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Abstract

We participate in the BioNLP 2013 Shared
Task with Turku Event Extraction System
(TEES) version 2.1. TEES is a support
vector machine (SVM) based text mining
system for the extraction of events and re-
lations from natural language texts. In ver-
sion 2.1 we introduce an automated an-
notation scheme learning system, which
derives task-specific event rules and con-
straints from the training data, and uses
these to automatically adapt the system
for new corpora with no additional pro-
gramming required. TEES 2.1 is shown to
have good generalizability and good per-
formance across the BioNLP 2013 task
corpora, achieving first place in four out
of eight tasks.

1 Introduction

Biomedical event extraction concerns the detec-
tion of statements of biological relations from sci-
entific texts. Events are a formalism for accu-
rately annotating the content of any natural lan-
guage sentence. They are characterized by typed,
directed arguments, annotated trigger words and
the ability to nest other events as arguments, lead-
ing to flexible, complex structures. Compared to
the more straightforward approach of binary rela-
tion extraction, the aim of event extraction is to
utilize the added complexity to more accurately
depict the content of natural language statements
and to produce more detailed text mining results.

The BioNLP Shared Task is the primary forum
for international evaluation of different event ex-
traction technologies. Organized for the first time
in 2009, it has since been held in 2011 and now in
2013 (Kim et al., 2009; Kim et al., 2011). Starting
from the single GENIA corpus on NF-kB, it has
since been extended to varied domain tasks, such

as epigenetics and bacteria-host interactions. The
theme of the 2013 task is “knowledge base con-
struction”, defining several domain tasks relevant
for different aspects of this overall goal.

The Turku Event Extraction System (TEES)1

is a generalized biomedical text mining tool, de-
veloped at University of Turku and characterized
by the use of a unified graph representation and
a stepwise machine learning approach based on
support vector machines (SVM). TEES has partic-
ipated in all BioNLP Shared Tasks, achieving first
place in 2009, first place in four out of eight tasks
in 2011 and now in 2013 again first place in four
out of eight tasks (Björne et al., 2011; Björne et
al., 2012). It has been available as an open source
project since 2009, and has also been used by other
research groups (Jamieson et al., 2012; Neves et
al., 2013).

The BioNLP Shared Tasks have recorded the
progress of various event extraction approaches.
Where TEES 1.0 achieved an F-score of 51.95%
in 2009, in 2011 the best performing system by
team FAUST on the extended, but similar GENIA
task achieved an F-score of 56.0% (Riedel et al.,
2011). Interesting approaches have been demon-
strated also in the interim of the Shared Tasks, for
example with the EventMine system of Miwa et
al. (2010) achieving an F-score of 56.00% on the
2009 GENIA corpus, and with the extremely com-
putationally efficient system of Bui et al. (2012)
based on automatically learning extraction rules
from event templates. The GENIA task of 2013
has been considerably extended and the scope of
the corpus is different, so a direct comparison with
the earlier GENIA tasks is not possible.

In the BioNLP 2013 Shared Task the goal of the
TEES project is to continue the generalization of
event extraction techniques introduced in 2011 by
fully automating task-specific adaptation via auto-

1http://jbjorne.github.com/TEES/
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mated learning of event annotation rules. As an
open source project TEES should also be easily
applicable by any team interested in this task, so
TEES 2.1 analyses were provided for all interested
participants during the system development phase
of the competition.

2 Methods

2.1 Turku Event Extraction System 2.1

TEES is a machine-learning based tool for extract-
ing text-bound graphs from natural language arti-
cles. It represents both binary relations and events
with a unified graph format where named entities
and triggers are nodes and relations and event ar-
guments are edges. This representation is com-
monly stored in the “interaction XML” format, an
extensible XML representation applicable to var-
ious corpora (Björne et al., 2012; Pyysalo et al.,
2008; Segura-Bedmar et al., 2013).

TEES approaches event extraction as a classi-
fication task, breaking the complex graph genera-
tion task into smaller steps that can be performed
with multiclass classification. The SVMmulticlass

support vector machine2 (Tsochantaridis et al.,
2005) with a linear kernel is used as the classifier
in all machine learning steps.

To start with the BioNLP Shared Task, TEES
conversion tools are used to convert the shared
task format (txt/a1/a2) corpora into the interac-
tion XML format. Equivalence annotations are re-
solved into independent events in the process.

Figure 1 shows an overview of the TEES event
extraction process. In real-world applications, ex-
ternal programs are used to split sentences, de-
tect protein/gene named entities and parse text,
but in the BioNLP Shared Tasks these analyses
are provided by the organizers. As in previous
Shared Tasks, we used the tokenisations and the
McCCJ parses converted into the collapsed CC-
processed Stanford dependency scheme (Stene-
torp et al., 2013; McClosky, 2010).

With the preprocessing done, TEES uses three
primary processing steps to detect events. First,
event trigger words are detected by classifying
each non-named entity token into one of the trig-
ger classes or as a negative. Then, for each
(optionally directed) pair of named entity and
trigger nodes a relation/argument edge candidate

2http://svmlight.joachims.org/svm_
multiclass.html

Regulation

NN NN VB NN CC .

conj_and>

<nn

dobj>

<nsubj

NN

Protein

STAT3

Phosphorylation

phosphorylation

Regulation

involve

Protein

Vav and

Protein

Rac-1 .

Cause>

Cause><Theme

unmerging

D

C

E

edge detection

trigger detection

B

A

dobj>

parsing

Protein

STAT3

Phosphorylation

phosphorylation

Regulation

involve

Protein

Vav and

Protein

Rac-1 .

<Theme Cause>

Cause>

Protein

STAT3

Phosphorylation

phosphorylation

Regulation

involve

Protein

Vav and

Protein

Rac-1 .

Protein

STAT3 phosphorylation involve

Protein

Vav and

Protein

Rac-1 .

STAT3 phosphorylation involve Vav and Rac-1 .Ser(727) may
NN

appos> <aux

VB

Ser(727) may

Ser(727) may

Ser(727) may

Ser(727) may

Entity

<Parent

Entity

Entity

<Theme

<Theme

<Theme

Regulation

Protein

STAT3

Phosphorylation

phosphorylation involve

Protein

Vav and

Protein

Rac-1 .

Cause>

Cause><Theme

speculation and negation detectionF

Ser(727) may

Entity

<Theme

<Theme

Regulation
Spec

Spec

<Site

<Parent <Site

<Parent <Site

Figure 1: TEES event extraction process. Prepro-
cessing steps A–C are achieved in the shared task
with data provided by organizers. Event extraction
steps D–F are all performed as consecutive, inde-
pendent SVM classification steps. (Adapted from
Björne et. al (2012).)

is generated and classified into one of the rela-
tion/argument classes or as a negative. Finally, for
each event trigger node, for each valid set of out-
going argument edges an unmerging example is
generated and classified as a true event or not, sep-
arating overlapping events into structurally valid
ones. For tasks where events can have modifiers, a
final modifier detection step can be performed. To
better fit the trigger detection step into the overall
task, a recall adjustment parameter is experimen-
tally determined to increase the amount of triggers
generated before edges are detected. The feature
representations and basic approach of the system
are largely unchanged from the 2011 entry, and for
a more detailed overview we refer to Björne et. al
(2012).

The main change in TEES 2.1, described in this
paper, is the automated annotation scheme learn-
ing system, which enables the optimal use of the
system on any interaction XML format corpus.
This preprocessing step results in an annotation
scheme definition which is used throughout the
machine learning steps and the impact of which
is described in detail in the following sections.
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2.2 Automated Annotation Scheme Learning

In previous versions of TEES, task specific rules
needed to be defined in code. The most impor-
tant of these were the event annotation schemes of
each task, which define the type and number of ar-
guments that are valid for each event type. This
limited straightforward application of TEES only
to corpora that were part of the shared tasks. In
TEES 2.1, the event scheme rules and constraints
are learned automatically. All event types and ar-
gument combinations seen in the known training
data are considered valid for the current task. The
result of this analysis for the GE (GENIA) task is
shown in Table 1.

The automatically generated annotation scheme
analysis lists all entities, events, relations and
modifiers detected in the corpus. Entities are sim-
ply a type of node and relations can be directed or
undirected but are always defined as a single edge
connecting two nodes. Events consist of a trigger
node whose type is equal to the type of the event
itself and a set of arguments, for which are defined
also valid argument counts.

The interaction XML graph format represents
both event arguments and binary relations as edge
elements. To distinguish these annotations, a pre-
requisite for automated detection of valid event
structures, elements that are part of events are la-
beled as such in the TEES 2.1 interaction XML
graph. Those node and argument types that are
not annotated also for the test set become the pre-
diction targets, and the rest of the annotation can
be used as known data to help in predicting them.

The annotation scheme analysis is stored in the
TEES model file/directory, is available at runtime
via a class interface and is used in the machine
learning steps to enforce task-specific constraints.
The availability of the learned annotation scheme
impacts mostly the edge and unmerging detectors.

2.3 TEES 2.1 Edge Detection

The primary task specific specialization required
in TEES 2.0 was the set of rules defining valid
node combinations for edges. TEES detects edges
(relations or arguments) by defining one edge can-
didate for each directed (or undirected) pair of
nodes. While the system could be used without
task-specific specialization to generate edge candi-
dates for all pairs, due to the potentially large num-
ber of nodes in event-containing sentences this
approach led to an inflated amount of negatives

and reduced SVM performance. In the BioNLP
Shared Task, e.g. the common Protein entities can
only ever have incoming edges, so even such a
simple limitation could considerably reduce the
amount of edge candidates, but these task-specific
rules had to be written into the Python-code. With
the automatically learned annotation scheme, the
edge detector checks for each node pair whether it
constitutes a valid edge candidate as learned from
the training data, automating and generalizing this
task-specific optimization.

2.4 TEES 2.1 Unmerging
The TEES module most affected by the learned
annotation scheme is the unmerging detector,
which takes the merged event graph (where over-
lapping events share the same trigger node) and
attempts to define which node/argument combina-
tions constitute valid events (See Figure 1 E). One
example is generated for each potential event, and
nodes and edges are duplicated as needed for those
classified as positives. In TEES 2.0, only the GE
(GENIA), EPI (Epigenetics and Post-translational
Modifications) and ID (Infectious Diseases) tasks
from 2009 and 2011 were supported, with valid
argument combinations defined in the code. In
TEES 2.1 invalid argument combinations, as de-
termined by the learned annotation scheme, are
automatically removed before classification. Even
if an event is structurally valid, it may of course
not be a correct event, but reducing the number of
negatives by removing invalid ones is an impor-
tant optimization step also in the case of unmerg-
ing classification.

2.5 Unified site-argument representation
Representing the BioNLP Shared Task site-
arguments in the interaction XML format has been
problematic. The sites are arguments of argu-
ments, linking a separate site-entity to a primary
argument. In the graph format all arguments are
edges, and while technically all edges could be
defined as having a central node to which site-
arguments could connect, this would result in
a multi-step edge detection system, where site-
argument edges could only be predicted after pri-
mary argument edges are predicted. To avoid this
situation, in TEES 2.0 site arguments were defined
as edges connecting the site entity either to the
protein node (See Figure 2 A) or to the trigger
node (See Figure 2 B). The second case was the
most straightforward, and we assume closest to the

18



Protein

STAT3

Phosphorylation

phosphorylation

A: TEES 2.0 main representation

Ser(727)

Entity

<Site

<Theme

B: TEES 2.0 EPI representation

Protein

STAT3

Phosphorylation

phosphorylationSer(727)

Entity

<Site

<Theme

Protein

STAT3

Phosphorylation

phosphorylationSer(727)

Entity

<Site

<Theme
C: TEES 2.1 Unified representation

<SiteParent

Figure 2: A unified representation (C) is intro-
duced for site-arguments, replacing the differ-
ent TEES 2.0 representations and enabling site-
arguments to be processed as any other event ar-
guments.

syntactic structure, as demonstrated by the good
performance on the 2011 EPI task (Björne et al.,
2012). However, in tasks where events can have
multiple primary arguments, the approach shown
in Fig. 2 B becomes problematic, as a primary/site
argument pair cannot be determined unambigu-
ously. In the approach shown in Fig. 2 A, the con-
nection between the event and the site argument is
indirect, meaning that the TEES 2.1 automated an-
notation scheme learning system cannot determine
valid site argument constraints for events.

In TEES 2.1 this problem is solved with a uni-
fied approach where regardless of task, the site
arguments are comparable to primary argument
edges in all aspects, enabling consistent event
analysis and simplifying site argument processing
(See Figure 2 C). Additional SiteParent edges are
defined to connect the entity and the protein it be-
longs to. In ambiguous cases, these are used to
connect the right site to the right primary argument
when converting to the final Shared Task format.

2.6 Validating final predictions

The current implementation of the automated an-
notation scheme learning system in TEES 2.1
has a shortcoming occasionally resulting in in-
valid event structures being produced. Consider
an event with multiple optional arguments, such as
Cell differentiation from the CG task with 0–1 At-
Loc arguments and 0–1 Theme arguments. While
it can be possible that such an event can exist with-

out any arguments at all, it is often the case that
at least one of the optional arguments must be
present. This is not detected by the current system,
and would require the addition of learning rules for
such groups of mandatory arguments.

The result of this and other small limitations in
conforming to task rules is the occasional invalid
predicted event. The Shared Task test set evalua-
tion servers will not accept any invalid events, so
these errors had to be resolved in some way. As
this problem was detected at a late stage in the
shared task, there was no more time to fix the un-
derlying causes. However, these errors could not
either be fixed by looking at the test set and cor-
recting the events preventing the acceptance of the
submission, as that would result in de facto man-
ual annotation of the test set and an information
leak. Therefore, we never looked at the document
triggering the error, and used the following, con-
sistent approach to resolve the invalid events. If
the server would both report an invalid argument
and a missing argument for the same event, the
invalid argument was first replaced with the miss-
ing one. This was only the case with the GRN
task. If the server would only report an invalid
argument, we first removed the argument, and if
this did not resolve the conflict, we removed the
entire event. Following this, all events recursively
pointing to removed invalid events were also re-
moved. This approach could be implemented with
a system processing the validation tools’ output,
but the better approach which we aim to pursue is
to fix the limitations of the automated annotation
scheme learning system, thus producing a tool us-
able on any corpora. In practice only a few invalid
events were produced for each task where they oc-
curred, so the impact on performance is likely to
be negligible.

2.7 Public dataset

TEES 2.0, published in summer 2012 was a po-
tentially useful tool for the BioNLP 2013 Shared
Task, but at the same time required specific code
extensions to be adapted for the task, leading to a
situation where the program was available, but was
not likely to be of practical value with new cor-
pora. To resolve this problem the automated anno-
tation scheme learning system was developed, tak-
ing the generalization approaches developed for
the 2011 task and making them automatically ap-
plicable for new corpora. As using TEES can still
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be difficult for people not familiar with the system,
and as re-training the program is quite time con-
suming, we also published our event predictions
for the 2013 task during the system development
period, for other teams to make use of. Develop-
ment set analyses were made available on Febru-
ary 26th, and test set analyses during the test pe-
riod on April 13th. With only a few downloads,
the data did not enjoy wide popularity, and due
to the complexity of the tasks utilizing the data in
other systems could very well have been too time
consuming. TEES was also used to produce public
analyses for the DDIExtraction 2013 Shared Task,
where the data was used more, maybe due to eas-
ier integration into a binary relation extraction task
(Segura-Bedmar et al., 2013; Björne et al., 2013).

3 Tasks and Results

TEES 2.1 could be applied as is to almost all the
2013 tasks with no task specific development re-
quired. Only subtask 1 of the Bacteria Biotopes
task, concerning the assignment of ontology con-
cepts, falls outside the scope of the current sys-
tem. TEES 2.1 was the system to participate
in most tasks, with good general performance,
demonstrating the utility of abstracting away task-
specific details. Official results for each task are
shown in Table 2 and system performance relative
to other entries in Figure 3.

Task # R P F SER
GE 2/10 46.17 56.32 50.74
CG 1/6 48.76 64.17 55.41
PC 2/2 47.15 55.78 51.10
GRO 1/1 15.22 36.58 21.50
GRN 3/5 33 78 46 0.86
BBT1 0/4
BBT2 1/4 28 82 42
BBT3 1/2 12 18 14

Table 2: Official test set results for the BioNLP
2013 tasks. Performance is shown in (R)ecall,
(P)recision and (F)-score, and also SER for the
GRN task. BB task 1 falls outside the scope of
TEES 2.1. Rank is indicated by #.

3.1 GENIA (GE)
The GENIA task is the central task of the BioNLP
Shared Task series, having been organized in all
three Shared Tasks. It has also enjoyed the largest
number of contributions and as such could be
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Figure 3: Performance of the systems participat-
ing in the BioNLP’13 Shared Task. Our results
are marked with black dots. Please note that the
performance metric for tasks GRN and BBT1 is
SER*100, where a smaller score is better.

viewed as the primary task for testing different
event extraction approaches. In 2013 the GE-
NIA task annotation has been considerably ex-
tended and the coreference annotation that in 2011
formed its own supporting task is integrated in the
main GENIA corpus (Kim et al., 2013a).

The GENIA task is a good example for demon-
strating the usefulness of automatically learning
the event annotation scheme. The task uses 11
different event types, pairwise binary coreference
relations and modality annotation for both specu-
lation and negation. Previous versions of TEES
would have encoded all of this information in the
program, but with TEES 2.1 the annotation rules
are detected automatically and stored in a sep-
arate datafile external to the program. Table 1
shows the automatically learned event scheme. It
should however be noted that while the learned
scheme accurately describes the known annota-
tion, it may not exactly correspond to the corpus
annotation rules. For example, the Binding event,
when learned from the data, can have one or two
Theme arguments, when in the official rules it sim-
ply has one or more Theme arguments.

In some GENIA Coreference relations (45 out
of 338 in train and devel data) at least one of the
endpoints is an event trigger. While such rela-
tions could indeed be linked to event trigger nodes,
TEES makes no distinction between triggers and
events and would link them to the event annotation
when converting back to the Shared Task format,
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so we chose to skip them.
TEES 2.1 achieved a performance of 50.74%,

placing second in the GENIA task. The first place
was reached by team EVEX (Hakala et al., 2013),
with a system that utilizes the publicly available
TEES 2.1 program. This result further highlights
the value of open sourcing scientific code and un-
derlines the importance of incorporating existing
solutions into future systems.

3.2 Cancer Genetics (CG)
The CG task is a domain-specific event extrac-
tion task targeting the recovery of information re-
lated to cancer (Pyysalo et al., 2013; Pyysalo et
al., 2012). It is characterized by a large number
of entity and event types. Despite a heterogeneous
annotation scheme, TEES 2.1 achieved a perfor-
mance of 55.41% F-score, placing first in this task.
On some event categories TEES achieved a per-
formance notably higher than usual for it in event
extraction tasks, such as the 77.20% F-score for
the Anatomy-group events. The impact of more
common, and as such more easily detected classes
on the micro-averaged F-score is certainly impor-
tant, but it is interesting to speculate that maybe
the very detailed annotation scheme led to a more
focused and thus more consistent annotation, mak-
ing machine learning easier on this task.

3.3 Pathway Curation (PC)
The PC task aims to produce events suitable for
pathway curation (Ohta et al., 2013). Its extrac-
tion targets are based on existing pathway models
and ontologies such as the Systems Biology On-
tology (SBO). The dataset has only a few entity
types, but similar to the CG task, a large number
of event types. With 51.10% F-score TEES 2.1
placed second, behind team NaCTeM by 1.74 per-
centage points (Miwa and Ananiadou, 2013). On
the CG task team NaCTeM placed second, 3.32
percentage points lower than TEES 2.1. Even with
the only two participants in the PC task having
very close performance, compared to the results
of the same teams on the CG task, we speculate
the PC and CG tasks are of similar complexity.

3.4 Gene Regulation Ontology (GRO)
The GRO task concerns the automatic annota-
tion of documents with Gene Regulation Ontol-
ogy (GRO) concepts (Kim et al., 2013b). The an-
notation is very detailed, with 145 entity and 81
event types. This results in a large number of small

classes which are independent in SVM classifica-
tion and thus hard to learn. TEES did not detect
most of the small classes, and generally, the larger
the class, the higher the performance. It is possible
that classification performance might be improved
by merging some of the smaller classes and disam-
biguating the predictions with a rule-based step,
similar to the TEES approach in the EPI 2011 task.

Overall performance was at 21.50% F-score but
as TEES 2.1 was the only system in this task, not
many conclusions can be drawn from it. However,
the system was also exactly the same as applied
in the other tasks. With decent performance on
some of the larger classes, we speculate that with
a larger training corpus, and with a system adapted
for the GRO task, performance comparable to the
GE, CG and PC tasks could be reached.

3.5 Gene Regulation Network (GRN)
GRN is a task where event extraction is utilized as
an optional, intermediate step in the construction
of a large regulation network (Bossy et al., 2013a).
The annotation consists of 11 entity types, 12 bi-
nary relation types and a single Action event type.
The predicted events can be automatically con-
verted to the regulation network, or the network
can be produced by other means. In either case,
the final evaluation is performed on the network,
using the Slot Error Rate (SER) metric (Makhoul
et al., 1999), where lower is better and a value of
less than one is expected for decent predictions.

TEES 2.1 produced the event format submis-
sion, and with conversion to the regulation net-
work achieved an SER of 0.86, placing in the mid-
dle of the five teams, all of which had an SER of
less than one. A downloadable evaluator program
was provided early enough in the development pe-
riod to be integrated in TEES 2.1, allowing direct
optimization against the official task metrics. As
SER was a metric not used before with TEES, the
relaxed F-score was instead chosen as the opti-
mization target, with the assumption that it would
provide a predictable result also on the hidden test
set. In training it was also observed that the param-
eters for the optimal relaxed F-score also produced
the optimal SER result.

3.6 Bacteria Biotopes (BB)
Along with the GENIA task, the BB task is the
only task to continue from earlier BioNLP Shared
Tasks. The BB task concerns the detection of
statements about bacteria habitats and relevant en-
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vironmental properties and is divided into three
subtasks (Bossy et al., 2013b).

In task 1 the goal is to detect boundaries of bac-
teria habitat entities and for each entity, assign one
or more terms from 1700 concepts in the Onto-
Biotope ontology. While the TEES entity detector
could be used to detect the entities, assigning the
types falls outside the scope of the system, and is
not directly approachable as the sort of classifica-
tion task used in TEES. Therefore, BB task 1 was
the only task for which TEES 2.1 was not applied.

BB tasks 2 and 3 are a direct continuation of
the 2011 BB task, with the goal being extraction
of relations between bacteria entities and habitat
and geographical places entities. Only three entity
and two relation types are used in the annotation.
In task 2 all entities are provided and only rela-
tions are detected, in task 3 also the entities must
be predicted. The BB task was the only 2013 task
in which we used (limited) task specific resources,
as TEES 2.0 resources developed for the 2011 BB
task were directly applicable to the 2013 tasks. A
dictionary of bacteria name tokens, derived from
the List of Prokaryotic names with Standing in
Nomenclature3 (Euzéby, 1997) was used to im-
prove entity detection performance. Unlike the
2011 task, WordNet features were not used.

TEES 2.1 achieved F-scores of 42% and 14%
for tasks 2 and 3 respectively, reaching first place
in both tasks. The low overall performance is how-
ever indicative of the complexity of these tasks.

4 Conclusions

We applied TEES version 2.1 to the BioNLP 2013
Shared Task. An automated annotation scheme
learning system was built to speed up development
and enable application of the system to novel event
corpora. The system could be used as is in al-
most all BioNLP 2013 tasks, achieving good over-
all performance, including several first places.

The GRO task highlighted the limitations of a
purely classification based approach in situations
with very many small classes, in a sense the same
issue as with the ontology concept application in
BB task 1. Despite these minor limitations, the
basic stepwise SVM based approach of TEES con-
tinues to demonstrate good generalization ability
and high performance.

We made our system public during the task de-
velopment phase and provided precalculated anal-

3http://www.bacterio.cict.fr/

yses to all participants. While we consider it un-
fortunate that these analyses did not enjoy greater
popularity, we are also looking forward to the var-
ied approaches and methods developed by the par-
ticipating teams. However, the encouraging re-
sults of the GENIA task, not to mention earlier
positive reports on system combination (Kano et
al., 2011; Riedel et al., 2011) indicate that there is
untapped potential in merging together the strong
points of various systems.

TEES 2.1 had very good performance on many
tasks, but it must be considered that as an es-
tablished system it was already capable of do-
ing much of the basic processing that many other
teams had to develop for their approaches. In
particular, previous BioNLP Shared Tasks have
shown that the TEES internal micro-averaged
edge-detection F-score provides a very good ap-
proximation of the official metrics of most tasks.
It is unfortunate that official evaluator programs
were only available in some tasks, and often only
at the end of the development period, potentially
leading to a situation where different teams were
optimizing for different goals. In our opinion it
is of paramount importance that in shared tasks
not only the official evaluation metric is known
well ahead of time, but a downloadable evalua-
tor program is provided, as the complexity of the
tasks means that independent implementations of
the evaluation metric are error prone and an un-
necessary burden on the participating teams.

As with previous versions of TEES, the 2.1 ver-
sion is publicly available both as a downloadable
program and as a full, open source code repository.
We intend to continue developing TEES, and will
hopefully in the near future improve the automated
annotation learning system to overcome its cur-
rent limitations. We find the results of the BioNLP
2013 Shared Task encouraging, but as with previ-
ous iterations, note that there is still a long way
to go for truly reliable text mining. We think
more novel approaches, better machine learning
systems and careful utilization of the research so
far will likely lead the field of biomedical event
extraction forward.
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Type Name Arguments
ENTITY Anaphora
ENTITY Entity
ENTITY Protein
EVENT Binding Site[0,1](Entity) / Theme[1,2](Protein)
EVENT Gene expression Theme[1,1](Protein)
EVENT Localization Theme[1,1](Protein) / ToLoc[0,1](Entity)
EVENT Negative regulation Cause[0,1](Acetylation, Binding, Gene expression, Negative regulation, Phospho-

rylation, Positive regulation, Protein, Protein catabolism, Regulation, Ubiquitina-
tion) / Site[0,1](Entity) / Theme[1,1](Binding, Gene expression, Localization, Neg-
ative regulation, Phosphorylation, Positive regulation, Protein, Protein catabolism,
Regulation, Transcription, Ubiquitination)

EVENT Phosphorylation Cause[0,1](Protein) / Site[0,1](Entity) / Theme[1,1](Protein)
EVENT Positive regulation Cause[0,1](Acetylation, Binding, Gene expression, Negative regulation, Phospho-

rylation, Positive regulation, Protein, Protein catabolism, Regulation, Ubiquitina-
tion) / Site[0,1](Entity) / Theme[1,1](Binding, Deacetylation, Gene expression, Lo-
calization, Negative regulation, Phosphorylation, Positive regulation, Protein, Pro-
tein catabolism, Protein modification, Regulation, Transcription, Ubiquitination)

EVENT Protein catabolism Theme[1,1](Protein)
EVENT Protein modification Theme[1,1](Protein)
EVENT Regulation Cause[0,1](Binding, Gene expression, Localization, Negative regulation, Phos-

phorylation, Positive regulation, Protein, Protein modification, Regulation) /
Site[0,1](Entity) / Theme[1,1](Binding, Gene expression, Localization, Nega-
tive regulation, Phosphorylation, Positive regulation, Protein, Protein catabolism,
Protein modification, Regulation, Transcription)

EVENT Transcription Theme[1,1](Protein)
EVENT Ubiquitination Cause[0,1](Protein) / Theme[1,1](Protein)
RELATION Coreference, directed Subject(Anaphora) / Object(Anaphora, Entity, Protein)
RELATION SiteParent, directed Arg1(Entity) / Arg2(Protein)
MODIFIER negation Binding, Gene expression, Localization, Negative regulation, Phosphorylation,

Positive regulation, Protein catabolism, Regulation, Transcription
MODIFIER speculation Binding, Gene expression, Localization, Negative regulation, Phosphorylation,

Positive regulation, Protein catabolism, Regulation, Transcription, Ubiquitination
TARGET ENTITY Acetylation, Anaphora, Binding, Deacetylation, Entity, Gene expression,

Localization, Negative regulation, Phosphorylation, Positive regulation, Pro-
tein catabolism, Protein modification, Regulation, Transcription, Ubiquitination

TARGET INTERACTION Cause, Coreference, Site, SiteParent, Theme, ToLoc

Table 1: Automatically learned GENIA 2013 task event annotation scheme. The entities are the nodes
of the graph. Targets define the types of nodes and edges to be automatically extracted. Events and
relations are defined by their type and arguments. Relations are optionally directed, and always have two
arguments, with specific valid target node types. Events can have multiple arguments, and in addition
to valid target node types, the minimum and maximum amount of each argument per event are defined.
Modifiers are binary attributes defined by their type and the types of nodes they can be defined for.
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