
Proceedings of the 14th European Workshop on Natural Language Generation, pages 172–177,
Sofia, Bulgaria, August 8-9 2013. c©2013 Association for Computational Linguistics

On the Feasibility of Automatically Describing n-dimensional Objects

Pablo Ariel Duboue

Les Laboratoires Foulab

999 du College

Montreal, Quebéc

pablo.duboue@gmail.com

Abstract

This paper introduces the problem of gen-

erating descriptions of n-dimensional spa-

tial data by decomposing it via model-

based clustering. I apply the approach

to the error function of supervised clas-

sification algorithms, a practical problem

that uses Natural Language Generation for

understanding the behaviour of a trained

classifier. I demonstrate my system on a

dataset taken from CoNLL shared tasks.

1 Introduction

My focus is the generation of textual descriptions

for n-dimensional data. At this early stage in

this research, I introduce the problem, describe a

potential application and source of interesting n-

dimensional objects and show preliminary work

on a traditional NLG system built on off-the-shelf

text planning and surface realization technology

plus a customized sentence planner.

This work was inspired by a talk by Kathleen

McCoy in which she described a system that pro-

duces Natural Language explanations of maga-

zine infographics for the blind by combining Com-

puter Vision techniques with NLG (Carberry et al.,

2013). She mentioned an anecdote in which she

asked a blind user of the system what would the

user would want added to the text description and

the user replied “I don’t know, I have never seen

an infographic.” I found the comment very inspir-

ing and it led to the realization that n-dimensional

objects (for n > 3) were also something which

we, as humans, have never seen before and which

we will profit from having a computer system to

describe to us.

A type of n-dimensional objects that are of par-

ticular practical interest are the error function for a

machine learning algorithm for particular training

data. That is the case because, for NLP practition-

ers using supervised classification, the task of de-

bugging and improving their classifiers at times in-

volves repeated steps of training with different pa-

rameters. Usually, at each stage the trained model

is kept as an opaque construct of which only ag-

gregate statistics (precision, recall, etc) are inves-

tigated. My technology improves this scenario by

generating Natural Language descriptions for the

error function of trained machine learning models.

My system, Thoughtland,1 (Fig. 1) is a pipeline

with four stages, accessed through a Web-based

interface (Duboue, 2013), further discussed in the

next section.

This early prototype is already able to tackle de-

scriptions of existing, non-trivial data. These re-

sults are very encouraging and the problem merits

attention from other NLG researchers. To further

broad interest in this problem, I am distributing my

prototype under a Free Software license,2 which

should encourage extensions and classroom use. I

have already found the current descriptions useful

for telling apart the output of two different algo-

rithms when run on the same data.

I will now describe the algorithm and then dive

into the NLG details. I conclude with related and

future work discussions.

2 Algorithm

Thoughtland’s architecture is shown in Fig. 1.

While the first stage lies clearly outside the in-

terest of NLG practitioners, the next two stages

(Clustering and Analysis) are related to the mes-

sage generation aspect of content planning (Reiter

and Dale, 2000),3 as they seek to transform the

data into units that can be communicated verbally

(the last stage is the more traditional NLG system

itself).

1
http://thoughtland.duboue.net

2https://github.com/DrDub/Thoughtland
3pages 61-63.

172

Training

Data

Figure 1: Thoughtland’s architecture.

2.1 Cross-Validation

The error function is computed as the error for

each point in the input data. For a numeric tar-

get class, that would mean that for every training

instance (~x, y), e =
∥

∥

∥
f(~x)− y

∥

∥

∥
, where the error

is computed using f trained on the folds that do

not contain (~x, y).4 This stage produces a cloud of

points in n-dimensions, for n = F + 1, where F

is the number of features in the training data (the

extra dimension is the error value).

2.2 Clustering

The cloud of error points obtained in the previous

step is then clustered using a mixture of Dirich-

let models (McCullagh and Yang, 2008) as imple-

mented by Apache Mahout (Owen et al., 2011).5

I choose this clustering approach because each

of the obtained clusters has a geometrical rep-

resentation in the form of n-balls, which are n-

dimensional spheres. These representations are

important later on for the natural language gener-

ation approach.

Some input features present a natural geomet-

ric groupings which will interfere with a clustering

set to elucidate the error function. To make the er-

ror coordinate the most prominent coordinate for

clustering, I re-scale the error coordinate using the

radius of an n-ball that encompasses all the input

features.

2.3 Analysis

In Fig. 1, the Analysis Stage involves determin-

ing the overall size, density, distances to the other

n-balls and extension in each dimension for each

n-ball. These numbers are put into perspective

with respect to the n-ball encompassing the whole

cloud of points. The distance between two n-balls,

for example, is said to be big if in any dimension

4The error is different if the target class is not numeric
(nominal target classes). In that case the error is 1.0 if the
class is different from the target or 0 if it the same.

5See Section 9.4.2, “Dirichlet clustering.”

it is above half the radius of the large n-ball in

that particular dimension. Each n-ball is also com-

pared to each other in terms of distance.

I have so far determined these thresholds by

working on the mileage data discussed elsewhere

(Duboue, 2013). Objective-function optimization-

based techniques (discussed in the next section)

might prove useful here.

This stage is at its infancy, in future work I

want to analyze the pairs of n-balls in terms of

rotations as they are particularly important to de-

termine how many dimensions are actually being

used by the sets of n-balls.

3 Natural Language Generation

As I go exploring the different aspects of the prob-

lem, I opt for a very traditional generation system

and architecture. Approaches based on learning

(Mairesse et al., 2010; Varges and Mellish, 2010;

Oh and Rudnicky, 2000) are not particularly easy

to apply to this problem as I am producing a text

for which there are no available examples. I do

hope to explore objective-function optimization-

based techniques such as Lemon (2011) or Deth-

lefs and Cuayáhuitl (2011) in the near future.

The NLG system is thus implemented on

top of McKeown’s (1985) Document Structur-

ing Schemata (using the recent implementation

OpenSchema6) and SimpleNLG (Gatt and Reiter,

2009). I use two schemata, in one the n-balls are

presented in order while in the other the attributes

are presented in order. One of the schemata I

am using is shown in Fig. 2. Document structur-

ing schemata are transition networks of rhetorical

predicates that can contain free and bound vari-

ables, with restrictions on each variable. The sys-

tem presents the user the shorter description.

Either strategy should emphasize similarities,

simplifying aggregation (Reape and Mellish,

1999). I employ some basic aggregation rules, that

6
http://openschema.sf.net

173

is, for each aggregation segment I assemble all

n-balls with the same property together to make

complex sentences. That works well for size and

density. To verbalize distances, I group the dif-

ferent pairs by distance value and then look for

cliques using the Bron-Kerbosch clique-finding al-

gorithm (Bron and Kerbosch, 1973), as imple-

mented in JGraphT.7 I also determine the most

common distance and verbalize it as a defeasible

rule (Knott et al., 1997), which significantly short-

ens the text.

This pipeline presents a non-trivial NLG appli-

cation that is easy to improve upon and can be used

directly in a classroom setting.

3.1 Case Study

I will now illustrate Thoughtland by virtue of

an example with training data from the CoNLL

Shared Task for the year 2000 (Sang and Buch-

holz, 2000). The task involved splitting a sentence

into syntactically related segments of words:

(NP He) (VP reckons) (NP the current account

deficit) (VP will narrow) (PP to) (NP only # 1.8

billion) (PP in) (NP September) .

The training contains for each word its POS and

its Beginning/Inside/Outside chunk information:

He PRP B-NP
reckons VBZ B-VP
the DT B-NP
current JJ I-NP
account NN I-NP
deficit NN I-NP
will MD B-VP
narrow VB I-VP

I transformed the data into a classification problem

based on the current and previous POS, rendering

it a two dimensional problem. The provided data

consists of 259,104 training instances. Over this

data Naı̈ve Bayes produces an accuracy of 88.9%

and C4.5, 89.8%. These numbers are very close,

but do the two algorithms produce similar error

function? Looking at Thoughtland’s descriptions

(Fig. 3) we can see that is not the case.

In later runs I add the current and previous

words, to make for a three and fourth dimensional

problem. These are extra dimensions with a nomi-

nal class with 20,000 distinct values (one for each

word). Interestingly, when the classifiers become

good enough, there is no discriminating informa-

tion left to verbalize. A similar situation happens

when the classifiers have poor accuracy.

7
http://jgrapht.sourceforge.net/

schema by-attribute(whole: c-full-cloud)

; first sentence, overall numbers

pred-intro(cloud|whole)

aggregation-boundary

star

pred-size()

aggregation-boundary

star

pred-density()

aggregation-boundary

star

pred-distance()

predicate pred-density

variables

req def component : c-n-ball

req attribute : c-density

properties

component == attribute.component

output

pred has-attribute

pred0 component

pred1 attribute

pred2 magnitude

Figure 2: One of the two schemata employed by

Thoughtland. This schema produces descriptions

focusing on the similar attributes of each of the n-

balls. I include one of the predicates for reference.

4 Related Work

The problem of describing n-dimensional objects

is a fascinating topic which Thoughtland just starts

to address. It follows naturally the long term inter-

est in NLG for describing 3D scenes (Blocher et

al., 1992), spatial/GIS data (De Carolis and Lisi,

2002) or just numerical data (Reiter et al., 2008).

In the more general topic of explaining machine

learning decisions, ExOpaque (Guo and Selman,

2007) takes a trained system and uses it to pro-

duce training data for an Inductive Logic Program-

ming (Muggleton and Raedt., 1994) system, pre-

senting the resulting Horn-clauses directly to the

user. Focusing on explaining the impact of specific

attributes in the prediction outcome of a particular

instance, Robnik-Sikonja and Kononenko (2008)

analyze changes to the classification outcome un-

der different input variations, weighted by their

priors, an idea explored early on in agent-based

systems (Johnson, 1994). In general, systems

based on Bayesian networks seem to have a

stronger probabilistic framework that facilitates

explanations (Lacave and Diez, 2000).

By far, most of the attention in understanding

the error function for machine learning algorithms

has come from the graphical visualization commu-

174

THREE DIMENSIONS

Naive Bayes C4.5

Accuracy 88.9% Accuracy 89.8%

There are five components and three dimensions. Component
One is big and components Two, Three and Four are small.
Component Four is dense and components Two and Three are
very dense. Components Three and Five are at a good distance
from each other. The rest are all far from each other.

There are six components and three dimensions. Component
One is big, components Two, Three and Four are small and
component Five is giant. Component Five is sparse and com-
ponents Two, Three and Four are very dense. Components One
and Two are at a good distance from each other. The rest are all
far from each other.

FOUR DIMENSIONS

Accuracy 90.4% Accuracy 91.4%

There are six components and four dimensions. Components
One, Two and Three are big and components Four and Five are
small. Component Three is dense, component One is sparse
and components Four and Five are very dense. Components
Two and Three are at a good distance from each other. The rest
are all far from each other.

There are six components and four dimensions. Components
One, Two and Three are big and components Four and Five are
small. Component One is dense, component Three is sparse and
components Four and Five are very dense. Components Three
and Four are at a good distance from each other. Components
Six and Four are also at a good distance from each other. The
rest are all far from each other.

FIVE DIMENSIONS

Accuracy 91.6% Accuracy 91.6%

There is one component and five dimensions. There is one component and five dimensions.

Figure 3: Example generated descriptions.

nities. However, as stated by Janert (2010):8

As soon as we are dealing with

more than two variables simultaneously,

things become much more complicated –

in particular, graphical methods quickly

become impractical.

The focus is then in dimensionality reduction9

and projection (Kaski and Peltonen, 2011), usually

as part of an integrated development environment

(Kapoor et al., 2012; Patel et al., 2010). The usual

discussion regarding the complementary role of

text and graphics, as studied for a long time in

NLG (McKeown et al., 1997), applies also here:

there are things like generalizations and excep-

tions that are easier to express in text. We look

forward for NLG-based approaches to be included

in future versions of ML IDEs such as Gestalt.

Finally, Thoughtland uses the error function for

an ML algorithm as applied to training data. A

similarly worded term which should not be con-

fused is error surface (Reed and Marks, 1999),10

which refers to the space of possible ML models.

Error surfaces are particularly important for train-

ing algorithms that explore the said surface, for ex-

ample by gradient descent.

8Chapter 5, page 99.
9A reviewer suggested combining dimensionality reduc-

tion and NLG, an idea most definitely worth exploring.
10Chapter 8.

5 Final Remarks

I have presented Thoughtland, a working proto-

type addressing the problem of describing clouds

of points in n-dimensional space. In this paper I

have identified the problem and shown it to be ap-

proachable with a solution based on model-based

clustering.

For future work, I want to enrich the analysis

with positional information: I want to find planes

on which a majority of the n-balls lie so as to de-

scribe their location relative to them. I am also

considering hierarchical decomposition in up to

five to seven n-balls (to make it cognitively ac-

ceptable (Miller, 1956)) as it will translate well to

textual descriptions.

My preliminary experiments suggest there is

value in generating comparisons for two error

functions. I can therefore employ the existing

body of work in NLG for generating comparisons

(Milosavljevic, 1999).

While the pilot might speak of the feasibility of

the task, Thoughtland still needs to be evaluated.

For this, I want to start with simple cases such as

overfitting or feature leaks and see if the descrip-

tions help humans detect such cases faster.

Acknowledgements

The author would like to thank Annie Ying, Or

Biran, Samira Ebrahimi Kahou and David Racca.

175

References

A. Blocher, E. Stopp, and T. Weis. 1992. ANTLIMA-
1: Ein System zur Generierung von Bildvorstel-
lungen ausgehend von Propositionen. Techni-
cal Report 50, University of Saarbrücken, Sonder-
forschungsbereich 314, Informatik.

Coenraad Bron and Joep Kerbosch. 1973. Finding
all cliques of an undirected graph (algorithm 457).
Commun. ACM, 16(9):575–576.

Sandra Carberry, Stephanie Elzer Schwartz, Kathleen
Mccoy, Seniz Demir, Peng Wu, Charles Green-
backer, Daniel Chester, Edward Schwartz, David
Oliver, and Priscilla Moraes. 2013. Access to mul-
timodal articles for individuals with sight impair-
ments. ACM Trans. Interact. Intell. Syst., 2(4):21:1–
21:49, January.

Berardina De Carolis and Francesca A Lisi. 2002.
A NLG-based presentation method for supporting
KDD end-users. In Foundations of Intelligent Sys-
tems, pages 535–543. Springer.

Nina Dethlefs and Heriberto Cuayáhuitl. 2011. Hier-
archical reinforcement learning and hidden markov
models for task-oriented natural language genera-
tion. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies: short papers-Volume
2, pages 654–659. Association for Computational
Linguistics.

P.A. Duboue. 2013. Thoughtland: Natural Language
Descriptions for Machine Learning n-dimensional
Error Functions. In Proceedings of ENLG’13.

Albert Gatt and Ehud Reiter. 2009. SimpleNLG: a
realisation engine for practical applications. In Pro-
ceedings of the 12th European Workshop on Natu-
ral Language Generation, ENLG ’09, pages 90–93,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Yunsong Guo and Bart Selman. 2007. ExOpaque:
A framework to explain opaque machine learning
models using Inductive Logic Programming. In IC-
TAI (2), pages 226–229. IEEE Computer Society.

Philipp K. Janert. 2010. Data Analysis with Open
Source Tools. O’Reilly.

W Lewis Johnson. 1994. Agents that learn to ex-
plain themselves. In Proceedings of the twelfth
national conference on Artificial intelligence, vol-
ume 2, pages 1257–1263.

Ashish Kapoor, Bongshin Lee, Desney Tan, and Eric
Horvitz. 2012. Performance and preferences: In-
teractive refinement of machine learning procedures.
In Twenty-Sixth AAAI Conference on Artificial Intel-
ligence.

Samuel Kaski and Jaakko Peltonen. 2011. Dimen-
sionality reduction for data visualization [applica-
tions corner]. Signal Processing Magazine, IEEE,
28(2):100–104.

Alistair Knott, Mick O’Donnell, Jon Oberlander, and
Chris Mellish. 1997. Defeasible rules in con-
tent selection and text structuring. In Proceed-
ings of the Sixth European Workshop on Natural
Language Generation, pages 50–60, Duisburg, Ger-
many, March.

Carmen Lacave and Francisco J. Diez. 2000. A re-
view of explanation methods for bayesian networks.
Knowledge Engineering Review, 17:2002.

Oliver Lemon. 2011. Learning what to say and how to
say it: Joint optimisation of spoken dialogue man-
agement and natural language generation. Com-
puter Speech & Language, 25(2):210–221.

François Mairesse, Milica Gašić, Filip Jurčı́ček, Simon
Keizer, Blaise Thomson, Kai Yu, and Steve Young.
2010. Phrase-based statistical language generation
using graphical models and active learning. In Pro-
ceedings of the 48th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1552–
1561. Association for Computational Linguistics.

Peter McCullagh and Jie Yang. 2008. How many clus-
ters? Bayesian Analysis, 3(1):101–120.

Kathleen McKeown, Shimei Pan, James Shaw, Jordan
Desmond, and Barry Allen. 1997. Language gener-
ation for multimedia healthcare briefings. In Pro-
ceedings of the Fifth Conference on Applied Nat-
ural Language Processing (ANLP-97), Washington
(DC), USA, April.

Kathleen Rose McKeown. 1985. Text Generation: Us-
ing Discourse Strategies and Focus Constraints to
Generate Natural Language Text. Cambridge Uni-
versity Press, Cambridge, England.

George Miller. 1956. The magical number seven,
plus or minus two: Some limits on our capacity for
processing information. The psychological review,
63:81–97.

Maria Milosavljevic. 1999. Maximising the Coher-
ence of Descriptions via Comparison. Ph.D. thesis,
Macquarie University, Sydney, Australia.

S. Muggleton and L. D. Raedt. 1994. Inductive logic
programming: Theory and methods. Journal of
Logic Programming, (19/20):629–679.

Alice Oh and A. Rudnicky. 2000. Stochastic language
generation for spoken dialogue systems. In Pro-
ceedings of the ANLP/NAACL 2000 Workshop on
Conversational Systems, pages 27–32, Seattle, WA,
May.

Sean Owen, Robin Anil, Ted Dunning, and Ellen Fried-
man. 2011. Mahout in Action. Manning Publi-
cations Co., Manning Publications Co. 20 Baldwin

176

Road PO Box 261 Shelter Island, NY 11964, first
edition.

Kayur Patel, Naomi Bancroft, Steven M Drucker,
James Fogarty, Andrew J Ko, and James Landay.
2010. Gestalt: integrated support for implemen-
tation and analysis in machine learning. In Pro-
ceedings of the 23nd annual ACM symposium on
User interface software and technology, pages 37–
46. ACM.

Mike Reape and Chris Mellish. 1999. Just what
is aggregation anyway? In Proceedings of the
European Workshop on Natural Language Genera-
tion (EWNLG’99), pages 20 – 29, Toulouse, France,
May.

Russell D. Reed and Robert J. Marks. 1999. Neural
Smithing: Supervised Learning in Feedforward Ar-
tificial Neural Networks. MIT Press.

Ehud Reiter and Robert Dale. 2000. Building Natural
Language Generation Systems. Cambridge Univer-
sity Press.

Ehud Reiter, Albert Gatt, François Portet and Marian
van der Meulen 2008. The importance of narrative
and other lessons from an evaluation of an NLG sys-
tem that summarises clinical data. In INLG ’08.

Marko Robnik-Sikonja and Igor Kononenko. 2008.
Explaining classifications for individual instances.
IEEE Trans. Knowl. Data Eng., 20(5):589–600.

Tjong Kim Sang and Sabine Buchholz. 2000. Intro-
duction to the CoNLL-2000 shared task: Chunking.
In Proceedings of the 2nd workshop on Learning
language in logic and the 4th conference on Com-
putational natural language learning, September,
pages 13–14.

Sebastian Varges and Chris Mellish. 2010. Instance-
based natural language generation. Natural Lan-
guage Engineering, 16(3):309.

177

