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Abstract

We apply Support Vector Machines to differ-
entiate between 11 native languages in the
2013 Native Language Identification Shared
Task. We expand a set of common language
identification features to include cognate inter-
ference and spelling mistakes. Our best results
are obtained with a classifier which includes
both the cognate and the misspelling features,
as well as word unigrams, word bigrams, char-
acter bigrams, and syntax production rules.

1 Introduction

As the world becomes more inter-connected, an in-
creasing number of people devote effort to learn-
ing one of the languages that are dominant in the
global community. English, in particular, is stud-
ied in many countries across the globe. The goal is
often related to increasing one’s chances to obtain
employment and succeed professionally. The lan-
guage of work-place communication is often not a
speaker’s native language (L1) but their second lan-
guage (L2). Speakers and writers of the same L1
can sometimes be identified by similar L2 errors.
The weak Contrastive Analysis Hypothesis (Jarvis
and Crossley, 2012) suggests that these errors may
be a result of L1 causing linguistic interference; that
is, common tendencies of a speaker’s L1 are super-
imposed onto their L2. Native Language Identifi-
cation, or NLI, is an attempt to exploit these errors
in order to identify the L1 of the speaker from texts
written in L2.

Our group at the University of Alberta was unfa-
miliar with the NLI research prior to the announce-

ment of a shared task (Tetreault et al., 2013). How-
ever, we saw it as an opportunity to apply our exper-
tise in character-level NLP to a new task. Our goal
was to propose novel features, and to combine them
with other features that have been previously shown
to work well for language identification.

In the end, we managed to define two feature sets
that are based on spelling errors made by L2 writers.
Cognate features relate a spelling mistake to cognate
interference with the writer’s L1. Misspelling fea-
tures identify common mistakes that may be indica-
tive of the writer’s L1. Both feature sets are meant
to exploit the Contrastive Analysis Hypothesis, and
benefit from the writer’s L1 influence on their L2
writing.

2 Related Work

Koppel et al. (2005b) approach the NLI task using
Support Vector Machines (SVMs). They experi-
ment with features such as function-word unigrams,
rare part-of-speech bigrams, character bigrams, and
spelling and syntax errors. They report 80% accu-
racy across 5 languages. We further investigate the
role of word unigrams and spelling errors in native
language identification. We consider not only func-
tion words, but also content words, as well as word
bigrams. We also process spell-checking errors with
a text aligner to find common spelling errors among
writers with the same L1.

Tsur and Rappoport (2007) also use SVMs on the
NLI task, but limit their feature set to character bi-
grams. They report 65% accuracy on 5 languages,
and hypothesize that the choice of words when writ-
ing in L2 is strongly affected by the phonology of
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their L1. We also consider character bigrams in our
feature set, but combine them with a number of other
features.

Wong and Dras (2011) opt for a maximum en-
tropy classifier, and focus more on syntax errors than
lexical errors. They find that syntax tree production
rules help their classifier in a seven language clas-
sification task. They only consider non-lexicalized
rules, and rules with function words. In contrast, we
consider both lexicalized and non-lexicalized pro-
duction rules, and we include content words.

Bergsma et al. (2012) consider the NLI task as a
sub-task of the authorship attribution task. They fo-
cus on the following three questions: (1) whether the
native language of the writer of a paper is English,
(2) what is the gender of the writer, and (3) whether
a paper is a conference or workshop paper. The au-
thors conclude that syntax aids the native language
classification task, further motivating our decision to
use part-of-speech n-grams and production rules as
features for our classifier. Furthermore, the authors
suggest normalizing text to reduce sparsity, and im-
plement several meta-features that they claim aid the
classification.

3 Classifier

Following Koppel et al. (2005b) and others, we
perform classification with SVMs. We chose the
SVM-Multiclass package, a version of the SVM-
light package(Joachims, 1999) specifically modified
for multi-class classification problems. We use a lin-
ear kernel, and two hyperparameters that were tuned
on the development set: the c soft-margin regular-
ization parameter, which measures the tradeoff be-
tween training error and the size of the margin, and
ε, which is used as a stopping criterion for the SVM.
C was tuned to a value of 5000, and epsilon to a
value of 0.1.

4 Features

As features for our SVM, we used a combination of
features common in the literature and new features
developed specifically for this task. The features are
listed in the following section.

4.1 Word n-grams

Following previous work, we use word n-grams as
the primary feature set. We normalize the text before
selecting n-grams using the method of Bergsma et
al. (2012). In particular, all digits are replaced with
a representative ’0’ character; for example, ’22’ and
’97’ are both represented as ’00’. However, unlike
Koppel et al. (2005b), we incorporate word bigrams
in addition to word unigrams, and utilize both func-
tion words and content words.

4.1.1 Function Words
Using a list of 295 common function words, we

reduce each document to a vector of values repre-
senting their presence or absence in a document. All
other tokens in the document are ignored. When
constructing vectors of bigrams, any word that is not
on the list of function words is converted to a place-
holder token. Thus, most of our function-word bi-
grams consist of a single function word preceded or
followed by a placeholder token.

4.1.2 Content Words
Other than the normalization mentioned in Sec-

tion 4.1, all tokens in the documents are allowed as
possible word unigrams. No spelling correction is
used for reducing the number of word n-grams. Fur-
thermore, we consider all token unigrams that occur
in the training data, regardless of their frequency.

An early concern with token bigrams was that
they were both large in number, and sparse. In an
attempt to reduce the number of bigrams, we con-
ducted experiments on the development set with dif-
ferent numbers of bigrams that exhibited the highest
information gain. It was found that using all combi-
nations of word bigrams improved predictive accu-
racy the most, and did not lead to a significant cost
to the SVM. Thus, for experiments on the test set, all
token bigrams that were encountered in the training
set were used as features.

4.2 Character n-grams

Following Tetreault et al. (2012), we utilize all char-
acter bigrams that occur in the training data, rather
than only the most frequent ones. However, where
the literature uses either binary indicators or relative
frequency of bigrams as features, we use a modi-
fied form of the relative frequency in our classifier.
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In a pre-processing step, we calculate the average
frequency of each character bigram across all train-
ing documents. Then, during feature extraction, we
again determine the relative frequency of each char-
acter bigram across documents. We then use bi-
nary features to indicate if the frequency of a bigram
is higher than the average frequency. Experiments
conducted on the development set showed that al-
though this modified frequency was out-performed
by the original relative frequency on its own, our
method performed better when further features were
incorporated into the classifier.

4.3 Part-of-speech n-grams

All documents are tagged with POS tags using the
Stanford parser (Klein and Manning, 2003), From
the documents in the training data, a list of all POS
bigrams was generated, and documents were repre-
sented by binary indicators of the presence or ab-
sence of a bigram in the document. As with char-
acter bigrams, we did not simply use the most com-
mon bigrams, but rather considered all bigrams that
appeared in the training data.

4.4 Syntax Production Rules

After generating syntactic parse trees with the Stan-
ford Parser. we extract all possible production rules
from each document, including lexicalized rules.
The features are binary; if a production rule occurs
in an essay, its value is set to 1, and 0 otherwise. For
each language, we use information gain for feature
selection to select the most informative production
rules as suggested by Wong and Dras (2011). Ex-
periments on the development set indicated that the
information gain is superior to raw frequency for the
purpose of syntax feature selection. Since the accu-
racy increased as we added more production rules,
the feature set for final testing includes all produc-
tion rules encountered in the training set. The ma-
jority of the rules are of the form POS⇒ terminal.
We hypothesized that most of the information con-
tained in these rules may be already captured by the
word unigram features. However, experiments on
the development set suggested that the lexicalized
rules contain information that is not captured by the
unigrams, as they led to an increase in predictive ac-
curacy.

4.5 Spelling Errors

Koppel et al. (2005a) suggested spelling errors
could be helpful as writers might be affected by
the spelling convention in their native languages.
Moreover, spelling errors also reflect the pronun-
ciation characteristics of the writers’ native lan-
guages. They identified 8 types of spelling errors
and collected the statistics of each error type as
their features. Unlike their approach, we focus on
the specific spelling errors made by the writers be-
cause 8 types may be insufficient to distinguish the
spelling characteristics of writers from 11 differ-
ent languages. We extract the spelling error fea-
tures from character-level alignments between the
misspelled word and the intended word. For ex-
ample, if the word abstract is identified as the in-
tended spelling of a misspelling abustruct, the char-
acter alignments are as follows:

a bu s t ru ct
| | | | | |
a b s t ra ct

Only the alignments of the misspelled parts, i.e.
(bu,b) and (ru,ra) in this case, are used as fea-
tures. The spell-checker we use is aspell1, and the
character-level alignments are generated by m2m-
aligner (Jiampojamarn et al., 2007).

4.6 Cognate Interference

Cognates are words that share their linguistic origin.
For example, English become and German bekom-
men have evolved from the same word in a com-
mon ancestor language. Other cognates are words
that have been transfered between languages; for ex-
ample, English system comes from the Greek word
συστηµα via Latin and French. On average, pairs
of cognates exhibit higher orthographic similarity
than unrelated translation pairs (Kondrak, 2013).

Cognate interference may cause an L1-speaker
to use a cognate word instead of a correct English
translation (for example, become instead of get).
Another instance of cognate interference is mis-
spelling of an English word under the influence of
the L1 spelling (Table 1).

We aim to detect cognate interference by identi-
fying the cases where the cognate word is closer to

1http://aspell.net
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Misspelling Intended Cognate
developped developed developpé (Fre)

exemple example exemple (Fre)
organisation organization organisation (Ger)
conzentrated concentrated konzentrierte (Ger)

comercial commercial comercial (Spa)
sistem system sistema (Spa)

Table 1: Examples of cognate interference in the data.

the misspelling than to the intended word (Figure 1).
We define one feature to represent each language L,
for which we could find a downloadable bilingual
English-L dictionary. We use the following algo-
rithm:

1. For each misspelled English word m found in
a document, identify the most likely intended
word e using a spell-checking program.

2. For each language L:

(a) Look up the translation f of the intended
word e in language L.

(b) Compute the orthographic edit distance D
between the words.

(c) If D(e, f) < t then f is assumed to be a
cognate of e.

(d) If f is a cognate and D(m, f) < D(e, f)
then we consider it as a clue that L = L1.

We use a simple method of computing ortho-
graphic distance with threshold t = 0.58 defined
as the baseline method by Bergsma and Kondrak
(2007). However, more accurate methods of cog-
nate identification discussed in that paper could also
be used.

Misspellings can betray cognate interference even
if the misspelled word has no direct cognate in
language L1. For example, a Spanish speaker
might spell the word quick as cuick because of
the existence of numerous cognates such as ques-
tion/cuestión. Our misspelling features can detect
such phenomena at the character level; in this case,
qu:cu corresponds to an individual misspelling fea-
ture.

4.7 Meta-features
We included a number of document-specific meta-
features as suggested by Bergsma et al. (2012): the

conzentrated

concentrated

konzentrierte
0.3

0.4

Figure 1: A cognate word influencing the spelling.

average number of words per sentence, the average
word length, as well as the total number of char-
acters, words, and sentences in a document. We
reasoned that writers from certain linguistic back-
grounds may prefer many short sentences, while
other writers may prefer fewer but longer sentences.
Similarly, a particular linguistic background may in-
fluence the preference for shorter or longer words.

5 Results

The dataset used for experiments was the TOEFL11
Non-Native English Corpus (Blanchard et al., 2013).
The dataset was split into three smaller datasets: the
Training set, consisting of 9900 essays evenly dis-
tributed across 9 languages, the Development set,
which contained a further 1100 essays, and the Test
set, which also contained 1100 essays. As the data
had a staggered release, we used the data differently.
We further split the Training set, with a split of 80%
for training, and 10% for development and testing.
We then used the Development set as a held-out test
set. For held-out testing, the classifier was trained on
all data in the Training set, and for final testing, the
classifier was trained on all data in both the Training
and Development sets.

We used four different combinations of features
for our task submissions. The results are shown in
Table 2. We include the following accuracy values:
(1) the results that we obtained on the Development
set before the Test data release, (2) the official Test
set results provided by the organizers (Tetreault et
al., 2013), (3) the actual Test set results, and (4) the
mean cross-validation results (for submissions 1 and
3). The difference between the official and the ac-
tual Test set results is attributed to two mistakes in
our submissions. In submission 1, the feature lists
used for training and testing did not match. In sub-
missions 3 and 4, only non-lexicalized syntax pro-
duction rules were used, whereas our intention was
to use all of them.
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No. Features Dev Org Test CV
1 Base 82.0 61.2 80.4 58.2
2 – cont. words 67.4 68.7 68.7 –
3 + char 81.4 80.3 81.7 58.5
4 + char + meta 81.2 80.0 80.8 –

Table 2: Accuracy of our submissions.

All four submissions used the following base
combination of features:

• word unigrams

• word bigrams

• error alignments

• syntax production rules

• word-level cognate interference features

In addition, submission 3 includes character bi-
grams, while submission 4 includes both character
bigrams and meta-features. In submission 2, only
function words are used, with the exclusion of con-
tent words.

Our best submission, which achieves 81.73% ac-
curacy on the Test set, includes all features discussed
in Section 4 except POS bigrams. Early tests in-
dicated that any gains obtained with POS bigrams
were absorbed by the production rules, so they were
excluded form the final experiments. Character bi-
grams help on the Test set but not on the Devel-
opment set. The meta-features decrease accuracy
on both sets. Finally, the content words dramati-
cally improve accuracy. The reason we included a
submission which did not use content words is that
it is a common practice in previous work. In our
analysis of the data, we found content words that
were highly indicative of the language of the writer.
Particularly, words and phrases which contained the
speaker’s home country were useful in predicting the
language. It should be noted that this correspon-
dence may be dependent upon the prompt given to
the writer. Furthermore, it may lead to false posi-
tives for L1 speakers who live in multi-lingual coun-
tries.

5.1 Confusion Matrix
We present the confusion matrix for our best submis-
sion in Table 5.1. The highest number of incorrect

A C F G H I J K S T Tu
ARA 83 0 0 0 2 2 2 1 4 5 1
CHI 1 81 2 0 1 0 8 6 1 0 0
FRE 6 0 82 2 1 3 0 0 1 0 5
GER 1 0 0 90 1 1 1 0 2 0 4
HIN 1 2 2 0 76 1 0 0 0 16 2
ITA 1 1 0 1 0 89 1 0 5 1 1
JPN 2 1 1 1 0 1 86 6 0 0 2
KOR 1 8 0 0 0 0 11 78 0 1 1
SPA 2 2 7 0 3 5 0 2 75 0 4
TEL 2 0 0 2 15 0 0 0 1 80 0
TUR 4 3 2 1 0 1 1 5 2 2 79

Table 3: Confusion Matrix for our best classifier.

Features Test
Full system 81.7
w/o error alignments 81.3
w/o word unigrams 81.1
w/o cognate features 81.0
w/o production rules 80.6
w/o character bigrams 80.4
w/o word bigrams 76.7

Table 4: Accuracy of various feature combinations.

classifications are between languages that are either
linguistically or culturally related (Jarvis and Cross-
ley, 2012). For example, Korean is often misclassi-
fied as Japanese or Chinese. The two languages are
not linguistically related to Korean, but both have
historically had cultural ties with Korean. Likewise,
while Hindi and Telugu are not related linguistically,
they are both spoken in the same geographic area,
and speakers are likely to have contact with each
other.

5.2 Ablation Study

Table 4 shows the results of an ablation experiment
on our best-performing submission. The word bi-
grams contribute the most to the classification; their
removal increases the relative error rate by 27%. The
word unigrams contribute much less., This is un-
surprising, as much of the information contained in
the word unigrams is also contained in the bigrams.
The remaining features are also useful. In particu-
lar, our cognate interference features, despite apply-
ing to only 4 of 11 languages, reduce errors by about
4%.

144



6 Conclusions and Future Work

We have described the system that we have devel-
oped for the NLI 2013 Shared Task. The system
combines features that are prevalent in the litera-
ture with our own novel character-level spelling fea-
tures and word cognate interference features. Most
of the features that we experimented with appear
to increase the overall accuracy, which contradicts
the view that simple bag-of-words usually perform
better than more complex feature sets (Sebastiani,
2002).

Our cognate features can be expanded by includ-
ing languages that do not use the Latin script, such
as Russian and Greek, as demonstrated by Bergsma
and Kondrak (2007). We utilized bilingual dictio-
naries representing only four of the eleven languages
in this task2; yet our cognate interference features
still improved classifier accuracy. With more re-
sources and with better methods of cognate identi-
fication, the cognate features have the potential to
further contribute to native language identification.

Our error-alignment features can likewise be fur-
ther investigated in the future. Currently, after ana-
lyzing texts with a spell-checker, we automatically
accept the first suggestion as the correct one. In
many cases, this leads to faulty corrections, and mis-
leading alignments. By using context sensitive spell-
checking, we can choose better corrections, and ob-
tain information which improves classification.

This shared task was a wonderful introduction
to Native Language Identification, and an excellent
learning experience for members of our group,
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