
Optimizing Rule-Based Morphosyntactic Analysis
of Richly Inflected Languages — a Polish Example

Dominika Pawlik
University of Warsaw

Institute of Mathematics

Aleksander Zabłocki
University of Warsaw

Institute of Informatics
{dominika, olekz}@mimuw.edu.pl, b.zaborowski@ipipan.waw.pl

Bartosz Zaborowski
Polish Academy of Sciences

Institute of Computer Science

Abstract

We consider finite-state optimization of
morphosyntactic analysis of richly and
ambiguously annotated corpora. We pro-
pose a general algorithm which, despite
being surprisingly simple, proved to be ef-
fective in several applications for rulesets
which do not match frequently.

1 Introduction

Morphosyntactic analysis of natural language
texts is commonly performed as an iterative pro-
cess of applying pre-defined syntactical rules to
a previously tokenised and morphologically anno-
tated input (Aït-Mokhtar and Chanod, 1997). We
consider two of its sub-tasks: shallow parsing and
disambiguation.

As stated in (Mohri, 1997), such tasks can often
be efficiently realized with finite-state transducers
(FST), which allow time savings by the classical
operations of determinization, minimization and
composition (Roche and Schabes, 1995). How-
ever, the applicability of the FST model may de-
pend on the richness of annotation and on the ex-
pressive power of the rules. These both tend to
complicate in richly inflected languages, including
Baltic and most of Slavic.

Motivated by the needs which arose during
the development of the National Corpus of Pol-
ish (NCP, (Przepiórkowski et al., 2012)), we aim
at a high-efficiency rule-based morphosyntactic
analysis framework suitable for such languages.
Despite the existence of many formal methods and
tools for this task, we are not aware of any pre-
vious result meeting all our needs, listed in Sec-
tion 2. We discuss the state of the art in Section 3.

Our solution to the problem, though surpris-
ingly single, performs well under the assumption
that the rules match rarely, i.e. the average number
of matches per rule per sentence is significantly

below 1. In the case of rules designed for analyz-
ing the Polish corpora (Przepiórkowski, 2008a),
this was about 0.05–0.1, depending on the partic-
ular corpus and ruleset.

2 Problem statement

Richly inflected languages often require com-
plex annotation as in the Constraint Grammar
model (Karlsson, 1990): each token is assigned a
list of potentially correct readings, each of which
specifies the lemmatized form and a tag consist-
ing of the values of syntactic attributes (PoS, case,
gender etc.). For example, the English word found
could have the following readings:1

found:VB (The king would found a new city.)
find:VBD (He found no money for that.)
find:VBN (The robber has not been found.)

while the Polish word drogi the following ones:

drogi:adj:m3:sg:nom /It is an expensive house./
drogi:adj:m3:sg:acc /I see an expensive house./
drogi:adj:m2:sg:nom /It is an expensive dog./
droga:noun:f:sg:gen /I do not see that road./
droga:noun:f:pl:acc /I see these roads./
x . . . (6 other readings2)

In this setting, unification becomes a key tool
in morphosyntactic analysis. For example, since
a noun must agree with its modifying adjectives
upon case, number and gender, unifying the values
of these attributes can be used to remove all but the
first two readings of drogi in

drogi
drogi:adj:m3:sg:nom
drogi:adj:m3:sg:acc
drogi:adj:m2:sg:nom

g dom g
dom:noun:m3:sg:nom
dom:noun:m3:sg:acc

1In the examples for English language, we use the PoS
tags of the Brown corpus. Tagging for Polish roughly follows
the National Corpus of Polish, though has been simplified.

2This is the number of practically possible readings (with
disregard of the context). Note that in general, the complex
morphology of Polish forces the morphological analyzers to
either under- or over-generate token readings. While the latter
choice is often considered as better for the accuracy, it makes
the syntactic analysis even more complicated.

x . . . (8 other readings)

xxxxxxxx /an expensive house/

Hence, we desire at least the following features:
1. Functionality. Our rules should support dis-

ambiguation by unifying selected attributes in (se-
lected of) the tokens matched by a regexp, e.g.

[pos~vb] A:([pos~adj]*) B:[pos~noun]
⇒ unify(case number gender, A B)

should look for a sequence consisting of a verb3,
a number of adjectives and a noun, and unify three
attributes of the two latter. As for shallow pars-
ing, we should allow creating syntactic structures
depending on whether such unification has been
successful (e.g. a noun and an adjective can be
marked as a nominal group if they agree).

2. (Practical) determinism. By this we mean
that single rules should run in an (almost) linear
time in the input size. This clearly holds in mod-
els relying on FST determinization4, but we would
equally appreciate e.g. deterministic pushdown
automata or other not purely finite-state tools.

3. (Practical) composition. By this we mean
obtaining the ability to execute a cascade of rules
significantly faster than it would take to execute
them separately.

Clearly, a trade-off between time and memory
efficiency is involved in both conditions 2 and 3.

3 Related work

Building FSTs for given replace rules, their de-
terminization and minimization have been exten-
sively described in theory (see (Roche and Sch-
abes, 1995) and (Mohri, 1997)) and efficiently im-
plemented, e.g. in the XFST toolkit (Beesley and
Karttunen, 2003). However, as many authors no-
tice, these methods turn out to be inapplicable in
some situations. In our case, this happens for more
than one reason.

First, a FST may be not determinizable; as dis-
cussed in (Roche and Schabes, 1996, Sec. 3.8)
and (Noord and Gerdemann, 2001), this tends to
happen for replace rules acting over unbounded
ranges of tokens, including both rule types dis-
cussed in Section 2. Trying to by-pass this prob-
lem — by assuming that a rule will not have

3To be more precise, a potential verb, i.e. a token having
some verbal reading. The same applies in the sequel.

4As in (Roche and Schabes, 1995), by FST determiniza-
tion we mean building an equivalent subsequential form, i.e.
a form not which does not backtrack during the execution.

a match longer than n tokens — typically leads
to an exponential number of states wrt. n, which
practically makes composing the results impos-
sible. As explained in (Noord and Gerdemann,
2001, Sec. 3.6), the explosion of states can be
avoided by equipping FSTs with a queue; how-
ever, such devices no longer admit the standard
composition (and no other composition method is
given).

Apparently, the most commonly chosen solu-
tion of the problem is to abandon determinism
for the rules which turn out to be too complex.
This is the case in FASTUS (Hobbs et al., 1997),
JAPE (Cunningham et al., 2000) (at least, in its
full expressive power) and most probably also in
SProUT (Becker et al., 2002), as its authors do not
at all discuss the issue, while they refer to the stan-
dard methods which we discussed above.

In our situation, the second obstruction to using
FSTs is a (yet another) explosion of states caused
by unification rules for rich inflection. In order to
compute the result of a unification, a determinized
FST must remember its temporary result (in the
current state) while processing consecutive tokens.
This means increasing a part of the state space by
a factor of N , where N is the number of possi-
ble unification results; in the case of Polish case-
number-gender agreement, this is about 100.5

The scale of this problem depends on the
representation of the input. Choosing a naive
string encoding of the form

found/found:VB/find:VBD/find:VBN# (∗)

will increase N hopelessly since the result of
unification will be a set of tags rather than a single
value. This is not the case in the more common
model for ambiguous annotation, Finite-State In-
tersection Grammar (FSIG) (Koskenniemi, 1990).
In this approach, the input is represented as a
finite-state automaton (FSA) so that alternative
readings give rise to parallel paths, e.g. he found
that will be represented as

VB '' DT ''he // PPS //
found

77

find //
find ''

VBD //
that

77

that //
that ''

WPO //
VBN

77
WPS

77

The rules are applied by intersecting the above
automaton with FSTs representing them. This
means that the FSTs operate on the paths of the

5The number of possible values of these three attributes
is 7 · 2 · 5 = 70 in NCP but more than 200 in some other
tagsets used for Polish.

input FSA, each of which contains exactly one
reading of each token, e.g.

he PPS find VBN that WPO
In this setting, unification leads to at most N -
fold increase of the state space even in com-
pound FSTs, which allows hoping for composi-
tion. However, the FSIG model has the disadvan-
tage that the execution time is not linear in terms
of the input size, particularly for high ambiguity
(cf. (Tapanainen, 1999)). Hence, the model does
not ensure our efficiency requirements.

Efficient unification seems to be achievable by
equipping the FST with additional memory for the
temporary result, even though this means leaving
the pure finite-state formalism. Note also that this
is analogous to introducing a queue in (Noord and
Gerdemann, 2001). These observations have mo-
tivated the solution proposed below.

4 The solution

Basic model. We follow the idea present in the
old Spejd as well as in JAPE: each rule is split into
a simple match pattern and a list of more com-
plex actions performed outside of the finite-state
formalism. In our case, match patterns are regular
expressions6, while the actions can be virtually ar-
bitrary, provided that they operate within a given
match. The match patterns are compiled into de-
terministic automata (DFA). Rather than follow-
ing the FSIG approach, we traditionally run these
DFAs on single strings encoding the input, as in
the example (∗) on page 2, which enables finding
matches without backtracking.

Whenever a match is found, we stop the DFA
which found it and apply the pre-defined routines
corresponding to the actions. For the example in-
put drogi dom discussed in Section 2, the routine
for unify would scan and store all the readings
of drogi, do the same for dom, intersect the two
sets of readings and save the result.7

Single-pattern DFAs. Even though our pat-
terns are regular expressions, compiling them to
DFAs is not straightforward since the actions may
refer to sub-matches (e.g. A, B in the example in

6A match pattern is a regular expression over token spec-
ifications. These are built of attribute requirements, com-
bined by logical connectives and quantifiers over readings,
e.g. “there is a reading in which both pos equals noun and
case equals nom”. For the input encoding of the form (∗),
such patterns clearly translate to character-level regular ex-
pressions.

7This might be non-linear in terms of the match size but
will happen rarely due to the rareness of the matches.

Section 2). In general, a single run of a classi-
cal DFA cannot unambiguously determine the po-
sitions of all such sub-matches (Friedl, 2002). For
this purpose, we use the enhanced tagged DFAs
(TDFAs) from (Laurikari, 2000) which use ad-
ditional integer registers (which Laurikari calls
tags) to store the references to potential sub-match
boundaries.

TDFAs are asymptotically fast as they do not
backtrack, but several times slower than the clas-
sical DFAs. Hence we adopt the double pass tech-
nique of (Cox, 2010): we process the input first
with a classical DFA deciding solely whether it
contains a match for a given rule; only when it
does, we execute a more complex TDFA localiz-
ing the match and the desired sub-matches, and
finally apply the rule actions. In this way, every
sentence containing a match is processed twice;
however, our assumption that the matches are (av-
eragely) rare guarantees that in total this variant is
faster than using only TDFAs.

Practical composition. We have already met
the first two requirements from Section 2. It re-
mains to provide means for practical composi-
tion. At this point, the (average) rareness of the
matches becomes crucial. Intuitively, it means that
many rules do not change the input, and it should
be advantageous to compose these rules together.
Among several possible realizations of this idea,
we have chosen the following simple algorithm.

Let M1, . . . ,Mn denote the match specifica-
tions of the rules to be applied. We build:

• for each i, a TDFA Ti recognizing Mi;
• a DFA D recognizing M1|M2| . . . |Mn.

Then, we slightly modify D in Laurikari’s spirit by
equipping it with two integer registers, L and R,
used as follows: whenever a match for some Mi

is found, D shall set R := i provided that L <
i ≤ R. Hence, running D on the whole input with
initial R = ∞ results in setting R to the least i >
L such that Mi has some match.

The main algorithm proceeds as follows:

1. Set L := 0. (Start with all rules.)
2. Set R :=∞ and run D on the whole input.
3. If R =∞ (no Mi with i > L matched), halt.
4. Run TR on the whole input. For every match

found, apply to it the actions of the R-th rule.
5. Set L := R and jump to step 2.

(ML done; proceed only with {Mi : i > L}.)

Avoiding explosion. Even though the num-
ber of constructed states is clearly smaller than in
the FST models (as we have avoided states aris-
ing from sophisticated rule actions), it is still very
high. We reduced it significantly8 by a simple
technique of lazy construction: the transitions and
their target states are built only during the execu-
tion, just before their first use.

In practice, for a large number of rules, we fix
a composition width k and apply the above algo-
rithm to groups of k consecutive rules. To achieve
best performance, k should be chosen possibly
large but so that the states still fit into memory.
This makes the running time asymptotically linear
in the number of rules; nevertheless, the third re-
quirement from Section 2 has been met.

5 Evaluation

Our approach has been applied to optimize Spejd,
a syntactic parser of broad functionality which has
been used for corpus development, valence extrac-
tion (Przepiórkowski, 2008b), and also sentiment
analysis (Buczyński and Wawer, 2008).

composition avg. speed memory
width [tokens/s] [MB]

N/A (old Spejd) 802 184
1 6,013 292
10 18,536 488
30 21,746 3,245

Table 1: The speed and memory usage of Spejd in
terms of the composition width.

Table 1 presents the overall efficiency of the
system. In the tests, performed on a computer
with 3.1 GHz AMD FX processor, 467 handwrit-
ten rules of (Przepiórkowski, 2008a) were applied
to a 15 million token sample from the IPI Cor-
pus (Przepiórkowski, 2004).

Notably, the use of lazy construction increased
the achievable width from about 3–4 to about 30.9

Conclusion

We have described a variation of the finite-state
approach which, although it may seem strange in

8In some TDFAs in our applications, less than 5% of
states are reachable in practice, even for megabytes of input.

9Further state space reduction techniques, which are out
of scope of this paper, have allowed us to work with widths
exceeding 1000. Due to the overhead involved in them, this
resulted “only” in about 10-fold acceleration in comparison
with k = 30.

comparison with the classical solutions, seems to
be a good choice for infrequently matching com-
plex morphosyntactic rules, particularly for highly
ambiguous rich annotation. In practice, it has al-
lowed over 25-fold acceleration of the Spejd sys-
tem while preserving its rich functionality.

Acknowledgement

The project was partially funded by the National
Science Centre allocated on the basis of a decision
DEC-2011/03/D/ST6/00914.

References
Salah Aït-Mokhtar and Jean-Pierre Chanod. 1997. In-

cremental finite-state parsing. In ANLP, pages 72–
79.

Markus Becker, Witold Drożdżyński, Hans-Ulrich
Krieger, Jakub Piskorski, Ulrich Schäfer, and Feiyu
Xu. 2002. SProUT — shallow processing with
typed feature structures and unification. In Proceed-
ings of the International Conference on NLP (ICON
2002), Mumbai, India.

Kenneth R. Beesley and Lauri Karttunen. 2003. Finite
State Morphology. CSLI Studies in Computational
Linguistics. CSLI Publications.

Aleksander Buczyński and Aleksander Wawer. 2008.
Shallow parsing in sentiment analysis of product
reviews. In Sandra Kübler, Jakub Piskorski, and
Adam Przepiórkowski, editors, Proceedings of the
LREC 2008 Workshop on Partial Parsing: Between
Chunking and Deep Parsing, pages 14–18, Mar-
rakech. ELRA.

Russ Cox. 2010. Regular expression matching in the
wild, March.

H. Cunningham, D. Maynard, and V. Tablan. 2000.
JAPE: a java annotation patterns engine (second edi-
tion). Technical Report Technical Report CS–00–
10, of Sheffield, Department of Computer Science.

Jeffrey E. F. Friedl. 2002. Mastering Regular Expres-
sions. O’Reilly & Associates, Inc., Sebastopol, CA,
USA, 2 edition.

Jerry R. Hobbs, Douglas E. Appelt, John Bear, David J.
Israel, Megumi Kameyama, Mark E. Stickel, and
Mabry Tyson. 1997. FASTUS: A cascaded finite-
state transducer for extracting information from
natural-language text. CoRR, cmp-lg/9705013.

Fred Karlsson. 1990. Constraint grammar as a frame-
work for parsing running text. In Proceedings of the
13th conference on Computational linguistics - Vol-
ume 3, COLING ’90, pages 168–173, Stroudsburg,
PA, USA. Association for Computational Linguis-
tics.

Kimmo Koskenniemi. 1990. Finite-state parsing and
disambiguation. In Proceedings of the 13th confer-
ence on Computational linguistics - Volume 2, COL-
ING ’90, pages 229–232, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Ville Laurikari. 2000. NFAs with tagged transitions,
their conversion to deterministic automata and ap-
plication to regular expressions. In In Proceedings
of the 7th International Symposium on String Pro-
cessing and Information Retrieval, pages 181–187.
IEEE.

Mehryar Mohri. 1997. Finite-state transducers in lan-
guage and speech processing. Computational Lin-
guistics, 23(2):269–311.

Gertjan van Noord and Dale Gerdemann. 2001. Fi-
nite state transducers with predicates and identities.
Grammars, 4(3):263–286.

Adam Przepiórkowski, Mirosław Bańko, Rafał L.
Górski, and Barbara Lewandowska-Tomaszczyk,
editors. 2012. Narodowy Korpus Języka Polskiego
[Eng.: National Corpus of Polish]. Wydawnictwo
Naukowe PWN, Warsaw.

Adam Przepiórkowski. 2004. The IPI PAN Corpus:
Preliminary version. Institute of Computer Science,
Polish Academy of Sciences, Warsaw.

Adam Przepiórkowski. 2008a. Powierzchniowe
przetwarzanie języka polskiego. Akademicka Ofi-
cyna Wydawnicza EXIT, Warsaw.

Adam Przepiórkowski. 2008b. Towards a partial
grammar of Polish for valence extraction. In Gram-
mar & Corpora 2007: Selected contributions from
the conference Grammar and Corpora, Sept. 25–27,
2007, Liblice, pages 127–133. Academia, Prague.

Emmanuel Roche and Yves Schabes. 1995. Determin-
istic part-of-speech tagging with finite-state trans-
ducers. Comput. Linguist., 21:227–253, June.

Emmanuel Roche and Yves Schabes. 1996. Introduc-
tion to finite-state devices in natural language pro-
cessing. Technical report, Mitsubishi Electric Re-
search Laboratories.

Pasi Tapanainen. 1999. Parsing in Two Frameworks:
Finite-state and Functional Dependency Grammar.
University of Helsinki, Department of General Lin-
guistics.

