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Abstract

This paper investigates the extraction of semantic representations from bigrams. The major obsta-
cle to this objective is that while these word to word dependencies do contain a semantic component,
other factors, e.g. syntax, play a much stronger role. An effective solution will therefore require
some means of isolating semantic structure from the remainder. Here, the possibility of modelling
semantic dependencies within the bigram in terms of the similarity of the two words is explored. A
model based on this assumption of semantic coherence is contrasted and combined with a relaxed
model lacking this assumption. The induced representations are evaluated in terms of the correlation
of predicted similarities to a dataset of noun-verb similarity ratings gathered in an online experiment.
The results show that the coherence assumption can be used to induce semantic representations, and
that the combined model, which breaks the dependencies down into a semantic and a non-semantic
component, achieves the best performance.

1 Introduction
Distributional semantics derives semantic representations from the way that words are distributed
across contexts. The assumption behind this approach is that words that occur in similar contexts
will tend to have similar meanings. Firth (1957) expressed this in a well known slogan - you shall
know a word by the company it keeps. In application, these representations have proven successful in
automatic thesaurus generation (Grefenstette, 1994), enhancing language models (Coccaro and Ju-
rafsky, 1998) and modelling of reading times (Pynte et al., 2008) and the effects of priming (Landauer
and Dumais, 1997).

However, the high level identification of meaning with distributional properties leaves the ques-
tion of exactly which distributional properties are relevant to semantics a little vague. In practice, re-
searchers evaluate various approaches and select those that produce the best performance. Moreover,
other linguistic characteristics, such as syntax, are also analysed in terms of distributional properties.
Bigram distributions, for example, are commonly used to induce POS classes (e.g Brown et al., 1992;
Clark, 2003), but they have also been investigated as a basis for semantic representations (Bullinaria
and Levy, 2007).

Here we examine the question of what statistical properties can be used to distinguish seman-
tic factors from other dependencies in the distribution of words across bigram contexts. We carry
this out in terms of class based bigram language models, and explore the possibility that semantic
dependencies can be characterised in terms of coherence or similarity across the bigram. We then
evaluate the induced representations in terms of their ability to predict human similarity ratings for
noun-verb pairs. By evaluating the similarity predictions of our models across POS classes in this
way, we assess the ability of the model to focus purely on the semantic content while ignoring other
information, such as syntax.

2 Models
The intention is to induce semantic representations within a bigram model based on the assump-
tion that semantic content is coherent across the bigram. Assume that semantic information can be
captured in terms of a set, S, of semantic topics, with each word, w, having some independent prob-
ability of being used in a topic, p(w|s). Then, if the probabilities of the topics are given by p(s) and
each bigram, w1w2, belongs to a single topic, then the joint probability, p(w1w2), is given by:



p(w1w2) =
∑
s∈S

p(s)p(w2|s)p(w1|s) (1)

Rewriting this in conditional form, with p(s|w1) =
p(s)p(w1|s)

p(w1)
, gives:

p(w2|w1) =
∑
s∈S

p(w2|s)p(s|w1) (2)

This can also be expressed in a form that explicitly connects to the idea of a probability based on
semantic similarity.

p(w2|w1) = p(w2)
∑
s∈S

p(s|w2)

p(s)
p(s)

p(s|w1)

p(s)
(3)

Equation 3 can be thought of as the unigram probability of w2 modulated by its similarity to w1,
measured in terms of a weighted dot product between vectors representing the two words. In this
case, the vector components are a ratio of probabilities measure, p(s|w)

p(s) , which has been widely used
in distributional semantics (e.g. Bullinaria and Levy, 2007).

The key feature of this model is that the word probabilities in Equation 1 are independent of
position in the bigram. It is this assumption that serves to ensure that the induced topics identify a
characterisitic that is stable across the bigram, which, it is hoped, will relate to semantic content.

Relaxing this assumption produces a more general class based model, specifically the aggregate
markov model of Saul and Pereira (1997). Using superscripts to indicate the position a word occurs
in within the bigram, we write this model as:

p(wr
2|wl

1) =
∑
z∈Z

p(wr
2|z)p(z|wl

1) (4)

In contrast to Equation 1, this model makes no assumption of stability of content across the
bigram, and instead allows the word distributions, p(w|z) to be very different in the left and right
positions. Thus, this model ought to more suited to handling the word order effects that the similarity
based model cannot.

To construct a combined model, the bigram probabilities are expressed in terms of a sum over
both S and Z.

p(wr
2|wl

1) =
∑

s∈S,z∈Z
p(wr

2|s, z)p(s, z|wl
1) (5)

These terms can be broken down further based on conditional independence of s and z. The
rightmost probability, p(s, z|wl

1) separates straightforwardly.

p(s, z|wl
1) = p(s|w1)p(z|wl

1) (6)

On the other hand, s and z cannot in general also be conditionally independent given w2. How-
ever, we can use this as an approximation and then normalise the final probabilities.

p̂(wr
2|s, z) =

p(wr
2)p(s|w2)p(z|wr

2)

p(s, z)
(7)

The final model then combines these components and divides through by a normalising constant
N(w1).

p(wr
2|wl

1) =
∑

s∈S,z∈Z

p̂(wr
2|s, z)p(s, z|wl

1)

N(w1)
(8)

N(w1) =
∑
w2

∑
s∈S,z∈Z

p̂(wr
2|s, z)p(s, z|wl

1) (9)



High Medium Low

Group 1
anticipation - predict analysis - derive opinion - vanish
withdrawal - retire invasion - merge disappearance - believe

Group 2
disappearance - vanish anticipation - believe withdrawal - derive

invasion - occupy opinion - predict implication - retire

Group 3
opinion - believe disappearance - retire anticipation - succeed

implication - derive withdrawal - vanish invasion - predict

Table 1: Example items from the noun-verb similarity rating experiment.

2.1 Construction
Models were constructed based on three approaches: similarity based models, as defined by Equation
2, aggregate models, defined by Equation 4, and combined models, defined by Equation 8. The
parameters of these bigram models were optimised over a set of sentences extracted from the BNC
(BNC Consortium, 2001). 80,775,061 words from the written component of this corpus were used
as a training set, with 9,759,769 words forming a development set and the final 9,777,665 words held
back as a test set. Preprocessing included conversion to lowercase, addition of 〈start〉 and 〈stop〉 at
the beginning and ends of sentences, and replacement of words that occurred fewer than 100 times
in the training set with an 〈unk〉 token.

Optimisation of the parameters was based on the EM algorithm (Dempster et al., 1977), with
training stopped when the log-likelihood over the development set began to increase. For the pure
similarity and aggregate approaches, models were trained with numbers of induced classes ranging
from 10 to 2,000. The numbers of classes, |S| and |Z|, for the two components of the combined
models, each ranged from 10 to 100. The ratio of probabilities measure from Equation 3 was used to
construct the components of vectors which then formed the word representations, and similarity of
these vectors was measured in terms of the cosine measure.

For comparison, a bigram language model with back-off and Kneser-Ney smoothing (Kneser and
Ney, 1995) was also constructed using the SRILM toolkit (Stolcke, 2002).

3 Evaluation
The induced representations were evaluated in terms of their ability to predict semantic similarity
ratings for a set of word pairs. We measured the cosine similarity of our word representations and
correlated that with the human ratings to produce a measure of agreement. Because the strongest de-
pendencies within the bigrams are likely to be syntactic effects based on the POS classes of the two
words, measuring semantic similarity across POS classes is particularly relevant. That is, the seman-
tic representations should contain as much information about the meaning of the words as possible,
while containing as little part-of-speech information as possible, which should instead be shifted into
the other part of the model. Predicting the similarity between nouns and verbs should therefore be
an effective evaluation, as these two word classes contain the core of a sentence’s semantic content
while having substantially divergent distributional properties in regards of syntax. In this way, we
can test whether the POS differences are genuinely being ignored to allow just the semantic similarity
to be focussed on.

Thus, an experiment was run to collect similarity ratings for noun-verb pairs. Each participant
rated one of three groups of 36 noun-verb pairs, giving a total of 108 items. Each group consisted of
12 high similarity pairs, 12 medium similarity pairs and 12 low similarity pairs.

Table 1 contains a small sample of these items, with rows corresponding to the three experimen-
tal groups of participants and columns corresponding to the high, medium and low similarity sets of
items seen by each group. The items in the high similarity set (e.g. anticipation-predict) are related,
via an intermediary word, by a combination of morphology (e.g. anticipation-anticipate) and syn-
onymy (e.g. anticipate-predict), drawing on Catvar (Habash and Dorr, 2003) and WordNet (Miller,
1995) to identify these relationships. The medium and low sets are then recombinations of nouns
and verbs from the high set, with the medium items being the most similar such pairings, as rated by
WordNetSimilarity (Pedersen et al., 2004), and low being the least similar.

60 participants were paid $2 each to rate all 36 items from a single group, with equal numbers



seeing each group. The experiments were conducted online, with participants instructed to rate the
similarity in meaning of each pair of words on a scale of 1 to 5. They were initially presented with five
practice items before the experimental materials were presented with randomisation of both within
and between item orders.

Individual Spearman correlations were calculated for each participant’s ratings against the pre-
dicted similarities, and the average of these values was used as the evaluation measure for the seman-
tic representations induced by a model. A t-test on the z-transformed participant correlations was
used to assess the significance of differences between these averages.

The performance of these models simply as language models was also evaluated, in terms of their
perplexity over the test set, T , calculated in terms of the probability assigned to the test set, p(T ),
and the number of words it contains, |T |.

perplexity = p(T )−
1

|T | (10)

4 Results
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(a) Average correlations by model size for the
Similarity and Aggregate models.
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Combined models.

Figure 1: Correlations of model similarities with human ratings.

Figure 1(a) plots the average correlation between the model similarities and the human ratings
for the similarity and aggregate representations. Both models show similar strengths of correlation
and a similar pattern in relation to the size of the model, with a peak around the 50 - 200 range. The
highest correlation is 0.18, achieved by the aggregate model with 200 classes, while the similarity
model achieves a peak of 0.15 at |S| = 50. These values are not significantly different, t(59) = 0.71,
p = 0.24. The equivalence in performance of the aggregate and similarity models is not entirely
surprising, as both models, despite their differing forms, are directed at the problem of predicting the
same bigram dependencies. It may therefore be expected that the weaker semantic factors play only
a minor role within the representations generated.

In contrast, the combined models, which allow a separation of the dependencies into distinct
components, are able to achieve higher correlations, as plotted in Figure 1(b). Among these models,
the highest correlation of 0.31, which is significantly greater than the best aggregate model, t(59) =
9.35, p < 0.001, is achieved by a model having |Z| = 50 and |S| = 10. In fact, all the correlations
over 0.2 in Figure 1(b) are significantly greater at the p < 0.001 level, except |Z| = 100, |S| = 10
and |Z| = 20, |S| = 20, which are only significant at the p < 0.05 and p < 0.01 levels respectively.
This leaves only the four lowest performing combined models as not significantly outperforming
the best aggregate model. Nonetheless, these values are substantially lower than the inter-subject
correlations (mean = 0.74, min = 0.64), suggesting that the model could be improved further. In
particular, extending the span of the model to longer ngrams ought to allow the induction of stronger



and more detailed semantic representations. The fact that the best performing model only contains
10 semantic classes underscores the limitations of extracting such representations from bigrams.

In addition to the ability of these models to induce semantic representations, their performance
simply as language models was also evaluated. Figure 2 plots perplexity on the test set against
number of parameters per word (|S| + 2|Z|) for the aggregate and combined models. In general
lower perplexities are achieved by larger models for both approaches, as is to be expected. Within
this trend, the combined model tends to have a lower perplexity than the aggregate model by about
5%. The single case in which the combined model is above the trend line of the aggregate model
occurs for a model with in which a very small aggregate component, |Z| = 10, is dominated by a
large similarity component, |S| = 100.

The performance of these models does not, however, rival that of a standard bigram model with
back-off and Kneser and Ney (1995) smoothing, which achieves a perplexity of 185. On the other
hand, neither the aggregate nor combined models are explicitly designed to address the issue of small
or zero counts.
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Figure 2: Perplexity by Number of Parameters for the Aggregate and Combined Models

5 Conclusions
Our experiments produced two novel results.

Firstly, we have shown that semantic representations can be induced from the dependencies
within bigram word sequences, using an approach that derives word probabilities from similarity.
This is similar in form to prior models (e.g Coccaro and Jurafsky, 1998; Bellegarda, 1997), but
whereas they imported distributional representations from outside the model to enhance their perfor-
mance, we use this model form to induce semantic representations within the model.

Secondly, we have shown that this approach is most effective when the model breaks these de-
pendencies down into both a semantic and a non-semantic component. Typically, semantic classes
have been induced in isolation (Landauer and Dumais, 1997; Bullinaria and Levy, 2007) or applied
to long-range structure while short-range structure is handled by a separate component (Boyd-Graber
and Blei, 2008; Griffiths et al., 2004; Wallach, 2006). Here, we have shown that even simple bigram
dependencies can be conceived as breaking down into semantic and non-semantic components, as
opposed to using those components to model two different types of dependency.

We also introduced a novel evaluation dataset for semantic representations, containing noun-verb
similarity ratings. Correlation of these human ratings with the model similarities allows a quantifica-
tion of the extent to which a model ignores POS information to focus on semantic content.

In future work, we hope to extend the span of our model and to characterise syntax, semantics
and their interaction in a more sophisticated manner. Particularly interesting is the question of the
extent to which the form of our model is specific to languages, such as English, in which syntax is
identified with word order and how this might be adapted to free word order languages.
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