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Abstract

We participated in the BioNLP 2013 shared
tasks, addressing the GENIA (GE) and the Can-
cer Genetics (CG) event extraction tasks. Our
event extraction is based on the system we re-
cently proposed for mining relations and events
involving genes or proteins in the biomedical
literature using a novel, approximate subgraph
matching-based approach. In addition to han-
dling the GE task involving 13 event types uni-
formly related to molecular biology, we gener-
alized our system to address the CG task tar-
geting a challenging set of 40 event types re-
lated to cancer biology with various arguments
involving 18 kinds of biological entities. More-
over, we attempted to integrate a distributional
similarity model into our system to extend the
graph matching scheme for more events. In ad-
dition, we evaluated the impact of using paths of
all possible lengths among event participants as
key contextual dependencies to extract potential
events as compared to using only the shortest
paths within the framework of our system.

We achieved a 46.38% F-score in the CG task
and a 48.93% F-score in the GE task, ranking
3rd and 4th respectively. The consistent perfor-
mance confirms that our system generalizes well
to various event extraction tasks and scales to
handle a large number of event and entity types.

1 Introduction

Understanding the sophisticated interactions between
various components of biological systems and conse-
quences of these biological processes on the function
and behavior of the systems provides profound im-
pacts on translational biomedical research, leading to
more rapid development of new therapeutics and vac-
cines for combating diseases. For the past five years,
the BioNLP shared task series has served as an in-
strumental platform to promote the development of

text mining methodologies and resources for the au-
tomatic extraction of semantic events involving genes
or proteins such as gene expression, binding, or reg-
ulatory events from the biomedical literature (Kim et
al., 2009; Kim et al., 2011). An event typically cap-
tures the association of multiple participants of vary-
ing numbers and with diverse semantic roles (Anani-
adou et al., 2010). Since events often serve as partic-
ipants in other events, the extraction of such nested
event structures provides an integrated, network view
of these biological processes.

Previous shared tasks focused exclusively on
events at the molecular and sub-cellular level. How-
ever, biological processes at higher levels of organi-
zation are equally important, such as cell prolifer-
ation, organ growth and blood vessel development.
While preserving the classic event extraction tasks
such as the GE task, the BioNLP-ST 2013 broad-
ens the scope of application domains by introducing
many new issues in biology such as cancer genetics
and pathway curation. On behalf of NCBI (National
Center for Biotechnology Information), our team par-
ticipated in the GENIA (GE) task and the Cancer Ge-
netics (CG) task. Compared to the GE task that aims
for 13 types of events concerning the protein NF-κB,
the CG task targets a challenging set of 40 types of
biological processes related to the development and
progression of cancer involving 18 entity types. This
additionally requires that event extraction systems be
able to associate entities and events at the molecular
level with anatomy level effects and organism level
outcomes of cancer biology.

Our event extraction is based on the system we re-
cently proposed for mining relations and events in-
volving genes or proteins in the biomedical litera-
ture using a novel, Approximate Subgraph Matching-
based (ASM) approach (Liu et al., 2013a). When
evaluated on the GE task of the BioNLP-ST 2011, its
performance is comparable to the top systems in ex-
tracting 9 types of biological events. In the BioNLP-
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ST 2013, we generalized our system to investigate
both CG and GE tasks. Moreover, we attempted to in-
tegrate a distributional similarity model into the sys-
tem to extend the graph matching scheme for more
events. The graph representation that considers paths
of all possible lengths (all-paths) between any two
nodes has been encoded in graph kernels used in
conjunction with Support Vector Machines (SVM),
and led to state-of-the-art performance in extracting
protein-protein (Airola et al., 2008) and drug-drug in-
teractions (Zhang et al., 2012). Borrowing from the
idea of the all-paths representation, in addition, we
evaluated the impact of using all-paths among event
participants as key contextual dependencies to extract
potential events as compared to using only the short-
est paths within the framework of our system.

The rest of the paper is organized as follows: In
Section 2, we briefly introduce our ASM-based event
extraction system. Section 3 describes our experi-
ments aiming to extend our system. Section 4 elab-
orates some implementation details and Section 5
presents our results and discussion. Finally, Section
6 summarizes the paper and introduces future work.

2 ASM-based Event Extraction

The underlying assumption of our event extraction
approach is that the contextual dependencies of each
stated biological event represent a typical context for
such events in the biomedical literature. Our ap-
proach falls into the machine learning category of
instance-based reasoning (Alpaydin, 2004). Specif-
ically, the key contextual structures are learned from
each labeled positive instance in a set of train-
ing data and maintained as event rules in the form
of subgraphs. Extraction of events is performed
by searching for an approximate subgraph isomor-
phism between key dependencies and input sen-
tence graphs using an approximate subgraph match-
ing (ASM) algorithm designed for literature-based
relational knowledge extraction (Liu et al., 2013a).
By introducing error tolerance into the graph match-
ing process, our approach is capable of retrieving
events encoded within complex dependency contexts
while maintaining the extraction precision at a high
level. The ASM algorithm has been released as open
source software1. See (Liu et al., 2013a) for more de-
tails on the ASM algorithm, its complexity and the
comparison with existing graph distance metrics.

Figure 1 illustrates the overall architecture of our
ASM-based system with three core components high-

1http://asmalgorithm.sourceforge.net

lighted: rule induction, sentence matching and rule
set optimization. Our approach focuses on extract-
ing events expressed within the boundaries of a single
sentence. It is also assumed that entities involved in
the target event have been annotated. Next, we briefly
describe the core components of the system.

Rule Induction

Preprocessing

Sentence Matching

Postprocessing

Training data Testing data

Rule Set

Optimization

Figure 1: ASM-based Event Extraction Framework

2.1 Rule Induction

Event rules are learned automatically using the fol-
lowing method. Starting with the dependency graph
of each training sentence, for each annotated event,
the shortest dependency path connecting the event
trigger to each event argument in the undirected ver-
sion of the graph is selected. While additional in-
formation such as individual words in each sentence
(bag-of-words), sequences of words (n-grams) and
semantic concepts is typically used in the state-of-
the-art supervised learning-based systems to cover a
broader context (Airola et al., 2008; Buyko et al.,
2009; Björne et al., 2012), the shortest path be-
tween two tokens in the dependency graph is par-
ticularly likely to carry the most valuable informa-
tion about their mutual relationship (Bunescu and
Mooney, 2005a; Thomas et al., 2011b; Rinaldi et
al., 2010). In case there exists more than one short-
est path, all of them are considered. For multi-token
event triggers, the shortest path connecting every trig-
ger token to each event argument is extracted, and the
union of the paths is then computed for each trigger.
For regulatory events that take a sub-event as an ar-
gument, the shortest path is extracted so as to connect
the trigger of the main event to that of the sub-event.

For complex events that involve multiple argu-
ments, we computed the dependency path union of
all shortest paths from trigger to each event argument,
resulting in a graph in which all event participants are
jointly depicted. Individual dependency paths con-
necting triggers to each argument are also considered
to determine event arguments independently. If the
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resulting arguments share the same event trigger, they
are grouped together to form a potential event. In our
approach, the individual paths aim to retrieve more
potential events while the path unions retain the pre-
cision advantage of joint inference.

While the dependencies of such paths are used as
the graph representation of the event, a detailed de-
scription records the participants of the event, their
semantic role labels and the associated nodes in the
graph. All participating biological entities are re-
placed with a tag denoting their entity type, e.g. “Pro-
tein” or “Organism”, to ensure generalization of the
learned rules. As a result, each annotated event is
generalized and transformed into a generic graph-
based rule. The resulting event rules are categorized
into different target event types.

2.2 Sentence Matching
Event extraction is achieved by matching the induced
rules to each testing sentence and applying the de-
scriptions of rule tokens (e.g. role labels) to the cor-
responding sentence tokens. Since rules and sentence
parses all possess a graph representation, event recog-
nition becomes a subgraph matching problem. We
introduced a novel approximate subgraph matching
(ASM) algorithm (Liu et al., 2013a) to identify a sub-
graph isomorphic to a rule graph within the graph of
a testing sentence. The ASM problem is defined as
follows.

Definition 1. An event rule graph Gr =
(Vr, Er) is approximately isomorphic to a subgraph
Ss of a sentence graph Gs = (Vs, Es), denoted
by Gr

∼=t Ss ⊆ Gs, if there is an injective
mapping f : Vr → Vs such that, for a given
threshold t, t ≥ 0, the subgraph distance be-
tween Gr and Gs satisfies 0 ≤ subgraphDistf (Gr,
Gs) ≤ t, where subgraphDistf (Gr, Gs) = ws ×
structDistf (Gr, Gs) + wl × labelDistf (Gr, Gs) +
wd × directionalityDistf (Gr, Gs).

The subgraph distance is proposed to be the
weighted summation of three penalty-based measures
for a candidate match between the two graphs. The
measure structDist compares the distance between
each pair of matched nodes in one graph to the
distance between corresponding nodes in the other
graph, and accumulates the structural differences.
The distance in rule graphs is defined as the length
of the shortest path between two nodes. The distance
in sentence graphs is defined as the length of the path
between corresponding nodes that leads to minimum
structural difference with the distance in rule graphs.

Because dependency graphs are edge-labeled, ori-
ented graphs, the measures labelDist and direction-
alityDist evaluate respectively the overall differences
in edge labels and directionalities on the compared
path between each pair of matched nodes in the two
graphs. The real numbers ws, wl and wd are non-
negative weights associated with the measures.

The weights ws, wl and wd are defaulted to be
equal but can be tuned to change the emphasis of the
overall distance function. The distance threshold t
controls the isomorphism quality of the retrieved sub-
graphs from sentences. A smaller t allows only lim-
ited variations and always looks for a sentence sub-
graph as closely isomorphic to the rule graph as pos-
sible. A larger t enables the extraction of events de-
scribed in complicated dependency contexts, thus in-
creasing the chance of retrieving more events. How-
ever, it can incur a bigger search cost due to the eval-
uation of more potential solutions.

An iterative, bottom-up matching process is used
to ensure the extraction of complex and nested events.
Starting with the extraction of simple events, simple
event rules are first matched with a testing sentence.
Next, as potential arguments of higher level events,
obtained simple events continue to participate in the
subsequent matching process between complex event
rules and the sentence to initiate the iterative process
for detecting complex events with nested structures.
The process terminates when no new candidate event
is generated for the testing sentence.

During the matching phase we relax the event
rules that contain sub-event arguments such that any
matched event can substitute for the sub-event. We
believe that the contextual structures linking anno-
tated sub-events of a certain type are generalizable
to other event types. This relaxation increases the
chance of extracting complex events with nested
structures but still takes advantage of the contextual
constraints encoded in the rule graphs.

2.3 Rule Set Optimization

Typical of instance-based reasoners, the accuracy of
rules with which to compare an unseen sentence is
crucial to the success of our approach. For instance, a
Transcription rule encoding a noun compound mod-
ification dependency between “TNF” and “mRNA”
derived from an event context “expression of TNF
mRNA” should not produce a Transcription event
for the general phrase “level of TNF mRNA” even
though they share a matchable dependency. Such
matches result in false positive events.
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Therefore, we measured the accuracy of each rule
ri in terms of its prediction result via Eq.(1). For rules
that produce at least one prediction, we ranked them
byAcc(ri) and excluded the ones with aAcc(ri) ratio
lower than an empirical threshold, e.g. 1:4.

Acc(ri) =
#correct predictions by ri

#total predictions by ri
(1)

Because of nested event structures, the removal
of some rules might incur a propagating effect on
rules relying on them to produce arguments for the
extraction of higher order events. Therefore, an it-
erative rule set optimization process, in which each
iteration performs sentence matching, rule ranking
and rule removal sequentially, is conducted, lead-
ing to a converged, optimized rule set. While the
ASM algorithm aims to extract more potential events,
this performance-based evaluation component en-
sures the precision of our event extraction framework.

3 Extensions to Event Extraction System

In the BioNLP-ST 2013, we attempted two different
ways to extend the current event extraction system:
(1) integrate a distributional similarity model into the
system to extend the graph matching scheme for more
events; (2) use paths of all possible lengths (all-paths)
among event participants as key contextual depen-
dencies to extract events. We next elaborate these
system extensions in detail.

3.1 Integrating Distributional Similarity Model
The proposed subgraph distance measure of the ASM
algorithm focuses on capturing differences in the
overall graph structure, edge labels and directional-
ities. However, when determining the injective node
mapping between graphs, the matching remains at the
surface word level.

In the current setting, various node features can be
considered when comparing two graph nodes, result-
ing in different matching criteria. The features in-
clude POS tags (P), event trigger (T), token lemmas
(L) and tokens themselves (A). For instance, a match-
ing criterion, “P*+L”, requires that the relaxed POS
tags (P*) and the lemmatized form (L) of tokens be
identical for each rule node to match with a sentence
node. The relaxed POS allows the plural form of
nouns to match with the singular form, and the con-
jugations of verbs to match with each other. How-
ever, the inability to go beyond surface level match-
ing prevents node tokens that share similar meaning
but possess distinct orthography from matching with

each other. For instance, a mismatch between rule
token “crucial” and a sentence token “critical’ could
lead to an undiscovered Positive regulation event.

We attempted to use only POS information in the
node matching scheme and observed a nearly 14%
increase in recall (Liu et al., 2013b). However, the
precision drops sharply, resulting in an undesirable
F-score. This indicates that the lexical information
is a critical supplement to the contextual dependency
constraints in accurately capturing events within the
framework of our system. Moreover, we attempted to
extend the node matching using the synsets of Word-
Net (Fellbaum, 1998) to allow tokens to match with
their synonyms (Liu et al., 2011). However, since
WordNet is developed for the general English lan-
guage, it relates biomedical terms e.g., “expression”
with general words such as “aspect” and “face”, thus
leading to incorrect events.

In this work, we integrated a distributional simi-
larity model (DSM) into our node matching scheme
to further improve the generalization of event rules.
A distributional similarity model is constructed
based on the distributional hypothesis (Harris, 1954):
words that occur in the same contexts tend to share
similar meanings. We expect that the incorporation
of DSM will enable our system to capture matching
tokens in testing sentences that do not appear in the
training data while maintaining the extraction pre-
cision at a high level. There have been many ap-
proaches to compute the similarity between words
based on their distribution in a corpus (Landauer and
Dumais, 1997; Pantel and Lin, 2002). The output is a
ranked list of similar words to each word. We reim-
plemented the model proposed by (Pantel and Lin,
2002) in which each word is represented by a fea-
ture vector and each feature corresponds to a context
where the word appears. The value of the feature
is the pointwise mutual information (Manning and
Schütze, 1999) between the feature and the word. Let
c be a context and Fc(w) be the frequency count of a
word w occurring in context c. The pointwise mutual
information, miw,c between c and w is defined as:

miw,c =
Fc(w)

N∑
i

Fi(w)

N
×

∑
j

Fc(j)

N

(2)

where N =
∑
i

∑
j

Fi(j) is the total frequency count

of all words and their contexts.
Since mutual information is known to be biased

towards infrequent words/features, the above mutual
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information value is multiplied by a discounting fac-
tor as described in (Pantel and Lin, 2002). The simi-
larity between two words is then computed using the
cosine coefficient (Salton and McGill, 1986) of their
mutual information vectors.

We experimented with two different approaches to
integrate the DSM into our event extraction system.
First, the model is directly embedded into the node
matching scheme. Once a match cannot be deter-
mined by surface tokens, the DSM is invoked to allow
a match if the sentence token appears in the list of the
top M most similar words to the rule token. Sec-
ond, additional event rules are generated by replac-
ing corresponding rule tokens with their top M most
similar words, rather than allow DSM to participate
in the node matching. While the first method mea-
sures the consolidated extraction ability of an event
rule by combining its DSM-generalized performance,
the second approach provides a chance to evaluate the
impact of each DSM-introduced similar word indi-
vidually on event extraction.

3.2 Adopting All-paths for Event Rules

Airola et al. proposed an all-paths graph (APG) ker-
nel for extracting protein-protein interactions (PPI),
in which the kernel function counts weighted shared
dependency paths of all possible lengths (Airola et
al., 2008). Thomas et al. adopted this kernel as
one of the three models used in the ensemble learn-
ing for extracting drug-drug interactions (Thomas et
al., 2011a) and won the recent DDIExtraction 2011
challenge (Segura-Bedmar et al., 2011). The JULIE
lab adapted the APG kernel to event extraction us-
ing syntactically pruned and semantically enriched
dependency graphs (Buyko et al., 2009).

The graph representation of the kernel consists of
two sub-representations: the full dependency parse
and the surface word sequence of the sentence where
a pair of interacting entities occurs. At the expense
of computational complexity, this representation en-
ables the kernel to explore broader contexts of an
interaction, thus taking advantage of the entire de-
pendency graph of the sentence. When comparing
two interaction instances, instead of using only the
shortest path that might not always provide suffi-
cient syntactic information about relations, the ker-
nel considers paths of all possible lengths between
any two nodes. More recently, a hash subgraph pair-
wise (HSP) kernel-based approach was also proposed
for drug-drug interactions and adopts the same graph
representation as the APG kernel (Zhang et al., 2012).

In contrast, the graph representation that our ASM
algorithm searches in a sentence is inherently re-
stricted to the shortest path among target entities in
event rules, as described in Section 2.2. Borrowing
from the idea of the all-path graph representation, in
this work we attempted to explore contexts beyond
the shortest paths to enrich our rule set. We evalu-
ated within the framework of our system the impact
of using acyclic paths of all possible lengths among
event participants as key contextual dependencies to
populate the event rule set as compared to using only
the shortest paths in the current system setting.

4 Implementation

4.1 Preprocessing

We employed the preprocessed data in the
BioC (Comeau et al., 2013) compliant XML format
provided by the shared task organizers as supporting
resources. The BioC project attempts to address
the interoperability among existing natural language
processing tools by providing a unified BioC XML
format. The supporting analyses include tokeniza-
tion, sentence segmentation, POS tagging and
lemmatization. Different syntactic parsers analyze
text based on different underlying methodologies, for
instances, the Stanford parser (Klein and Manning,
2003) performs joint inference over the product of an
unlexicalized Probabilistic Context-Free Grammar
(PCFG) parser and a lexicalized dependency parser
while the McClosky-Charniak-Johnson (Charniak)
parser (McClosky and Charniak, 2008) is based on
N -best parse reranking over a lexicalized PCFG
model. In order to take advantage of multiple aspects
of structural analysis of sentences, both Stanford
parser and Charniak parser, which are among the best
performing parsers trained on the GENIA Treebank
corpus, are used to parse the training sentences and
produce dependency graphs for learning event rules.
Only the Charniak parser is used on the testing
sentences in the event extraction phase.

4.2 ASM Parameter Setting

The GE task includes 13 different event types. Since
each type possesses its own event contexts, an indi-
vidual threshold te is assigned to each type. Together
with the 3 distance function weights ws, wl and wd,
the ASM requires 16 parameters for the GE event ex-
traction task. Similarly, the ASM requires 43 param-
eters to cater to the 40 diverse event types of the CG
task. As reported in (Liu et al., 2013a), we used a
genetic algorithm (GA) (Cormen et al., 2001) to au-
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tomatically determine values of the 12 ASM param-
eters for the 2011 GE task using the training data.
We inherited these previously determined parameters
and adapted them into the 2013 tasks according to
the event type and its argument configuration. For in-
stance, “Pathway” events in the CG task is assigned
the same te as the “Binding” events in the GE task as
they possess similar argument configurations.

Table 1 shows the parameter setting for the 2013
GE task with the equal weights ws = wl = wd con-
straint. The graph node matching criterion “P*+L”
that requires the relaxed POS tags and the token lem-
mas to be identical is used in the ASM.

Parameter Value Parameter Value
tGene expression 8 tUbiquitination 3
tTranscription 7 tBinding 7
tProtein catabolism 10 tRegulation 3
tPhosphorylation 8 tPositive regulation 3
tLocalization 8 tNegative regulation 3
tAcetylation 3 ws 10
tDeacetylation 3 wl 10
tProteinmodification 3 wd 10

Table 1: ASM parameter setting for the 2013 GE task

4.3 Distributional Similarity Model
In our implementation, we made following improve-
ments to the original Pantel model (Pantel and Lin,
2002): (1) lemmas of words generated by the Bi-
oLemmatizer (Liu et al., 2012) are used to achieve
generalization. The POS information is combined
with each lemmatized word to disambiguate its cat-
egory. (2) instead of the linear context where a
word occurs, we take advantage of dependency con-
texts inferred from dependency graphs. For instance,
“toxicity→amod” is extracted as a feature of the to-
ken “nonhematopoietic JJ”. It captures the dependent
token, the type and the directionality of the depen-
dency. (3) the resulting miw,c is scaled into the [0, 1]

range by
λ ·miw,c

1 + λ ·miw,c
to avoid greater miw,c values

dominating the similarity calculation between words.
An empirical λ = 0.01 is used. (4) while only the
immediate dependency contexts of a word are used
in our model, our implementation is flexible so that
contexts of various dependency depths could be taken
into consideration.

In order to cover a wide range of words and capture
the diverse usages of them in biomedical texts, in-
stead of resorting to an existing corpus, our distribu-
tional similarity model is built based on a random se-
lection of 5 million abstracts from the entire PubMed.
When computing miw,c, we filtered out contexts of

each word where the word occurs less than 5 times.
Eventually, the model contains 2.8 million distinct to-
kens and 0.4 million features. When it is queried with
an amino acid, e.g, “lysine”, the top 15 tokens in the
resulting ranked list are all correct amino acid names.

5 Results and Discussion

This section reports our results on the GE and the CG
tasks respectively, including the attempted extensions
to our ASM-based event extraction system.

5.1 GE task

5.1.1 Datasets
The 2013 GE task dataset is composed of full-text
articles from PubMed Central, which are divided into
smaller segments by the task organizers according to
various sections of the articles. Table 2 presents some
statistics of the GE dataset.

Attributes Counted Training Development Testing
Full article segments 222 249 305
Proteins 3,571 4,138 4,359
Annotated events 2,817 3,199 3,301

Table 2: Statistics of BioNLP-ST 2013 GE dataset

As distributed, the development set is bigger than
the training set. For better system generalization, we
randomly reshuffled the data and created a 353/118
training/development division, a roughly 3:1 ratio
consistent with the settings in previous GE tasks.
The results reported on the training/development data
thereafter are based on our new data partition.

5.1.2 GE Results on Development Set
Table 3 shows the event extraction results on the 118
development documents based on event rules derived
from different parsers. Only the numbers of unique,
optimized rules are reported and those that possess
isomorphic graph representations determined by an
Exact Subgraph Matching (ESM) algorithm (Liu et
al., 2013b) are removed. The ensemble rule set com-
bines rules derived from both parsers and achieves
a better performance than that of using individual
parsers. It makes sense that the Charniak parser is
favored and leads to a performance close to the en-
semble performance because sentences from which
events are extracted are parsed by the Charniak parser
as well. However, we retained the additional rules
from the Stanford parser in the hope that they may
contribute to the testing data.

When embedding the distributional similarity
model (DSM) directly into the graph node matching
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Parser Type Event Rule Recall Precision F-score
Charniak 2,923 47.01% 66.01% 54.91%
Stanford 3,305 43.66% 67.67% 53.08%
Ensemble 4,617 47.45% 65.65% 55.09%

Table 3: Performance of using different parsers

scheme, we performed the DSM on all rule tokens ex-
cept biological entities, meaning that for each rule to-
ken, if a match will be granted if a rule token appears
in the top M most similar word list of a sentence to-
ken, e.g., “DSM 3” denotes the top 3 similar words
determined by the DSM. We further performed DSM
only on trigger tokens for comparison, as presented
in Table 4.

All Tokens Recall Precision F-score
DSM 1 47.98% 52.56% 50.17%
DSM 3 48.68% 35.07% 40.77%
DSM 10 53.43% 19.38% 28.44%
Trigger Tokens Recall Precision F-score
DSM 1 48.06% 54.22% 50.95%
DSM 3 48.59% 37.00% 42.01%
DSM 10 53.35% 24.65% 33.72%

Table 4: Performance of integrated DSM

Even though the DSM helps to substantially in-
crease the recall to 53.43%, we observed a significant
precision drop which leads to an inferior F-score to
the ensemble baseline in Table 3. A close evaluation
of the generated graph matches reveals that antonyms
produced by the DSM contributes to most of the false
positive events. For instance, the most similar words
for the verb “increase” and the adjective “high” re-
turned by the model are “decrease” and “low” be-
cause they tend to occur in the same contexts. Fur-
ther investigation is needed to automatically filter out
the antonyms. When generating additional rules us-
ing the top M most similar words from the DSM,
since all the rules undergo the optimization process,
the event extraction precision is ensured. However,
the recall increase from simple events is diluted by
the counter effect of the introduced false positives in
detecting regulation-related complex events, result-
ing in a comparable performance to the baseline.

Table 5 gives the performance comparison of us-
ing all-paths and the shortest paths in our event ex-
traction system. Using all-paths does not bring in a
significant improvement in F-score but takes 27 it-
erations to optimize as compared to the 5-iteration
optimization on shortest paths. Most of the rules in-
duced from all-paths are eventually discarded by the
optimization process. The all-paths graph represen-
tation was motivated by the observation that short-

est paths between candidate entities often exclude
relation-signaling words when detecting binary re-
lationships (Airola et al., 2008). Exploring broader
contexts ensures such words to be considered. In the
event extraction task, however, since triggers have
been annotated, they are naturally incorporated into
the shortest paths connecting trigger to each event ar-
gument. This in part explains why contexts beyond
shortest paths did not bring in an appreciable benefit.

All Tokens Recall Precision F-score
All-paths 48.77% 64.64% 55.59%
Shortest paths 47.45% 65.65% 55.09%

Table 5: Performance of using all-paths

5.1.3 GE Results on Testing Set
Since integrating the DSM and all-paths do not pro-
vide significant performance improvements to our
system, we decided to retain the original settings in
the ASM when extracting events from the testing
data. While most of the 2011 shared task datasets are
composed of PubMed abstracts compared to full-text
articles in the 2013 GE task, our system focuses on
extracting events expressed within the boundaries of
a single sentence. Therefore, in order to take advan-
tage of existing annotated resources, we incorporated
the annotated data of 2011 GE task and EPI (Epi-
genetics and Post-translational Modifications) task to
enrich the training instances of corresponding event
types of the 2013 GE task. Eventually, we obtained a
total of 14,448 rules of different event types from our
training data. In practice, it takes the ASM less than a
second to match the entire rule set with one document
and return results.

Our submitted system achieves a 48.93% F-score
on the 305 testing documents of the GE task, ranking
4th among 12 participating teams. Table 6 presents
the performance of the top eight systems.

System Recall Precision F-score
EVEX 45.44% 58.03% 50.97%

TEES 2.1 46.17% 56.32% 50.74%
BioSEM 42.47% 62.83% 50.68%

NCBI 40.53% 61.72% 48.93%
DlutNLP 40.81% 57.00% 47.56%

HDS4NLP 37.11% 51.19% 43.03%
NICTANLM 36.99% 50.68% 42.77%

USheff 31.69% 63.28% 42.23%

Table 6: Performance of top 8 systems in GE task

Our performance is within a reasonable mar-
gin from the best-performing system “EVEX”, and
shows an overall superior precision over most partic-
ipating teams; only two of the top 5 systems obtained

82



a precision in the 60% range. Particularly for the
regulation-related complex events, we are the only
team that achieved a precision over 55% among all
12 participating systems. This indicates that event
rules automatically learned and optimized over train-
ing data generalize well to the unseen text, and have
the ability to identify precisely corresponding events.

We further evaluated the impact of the additonal
training instances from 2011 tasks and the ensemble
rule set derived from different parsers as presented
in Table 7. With the help from the 2011 data, our
F-score is increased by 3% and we became the only
team that detected “Ubiquitination” events from test-
ing data. In addition, rules derived from the Stanford
parser do not provide additional benefits on the test-
ing data compared to using the Charniak parser alone.

System Attribute Recall Precision F-score
Ensemble 2013 + 2011 data 40.53% 61.72% 48.93%
Ensemble 2013 data 35.63% 63.91% 45.75%
Charniak 2013 data 35.29% 65.71% 45.92%

Table 7: Impact of 2011 data and ensemble rule set

5.2 CG task

5.2.1 Datasets
The CG task dataset is prepared based on a previ-
ously released corpus of angiogenesis domain ab-
stracts (Wang et al., 2011). It targets a challenging
set of 40 types of biological processes related to the
development and progression of cancer involving 18
entity types (Pyysalo et al., 2012). Table 8 presents
some statistics of the CG dataset.

Attributes Counted Training Development Testing
Abstracts 300 100 200
Entities 10,935 3,634 6,955
Annotated events 8,803 2,915 5,972

Table 8: Statistics of BioNLP-ST 2013 CG dataset

5.2.2 CG Results on Testing Set
We generalized our event extraction system to the CG
task and the corresponding annotated data of the 2011
tasks is also incorporated in the training phase to ob-
tain the optimized event rule set. Due to time con-
straints, the impact of integrating the DSM and all-
paths is not evaluated on the CG task. We achieved
a 46.38% F-score on the 200 testing documents of
the CG task, ranking 3rd among the 6 participating
teams. Table 9 gives the primary evaluation results of
the 6 participating teams; only “TEES-2.1” and we
participated in both GE and CG tasks. The detailed

results of each of the targeted 40 event types is avail-
able from the official CG task website.

Team Recall Precision F-score
TEES-2.1 48.76% 64.17% 55.41%
NaCTeM 48.83% 55.82% 52.09%
NCBI 38.28% 58.84% 46.38%
RelAgent 41.73% 49.58% 45.32%
UET-NII 19.66% 62.73% 29.94%
ISI 16.44% 47.83% 24.47%

Table 9: Performance of all systems in 2013 CG task

Inconsistent with other biological entities, the en-
tity annotation for the optional “Site” argument in-
volved in events such as “Binding”, “Mutation” and
“Phosphorylation” are not provided by the task orga-
nizers. We consider that detecting “Site” entities is
related to entity detection and we would like to focus
our system on the event extraction itself. Thus, we
decided to ignore the “Site” argument in our system.
However, a problem will arise that even though the
other arguments are correctly identified for an event,
it might still be evaluated as false positive if a “Site”
argument is not detected. This results in both false
positive and false negative events. In addition, since
we did not perform the secondary task which requires
us to detect modifications of the predicted events, in-
cluding negation and speculation, about 7.5% anno-
tated instances in the testing data are thus missed,
causing damage to our recall in the overall evalua-
tion. The organizers have agreed to issue an additonal
evaluation that will focus on core event extraction tar-
gets excluding optional arguments such as “Site” and
the secondary task. We will conduct more detailed
analysis on the results once they are made available.

6 Conclusion and Future Work

In the BioNLP-ST 2013, we generalized our ASM-
based system to address both GE and CG tasks.
We attempted to integrate a distributional similarity
model into our system to extend the graph match-
ing scheme. We also evaluated the impact of using
paths of all possible lengths among event participants
as key contextual dependencies to extract potential
events as compared to using only the shortest paths
within the framework of our system.

We achieved a 46.38% F-score in the CG task and
a 48.93% F-score in the GE task, ranking 3rd and
4th respectively. While the distributional similarity
model did not improve the overall performance of our
system in the tasks, we would like to further investi-
gate the antonym problem introduced by the model in
our future work.
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