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Abstract

We describe a biological event detec-
tion method implemented for the Genia
Event Extraction task of BioNLP 2013.
The method relies on syntactic depen-
dency relations provided by a general NLP
pipeline, supported by statistics derived
from Maximum Entropy models for can-
didate trigger words, for potential argu-
ments, and for argument frames.

1 Introduction

The OntoGene team at the University of Zurich
has developed text mining applications based on
a combination of deep-linguistic analysis and ma-
chine learning techniques (Rinaldi et al., 2012b;
Clematide and Rinaldi, 2012; Rinaldi et al., 2010).
Our approaches have proven competitive in sev-
eral shared task evaluations (Rinaldi et al., 2013;
Clematide et al., 2011; Rinaldi et al., 2008). Addi-
tionally, we have developed advanced systems for
the curation of the biomedical literature (Rinaldi
et al., 2012a).

Our participation in the Genia Event Extraction
task of BioNLP 2013 (Kim et al., 2013) was moti-
vated by the desire of testing our technologies on
a more linguistically motivated task. In the course
of our participation we revised several modules of
our document processing pipeline, however we did
not have sufficient resources to completely revise
the final module which generates the event struc-
tures, and we still relied on a module which we
had developed for our previous participation to the
BioNLP shared task.

The final submission was composed by our
standard preprocessing module (described briefly
in section 2) and novel probability models (section
3), combined within the old event generator (sec-
tion 4).

2 Preprocessing

The OntoGene environment is based on a pipeline
of several NLP tools which all operate on a com-
mon XML representation of the original docu-
ment.

Briefly, the pipeline includes modules for
sentence-splitting, tokenization, part-of-speech
tagging, lemmatization, stemming, term-
recognition (not used for the BioNLP shared
task), chunking, dependency-parsing and event
generation. Different variants of those modules
have been used in different instantiations of the
pipeline. For the BioNLP 2013 participation,
lingpipe was used for sentence splitting, tok-
enization and PoS tagging, morpha (Minnen et
al., 2001) was used for lemmatization, a python
implementation of the Porter stemmer for stem-
ming, LTTT (Grover et al., 2000), was used for
chunking, and the Pro3Gres parser (Schneider,
2008) for dependency analysis.

As we have made good experiences with a
rule based system for anaphora resolution in the
BioNLP 2011 shared task (Tuggener et al., 2011),
we implemented a similar approach that resolves
anaphors to terms identified during preprocessing.
Rules contain patterns like “X such as Y” or “X
is a Y”, and pronouns are resolved to the nearest
grammatical subject or object. Anaphora resolu-
tion led to an improvement of 0.2% recall on the
development set, while precision was hardly af-
fected.

3 Probability models

Several probability models have been computed
from the training data in order to be used to score
and filter candidate events generated by the sys-
tem. The following models played a role in the
final submission:

P (eventType | trigger candidate) (1)
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P (frame ∧ eventType | trigger candidate) (2)

P (role ∧ eventType | protein) (3)

P (role(t, d) | synpath(t, d)) (4)

For all of them we computed global Maximum
Likelihood Estimations (MLE), using the training
and development datasets from the 2013 and 2011
challenges. For all of the models above, except
for the last one, we also estimated the probabili-
ties by a Maximum Entropy (ME) approach. The
MegaM tool (Daumé III, 2004) allows for a super-
vised training of binary classifiers where the class
probability is optimized by adjusting the feature
weights and not just the binary classification deci-
sion itself. This helps to deal with the imbalanced
classes such as the distribution of true or false trig-
gerword candidates.

For the classification of trigger candidates
(Equation 1), a binary ME classifier for each event
type is separately trained, based on local and
global features as described below. The trigger-
word candidates are collected from the training
data using their stemmed representation as a selec-
tion criterion. We generally exclude triggerword
candidates that occur in less than 1% as true trig-
gers in the training set. Within the data, we found
that triggers that consist of more than one word are
rather rare (less than 5% of all triggers, most of
them occurring once). However, we transformed
these multiword triggers to singleword triggers,
replacing them by their first content word.

The choice of ME features, partly inspired by
(Ekbal et al., 2013), can be grouped into features
derived from the triggerword itself (word), fea-
tures from the sentence of the triggerword (con-
text), and features from article-wide information
(global).

Word features: (1) The text, lemma, part of
speech (PoS), stem and local syntactic dependency
of the triggerword candidate as computed by the
Pro3Gres parser. (2) Information whether a trig-
gerword candidate is head of a chunk as well as
whether the chunk is nominal or verbal

Context features: Unigrams and bigrams in a
window of variable size to left and right of the trig-
gerword candidate; three types of uni- and bigrams
are used: PoS, lemmas and stems; for unigrams we
also include the lower-cased words; for bigrams,
the triggerword candidate itself is included in the
first bigram to either side.

Global features: (1) Presence or absence of a
protein in a window of a given size around the
triggerword candidate (Boolean feature); only the
most frequent proteins of an article are considered.
(2) The zone in an article where the triggerword
candidate appears, e.g. Title/Abstract, Introduc-
tion, Background, Material and Methods, Results
and Discussion, Caption and Conclusion.

Feature engineering was done by testing differ-
ent combinations of settings (window size, thresh-
olds) with the aim of finding an optimal overall
ME model which reaches the lowest error rates for
all event types. The error rate of the candidate set
was measured as the cumulative error mass com-
puted from the assigned class probability as fol-
lows: if the trigger candidate is a true positive, the
error is 1 minus the probability assigned by the
classifier. If the candidate is a false positive, the
error is the probability assigned by the classifier.
Our approach does not allow us to compute an er-
ror rate for false negatives, because we simply rely
on the set of trigger words seen in the training data
as possible candidates.

In these experiments, we discovered that for
most event types an optimal setting for the context
features considers a wide span of about 20 tokens
to the left and right of the triggerword. Includ-
ing bigrams of lemmas, stems and PoS delivered
the best results compared to including only one or
two of these bigram types. Context features can be
parameterized according to how much positional
information they contain: the distance of a word
to the right and left of the trigger, only the direc-
tion (left or right) or no position information at all
(bag of unigrams/bigrams). We found that the ex-
act positional information is only important for the
first word to the left and right (adjacent to the trig-
gerword), whereas for all words that are further
away it is favorable to only use the direction in re-
lation to the trigger. A window size of 10 words
within which proteins are found in the context of
a triggerword gave the best results. The optimal
number of the most frequent proteins considered
within this window was found to be the 10 most
frequent proteins within an article.

The second type of ME classifier (Equation 2)
has the purpose of calculating the probabilities of
event frames for all event types given a trigger
word. We use the term frame for a combination of
arguments that an event is able to accept as theme
and cause and whether these arguments are real-
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ized as proteins or subevents.
For the classification of proteins (Equation 3),

again separate binary ME classifiers were built in
order to estimate the probability that a protein has
a role (theme or cause) in an event of a given type.

4 Event Generation

We tested two independent event generation mod-
ules, one based on a revision of our previous 2009
submission (Kaljurand et al., 2009) and one which
is a totally new implementation. We could do only
preliminary tests with the second module, which
however showed promising results, in particular
with much better recall than the older module (up
to 65.23%), despite the very little time that we
could invest in its development. The best F-score
that we could reach was still slightly inferior to the
one of the old module at the deadline for submis-
sion of results. In the rest of this paper we will
describe only the module which was used in the
official submission.

The event extraction process consists of three
phases. First, event candidates are generated,
based on trigger words and their context, using the
ME and MLE probabilities pT (equation 1).

Second, individual arguments of an event are
generated. We calculate the MLE probability pR

of an argument role (e.g. Theme) to occur as part
of a given event type, as follows:

pR(Role |EventType) =
f(Role ∧ EventType)

f(EventType)
(5)

We obtained the best results on the development
corpus when combining the probabilities as:

pA =
pT ∗ pT ∗ pR

pT + pT + pR
(6)

We generate arguments, using an MLE syntac-
tic path and an ME argument model, as follows.
The syntactic path between the trigger word and
every term (protein or subordinate event) is con-
sidered. If they are syntactically connected, and
if the probability of a syntactic path to express an
event is above a threshold, it is selected. As this is
a filtering step, it negatively affects recall.

We calculate the MLE probability ppath that
a syntactic configuration fills an argument slot.
Syntactic configurations consist of the head word
(trigger) HWord, the head event type HType, the
dependent word DWord, the dependent event type
DType, and the syntactic path Path between them.

In order to deal with sparse data, we use a
smoothed model.

ppath(Arg |HWord, HType, DWord, DType, Path) =
1

w1+w2+w3
∗ (

w1 ∗ f(HWord, HType, DWord, DType, Path∧Arg)
f(HWord, HType, DWord, DType, Path) +

w2 ∗ f(HType, DType, Path∧Arg)
f(HType, DType, Path) +

w3 ∗ f(HType, DType∧Arg)
f(HType, DType) ) (7)

The weights were emprically set as w1 = 4,
w2 = 2 and w3 = 1.5. The fact that the weights
decrease approximates a back-off model. The final
probability had to be larger than 0.2.

We have also used an ME model which delivers
the probability parg that a term is the argument of
a specific event, see formula 3. If this ME model
predicts with a probability of above 80% that the
term is not an argument, the search fails. Other-
wise, the probabilities are combined. On the de-
velopment corpus, we achieved best results when
using the harmonic mean:

pargument = 2 ∗ ppath ∗ parg

ppath + parg
(8)

As a last step, the several arguments of an event
are combined into a frame. We have tested mod-
els predicting an entire frame directly, and models
combining the individual arguments generated in
the previous step. The latter approach performed
better. Any permutation of the argument candi-
dates could constitute a frame. Only frames seen
in the training corpus for a given event type are
considered. We have again used an ME and an
MLE model for predicting frames.

The ME model predicts pframe.ME , see for-
mula 2. We have also used two MLE models:
the first one delivers the probability pframe.MLE

based on the event type only, the second one
pframeword.MLE also considers the trigger word
and is much sparser (a low default is thus used for
unseen words). The probability of the individual
arguments also needs to be taken into considera-
tion. We used the mean of the individual argu-
ments’ probabilities (pargs′mean).

5 Evaluation

In our analysis of errors, we noticed that frames
with more than one argument are created ex-
tremely rarely. The problem is that frames with
several arguments are rarer because the context
often does not offer the possibility to attach sev-
eral arguments. Therefore, we consistently un-
dergenerated with pargs′mean as outlined above.
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Event Class gold (match) answer (match) recall prec. fscore
SVT-TOTAL 1117 ( 619) 851 ( 619) 55.42 72.74 62.91
EVT-TOTAL 1490 ( 698) 1103 ( 698) 46.85 63.28 53.84
REG-TOTAL 1694 ( 168) 618 ( 168) 9.92 27.18 14.53
All events total 3184 ( 866) 1721 ( 866) 27.20 50.32 35.31

Table 1: Results on the development set, measured using “strict equality”.

Event Class gold (match) answer (match) recall prec. fscore
Gene expression 619 (400) 497 (400) 64.62 80.48 71.68
Transcription 101 (26) 100 (26) 25.74 26.00 25.87
Protein catabolism 14 (10) 15 (10) 71.43 66.67 68.97
Localization 99 (34) 39 (34) 34.34 87.18 49.28
=[SIMPLE ALL]= 833 (470) 651 (470) 56.42 72.20 63.34
Binding 333 (74) 264 (74) 22.22 28.03 24.79
Protein modification 1 (0) 0 (0) 0.00 0.00 0.00
Phosphorylation 160 (119) 168 (119) 74.38 70.83 72.56
Ubiquitination 30 (0) 0 (0) 0.00 0.00 0.00
Acetylation 0 (0) 0 (0) 0.00 0.00 0.00
Deacetylation 0 (0) 0 (0) 0.00 0.00 0.00
=[PROT-MOD ALL]= 191 (119) 168 (119) 62.30 70.83 66.30
Regulation 288 (23) 84 (23) 7.99 27.38 12.37
Positive regulation 1130 (129) 444 (129) 11.42 29.05 16.39
Negative regulation 526 (54) 166 (54) 10.27 32.53 15.61
=[REGULATION ALL]= 1944 (206) 694 (206) 10.60 29.68 15.62
==[EVENT TOTAL]== 3301 (869) 1777 (869) 26.33 48.90 34.23

Table 2: Results on the test data, measured using “strict equality”.

We have added a number of heuristics to boost
multi-argument frames. Multiplying the probabil-
ity of a frame by its cubed length (giving two-
argument slots 9 times higher probability), and
giving Cause-slots 50% higher scores globally led
to best results.

We mainly trained and evaluated using the
“strict equality” evaluation criteria as our refer-
ence. The results on the development data are
shown in table 1. With more relaxed equality def-
initions, the results were always a few percentage
points better. Our results in the official test run are
shown in table 2. In sum, our submitted system
has good performance for simple events, bad per-
formance for Binding events, and a bias towards
precision due to a syntactic-based filtering step.

6 Conclusions and Future work

Our participation in the 2013 BioNLP shared task
was a useful opportunity to revise components of
the OntoGene pipeline and begin the implemen-
tation of a novel event generator. Due to lack of
time, it was not completed in time for the official
submission. We will continue its development and
use the BioNLP datasets.
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