
Proceedings of the 11th International Conference on Finite State Methods and Natural Language Processing, pages 81–89,
St Andrews–Sctotland, July 15–17, 2013. c©2013 Association for Computational Linguistics

Multi-threaded composition of finite-state automata

Bryan Jurish
Berlin-Brandenburg Academy of Sciences

Jägerstr 22/23 · 10117 Berlin · Germany

jurish@bbaw.de

Kay-Michael Würzner
University of Potsdam · Psychology Dept.

Karl-Liebknecht-Str. 24-25 · 14476 Potsdam · Germany

wuerzner@uni-potsdam.de

Abstract

We investigate the composition of finite-
state automata in a multiprocessor envi-
ronment, presenting a parallel variant of
a widely-used composition algorithm. We
provide an approximate upper bound for
composition speedup of the parallel vari-
ant with respect to serial execution, and
empirically evaluate the performance of
our implementation with respect to this
bound.

1 Introduction

Finite-state automata1 allow for efficient imple-
mentations in terms of directed graphs with des-
ignated initial and final states, as well as labeled
edges facilitating efficient storage and lookup.
Complex systems based on (weighted) finite-state
automata have been successfully used in language
processing (Mohri et al., 2007), image compres-
sion (Culik II and Kari, 1993), computational bi-
ology (Krogh et al., 1994), and many other ap-
plications. Composition is a binary operation on
finite-state transducers (FSTs) which creates tran-
sitions for matching output- and input-labels of
the outgoing transitions of two operand states. It
is an important operation in both compile-time
construction (where it may be employed e.g. to
combine different levels of representation) and –
since lookup may be considered a special case of
composition – run-time querying of the aforemen-
tioned systems.

Despite the increasing trend towards multipro-
cessor systems and the resulting demand for ef-
ficient parallel implementations for common op-
erations (Sutter, 2005), no generic parallel algo-
rithm for the composition of FSTs has yet been es-
tablished, although many efforts have been made

1Where appropriate, we use the term automata as a
generic subsuming both acceptors and transducers.

to improve composition performance in special
cases. In Holub and Štekr (2009), a parallel imple-
mentation for the case of string lookup in a deter-
ministic finite-state acceptor (FSA) is presented.
A generalization to n operands which prevents the
construction of large intermediate results is given
in Allauzen and Mohri (2009). A good deal of
work has focussed on dynamic, on-the-fly, or lazy
implementations (Hori et al., 2004; Cheng et al.,
2007; Mohri et al., 2007), in which the compo-
sition of FSTs is only partly computed, new states
and transitions being added to the result only when
necessary.

In this article, we present a parallel variant of a
widely-used composition algorithm (Hanneforth,
2004; Allauzen et al., 2007, etc.) which can make
use of multiprocessor architectures by employing
multiple concurrent threads of execution. We pro-
vide an approximate upper bound for composition
speedup using a state-wise parallel algorithm with
respect to serial execution, and empirically eval-
uate the performance of our implementation with
respect to this bound.

2 Preliminaries

2.1 Definitions
Definition 1 (FST). A finite-state transducer2 is a
6-tuple T = 〈Σ,Γ, Q, q0, F, E〉 with Σ a finite in-
put alphabet, Γ a finite output alphabet, Q a finite
set of automaton states, q0 ∈ Q the designated
initial state, F ⊆ Q a set of final states, and
E ⊆ Q × Q × (Σ ∪ {ε}) × (Γ ∪ {ε}) a set of
transitions.

For a transition e = (q1, q2, a, b) ∈ E, we de-
note by p[e] its source state q1, by n[e] its destina-
tion state q2, by i[e] its input label a, and by o[e]

2Here and in the sequel, we restrict our attention to un-
weighted automata. The algorithms described here trivially
extend to the weighted case. In fact, the implementations
used in the current experiments (Sec. 4) operate on weighted
automata.

81

its output label b. A finite-state acceptor (FSA) can
be regarded as an FST with Σ = Γ and i[e] = o[e]
for all e ∈ E.

A path π is a sequence e1 . . . en of n transi-
tions such that n[ei] = p[ei+1] for 1 ≤ i < n.
We denote by |π| the length of π: |e1 . . . en| =
n. Extending the notation for transitions, we de-
fine the source and destination states of a path as
p[π] = p[e1] and n[π] = n[en], respectively. The
input label string i[π] yielded by a path π is the
concatenation of the input labels of its transitions:
i[π] = i[e1]i[e2] . . . i[en]; the output label string
o[π] is defined analogously.

For q ∈ Q, x ∈ Σ∗, y ∈ Γ∗, and R ⊆ Q,
Π(q, x, y, R) denotes the set of paths from q to
some r ∈ R with input string x and output string
y, and Π(q,R) =

⋃
x∈Σ∗,y∈Γ∗ Π(q, x, y, R) de-

notes the set of paths originating at q and ending
at some r ∈ R. A state r ∈ Q is said to be ac-
cessible from a state q ∈ Q if there exists a path
π with p[π] = q and n[π] = r; r is accessible if it
is accessible from q0. JT K ⊆ Σ∗ × Γ∗ denotes the
string relation associated with T , and is defined as
the set of input- and output-string pairs labelling
successful paths in T : JT K = {(i[π], o[π]) : π ∈
Π(q0, F)}
Definition 2 (Depth). For any accessible q ∈ Q,
depth(q) denotes the depth of q, defined as the
length of the shortest path from the initial state to
q:

depth(q) =

{
0 if q = q0

minπ∈Π(q0,{q}) |π| otherwise

The depth of a transducer T is defined as the
maximum depth over all its accessible states:
depth(T) = maxq∈Q:Π(q0,{q}) 6=∅ depth(q).

2.2 Composition

Composition is a binary operation on FSTs T1
and T2 which share an “inner” alphabet. Infor-
mally, the composition operation matches transi-
tions from T1 to transitions from T2 if the corre-
sponding output and input labels coincide. For-
mally:

Definition 3 (Composition of FSTs). Given two
FSTs T1 = 〈Σ, Γ, Q1, q01 , F1, E1〉 and T2 = 〈Γ,
∆, Q2, q02 , F2, E2〉, the composition of T1 and T2
is denoted by T1 ◦ T2, and is itself an FST whose
string relation is the composition of the string re-
lations of T1 and T2, JT1 ◦ T2K = JT1K ◦ JT2K,

i.e. for all x ∈ Σ∗, y ∈ ∆∗, (x, y) ∈ JT1 ◦ T2K
if and only if there exists some z ∈ Γ∗ such
that (x, z) ∈ JT1K and (z, y) ∈ JT2K. Further,
C = 〈Σ,∆, (Q1 × Q2), E, (q01 , q02), (F1 × F2)〉
is such an FST, JCK = JT1 ◦ T2K, where:

E =
⋃

(q,r,a,b)∈E1

(s,t,b,c)∈E2

{
((q, s), (r, t), a, c)

}
(1)

The construction above is only correct if T1 and
T2 are ε-free on their output and input tapes, re-
spectively. The generalization to ε-transitions has
been discussed e.g. by Mohri (2009). Since the
generalization can be reduced to the above con-
struction applied to ε-free WFSTs, we ignore it
here in the interest of clarity.

The most common serial algorithm (Mohri,
2009) for computing the composition of two WF-
STs is presented here as Algorithm 1, and can be
considered a variant of the standard intersection
algorithm for unweighted FSAs as described by
Hopcroft and Ullman (1979). Unlike the “brute
force” construction of Definition 3, the algorithm
generates only those states and transitions of the
output automaton which are accessible from the
initial state. In this manner, the algorithm man-
ages to avoid the combinatorial explosion of states
and transitions implicit in Definition 3 in the over-
whelming majority of cases.

2.3 Amdahl’s Law
Amdahl’s law (Amdahl, 1967) describes the theo-
retical bound on speeding up a program in terms of
improvements made to specific parts of that pro-
gram. In particular, it can be used to predict the
maximum speedup resulting from executing spe-
cific parts of a program in parallel on a multipro-
cessor architecture.

SN =
1

(1− P) + P
N

(2)

Equation (2) states that the maximum speedup
SN of a parallel program is the inverse sum of
the serial proportion of that program (those parts
which cannot be executed in parallel, 1 − P) and
the parallel proportion P divided by the number
of processors N . As the number of available pro-
cessors increases, P

N approaches zero and SN ap-
proaches 1

1−P .

3 State-wise parallelization

Using a first-in-first-out protocol for the visita-
tion queue V , Algorithm 1 effectively performs a

82

Algorithm 1: COMPOSE: serial composition of ε-free FSTs
Input: T1 = 〈Σ,Γ, Q1, q01 , F1, E1〉 an FST
Input: T2 = 〈Γ,∆, Q2, q02 , F2, E2〉 an FST

1 function COMPOSE(T1, T2)
2 Q,F,E ← ∅ /* initialize */
3 V ← {(q01 , q02)} /* visitation queue */
4 while V 6= ∅ do
5 (q1, q2)← pop(V) /* visit state */
6 Q← Q ∪ {(q1, q2)}
7 if (q1, q2) ∈ F1 × F2 then /* final state */
8 F ← F ∪ {(q1, q2)}
9 for (e1, e2) ∈ E[q1]× E[q2] with o[e1] = i[e2] do /* align transitions */

10 E ← E ∪
{
((q1, q2), (n[e1], n[e2]), i[e1], o[e2])

}

11 if (n[e1], n[e2]) /∈ Q then
12 push

(
V , (n[e1], n[e2])

)
/* enqueue for visitation */

13 return C = 〈Σ,∆, Q, (q01 , q02), F, E〉

breadth-first traversal of the output automaton C.
Pairs of destination states for aligned transitions
are enqueued only if they have not yet been vis-
ited. Our parallelization scheme is based on con-
current processing of multiple result states – multi-
ple concurrent executions of the while loop at lines
4-12. Such state-wise parallelization is a common
approach for breadth-first traversals of graphs in a
multiprocessor environment (Roosta, 2000).

3.1 An approximate upper bound for
state-wise parallel speedup

In this section, we investigate the potential
speedup resulting from a state-wise paralleliza-
tion of Algorithm 1 as described above. We as-
sume that Algorithm 1 constructs an automaton
C = 〈Σ,Γ, Q, q0, F, E〉, and show that the maxi-
mum speedup of a state-wise parallel composition
algorithm depends on the topological properties of
C, specifically on its state-to-depth ratio.

We call a single evaluation of lines 4-12 a visi-
tation of the state q = (q1, q2) ∈ Q, and we call
a state discovered when it has been pushed to the
visitation queue during the visitation of a prede-
cessor at line 12. For each q ∈ Q, let t0(q) repre-
sent the time at which the visitation of q begins, let
t1(q) be the earliest time at which the visitation of
q has completed. We assume a strict breadth-first
visitation order on states: for all q, q′ ∈ Q,

depth(q) < depth(q′) =⇒ t1(q) ≤ t0(q
′) (3)

i.e. visitation of all states at depth d must have
completed before any state with depth d′ > d can

itself be visited. In order to approximate a worst-
case scenario for state-wise parallelization, we as-
sume that the duration of a visitation tvisit(q) is
independent of the state q being visited, defining
this constant as our elementary time unit:

∀q ∈ Q, (t1(q)− t0(q)) = tvisit(q) = 1 (4)

We restrict our attention to the execution of the
visitation loop of lines 4-12, ignoring the constant
administrative overhead of lines 2-3 and 13, and
assume the convention that visitation of the initial
state begins at t0(q0) = 0.

Lemma 1 (Serial composition running time). Let
C = 〈Σ,Γ, Q, q0, F, E〉 be an FST constructed by
Algorithm 1. Serial execution of the algorithm re-
quires exactly tserial = |Q| time units.

Proof. Since each state is visited exactly once and
no two states can be visited concurrently, the algo-
rithm terminates after exactly |Q| visitations. No
code is executed between visitations, so tserial =∑

q∈Q tvisit(q) = |Q| by Equation 4.

Lemma 2 (Parallel state visitation bound). Let
C = 〈Σ,Γ, Q, q0, F, E〉 be an FST constructed by
Algorithm 1 executed in state-wise parallel fash-
ion using an unbounded number of processors
N ≥ |Q|. The completion time of any given state’s
visitation is determined by that state’s depth:

∀q ∈ Q, t1(q) = depth(q) + 1

Proof. We proceed by induction over depth(q).
For depth(q) = 0, it must be that q = q0 and

83

t0(q) = t0(q0) = 0 by convention. Since visita-
tion time is constant, t1(q) = t0(q) + tvisit(q) =
1 = depth(q) + 1, so the lemma holds.

For the inductive step, consider an arbitrary
q ∈ Q with depth(q) = d and assume that the
lemma holds for all q′ ∈ Q with depth(q′) < d.
Since depth(q) = d, there exist p ∈ Q and
e ∈ E with p[e] = p, n[e] = q, and depth(p) =
d − 1 by Definition 2. By inductive hypothe-
sis, t1(p) = depth(p) + 1 = d. Since we have
N ≥ Q processors available and at most |Q| vis-
itations to perform, we can begin processing q as
soon as it is discovered during the visitation of p:
t0(p) < t0(q) ≤ t1(p), but the strict breadth-first
visitation constraint of Equation (3) dictates that
visitation of q cannot begin until all states of lesser
depth have been visited, so t0(q) = t1(p) = d
and t1(q) = t0(q) + tvisit(q) = d + 1 by Equa-
tion (4).

Lemma 3 (State-wise parallel composition run-
ning time). Let C = 〈Σ,Γ, Q, q0, F, E〉 be an
FST constructed by Algorithm 1. State-wise par-
allel execution of the algorithm with N ≥ Q
available processors requires exactly tparallel:N =
1 + depth(C) time units.

Proof. The algorithm terminates when all states
have been visited at time t1(C) = maxq∈Q t1(q).
By Lemma 2, all states in each depth-slice
depth−1(d) ⊆ Q are visited concurrently, com-
pleting at time d + 1. Since depth(C) =
maxq∈Q depth(Q) by Definition 2, tparallel:N =
t1(C) = 1 + depth(C).

Having derived approximate running times of
both serial and parallel executions, we can now
compute the maximum speedup of a state-wise
parallel execution.

Theorem 1 (Maximum speedup of state-wise par-
allelization). The maximum speedup Smax of a
state-wise parallel execution of Algorithm 1 con-
structing an output FST C = 〈Σ,Γ, Q, q0, F, E〉
with respect to serial execution is approximated
for N ≥ |Q| by:

Smax =
tserial(C)

tparallel:N (C) =
|Q|

1 + depth(C)

Proof. Follows from Lemmas 1 and 3.

Corollary 1 (Composition parallelizability).
Pmax is an approximate upper bound on the pro-
portion of the total execution time of Algorithm 1

peer0 peer1

peer3 peer2

Figure 1: Data-flow diagram for the peer-to-
peer parallel composition algorithm using 4 peers.
Lock-free data access is displayed with dotted
lines, data channels shared by exactly two peers
appear as dashed lines, and globally shared data
channels which can be locked by any peer are solid
black.

which can be effectively run in parallel:

Pmax = 1− 1

Smax

Proof. Follows from Theorem 1 and Amdahl’s
law (Eq. 2).

3.2 Algorithm
Apart from the bounds implied by automaton
topology, practical issues such as shared data
structures and the necessarily associated synchro-
nization between otherwise independent threads
must be considered in the development of any par-
allel algorithm. Access to shared data is typically
controlled by mutual exclusion locks (mutexes):
when altering a shared data structure s, a thread
t must first lock that structure. Other threads must
then wait for t to unlock s before they can ac-
cess it themselves. Competition for mutex locks
therefore has a strong impact on the overall perfor-
mance of multi-threaded implementations, since
lock acquisition is an inherently synchronous op-
eration, and thus decreases the proportion of the
program which can actually be executed in paral-
lel.

Our approach is presented as pseudo-code in
Algorithm 2 and schematically depicted in Fig-
ure 1. We make use of a set of N > 1 “peer”
threads pi∈N , each of which simulates the execu-
tion of lines 4-12 from Algorithm 1. To minimize
competition over shared data structures, each peer
allocates and maintains its own local partition of

84

Algorithm 2: PPCOMPOSE: peer-to-peer parallel composition
Input: T1 = 〈Σ,Γ, Q1, q01 , F1, E1〉 an FST
Input: T2 = 〈Γ,∆, Q2, q02 , F2, E2〉 an FST
Input: N ∈ N, number of peer threads to spawn

1 function PPCOMPOSE(T1, T2, N)
2 for 0 ≤ i, j < N do Vi,j ← ∅ /* initialize queue matrix */
3 V0,r(q01 ,q02)

= {(q01 , q02)}
4 nup = 1 /* shared queue-size counter */
5 for 0 ≤ i < N do spawn PEER(i) /* spawn peer threads */
6 wait on all peers()
7 return C =

〈
Σ,∆,

⋃
i∈N Q′

i, (q01 , q02),
⋃

i∈N F ′
i ,
⋃

i∈N E′
i

〉

8 procedure PEER(i)
9 Q′

i, F
′
i , E

′
i ← ∅ /* initialize peer-local data */

10 while true do
11 find j with 0 ≤ j < N and Vj,i 6= ∅
12 v ← pop(Vj,i)
13 if v = eof then return /* terminate thread */
14 if v 6∈ Q′

i then VISIT(i, v) /* visit state */
15 if nup = 1 then
16 for 0 ≤ j < N do push(Vi,j , eof) /* terminate peers */
17 nup ← nup − 1 /* update shared counter */

18 procedure VISIT(i, (q1, q2))
19 Q′

i ← Q′
i ∪ {(q1, q2)}

20 if (q1, q2) ∈ F1 × F2 then /* final state */
21 F ′

i ← F ′
i ∪ {(q1, q2)}

22 for (e1, e2) ∈ E[q1]× E[q2] with o[e1] = i[e2] do /* align transitions */
23 E′

i ← E′
i ∪

{
((q1, q2), (n[e1], n[e2]), i[e1], o[e2])

}

24 nup ← nup + 1 /* update shared counter */
25 push

(
Vi,r(n[e1],n[e2]), (n[e1], n[e2])

)
/* enqueue for visitation */

the output automaton structure (Q′
i, F

′
i , E

′
i), and

the visitation queue V is replaced by an (N ×N)
matrix of peer-to-peer local message queues: Vi,j

contains messages originating at peer pi and des-
tined for peer pj .

This technique relies for its correctness on the
prior specification of a partitioning function r :
Q1 × Q2 → N over states of the result automa-
ton, used to determine which peer is responsible
for visiting any such state. For the experiments
described in section 4, our input automata pro-
vided injective functions J·K1 : Q1 → N and
J·K2 : Q2 → N, and we used the partitioning func-
tion given in Equation (5).

r(q1, q2) =

⌊Jq1K1 + Jq2K2
2

⌋
mod N (5)

Since the visitation queue V is no longer
a shared atomic structure, an additional shared

global counter nup is required to keep track of the
number of visitation requests currently enqueued
in any Vi,j . Only when the last such request has
been processed does the algorithm terminate by
sending a designated message eof 6∈ Q1 × Q2

to all peers at line 16.

Also worth noting is that due to the peer-wise
partitioning of result data – in particular that of Q
into Q′

i∈N – a new visitation request must be en-
queued at line 25 for every aligned transition, and
the decision of whether or not a visit is actually
required deferred to the responsible peer at line
14. This can be expected to result in larger queues,
correspondingly increased memory requirements,
and an additionalO(E−Q) copy operations com-
pared to Algorithm 1. Any additional computa-
tional load – in particular the inclusion of an im-
plicit epsilon-filter such as described by Mohri

85

(2009) – associated only with a single state visi-
tation will remain confined to a single peer, and
can thus only serve to improve the performance
of the parallel algorithm with respect to its serial
counterpart.

Our parallelization strategy does not alter the
worst-case complexity of the composition algo-
rithm, since the partitioning function may fail for
certain pathological configurations. More pre-
cisely, whenever there is an i ∈ N such that
r(q1, q2) = i for all accessible (q1, q2) ∈ Q,
then the unique peer-thread pi will be responsible
for visiting all of the states of the output trans-
ducer. In this case, Algorithm 2 essentially re-
duces to Algorithm 1 with the worst-case com-
plexityO(|Q1×Q2|+ |E1×E2|), which is dom-
inated by O(|E1 × E2|).

Many other operations on finite-state transduc-
ers have traditional implementations in terms of a
state-processing queue, exhibiting the same high-
level structure as Algorithm 1. The parallelization
strategy used here may also be employed in such
cases, whenever a suitable state-partitioning func-
tion (analogous to r) can be defined. Consider
for example the case of unweighted acceptor de-
terminization as presented by Hopcroft and Ull-
man (1979): output automaton states are identified
by sets of prefix-equivalent states of the input au-
tomaton. A generic partitioning function for map-
ping state sets to peers would suffice to extend our
parallelization strategy to this algorithm.

4 Experiment

To investigate the practical utility of our multi-
threaded composition algorithm, we compared
running times of Algorithms 1 and 2.

4.1 Materials

We began by generating a sample set of ran-
dom input FSTs Ti∈I . Each input Ti was built
from a deterministic trie “skeleton” of a given size
|Qi| with maximum depth 32. The trie skeleton
was then augmented by adding random edges be-
tween existing states, and finally randomizing all
edge labels. The target size parameters |Qi| were
piecewise-uniformly distributed within exponen-
tially sized bins such that 25 ≤ |Qi| ≤ 221,
i.e. input automata had between 32 and 2,097,152
states. The number ei of randomly added edges
was dependent on the number of states, ei =
ci×|Qi|, where the coefficients ci were uniformly

distributed over the interval [0, 16]. In- and output-
alphabets were identical for each Ti with alpha-
bet sizes uniformly distributed over the discrete set⋃10

i=0{2i}, i.e. between 2 and 1024. For each input
automaton Ti so generated, we measured the run-
ning time tserial,i of the serial composition algo-
rithm COMPOSE(T −1

i , Ti), and retained only those
samples Ti for which 1

64 sec ≤ tserial,i ≤ 8 sec.
We implemented Algorithms 1 and 2 in C++,

using the GNU C compiler (g++ version 4.4.5),
the C++ standard template library, as well as the
auxiliary libraries boost (Schäling, 2011) and
TBB (Reinders, 2007) for common data structures
and programming idioms. Automata were rep-
resented using adjacency vectors, and the edge
alignments of Algorithm 1 line 9 (respectively
Alg. 2 line 22) were implemented using an opti-
mized routine3 for sorted edge-vectors in order to
minimize running times for both conditions. The
implementations were tested on a dedicated 64-bit
machine with 16 logical processors running de-
bian linux.

4.2 Method

For each of the 2,266 random input automata Ti,
we measured the time required4 to compute the
composition Ci = (T −1

i ◦ Ti) using the serial al-
gorithm (tserial,i) as well as the parallel algorithm
(tpp:N,i), varying the number of peer-threads em-
ployed by the latter, N ∈ {2, 4, 8, 16}.5 Each of
these 11,330 invocations was iterated 8 times in
order to ameliorate cache effects. Raw and mean
running times were stored for each invocation, to-
gether with various structural properties of the in-
put and result automata.

4.3 Results & Discussion

Inspection of the generated sample set revealed
that all of the tested compositions exhibited
an “embarrassingly parallel” topology: applying
Corollary 1 yielded Pmax > 99% for all Ci (µ =

3Specifically, we used a modified version of the edge
alignment code from the GFSM (Jurish, 2009) library func-
tion gfsm automaton compose visit () to imple-
ment a generic function template shared by both serial and
parallel implementations.

4Neither I/O nor serialization of the result transducer were
included in our measurements of the running time.

5While not necessarily representative of FST composi-
tions in general, restricting our attention to compositions of
the form (T −1 ◦T) ensures that the output automaton C is at
least as large as T itself, since the main diagonal of the out-
put state-set Id(QT) will be accessible whenever T contains
no non-accessible states.

86

 1

 2

 4

 8

 0.1 1

S
 =

 t.
se

ria
l /

 t.
pp

t.serial

serial
pp: 2
pp: 4
pp: 8
pp:16

Figure 2: Observed speedup for peer-to-peer parallel composition with respect to serial running time for
randomly generated automata (log-scaled).

.9998, σ = 2.949 × 10−4). Although it is cer-
tainly the case that not all FST compositions pos-
sess such characteristics (as follows from Theorem
1), the uniformly large state-to-depth ratio exhib-
ited by our sample set makes it a particularly good
testing ground for state-wise parallel processing
techniques such as Algorithm 2.

Results of the runtime measurements are de-
picted in Figure 2, expressed as the measured
speedup for the parallel implementation with re-
spect to the serial one. The samples i were sorted
into 10 exponentially sized bins by serial run-
ning time tserial,i, and the speedup data SN,i =
tserial,i/tpp:N,i are plotted on logarithmic scales
for each n ∈ N as a piecewise linear fit over bin-
wise averages.6

Immediately apparent from the data in Figure
2 is a typical pattern of diminishing returns for in-
creasing values of N , reflecting an empirical value
of P ≪ 1. Solving Equation (2) for P and ap-
plying it to the measured speedup values yields
the data in Table 1, corresponding to an estimated
P = .749 (σ = .154) over all tested parallel
compositions. Interestingly, the empirically esti-
mated values for P increase monotonically with
N , which indicates that the use of a distributed

6Since Pmax ≈ 1 for all of our test automata, we ignore
the contribution of automaton topology to actual observed
speedup here. For a more heterogeneous test set, it would
make more sense to measure speedup relative to the respec-
tive automaton-dependent maxima, i.e. SN,i/Smax,N,i.

N µS σS µP σP

2 1.474 0.209 0.615 0.207
4 2.372 0.423 0.751 0.116
8 3.585 0.788 0.806 0.083

16 4.701 1.156 0.824 0.066

Table 1: Global mean (µ) and standard deviation
(σ) of observed speedup (S) and associated de-
gree of parallelization (P) for peer-to-peer parallel
composition using N concurrent threads.

message queue did in fact reduce the competi-
tion over shared resources between peer-threads,
thereby effectively reducing the serial portion of
the program itself.

Despite this tendency, the data from Table 1
clearly indicate that the measured performance of
our implementation remained well below the up-
per bound given by Theorem 1 for our sample
set. This discrepancy can be attributed in part
to constant overhead associated with thread allo-
cation and maintenance (cf. Section 3.2), whose
effects can also be observed in the tendency of
speedup to improve with increasing serial running
time as seen in Figure 2. Restricting our atten-
tion to the 598 samples with tserial,i ≥ 1 sec-
ond, we computed an average empirical estimate
of P = .8867 for N = 16 (σ = .01676). The
remaining discrepancy between the empirical esti-
mates and the “embarrassingly parallel” theoreti-

87

cal upper bounds must be attributed to the neces-
sarily serial aspects of inter-thread communication
and synchronization.

5 Conclusion

We have presented a generic state-wise parallel al-
gorithm for computing the composition of ε-free
finite-state transducers which minimizes compe-
tition for global locks by employing distributed
data structures and localized communication chan-
nels. This algorithm relies on the prior specifi-
cation of a partitioning function which effectively
maps each state of the result automaton to the exe-
cution thread responsible for processing that state.

An approximate upper bound for composition
speedup using a state-wise parallel algorithm such
as that presented here was proposed and defined
in terms of the state-to-depth ratio of the result
automaton. Empirical investigation of the actual
speedup achieved by our algorithm on a test set
of “embarrassingly parallel” compositions showed
that although the use of distributed data structures
and communication channels was successful in
reducing the serial proportion of the code when
more processors were used, constant overhead and
the remaining synchronizations led to the pattern
of diminishing returns associated with an actual
parallel execution of about 89% of the program.

We are interested in evaluating the performance
of our approach in other scenarios, including
string lookup in (weighted) FSTs, n-way or “cas-
caded” composition, and “lazy” online construc-
tions. We believe that the peer-to-peer paralleliza-
tion strategy can also be employed to improve the
performance of other common finite-state alge-
braic operations in a multiprocessor context.

Acknowledgements

Research was supported by the Deutsche
Forschungsgemeinschaft grants KL 337/12-2 and
KL 955/19-1. Additionally, we would like to
thank this article’s anonymous reviewers for their
helpful comments.

References
Cyril Allauzen and Mehryar Mohri. 2009. N-way

composition of weighted finite-state transducers. In-
ternational Journal of Foundations of Computer Sci-
ence, 20(4):613–627.

Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wo-
jciech Skut, and Mehryar Mohri. 2007. OpenFst: A

General and Efficient Weighted Finite-State Trans-
ducer Library. In Jan Holub and Jan Ždárek, edi-
tors, Implementation and Application of Automata,
volume 4783 of Lecture Notes in Computer Science,
pages 11–23. Springer, Berlin/Heidelberg.

Gene M. Amdahl. 1967. Validity of the single proces-
sor approach to achieving large scale computing ca-
pabilities. In Proceedings of the AFIPS spring joint
computer conference, pages 483–485, New York,
NY. ACM.

Octavian Cheng, John Dines, and Mathew Magimai
Doss. 2007. A Generalized Dynamic Composi-
tion Algorithm of Weighted Finite State Transducers
for Large Vocabulary Speech Recognition. In IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP 2007), volume 4, pages
345–348. IEEE.

Karel Culik II and Jarkko Kari. 1993. Image compres-
sion using weighted finite automata. Computers &
Graphics, 17(3):305–313.

Thomas Hanneforth. 2004. FSM<2.0> – C++ li-
brary for manipulating (weighted) finite automata.
http://www.fsmlib.org.

Jan Holub and Stanislav Štekr. 2009. On par-
allel implementations of deterministic finite au-
tomata. In Sebastian Maneth, editor, Implementa-
tion and Application of Automata, volume 5642 of
Lecture Notes in Computer Science, pages 54–64,
Berlin/Heidelberg. Springer.

John E. Hopcroft and Jeffrey D. Ullman. 1979. Intro-
duction to Automata Theory, Languages, and Com-
putation. Addison Wesley, Reading, MA.

Takaaki Hori, Chiori Hori, and Yasuhiro Minami.
2004. Fast On-The-Fly Composition for Weighted
Finite-State Transducers in 1.8 Million-Word Vo-
cabulary Continuous Speech Recognition. INTER-
SPEECH, pages 289–292.

Bryan Jurish. 2009. libgfsm C library, ver-
sion 0.0.10. http://kaskade.dwds.de/
˜moocow/projects/gfsm/.

Anders Krogh, Michael Brown, I. Saira Mian, Kim-
men Sjölander, and David Haussler. 1994. Hidden
Markov models in computational biology : applica-
tions to protein modeling. Journal of Molecular Bi-
ology, 235(5):1501–1531.

Mehryar Mohri, Fernando Carlos Pereira, and
Michael Dennis Riley. 2007. Speech Recogni-
tion with Weighted Finite-State Transducers. In
Larry Rabiner and Fred Juang, editors, Handbook
on Speech Processing and Speech Communication,
Part E: Speech recognition, pages 1–31. Springer,
Berlin/Heidelberg.

Mehryar Mohri. 2009. Weighted automata algo-
rithms. In Manfred Droste, Werner Kuich, and

88

Heiko Vogler, editors, Handbook of Weighted Au-
tomata, Monographs in Theoretical Computer Sci-
ence, chapter Concepts of Weighted Recognizabil-
ity, pages 213–254. Springer, Berlin/Heidelberg.

James Reinders. 2007. Intel Threading Building
Blocks. O’Reilly, Sebastopol, CA.

Seyed H. Roosta. 2000. Parallel Processing and
Parallel Algorithms: Theory and Computation.
Springer, Berlin/Heidelberg.

Boris Schäling. 2011. The Boost C++ Libraries.
XML Press.

Herb Sutter. 2005. The free lunch is over – a fun-
damental turn toward concurrency in software. Dr.
Dobb’s Journal, 30(3).

89

