa that stores an English text, whereas an-
other view may store annotations about a dif-
ferent Sofa that stores a French version of the
same text. UIMA defines built-in types including
primitive types (boolean, integer, string, etc.), ar-
rays, lists, as well as several complex types, e.g.,
uima.tcas.Annotation that holds a refer-
ence to a Sofa the annotation is asserted about, and
two features, begin and end, for marking bound-
aries of a span of text. The relationships be-
tween CASes, views, and several prominent built-
in types are shown in Figure 3.

The built-in complex types may further
be extended by developers. Custom types
that mark a fragment of text usually extend
uima.tcas.Annotation, and thus inherit
the reference to the subject of analysis, and the
begin and end features.

92



UIMA element/representation RDF resource
CAS <uima:aux:CAS>
Access to CAS’s views rdfs:member or rdf:_1, rdf:_2, ...
View <uima:aux:View>
View’s name <uima:aux:View:name>
View’s Sofa <uima:aux:View:sofa>
Access to view’s feature structures rdfs:member or rdf:_1, rdf:_2, ...
Access to feature structure’s sequential number <uima:aux:seq>
Type uima.tcas.Annotation <uima:ts:uima.tcas.Annotation>
Feature uima.tcas.Annotation:begin <uima:ts:uima.cas.Annotation:begin>
Access to uima.cas.ArrayBase elements rdfs:member or rdf:_1, rdf:_2, ...

Table 1: UIMA elements and their corresponding RDF resource representations

3.2 RDF and SPARQL

Resource Description Framework (RDF) is a
method for modeling concepts in form of making
statements about resources using triple subject-
predicate-object expressions. The triples are com-
posed of resources and/or literals with the latter
available only as objects. Resources are repre-
sented with valid URIs, whereas literals are val-
ues optionally followed by a datatype. Multiple
interlinked subject and objects ultimately consti-
tute RDF graphs.

SPARQL is a query language for fetching data
from RDF graphs. Search patterns are created
using RDF triples that are written in RDF Turtle
format, a human-readable and easy to manipulate
syntax. A SPARQL triple may contain variables
on any of the three positions, which may (and usu-
ally does) result in returning multiple triples from
a graph for the same pattern. If the same variable
is used more than once in patterns, its values are
bound, which is one of the mechanisms of con-
straining results.

Triple-like patterns with variables are simple,
yet expressive ways of retrieving data from an
RDF graph and constitute the most prominent fea-
ture of SPARQL. In this work, we additionally
utilise features of SPARQL 1.1 Update sublan-
guage that facilitates graph manipulation.

4 Representing UIMA in RDF

We use RDF Schema5 as the primary RDF vocab-
ulary to encode type systems and feature struc-
tures in CASes. The schema defines resources
such as rdfs:Class, rdf:type (to denote a
membership of an instance to a particular class)

5http://www.w3.org/TR/rdf-schema/

and rdfs:subClassOf (as a class inheritance
property)6. It is a popular description language for
expressing a hierarchy of concepts, their instances
and relationships, and forms a base for such se-
mantic languages as OWL.

The UIMA type system structure falls nat-
urally into this schema. Each type is ex-
pressed as rdfs:Class and each feature as
rdfs:Property accompanied by appropriate
rdfs:domain and rdfs:range statements.
Feature structures (instances) are then assigned
memberships of their respective types (classes)
through rdf:type properties.

A special consideration is given to the type
ArrayBase (and its extensions). Since the or-
der of elements in an array may be of impor-
tance, feature structures of the type ArrayBase
are also instances of the class rdf:Seq, a se-
quence container, and the elements of an ar-
ray are accessed through the properties rdf:_1,
rdf:_2, etc., which, in turn, are the subprop-
erties of rdfs:member. This enables query-
ing array structures with preserving the order of
its members. Similar, enumeration-property ap-
proach is used for views that are members of
CASes and feature structures that are members of
views. The order for the latter two is defined in the
internal indices of a CAS and follows the order in
which the views and feature structures were added
to those indices.

We also define several auxiliary RDF resources
to represent relationships between CASes, views
and feature structures (cf. Figure 3). We intro-
duced the scheme name “uima” for the URIs of

6Following RDF Turtle notation we denote prefixed forms
of RDF resources as prefix:suffix and their full forms
as <fullform>

93



Figure 4: Complete SPARQL query that converts
the sentence type in one type system to a struc-
turally identical type in another type system.

the UIMA-related resources. The fully qualified
names of UIMA types and their features are part
of the URI paths. The paths are additionally pre-
fixed by “ts:” to avoid a name clash against
the aforementioned auxiliary CAS and view URIs
that, in turn, are prefixed with “aux:”. Table 1
summarises most of the UIMA elements and their
corresponding representations in RDF.

5 Conversion Capabilities

In this section we examine the utility of the
proposed approach and the expressiveness of
SPARQL by demonstrating several conversion ex-
amples. We focus on technical aspects of conver-
sions and neglect issues related to a loss or defi-
ciency of information that is a result of differences
in type system conceptualisation (as discussed in
Introduction).

5.1 One-to-one Conversion
We begin with a trivial case where two types
from two different type systems have exactly the
same names and features; the only difference
lies in the namespace of the two types. Fig-
ure 4 shows a complete SPARQL query that con-
verts (copies) their.Sentence feature struc-
tures to our.Sentence structures. Both types
extend the uima.tcas.Annotation type and
inherit its begin and end features. The WHERE
clause of the query consists of patterns that match
CASes’ views and their feature structures of the
type their.Sentence together with the type’s
begin and end features.

For each solution of the WHERE clause (each
retrieved tuple), the INSERT clause then creates a
new sentence of the target type our.Sentence
(the a property is the shortcut of rdf:type)

Figure 5: SPARQL query that aligns different con-
ceptualisations of event structures between two
type systems. Prefix definitions are not shown.

and rewrites the begin and end values to its fea-
tures. The blank node _:sentence is going to
be automatically re-instantiated with a unique re-
source for each matching tuple making each sen-
tence node distinct. The last line of the INSERT
clause ties the newly created sentence to the view,
which is UIMA’s equivalent of indexing a feature
structure in a CAS.

5.2 One-to-many Conversion

In this use case we examine the conversion of
a container of multiple elements to a set of dis-
connected elements. Let us consider event types
from the ACE and Events type systems as shown
in Figures 2(b) and 2(c), respectively. A single
Event structure in the ACE type system aggre-
gates multiple EventMention structures in an
effort to combine multiple text evidence support-
ing the same event. The NamedEvent type in
the Events type system, on the other hand, makes
no such provision and is agnostic to the fact that
multiple mentions may refer to the same event.

94



To avoid confusion, we will refer to the types
using their RDF prefixed notations, “ace:” and
“gen:”, to denote the ACE and “generic” Events
type systems, respectively.

The task is to convert all ace:Events
and their ace:EventMentions into
gen:NamedEvents. There is a cou-
ple of nuances that need to be taken
into consideration. Firstly, although both
ace:EventMention and gen:NamedEvent
extend uima.tcas.Annotation, the be-
gin and end features have different mean-
ings for the two event representations. The
gen:NamedEvent’s begin and end features
represent an anchor/trigger, a word in the text that
initiates the event. The same type of informa-
tion is accessible from ace:EventMention
via its anchor feature instead. Secondly,
although it may be tempting to disregard the
ace:Event structures altogether, they contain
the type feature whose value will be copied to
gen:NamedEvent’s name feature.

The SPARQL query that performs that
conversion is shown in Figure 5. In the
WHERE clause, for each ace:Event,
patterns select ace:EventMentions
and for each ace:EventMention,
ace:EventMentionArguments are
also selected. This behaviour resembles
triply nested for loop in programming lan-
guages. Additionally, ace:Event’s type,
ace:EventMention’s anchor begin and end
values, and ace:EventMentionArgument’s
role and target are selected. In contrast to the
previous example, we cannot use blank nodes for
creating event resources in the INSERT clause,
since the retrieved tuples share event URIs for
each ace:EventMentionArgument. Hence
the last two BIND functions create URIs for
each ace:EventMention and its array of
arguments, both of which are used in the INSERT
clause.

Note that in the INSERT clause, if several
gen:NamedEventParticipants share the
same gen:NamedEvent, the definition of the
latter will be repeated for each such participant.
We take advantage of the fact that adding a triple
to an RDF graph that already exists in the graph
has no effect, i.e., an insertion is simply ignored
and no error is raised. Alternatively, the query
could be rewritten as two queries, one that creates

Figure 6: SPARQL query that converts corefer-
ences expressed as linked lists to an array repre-
sentation. Prefix definitions are not shown.

gen:NamedEvent definitions and another that
creates gen:NamedEventParticipant def-
initions.

To recapitulate, RDF and SPARQL support one-
to-many (and many-to-one) conversions by stor-
ing only unique triple statements and by providing
functions that enable creating arbitrary resource
identifiers (URIs) that can be shared between re-
trieved tuples.

5.3 Linked-list-to-Array Conversion

For this example, let us consider two types
of structures for storing coreferences from the
DKPro and ACE type systems, as depicted in Fig-
ures 1(a) and 1(c), respectively.

The idea is to convert DKPro’s chains of links
into ACE’s entities that aggregate entity mentions,
or—using software developers’ vocabulary—to
convert a linked list into an array. The SPARQL
query for this conversion is shown in Figure 6.

The WHERE clause first selects all
dkpro:CoreferenceChain instances from
views. Access to dkpro:CoreferenceLink
instances for each chain is provided by a property

95



path. Property paths are convenient shortcuts
for navigating through nodes of an RDF graph.
In this case, the property path expands to the
chain’s first feature/property followed by any
number (signified by the asterisk) of links’ next
feature/property. The pattern with this path will
result in returning all links that are accessible
from the originating chain; however, according
to the SPARQL specification, the order of links
is not guaranteed to be preserved, which in
coreference-supporting applications is usually of
interest. A solution is to make use of the property
<uima:aux:seq> that points to the sequential
number of a feature structure and is unique in the
scope of a single CAS. Since feature structures
are serialised into RDF using deep-first traversal,
the consecutive link structures for each chain will
have their sequence numbers monotonically in-
creasing. These sequence numbers are translated
to form rdf:_nn properties (nn standing for the
number), which facilitates the order of elements in
the ace:Entity array of mentions7. It should
be noted, however, that using the sequence num-
ber property will work only if the links of a chain
are not referred to from another structure. There is
another, robust solution (not shown due to space
limitation and complexity) that involves multiple
INSERT queries and temporary, supporting RDF
nodes. RDF nodes that are not directly relevant
to a CAS and its feature structures are ignored
during the deserialisation process, and thus it is
safe to create any number of such nodes.

6 Tool Support

We have developed a UIMA analysis engine,
SPARQL Annotation Editor, that incorporates the
serialisation of a CAS into RDF (following the
protocol presented in Section 4), the execution of
a user-defined SPARQL query, and the deseriali-
sation of the updated RDF graph back to the CAS.
The RDF graph (de)serialisation and SPARQL
query execution is implemented using Apache
Jena8, an open-source framework for building Se-
mantic Web applications.

To further assist in the development of type-
conversion SPARQL queries, we have provided
two additional UIMA components, RDF Writer
and RDF Reader. RDF Writer serialises CASes to

7The rdf:_nn properties are not required to be consec-
utive in an RDF container

8http://jena.apache.org/

files that can then be used with SPARQL query en-
gines, such as Jena Fuseki (part of the Apache Jena
project), to develop and test conversion queries.
The modified RDF graphs can be imported back
to a UIMA application using RDF Reader, an RDF
deserialisation component.

The three components are featured in Argo (Rak
et al., 2012), a web-based workbench for building
and executing UIMA workflows.

7 Conclusions

The alignment of types between different type sys-
tems using SPARQL is an attractive alternative to
existing solutions. Compared to other solutions,
our approach does not introduce a new language
or syntax; to the contrary, it relies entirely on a
well-defined, standardised language, a character-
istic that immediately broadens the target audi-
ence. Likewise, developers who are unfamiliar
with SPARQL should be more likely to learn this
well-maintained and widely used language than
any other specialised and not standardised syntax.

The expressiveness of SPARQL makes the
method superior to the rule-based techniques,
mainly due to SPARQL’s inherent capability
of random data access and simple, triple-based
querying. At the same time, the semantic cohesion
of data is maintained by a graph representation.

The proposed solution facilitates the rapid
alignment of type systems and increases the flexi-
bility in which developers choose processing com-
ponents to build their UIMA applications. As well
as benefiting the design of applications, the con-
version mechanism may also prove helpful in the
development of components themselves. To en-
sure interoperability, developers usually adopt an
existing type system for a new component. This
essential UIMA-development practice undeniably
increases the applicability of such a component;
however, at times it may also result in having the
ill-defined representation of the data produced by
the component. The availability of an easy-to-
apply conversion tool promotes constructing fine-
tuned type systems that best represent such data.

Acknowledgments

This work was partially funded by the MRC Text
Mining and Screening grant (MR/J005037/1).

96



References
W A Baumgartner, K B Cohen, and L Hunter. 2008.

An open-source framework for large-scale, flexible
evaluation of biomedical text mining systems. Jour-
nal of biomedical discovery and collaboration, 3:1+.

E Buyko, C Chiarcos, and A Pareja-Lora. 2008.
Ontology-based interface specifications for a nlp
pipeline architecture. In Proceedings of the Sixth In-
ternational Conference on Language Resources and
Evaluation (LREC’08), Marrakech, Morocco.

C Chiarcos. 2012. Ontologies of linguistic annota-
tion: Survey and perspectives. In Proceedings of the
Eighth International Conference on Language Re-
sources and Evaluation (LREC’12), pages 303–310.

D Ferrucci and A Lally. 2004. UIMA: An Ar-
chitectural Approach to Unstructured Information
Processing in the Corporate Research Environment.
Natural Language Engineering, 10(3-4):327–348.

Iryna Gurevych, Max Mühlhäuser, Christof Müller,
Jürgen Steimle, Markus Weimer, and Torsten Zesch.
2007. Darmstadt Knowledge Processing Repository
Based on UIMA. In Proceedings of the First Work-
shop on Unstructured Information Management Ar-
chitecture at Biannual Conference of the Society for
Computational Linguistics and Language Technol-
ogy, Tübingen, Germany.

U Hahn, E Buyko, R Landefeld, M Mühlhausen,
M Poprat, K Tomanek, and J Wermter. 2008. An
Overview of JCORE, the JULIE Lab UIMA Com-
ponent Repository. In Proceedings of the Language
Resources and Evaluation Workshop, Towards En-
hanc. Interoperability Large HLT Syst.: UIMA NLP,
pages 1–8.

N Hernandez. 2012. Tackling interoperability is-
sues within UIMA workflows. In Proceedings of
the Eight International Conference on Language
Resources and Evaluation (LREC’12), Istanbul,
Turkey. European Language Resources Association
(ELRA).

P Kluegl, M Atzmueller, and F Puppe. 2009.
TextMarker: A Tool for Rule-Based Information Ex-
traction. In Proceedings of the Biennial GSCL Con-
ference 2009, 2nd UIMA@GSCL Workshop, pages
233–240. Gunter Narr Verlag.

M T Pazienza, A Stellato, and A Turbati. 2012.
PEARL: ProjEction of Annotations Rule Language,
a Language for Projecting (UIMA) Annotations over
RDF Knowledge Bases. In Proceedings of the Eight
International Conference on Language Resources
and Evaluation (LREC’12), Istanbul, Turkey. Euro-
pean Language Resources Association (ELRA).

R Rak, A Rowley, W Black, and S Ananiadou. 2012.
Argo: an integrative, interactive, text mining-based
workbench supporting curation. Database : The
Journal of Biological Databases and Curation, page
bas010.

G K Savova, J J Masanz, P V Ogren, J Zheng, S Sohn,
K C Kipper-Schuler, and C G Chute. 2010. Mayo
clinical Text Analysis and Knowledge Extraction
System (cTAKES): architecture, component evalua-
tion and applications. Journal of the American Med-
ical Informatics Association : JAMIA, 17(5):507–
513.

P Thompson, Y Kano, J McNaught, S Pettifer, T K
Attwood, J Keane, and S Ananiadou. 2011. Promot-
ing Interoperability of Resources in META-SHARE.
In Proceedings of the IJCNLP Workshop on Lan-
guage Resources, Technology and Services in the
Sharing Paradigm (LRTS), pages 50–58.

K Verspoor, W Baumgartner Jr, C Roeder, and
L Hunter. 2009. Abstracting the Types away from a
UIMA Type System. From Form to Meaning: Pro-
cessing Texts Automatically., pages 249–256.

97


