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Abstract

We are in the process of creating a pipeline for our HPSG grammar for Norwegian (NorSource).
NorSource uses the meaning representation Minimal Recursion Semantics (MRS). We present a step
for validating an MRS and a step for pre-processing an MRS. The pre-processing step connects our
MRS elements to a domain ontology and it can create additional states and roles. The pipeline can
be reused by other grammars from the Delph-In network.

1 Introduction

NorSource1 (Beermann and Hellan, 2004; Hellan and Beermann, 2005), a grammar for Norwegian, is
a Head-Driven Phrase Structure Grammar (HPSG) (Sag et al., 2003), developed and maintained with
the Linguistic Knowledge Builder (LKB) tool (Copestake, 2002), and originally based on the HPSG
Grammar Matrix, which is a starter kit for developing HPSG grammars (Bender et al., 2002). An HPSG
grammar can use Minimal Recursion Semantics (MRS) as meaning representation (Copestake et al.,
2005). In order to speed up the parsing process (the unification algorithm), a HPSG grammar can be
compiled and run (parsing) with the PET2 tool (Callmeier, 2001). The Flop program in PET compiles
the LKB grammar and the Cheap program runs it. An alternative to the PET system is the Answer
Constraint Engine (ACE)3 created by Woodley Packard. ACE can parse and generate using the compiled
grammar.

Our goal is to create a pipeline for the NorSource grammar and use it to create small question-answer
systems or dialogue systems. The first step in the pipeline is the parsing process with ACE. The next
step is to select the most suitable MRS. We use Velldal’s ranking model (Velldal, 2008). The model
is based on relevant sentences from our system, treebanked with [tsdb++] (Oepen et al., 2002; Oepen
and Flickinger, 1998). The selected MRS is checked with the Swiss Army Knife of Underspesification
(Utool) (Koller and Thater, 2006b) and our own validating procedure. Only well-formed MRSes are used
in our pipeline. We also use Utool to solve the MRS and to eliminate any logically equivalent readings.
The next step is to pre-process the MRS (calculate event structure and generate roles), and the last step
in our pipeline creates a First-Order Logic formula from the MRS (only the easy cases).

Our contribution is the validating step and the pre-processing step.
In the next section, we give a brief introduction to MRS. Then we present details from our validating

procedure. Next, we solve an MRS and eliminate logically equivalent readings with Utool. We pre-
process the selected MRS in section 6. At last, we look at a way to create a First-Order Logic formula
from a solved MRS and we present a few challenges from our research.

1http://typecraft.org/tc2wiki/Norwegian_HPSG_grammar_NorSource
2http://pet.opendfki.de/
3http://moin.delph-in.net/AceTop



2 Minimal Recursion Semantics

The elements of an MRS can be defined by the structure mrs(T, I, R, C), where T is the top handle, I is
the index, R is a bag of elementary predictions (EP), and C is a bag of constraints.

Every dog chases some white cat (1)

(1) can have the following MRS (created for demonstration purposes):

T h0,

I e1,

R { h1:every(x1,h3,h8), h3:dog(x1), h7:white(x2), h7:cat(x2), h5:some(x2,h10,h9),
h4:chase(e1,x1,x2) }

C h10 =q h7

An MRS can be in two states: unsolved or solved. An algorithm (LKB and Utool) brings an MRS from
the unsolved state into one or more solved states. An unsolved MRS has holes that are not in the set of
labels, and a solved MRS has holes that are from the set of labels. The set of labels in our example: {h1,
h3, h4, h5 and h7}. The set of holes: {h3, h8, h9 and h10}. A hole can be either open or closed. A hole
is open when it isn’t in the set of labels, and a hole is closed when the hole is in the set of labels. Hole
h3 is closed in our example.

3 Validate MRSes From NorSource

We want to search our MRSes for properties that can lead to problems. The Utool solvable function
checks if an unsolved MRS can be transformed into one or more solved MRSes without violating the
MRS definitions.4 Our validating procedure contains a set of functions. We create variables or list
of variables for each function that is positive. The functions are: empty index, empty feature, empty
reference, key conjunction, and argument EP conjunction. An empty index exist when the index value
refers to a variable that is not an EP’s arg0. An empty feature exist when a feature value refers to a
variable that is not found in the EP’s arguments. An empty reference exist when an argument refers to a
variable that is not an EP’s arg0 and the variable is not in the set of feature values. A key conjunction exist
when more than one EP in an MRS have the same arg0 and they are not quantifiers. An argument EP
conjunction exists when an argument contains a label that is an EP conjunction. In Table 1, the variable

EP Feature
h3:pred1(arg0(e1),arg1(h9)) e1,feature1,value1

h9:pred2(arg0(u1),arg1(x1),arg2(u10)) u12,feature2,value2

h9:pred3(arg0(u1),arg1(x1),arg2(x2),arg3(u15)) u15,feature3,value3

h2:pred4(arg0(x1)) u16,feature4,value4

h4:pred5(arg0(x2))

Table 1: Eps and Features

u12 is an empty feature. The variable u10 is a empty reference. The arg0 of pred2 and pred3 form a key
conjunction. The argument h9 in arg1 of pred1 is an argument EP conjunction.

4Utool is stricter than the LKB software, see Fuchss et al. (2006).



4 Selecting An MRS

Before we create a ranking model, we analyze and compare the MRSes from our domain.5 We use the
variable-free solution Oepen and Lønning introduced (Oepen and Lønning, 2006). We compare parts
from the syntax tree, the EPs, the features, and if the MRS is solvable or not. We also present results
from our validation procedure. If we parse (2) with NorSource, it yields 9 MRSes. Parts of the EP
information is presented in Table 2.

1 2 3 4 5 6 7 8 9
legge v ARG1 addressee-rel x x x x x x x x x
legge v ARG2 bok n x x x x x x x x x
legge v ARGX på p x x
på p ARG1 bok n x x x x x x x
på p ARG1 legge v x x
på p ARG2 bord-1 n x x x x x x x x x

Table 2: Compare MRSes

Legg boken på bordet
Put the book on the table

(2)

We use the LOGON software to treebank ([tsdb++]) and to create our ranking model (we have copied
adjusted the scripts in folder lingo/redwoods). We parse with the ranking model and we select the first
MRS.

5 Solving The MRS

Utool solves an MRS using a dominance graph and a chart (Niehren and Thater, 2003). The redundancy
elimination algorithm (Koller and Thater, 2006a) takes a chart and a redundancy elimination file as input
and returning the chart without the redundancy. We have created a redundancy elimination file according
to (Koller and Thater, 2006b) for our quantifiers.

6 Pre-Processing The Selected MRS

In the pre-processing step we focus on the event structure and roles. By event structure we mean: sub
events, aspectual and causal notions. Vendler grouped verbs into classes based on their temporal prop-
erties (Vendler, 1967). The verbs are classified according to duration and presence of a terminal point.
A verb with a terminal point is called telic (the verb culminates). Vendler’s classes are also known by
other terms such as: eventualities, situations, lexical aspect or Aktionsart. The classes are: state, point,
process, achievement, and accomplishment. The verb’s connection to a class is not static, because a
verb argument can move an event from one class into another. This phenomenon is called aspectual
composition or coercion (Moens and Steedman, 1988).

A predicate string in an EP can contain the prefix “ ”, the suffix “ rel”, a name, a part-of-speech type
and a sense number. The name, the part-of-speech type and the sense number can be connected to a
domain ontology definition. If we don’t have the sense number, we can have a list of domain ontology
definition candidates. A predicate string can also be a unique name like in “first position prominent”.

Our goal with the pre-processing is:

• to connect the names in the predicate strings to a domain ontology

• to check if the predicate and the predicate arguments are valid according to the domain
5A demo for NorSource: http://regdili.idi.ntnu.no:8080/comparemrs/compare



• to create a common structure for a set of verbs

• implement an algorithm for roles and states

The main elements of our solution are a predicate tree, an algorithm, a domain ontology, and a set of
object-oriented classes. The predicate tree is created from the predicates and their arguments.

      kjøre

    ____|___

   /        \

 frank      mod

          ___|__

         /      \

        vei     til

                 |

                 |

             dragvoll

frank_na1

vei_n1

dragvoll_na11
til_p

subpath

path

movement

Figure 1: The Predicate Tree and the Movement Class

Frank kjører veien til Dragvoll
Frank drives the road to Dragvoll

(3)

The predicate tree on the left in Figure 1 is created from (3). The algorithm searches the predicate tree
and for each node in the tree it finds templates from the domain ontology. A template contains checks
against the domain ontology, a return function and a return class. One of the templates used in our
example is shown in Table 3. The variable X is replaced by vei n1 in our example. The final class for

key nodes check list return class
mod5 node(n,X) isa(X,path n1) new path

node(subpath,til p1)

Table 3: Template Example

(3) is shown on the right in Figure 1. We have defined three return functions: “new”, “call” and “fork”.
“New” creates the return class from its arguments. “Call” is used when one node consumes another.
For example in “VP PP”, the PP can be consumed by the VP. “Fork” is used when different classes are
connected. For example in ”My uncle goes to town” we have a Family class and a Movement class that
are connected through the variable for the uncle. The Movement class for (3) contains the following
information:

movement
event(e1:kjøre v1)
subject(x2:frank na1)
path

object(x9:vei n1)
end-point(x1:dragvoll na1,t2)

checks
has(dragvoll na1,location)
isa(vei n1,path n1)

templates
[tv2, pp2, mod5 ]

The Movement class is a result from analyzing a number of different sentences about objects changing
location. The Movement class is a process and it can contain a path, a departure, an arrival, a road (named
path), a vehicle etc. A number of these objects are connected. For example the beginning of the process
and the beginning of the path. The beginning of the path and the departure. We have implemented an
algorithm for detecting the roles work and cargo. Work indicates an object that is using energy. Cargo
indicates an object that is being transported.



The classes can be used as they are in a further reasoning process, or they can generate EPs and
features that are inserted into the MRS. For example, the state at location(x4,x1) can be inserted in an
EP conjunction.

7 Logic Form

The solved MRSes are not yet formulas in First-Order Logic. We have to convert arguments that are
in a Higher-Order Logic, insert the not operator, and use the quantifiers from First-Order Logic. An
argument that has an Ep conjunction or has a handle needs to be rewritten. An argument with a handle
is replaced with the arg0 from the EP of the handle. We can give a reference and a predicate to the
conjunction or we can find a candidate in the conjunction. We use the latter method. The predicate
neg adv rel is converted to the operator not. We have connected some of the NorSource quantifiers to

the First-Order Logic quantifiers exist and all. Quantifiers like some, few, etc can be assigned to a group
/ type of their own. We place an operator between the arguments “RSTR” and “BODY” in our quantifiers:

∃(y)[pred1(y) operator1 ∀(x)[pred2(x) operator2 pred3(x, y)]]

We have defined operator1 as ∧ and operator2 as →. The formula from (3) is:

∃(x1)[na(x1, dragvoll)∧∃(x2)[na(x2, frank)∧∃(x9)[vei n(x9)∧kjøre v(e1, x2, x9)∧ til p(u1, x9, x1)]]]

The meaning of the MRS quantifiers are preserved with the extra predicates: q meaning(u100,x1,def),
q meaning(u101,x2,def) and q meaning(u102,x9,def). These predicates need to be inserted into the logic
formula.

8 Challenges

The first challenge is to find a representative selection of sentences from the domain. The sentences are
treebanked and used in our ranking model, and their selected MRSes are also used for creating domain
ontology definitions. We use a virtual profile where we can add new annotated profiles.

We need to find a way to process our quantifiers that are not in First-Order Logic. At this early
stage we can use off-the-shelf theorem provers and model finders as described in Blackburn’s and Bos’
reasoning framework for First-Order logic (Blackburn and Bos, 2005). We must classify different kinds
of questions and commands, and we need to describe how to process them.

So far, we have connected types for each Ep together, but sometimes a more detailed structure is
required in order to express meaning. A part of one structure can connect to a part of another. In the
examples: “the cat sits in the car”, “the cat sits on the car”, and “the cat sits under the car”, there are
three different locations related to the car. We have a container in the car, an area on top of the car, and
a space under the car. This extra information needs to be used together with the MRS. Sometimes more
ambiguities are introduced and we need a ranking. For example in “Fred poured coffee on the thermos”,
the most probable is when the coffee ends up inside the thermos and the less probable version where the
coffee is poured on the outside of the thermos. We also want to use previous situations and the discourse
so far in our pre-processing step.
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Abstract

This paper presents an approach to the annotation of quantification, developed in the context of
an ISO project aiming to define standards for semantic annotation. The approach is illustrated for a
range of quantification phenomena, including cumulative, collective, and group quantification.

1 Introduction

In 2012, two ISO standards for semantic annotation were established, one for time and events (ISO
24617-1), and one for dialogue acts (ISO 24617-2); others are under development for semantic roles,
spatial information, and discourse relations. Quantification turns up as a problem in nearly all of these
efforts. ISO 24617-1 has some provisions for dealing with quantification (see Pustejovsky et al., 2010),
but these are too limited and do not always give correct results (Bunt and Pustejovsky, 2010).

The annotation of quantification faces three main issues:

1. Which set of semantic features, expressed most likely as XML attributes and values, adequately
characterize a wide range of forms of quantification;

2. Is it possible to define a formal semantics of these expressions;
3. How can the relevant features (attributes and values) be defined as components of the semantic

annotations in a way that respects compositional semantics?

Bunt ( 2005) proposed a way to representing quantifications in terms of feature structures, however,
in this proposal the properties of a quantification are all expressed as properties of an event, which is
inconvenient for annotators and is hard to combine with a compositional NP semantics. This paper
presents an approach where quantification features are distributed over annotation structure components
in a way that corresponds to their linguistic expression in syntactic structures, and shows the semantic
adequacy of the proposal by a compositional translation into discourse representation structures.

2 Aspects of quantification

Quantification occurs when a predicate is applied to sets of arguments. Questions then arise concerning
the precise way that the predicate is applied to members of these sets. As an example, consider the
sentence (1a); some of the questions that may be asked (and answered) are (1b) - (1f):

(1) a. Although a threat had been made before, three men rather unexpectedly moved both pianos.
b. How many men were involved? (Answer: Three.)
c. How many pianos were involved? (Answer: Two.)
d. Did the same men move both pianos? (Answer: Yes.)
e. Did the men act collectively or individually? (Answer: Collectively, probably.)
f. Were the pianos acted upon collectively or individually? (Answer: Individually, probably.)



Given the restriction part of a quantification, that specifies a domain from which elements can be
taken that participate in certain events individually, in groups, or collectively, the distribution is a function
that computes the set of those entities that participate in the events as agents, as themes, as instruments,
etc. We call such a set of participants a predication domain, and the domain, defined by the restriction,
the reference domain. In the case of individual distribution, the two are the same.

A common function of proportional quantifier words like all, some, and most, and of absolute quanti-
fiers like three, more than five, 2 litres of is to specify the fraction of the reference domain that is involved
in the events under consideration. Numerical and amount quantifiers may also be used to indicate the
size of a reference domain, like twelve in The twelve students in this room all speak two languages.

Proportional and absolute quantifiers can also be used to indicate the number/amount of a predication
domain per element of another predication domain, like five in Each of the dogs ate five sausages.

Some of the most important aspects of quantification, distinguished in (Bunt, 1985) are:

(2) 1. the quantifier’s restriction, describing the reference domain of the quantification;
2. the distribution, defining the predication domain;
3. size of the reference domain;
4. involvement of the reference domain (in absolute or relative terms);
5. relative scoping of the quantifications associated with argument NPs;
6. scoping of NP-quantifications relative to quantified events;
7. size of groups of elements from a reference domain;
8. number of elements of a reference domain involved per element of a predication domain.

3 Events, participants, and quantification annotation

In a davidsonian approach to meaning, we may view the combination of a verb with its arguments
as introducing a set of events (‘eventualities’, more generally) of the type indicated by the verb, and
with a number of properties concerning the way in which the participants of these events are involved.
Applying this view to sentence (1a), we obtain a descriptions in terms of a set of move-events, a set
of men, participating in these events as agents, and a set of pianos that participate as themes. This is
exactly what is expressed in an annotation of semantic roles according to the ISO standard 24617-4
under development (see Bunt & Palmer, 2013):

(3)

[v1:] <event xml:id="e1" target="#m2" eventType="move"/>
[p1:] <participant xml:id="x1" target="#m1" entityType="man"/>
[p2:] <participant xml:id="x2" target="#m3" entityType="piano"/>
[L1:] <srLink event="#e1" participant="#x1" semRole="agent"/>
[L2:] <srLink event="#e1" participant="#x2" semRole="theme"/>

Since quantification occurs when two or more sets of arguments are related by a predicate, we can view
the quantifications in (1a) as due to the Agent and Theme predicate relating sets of events and partici-
pants. This information can thus be represented as properties of the semantic role links (<srLink>),
adding features to these links as follows, where the feature @signature="set" expresses that the
sentence is about sets of events and participants :

(4)

[v1:] <event xml:id="e1" target="#m2" eventType="move" signature="set"/>
[p1:] <participant xml:id="x1" target="#m1" entityType="man”

signature ="set" involvement="3"/>
[p2:] <participant xml:id="x2" target="#m3" entityType="piano"

signature ="set" definiteness="def" involvement="2"/>
[L1:] <srLink event="#e1" participant="#x1" semRole="agent"/>

distribution="collective"/>
[L2:] <srLink event="#e1" participant="#x2" semRole="theme"

distribution="individual"/>

The correctness and usefulness of annotating quantification this way depends on how well it deals
with the three issues mentioned in Section 1: expressive adequacy of attributes and values; their semantic
adequacy; and compatibility with compositional phrase semantics. These issues are addressed next.



4 Representational and semantic adequacy

Of the information types listed in (2), those numbered 1, 2, 4, and 8 can be represented by the attributes
and values shown in (4). For types 3, 5, 6 and 7, the attribute @cardinality is defined for <event>
(for “say twice” etc.) and <participant> elements; the attribute @outScoping allows the expres-
sion of relative scope restrictions; and the values of the @groupCard attribute can be used to indicate
group sizes in group quantifications. This provides the expressive power to represent a wide range of
quantification phenomena.

The issue of compatibility with compositional NP semantics arises because we propose to represent
some of the properties of a quantification as parts of semantic role links, where traditionally the semantic
representation of quantification is considered to be part of NP semantics. This is in particular the case
with distribution, as in (4). Having @distribution as an attribute of <participant> elements
would run into problems for a sentence such as The men had a beer before they moved the piano, where
the subject NP should be interpreted individually for the drinking, but collectively for the lifting.

The semantic adequacy of the proposed annotation format can be shown by defining a systematic
translation of annotations into DRSs, following Bunt (2011; 2013). XML elements describing sets of
events or participants, like those in (4), are translated to a DRS which introduces a higher-order (i.e.
set-valued) discourse marker,1 and conditions translating the other features. DRSs interpreting linking
elements introduce discourse markers for the linked sets of elements, and conditions that further charac-
terize the link, e.g.:

[v1:]; 〈{E1},{〈〈{e},{e ∈ E1}〉 ⇒ 〈{},{move(e)}〉〉}〉, or in box form:

E1

e

e ∈ E
⇒

MOVE(e)

[p1]: ;

X

card(X)=3
x

x ∈ X
⇒

MAN(x)

[L1:];

E, X

e

e ∈ E
⇒

AGENT(e,X)

The merge of these DRSs plus those translating [p2] and [L2] yields the satisfactory result:2

[p1 ∪ L1] ∪ [p2 ∪ L2] ∪ v1 =

E, X , Y

card(X)=3 card(Y )=2

e

e ∈ E
⇒ MOVE(e)

AGENT(e,X)

y

y ∈ Y
⇒

e

e ∈ E
PIANOcr(y)
THEME(e,y)

x

x ∈ X
⇒

MAN(x)

Note that in this example both NPs outscope the verb; their relative scoping is irrelevant since the group
of three men acted collectively, as a single entity. While verbs very often have narrow scope relative to
argument NPs, this is not always the case, as (5) illustrates. Using the attributes and values introduced
so far, the wide-scope interpretation of “die” is easily annotated:3

(5) a. Everybody will die.
b. Annotation for wide-scope ‘die’:

1The presentation is simplified here; see Bunt (2013) for the use of pairs 〈m,x〉 of markables and discourse markers, where
the markables make sure that only the intended marker variables are unified upon DRS-merging.

2The subscript ‘cr’ (for ‘contextually relevant’) indicates the interpretation of the definiteness of the NP both pianos.
3We assume here an approach to semantic roles which allows an event to have more than one theme, such as the LIRICS

annotation scheme (Petukhova & Bunt, 2007).



[v1:] <event xml:id="e1" target="#m1" eventType="die" signature="set"
cardinality="1"/>

[p1:] <participant xml:id="x1" target="#m2" entityType="person"
signature="set" involvement="all"/>

[L1:] <srLink event="#e1" participant="x1" semRole="theme"
outScoping="#e1 #x1"/>

c. Semantics:

E, X

card(E) = 1
x

e ∈ E
⇒

DIE(e)

x

PERSON(x)
⇒

THEME(e,x)

Cases of quantified NPs with unequal scope are readily annotated in the format outlined here, but in order to
support these annotations by a well-defined semantics a new kind of merge operation on DRSs is neede, the scoped
merge, which is defined as follows:

(6)

δ

ε

α1

α2
⇒

β1

β2

⊕ γ =

δ

ε

α1

α2
⇒ (

β1

β2
∪ γ)

For instance, applied to the classical scoping example (7a), we obtain the semantics (7c) of the annotation (7b):

(7) a. All the students read two papers
b. Annotation for wide-scope two papers:

[v1:] <event xml:id="e1" target="#m1" eventType="read" signature="set"/>
[p1:] <participant xml:id="x1" target="#m2" entityType="student"

definiteness="def" signature ="set" involvement="all"/>
[p2:] <participant xml:id="x2" target="#m3" entityType="paper"

signature ="set" cardinality="2" involvement="all"/>
[L1:] <srLink event="#e1" participant="x1" semRole="agent"

distribution="individual" outScoping="#x1 #e1"/>
[L2:] <srLink event="#e1" participant="x2" semRole="theme"

distribution="individual" outScoping="#x2 #x1"/>
c. Semantics:

[p2 ∪ L2] ⊕ [p1 ∪ L1∪v1] =

Y

card(Y)=2
y

y ∈ Y
⇒

E, X

PAPER(y)
x

x ∈ X
⇒

STUDENTcr(x)

e

e ∈ E
⇒

x

READ(e) AGENT(e,x)
x ∈ X THEME(e,y)

x

x ∈ X
⇒

e

e ∈ E AGENT(e,x)

Besides scoped quantifications, also unscoped, partially scoped, and equally scoped quantifications
have to be considered. Partially and unscoped scoped cases, where there is no or incomplete information
about relative scoping, are easily annotated by not specifying values for @outScoping attributes, and
interpreted with underspecified DRSs (see Reyle 1993; 1994). Equally scoped quantifications, as occur-
ring in cumulative quantification (Scha, 1981) and in group quantification (Bunt, 1985), can be annotated
using the attribute @eqScope, as shown in (8) and (9). The semantics is obtained simply by using the
ordinary rather than the scoped merge of the sub-DRSs.

(8) a. Three breweries supplied fifteen inns.



b. Annotation of cumulative reading (In total 3 breweries supplied in total 15 inns):
[v1:] <event xml:id="e1" target="#m2" eventType="supply" signature="set"/>
[p1:] <participant xml:id="x1" target="#m1" entityType="brewery"

signature ="set" involvement="3"/>

[p2:] <participant xml:id="x2" target="#m3" entityType="inn"
signature ="set" involvement="15"/>

[L1:] <srLink event="#e1" participant="#x1" semRole="agent"
distribution="individual" eqScope="#x1 #x2"/>

[L2:] <srLink event="#e1" participant="x2" semRole="theme"
distribution="individual" eqScope="#x2 #x1"/>

c. Semantics:

(p1 ∪ L1) ∪ (p2 ∪ L2) ∪ v1 =

E, X , Y

card(X) = 3 card(Y ) = 5

x

x ∈ X
⇒

e

BREWERY(x)
e ∈ E
AGENT(e,x)

y

y ∈ Y
⇒

e

INN(y)
e ∈ E
THEME(e,y)

e

e ∈ E
⇒

x, y

SUPPLY(e)
x ∈ X y ∈ Y
AGENT(e,x) THEME(e,y)

Group quantification, as in Three boys played soccer against five girls on the reading where teams of
3 boys played against teams of 5 girls, can be annotated by using, besides the @eqScope attribute, the
@groupCard attribute. The semantics is obtained by interpreting the participant annotations as DRSs
introducing discourse markers for sets of sets of 3 boys and 5 girls.

(9)

[e1:] <event xml:id="e1" target="#m2" eventType="play" signature="set"/>
[p1:] <participant xml:id="x1" target="#m1" entityType="boy"

signature ="set" groupCard="3"/>
[p2:] <participant xml:id="x2" target="#m3" entityType="girl"

signature ="set" distribution="group" groupCard="5"/>
[L1:] <srLink event="#e1" participant="x1" semRole="agent"

distribution="group" eqScope="#x1 #x2"/>
[L2:] <srLink event="#e1" participant="x2" semRole="co-agent"

distribution="group" eqScope="#x2 #x1"/>

5 Concluding Remarks
We have described the essentials of a way of annotating quantification phenomena where the features
that characterize different forms of quantification and their properties are distributed over components
of annotation structures in a way that corresponds to their linguistic expression (e.g., involvement and
cardinality are features of <participant> components, corresponding to their expression in NPs).

Taking a davidsonian approach, we have introduced attributes and values for events, event partici-
pants, and the semantic roles of participants in events. However, the view of quantification which under-
lies this is more general; when predicate and argument structures are used, rather than events with partic-
ipants and semantic roles, that is easily accommodated, by introducing <predicate>. <argument>,
and <argLink> elements, and e.g. attaching distribution and scoping features to the letter, as in:

(10) <argLink pred="#P1" arg="#x1" argNum="arg1" distr="collective"/>

Quantification over events, time and place can be annotated in a similar way. As suggested by
Lee & Bunt (2012), Temporal quantification can be annotated by adding features to the <event> and
<timex3> elements defined in ISO 24617-2 and to the <tLink> that represents the semantic relation
between a set of events and a set of temporal entities (as in Most of the professors teach every Monday.

Clearly, something similar can be done for the annotation of quantifications over events and space,
as occurring in Policemen can be found at every streetcorner, adding the same features to the elements
defined in the ISO-Space language under development (see Pustejovsky et al., 2012).
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Abstract

In this paper we present a pragmatic account of scope alternation involving universal quantifiers
in a lexicalist framework based on CCG and DRT. This account can derive the desired reading for
96% of all cases of scope interaction involving universal quantification mediated by prepositions in
a real corpus. We show how this account allows for recasting scope resolution as a simple token
classification task, providing a simpler handle for statistical approaches to scope resolution than
previous accounts.

1 Introduction

The correct handling of scope-bearing operators such as quantifiers, negation and intensional verbs is
crucial for constructing logical form from text that capture the intended meaning. A lot of work has been
done to describe the scope alternation behavior especially of quantifiers and to construct underspecified
meaning representations from which all (theoretically) possible readings of a sentence containing them
can be enumerated (Reyle, 1993; Bos, 1996; Copestake et al., 2005; Egg et al., 2001). The problem
of finding the preferred reading in each concrete case has also been addressed, using machine learning
(Higgins and Sadock, 2003; Andrew and MacCartney, 2004; Srinivasan and Yates, 2009; Manshadi and
Allen, 2011).

Despite these efforts, existing wide-coverage semantic parsers do not typically resolve scope. Either
the semantic representations they output are shallow and do not use logical quantifiers, which is sufficient
for many applications but not for model-theoretic reasoning. Or they leave the output underspecified or
always deterministically pick the same scoping behavior for a given quantifier.

How to make a semantic parser aware of scope alternation? We argue that an additional layer of tags
is a good way. A semantic parser can use these tags to guide its decisions—just like it might use a layer of
word sense tags and a layer of named-entity tags, and just like a syntactic parser uses part-of-speech tags.
Scope tags can guide the construction of logical forms from the start and thereby avoid the additional
computational and representational complexity of underspecified representations. At the same time, this
approach avoids the need to change the syntactic parsing model.

In this paper we show how we applied this technique to the semantic parsing system of Curran
et al. (2007). It consists of C&C, a statistical syntactic parser whose output includes predicate-argument
structures, and Boxer, a semantic construction component which builds interpretable semantic repre-
sentations. The resulting enhanced system is being used in constructing the Groningen Meaning Bank
(GMB), a large corpus of English text annotated with logical form (Basile et al., 2012).

2 Formal Background

Boxer’s lexical-semantic framework (Bos, 2009) uses the output of the C&C parser, which consists of
derivations in Combinatory Categorial Grammar (CCG; Steedman, 2001). In these derivations, words
and smaller constituents combine into larger constituents using combinatory rules such as forward ap-
plication, which combines a functor category X/Y : f with an argument category Y : a to yield a new
constituent with category X : f@a (1-place function f applied to a). Left of the colon are syntactic



λp.(
x

member(x)
; (p@x)) λp. x

member(x)
⇒ (p@x)

Figure 1: Generalized quantifiers denoted by the NPs a member and every member

λio.λdo.λsu.λmp.(su@λx.(io@λy.(do@λz.(

e

give(e)
Agent(e, x)

Recipient(e, y)
Theme(e, z)

; (mp@e)))))

Figure 2: Semantics of the verb give, ignoring tense. The core consists of a DRS introducing an event discourse referent e and
relating it to the arguments using thematic role relations. The modifier semantics is applied to e, the result is combined with
the core DRS using merge reduction (;). The rest is largely for dealing with NP arguments.

categories that determine the ways in which constituents are allowed to combine, right of it are semantic
categories that specify the semantics of a constituent based on the semantics of the constituents that com-
bined to form it. There are a number of combinatory rules besides forward application, and each specifies
syntax and semantics in a similar way. Boxer’s most important task is thus to assign a semantics to each
word; given the derivation, the semantics of each phrase then follows deterministically.

The semantics of all functor categories, such as verbs and prepositions, must be prepared to combine
with their arguments and therefore must be functions. They are specified using the notation of the lambda
calculus. For example, the semantics of a ditransitive verb has the form λio.λdo.λsu.sent where io,
do, su are variables standing for the semantics of the indirect object, the direct object and the subject
respectively, reflecting the order in which the verb arguments combine syntactically, and sent is the
semantics of the resulting sentence, specified in terms of the verb meaning and io, do, su.

Boxer uses a neo-Davidsonian event semantics, expressing verb meanings using event individuals
that permit an unlimited number of verb modifiers. This motivated a decision to represent sentence
meanings themselves as functions—from event properties to sentence meanings—to allow modifiers
to combine with them. sent above is therefore always of the form λmp.drs where mp is a variable
standing for an event property and drs is an expression that evaluates to a proper truth-theoretic meaning
representation in the form of a discourse representation structure (DRS; Kamp and Reyle, 1993).

All noun phrases are analyzed as generalized quantifiers, i.e. functions from individual properties to
DRSs. Figure 1 shows the semantics of a member and every member as examples. Verb semantics take
the status of NPs as generalized quantifiers into account by using predicate abstraction: they apply an
NP semantics to a property that expresses the core verb meaning, modifier meanings, and meanings of
any previously absorbed arguments. For example, for a ditransitive verb, the drs part above has the form
(su@λx.(do@λy.(io@λz.drs′))). Figure 2 shows a full semantics of the verb give.

3 Scope-mediating Categories

3.1 Verbs

It is easy to see from Figure 2 that in our lexical-semantic framework, it is the semantics of a verb that
determines the relative scope of its arguments. For example, with the given lexical entry, the sentence
A lecturer gave every student a book receives an interpretation with a unique lecturer, but if we swap
the substrings su@λx and io@λy, every student got a book from a potentially distinct lecturer. We thus
account for scope ambiguity by giving verbs different interpretations, as in the proposal of Hendriks
(1993). Boxer can generate an appropriate lexical entry for any scope order given a tag on the verb
encoding the scope order of arguments—e.g., for a three-place verb, one of 312, 321, 132, 123, 231, 213.



Table 1: Eight types of scope interaction involving universal quantifiers, mediated by a preposition. Columns indicate what
the preposition attaches to (verb or noun phrase), which of its arguments contains the universal quantifier (object or the phrase
it attaches to), and whether the universal quantifier has wide or narrow scope. All examples are from the Groningen Meaning
Bank (GMB); numbers in brackets are GMB document identifiers.

att ∀ in ∀ scope example count

(a) NP obj wide Finally the gorgeous jewel of the order, gleaming upon the
breast of every member, suggested “your Badgesty,” which was
adopted, and the order became popularly known as the Kings of
Catarrh. [72/0696]

115

(b) NP att wide All such attacks by drone aircraft are believed to be carried out
by U.S. forces. [76/0357]

32

(c) VP obj wide Jobs grew in every sector except manufacturing, with much
of the growth due to hurricane clean-up efforts in Florida.
[97/0059]

57

(d) VP att wide NATO says militants surrounded the outpost, firing from all di-
rections with rocket-propelled grenades, small arms and mor-
tars. [92/0311]

25

(e) NP obj narrow He is the former director of national intelligence, the head of all
U.S. intelligence agencies. [59/0286]

44

(f) NP att narrow The official Xinhua news agency says all 28 workers in a mine in
northwestern Shaanxi province died when an underground cable
caught fire on Saturday night. [40/0608]

16

(g) VP obj narrow Responsibility for Africa is currently fractured under all three.
[90/0450]

11

(h) VP att narrow Opening batsman Jamie How led all scorers with 88 runs as
New Zealand reached 203-4 in 42.1 overs. [13/0199]

17

(i) NP obj neutral He said methods such as abortion do not fight poverty or help
a country’s development but actually constitute “the destruction
of the poorest of all human beings.” [13/0428]

1

(j) NP att neutral It tacitly encouraged Iraq’s minority Sunni Muslims to vote,
saying all segments of the Iraqi people must go to the polls.
[52/0038]

83

(k) VP obj neutral The preferred stock, which would have a dividend rate of $ 1.76
a year, would be convertible into Heritage common at a rate of
four common shares for each preferred. [38/0686]

3

(l) VP att neutral The program airs in 40 countries worldwide, and every Idolwin-
ner records through Sony BMG. [75/0494]

52

3.2 Prepositions

Scope interactions involving universal quantifiers and mediated by prepositions can roughly be classified
along three binary distinctions: whether the preposition attaches to a verb or a noun, whether it is the
object of the preposition or the phrase it attaches to that contains the universal quantifier, and whether the
universal quantifier takes wide scope over the other argument of the preposition. Table 1 has an example
for each situation.

Whether the universal quantifier must take wide scope depends on the desired interpretation. It
should take wide scope if the non-universal argument introduces an entity that is non-specific, i.e. whose
extension depends on the instantiation of the universally quantified-over variable. In this case, the uni-
versal argument should take wide scope. This is the case in (a–d). On the other hand, if the non-universal
argument introduces an existentially quantified-over variable that is necessarily the same for all instan-
tiations of the universally quantified-over variable, the non-universal argument must take wide scope.
This is the case in (e–h). There are also cases were neither of the two criteria applies, e.g. because the
non-universal argument is a definite that should be interpreted at a global level. Examples are shown



head of all agencies

N (N\N)/NP NP

λx.
head(x) λobj.λp.λx.((p@x); (obj@λy.

of(x, y)
)) λp. x

agency(x)
⇒ (p@x)

>
N\N

λp.λx.((p@x); y
agency(y)

⇒
of(x, y)

)

<
N

λx.
head(x)

y
agency(y)

⇒
of(x, y)

∗
NP

λp.(

x
head(x)

y
agency(y)

⇒
of(x, y)

); (p@x))

Figure 3: NP derivation with narrow-scope modifier

leaders of all states
NP (NP\NP)/NP NP

λp.(
x

leader(x) ; (p@x)) λobj.λnp.λp.((obj@λy.(np@λx.(
of(x, y)

; (p@x)))) λp. x
state(x)

⇒ (p@x)

>
NP\NP

λnp.λp. x
state(x)

⇒ (np@λy.(
of(x, y)

; p@y))

<
NP

λp. x
state(x)

⇒ (

y
leader(y)
of(x, y)

; (p@x))

Figure 4: NP derivation with wide-scope modifier

in (i–l). Finally, in rare cases, both of the aforementioned criteria may apply simultaneously. The only
example we found of this in the corpus is given in (1) below, where the modifier in all major cities and
towns should be outscoped by an Islamic alliance, but outscope members. In such cases, our scheme is
too coarse-grained to derive the desired semantics.

(1) Members of an Islamic alliance and other parties took to the streets Saturday in all major cities
and towns, where speakers denounced General Musharraf for breaking his promise. [50/0210]

Scope alternation in these configurations can be effected using just two scope tags on prepositions, indi-
cating modifier wide scope (inv as in a,c,f,h) vs. modified constituent wide scope (noninv as in b,d,e,g).
For cases like (i–l), one tag can be used as the default.

In the case of verb phrase modifiers, preposition semantics effecting the desired scope behavior
are straightforward to implement (Figure 5). For noun phrase modifiers, things are trickier. Firstly,
narrow-scope modifiers need to apply to individual properties whereas wide-scope modifiers need to
apply to generalized quantifiers. The easiest way to ensure this is to give the preposition the syntactic
type ((N \N )/NP) in the former case and ((NP\NP)/NP) in the latter before parsing. Thus, in this
case, the syntactic structure is affected. Both categories are well supported in the standard model of the
C&C parser trained on CCGbank (Hockenmaier and Steedman, 2007), and although the assignment of
lexical categories is integrated with parsing, the parser can be forced using tricks to pick a particular
category. Example derivations for both cases are shown in Figures 3 and 4.

The second issue with noun phrase modifiers is more severe: specific modifiers of universally quan-
tified noun phrases as in (f) cannot be accounted for in a similar way without heavily modifying the
lexical-semantic framework because universally quantified noun phrases keep only their nuclear scope
open for modification, not their restrictor. We will return to this limitation in the discussion.



λobj.λvp.λsubj.λmp.((vp@subj)@λe.(obj@λy.( with(e, y) ; (mp@e))))

λobj.λvp.λsubj.λmp.(obj@λy.((vp@subj)@λe.( with(e, y) ; (mp@e))))

Figure 5: Two possible semantics of a preposition attaching to a VP. Syntactically, it combines first with its object, then with
the VP, then the resulting extended VP combines with the subject, hence λobj.λvp.λsubj.... Semantically, in the first entry,
vp is first applied to subj, yielding a sentence meaning, which is then modified by applying it to an event property (λe....). In
the second entry, application to the preposition object to the corresponding property is moved out of the scope of all of this to
give it scope over the verb and its arguments. In both cases, the additional λmp ensures that a proper sentence meaning results,
allowing for additional modifiers.

4 Annotation and Results

For studying quantifier scope interactions in the wild, we use the Groningen Meaning Bank (GMB), a
freely available annotated English corpus of currently a little over 1 million tokens in 7,600 documents,
made up mainly of political news, country descriptions, fables and legal text. Since a pilot study showed
that clear deviations from the default scope order of verbal arguments (subject> objects in surface order)
is very rare (only 12 of 206 cases), we decided to focus on scope interactions mediated by prepositions.

Using the syntactic annotation of the GMB we extracted all prepositions where either the object or
the modified constituent contains one of the universally-quantifying determiners every, each and all. We
discarded prepositions serving as discourse connectives as in With all ballots cast, people are awaiting
the results because they relate propositions to each other rather than individuals with which we are
concerned. We also discarded prepositions that are part of fixed expressions such as in all, at all, as well
as the of in NPs such as all of the leaders, which we assume to mean the same as all leaders. Finally,
we cast aside the prepositions including, excluding and except as deserving special treatment not within
the scope of this work. This left us with 456 instances which were manually annotated by one annotator
for scope behavior. The counts are shown in the last column of Table 1.

In cases of doubt, we generally preferred annotations resulting in the logically weaker reading. For
example, in (2), we could either assume a separate termination event for each banking license or a single
termination event for them all, and we preferred the former by giving the universal quantifier wide scope.

(2) the International Banking Repeal Act of 2002 resulted in the termination of all offshore banking
licenses [03/0688]

5 Discussion

Our approach deals with scope alternation at the level of functor semantics, thus is syntactically con-
strained. There are some scope orderings, such as interleaved verb arguments and modifiers, that it
cannot derive. Also, specific indefinites pose problems in cases such as (f), and will probably show
need for special treatment even more clearly once we broaden our attention to their interactions with
intensional verbs and negation, see e.g. Geurts (2010). A more powerful account of indefinites is pro-
posed within CCG in Steedman (2012). However, it remains to be seen whether it can be implemented
efficiently within a wide-coverage parser, see Kartsaklis (2010). Another phenomenon we haven’t dealt
with yet is scope interaction between universals and negation.

Nevertheless, our approach is empirically successful at accounting for 96% of all cases in some of the
most common syntactic configurations giving rise to scope ambiguities involving universal quantifiers,
namely modification of NPs and VPs by preposition phrases. It is also a straightforward extension to an
existing semantic parsing system given an annotation of the input text with a layer of scope tags. In future
work, we plan to provide this layer automatically by adapting techniques for the statistical resolution of
scope, such as that of Manshadi and Allen (2011).
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Abstract

This paper queries which aspects of lexical semantics can reasonably be expected to be modelled
by corpus-based theories such as distributional semantics or techniques such as ontology extraction.
We argue that a full lexical semantics theory must take into account the extensional potential of
words. We investigate to which extent corpora provide the necessary data to model this informa-
tion and suggest that it may be partly learnable from text-based distributions, partly inferred from
annotated data, using the insight that a concept’s features are extensionally interdependent.

1 Introduction

Much work in computational linguistics relies on the use of corpora as evidential data, both for inves-
tigating language and for ‘learning’ about the world. Indeed, it is possible to inspect a great variety
of phenomena, and get access to a lot of world knowledge, simply by having a large amount of text
available. The purpose of this paper is to both acknowledge corpora as an invaluable data source for
computational linguistics and point at their shortcomings. In particular, we want to argue that an appro-
priate representation of lexical meaning requires information beyond what is provided by written text and
that this can be problematic for lexical models which rely entirely on corpora. Specifically, we wish to
highlight how corpora fail to supply the information necessary to represent the extension of a term. In a
nutshell, our argument is that the aspect of meaning represented by model theory is, in the best case, hard
to extract and in the worst case not available at all when looking at corpus data. Building on this first
discussion, we show that a concept’s features are extensionally interdependent and, using this insight,
propose that the part of model theory dealing with set relations (how much of set X is included in set
Y ?) may be learnt by exploiting a mixture of annotated (non-textual) data and standard distributional
semantics. We present preliminary experiments investigating this hypothesis.

2 Text and extension

1. My cat – a mammal – likes sitting on the sofa.

2. There are more than two trees in this forest.

3. Cats have two eyes.

Sentences like 1–3 are not often found in corpora, or any kind of speech, for that matter. This is
fortunate from the point of view of communication. In all three examples, the Gricean maxim of quantity
is violated: 1 repeats information which is already implicitely given by the encyclopedic definition of the
lexical item cat, while the other two express something obvious to anyone who has been in contact with
forests/cats in their life (or indeed, who has read the encyclopedic definitions of forest/cat).

From the point of view of standard computational linguistics, this state of affairs is however unde-
sirable. We will consider here two major approaches to extracting ‘conceptual’ knowledge from text:
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distributional semantics and ontology extraction. Distributional semantics accounts for the lexical mean-
ing of words by modelling, via appropriate weighting, their co-occurrence with other words (or any larger
lexical context). The representation of a target word is thus a vector in a space where each dimension
corresponds to a possible context. (Curran, 2003 and Turney and Pantel, 2010 are good overviews of this
line of work). Ontology extraction, on the other hand, retrieves facts from text by searching for specific
patterns: for instance, it is possible to find out that ‘cat’ is a hyponym of ‘feline’ by examining lexical
patterns of the type ‘X such as Y’ (Hearst, 1992).

It should be clear that neither method can extract information which is simply absent from text. 3, for
instance, may never occur in a corpus. This issue has been noted before, in particular in the psycholin-
guistics literature (Devereux et al., 2009; Andrews et al., 2009). To compensate, the use of manually
obtained ‘feature norms’ is often advocated to complete corpus-based representations of concepts (e.g. a
human might associate bear with the sensory-motor norms claw, big, brown, etc). But missing features
are not the only issue. Let us return to 1. If we mentioned the word mammal everytime we speak of a cat,
distributional semantics systems would be able to appropriately reflect the hyponymic relation between
the two concepts – which in turn translates into an inclusion relation in model theory. But precisely be-
cause of the strong association between them, we (as good Griceans) are careful to leave the mammal out
of the cat. Consequently, it is usual for a distribution to assign fairly low weights to features which we
would argue are essential to the lexical representation of a word (see Geffet and Dagan, 2005 or Baroni
et al., 2012 for attempts to capture the inclusion relation despite the flaws in the data).

Pattern-based methods obviously fare better when attempting to extract standard lexical relations.
They do not, however, provide a true extensional analysis of the information they retrieve. For instance,
from the snippet four-legged animals such as cats and dogs, we should not conclude that the set of dogs
is included in the set of four-legged animals – a fair amount of dogs only have three legs. Our point
is that relations obtained from corpora (or by coding feature norms) are essentially intensional: they do
not model the part of semantics dealing with set relations and thus do not reflect our expectations with
regard to a particular concept (i.e. how likely is it that a given bear is big, brown, etc?) We argue that such
expectations are part of lexical semantics, as they mediate our use of words.1 For instance, we strongly
expect a dog to have four legs, but are not overly surprised when seeing a three-legged dog (the set of
dogs is mostly, but not entirely, included in the set of four-legged things) and so would still call it a dog.
Conversely, a forest with one tree is not intuitively a forest (the sets of trees making up each instance in
the set of forests all have a ‘large’ cardinality).

In what follows we investigate how such set relations can be inferred from prior knowledge: we recall
that features (whether of the distributional type or the sensory-motor type) are dependent on each other
and that this dependency can be exploited to learn human-like expectations with regard to extension.

3 The extensional dependency hypothesis

Let us assume a particular kind of conceptual representation which consists of a vector of weighted fea-
tures, as in distributional semantics, but where the weights are the expected probabilities of an instance
of the concept to be associated with a particular distributional feature in the real world. So for instance,
the feature mammal has a weight of 1 for the concept cat because all cats are mammals. In the same
concept, black has perhaps a weight of 0.1 (assuming that one cat in ten is black). We call such represen-
tations extensional distributions, because each probability reflects some expectation about the inclusion
relation between two sets.

Let us further assume a distributional space with n dimensions and let us refer to the extensional
distribution of A as A ◦. We hypothesise that the value of A ◦ along a dimension dk is dependent on the
value of A ◦ along all other dimensions d1...n in that space. Intuitively, this means that the probability that
a cat (habitually) eats is dependent on the probability of that cat to (habitually) sleep, run, communicate,
to be made of stone or to write books. In other words, the extensional distribution of a typical cat x

1Of course, expectations reflect certain common beliefs and no extensionally true facts about the world. But those beliefs
can be modelled using the set-theory machinery, i.e. they can be regarded as a possible world.
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reflects its status as a living (non-human) being, which in turn implies a high probability of cat ◦ along
the dimension eat. We call this the extensional dependency hypothesis (see Devereux et al., 2009 for
related comments on this effect).

Such dependencies mean that learning the probabilities of certain features in relation to instances of
a given target word can be greatly facilitated by learning another, information-rich feature. For instance,
knowing that a is a bird allows us to infer many properties about a, e.g. that it lays eggs if it is female,
that it probably flies, or that it perhaps builds nests.

In the absence of any supervision, it is hard to find out which features are most inference-producing.
However, we can adopt a different strategy to learn inference rules. Let us assume that there is a cor-
respondence between distributional data and the real world for at least some features. For example, we
might find that as long as the predicate be v+fish n has been seen next to pike – be it only once –, we
can infer that all pikes are fish. It is a property of the feature that if it applies to one individual of a kind,
it will apply to all of them (contrast this with, e.g. black a). If we can be reasonably certain that, given
enough data, be v+fish n will be seen next to pike, we have a way to learn a real world probability from
corpus data which we are confident in and which may be used for producing inferences. The rest of this
paper investigates this hypothesis.

4 Experiments

4.1 A distributional system

Talking of ‘(expected) probabilities in the real world’ has consequences in terms of choosing a particular
notion of context for building our corpus-based distributions. Consider a system where context is defined
by a word window around the target. mouse may be one of the terms sometimes appearing in the context
of cat, but having a feature mouse does not tell us anything about how mice and cats are related in the real
world (do mice eat cats? are made of cats? sell cats?) and so, the ‘association’ mouse-cat cannot be as-
signed a probability. In contrast, if we choose as context semantic dependencies of the type +eat+mouse
or +be+kept+as+pet, where indicate the position of the target word, there is a clear interpretation of
the context as being related to the target in the real world (what is the probability of a cat to eat mice? to
be kept as a pet?) Consequently, we build a distributional system using dependency relations. Our data is
the Wikiwoods corpus (Flickinger et al., 2010), a Wikipedia snapshot parsed with the English Resource
Grammar (ERG), which we convert into a Dependency Minimal Recursion Semantics (DMRS, Copes-
take, 2009) format for our experiments. We only consider a number of dependency structures as context
for a target word: adjectives, adverbs, prepositions and verbs, with their direct arguments, possessive
constructs and coordination. The weight of a target word along a particular dimension of the semantic
space is given by the normalised PMI measure proposed by Bouma (2007).

To speed up processing, we only retain dimensions which do occur with the lexical items in our
experimental set (see 4.3 for a description). This results in our semantic space having 15799 dimensions.

4.2 The learning system

We design a system based on bootstrapping, which learns extensional distributions. The idea is to learn
from our corpus the features which we are most confident in and use those to further the learning process.

Let us assume we wish to learn real-world probabilities for some features F1...Fn, as applied to
instances of various target words wk...wm (F1 might be lay v+egg n while wk might be aardvark). Let
us also assume that we have some annotated data which provides us with ‘rough’ probabilities for a
number of feature-instance pairs. For convenience of annotation – and because we do not expect humans
to have an accurate probabilistic model of the world –, we express those probabilities using the natural
language quantifiers no, few, some, most, all (see Herbelot and Copestake, 2011 for related work on
resolving underspecified quantification). So we might already know that most swallows migrate.

The first iteration of our bootstrapping process runs over each feature F in {F1...Fn}. A ma-
chine learning algorithm is fed the corpus-based distributions of the training instances (let us call them
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w1...wj), together with the probabilities pm(F |w1...j) from the annotated data. A classifier is learnt for
F and its precision estimated by performing leave-one-out cross-validation on the training data. The
classifier with the best precision, say C(Fi) is recorded, together with its decisions, p(Fi|w1...j). The
feature Fi is considered ‘learnt’.

From the second iterations on, the following process takes place. For each feature F which has
not yet been learnt, the machine learning algorithm is fed the corpus-based distributions of w1...wj ,
together with the values of the learnt features p(Flearnt|w1...j) and the manually annotated probabilities
pm(F |w1...j). As before, a classifier is learnt and its precision calculated by performing leave-one-out
cross-validation on the training data and the classifier with the best precision, as well as its decisions on
the training data, are recorded for use in the next iteration.

When classifying new, unseen instances, the classifiers are applied to the data in the order they were
learnt during the training process. As an example, let us assume that we have learnt the probabilities of
the features be v+fish n and aquatic a for the animals aardvark, cod and dolphin. Let us also assume
that be v+fish n was learnt first (it was classified with higher precision than aquatic a in the first iteration
of the algorithm). Let us further suppose that in the second iteration, the initial classifier for aquatic a
was modified to take into account the learnt feature be v+fish n (i.e. the precision of the classifier was
increased by using the new information). Presented with a new classification problem, say salmon,
the system would first try to find out the probability p(be v+fish n|salmon) and then use that figure to
estimate p(aquatic a|salmon).

4.3 The dataset

We attempt to learn the quantification of a number of animal-feature pairs. The animals and features
used in our experiment are chosen as follows.

The animals are picked by selecting the entries in the Wikipedia ‘List of animals’2 which have an
occurrence count over 2000 in our corpus. This results in a set of 72 animals.

The features are chosen manually amongst the 50 most highly weighted vector components of ten
different animal distributions. The animals considered are selected semi-randomly: we make sure that
the most common types are included (mammals, fish, insects, birds, invertebrates). Features which
satisfy the following conditions are included in the experiment: a) the feature must be applicable to the
animal at the ‘individual’ level, i.e. it cannot be a temporary state of the animal, or apply to the species
collectively (black a is appropriate while wounded a or endangered a are not) b) the feature must be
semantically ‘complete’, i.e. make sense when applied to the animal in isolation (be v+mammal n is
appropriate while behaviour n+of p is not).

The feature selection exercise results in 54 vector components being selected.
Given our 72 animals and 54 features, we ask a human annotator to mark each animal-feature pair

with a ‘probability’, expressed as a quantifier. Possible values are no, few, some, most, all. The guide-
lines for the annotation task can be seen at http://www.cl.cam.ac.uk/˜ah433/material/
iwcs13-annot.pdf.

5 Results

The following is based on an implementation of our system using Weka’s3 C4.5 (also referred to as J48)
classifier (Quinlan, 1993). The C4.5 classifier produces a decision tree which can be inspected and is
therefore particularly appropriate to ‘check’ learnt rules against human intuition. We perform leave-one-
out validation on the first 10 animals in our dataset (for instance, we predict the values of our 54 features
for ant using a training set consisting of all other animals). For each animal, the system therefore runs
1485 iterations of the classifier.

2http://en.wikipedia.org/wiki/List_of_animals#Animals_.28by_common_name.29
3http://http://www.cs.waikato.ac.nz/˜ml/weka/
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5.1 Finding relationships between corpora and the real world

In order to investigate whether real-world probabilities can be derived from corpus data, we first run a
baseline system which classifies animal-feature pairs into our five quantifier classes, no, few, some, most,
all, using only the corpus-based distributions of the animals in our training set.

The overall precision of the baseline system over our 540 predicted values is 0.51. As hypothesised,
some features are learnt with high precision using word distributions only: be v+bird n is one such
example, classifying all but one instances correctly (its estimated performance on the training data, as per
cross-validation, is 0.95). Others, such as carnivorous a consistently receive an incorrect classification
(precision of 0 on the test data and 0.24 on the training data).

5.2 Learning inferences

We now turn to the question of learning rules which reflect real-world relationships. Because of space
constraints, we are unable to reproduce actual output from the system, but examples can be seen at
http://www.cl.cam.ac.uk/˜ah433/material/iwcs13-examples.pdf. As illustration,
we consider here the classifiers produced for the feature aquatic a.

The baseline classifier (the one learnt from distributional data only) does use distributional features
that are associated with water (mediterranean a, in p()+water n), but overall, the decision tree is rather
far from the way we might expect a human to attribute the feature aquatic a to an animal species, and
mostly includes seemingly irrelevant features such as variant of or again fascinating.

The final classifier produced by our learning system, in contrast, involves the learnt probability for
the feature terrestrial a. It captures the facts that a) non-terrestrial species are aquatic and b) terrestrial
species which live near water can also be said to be aquatic (cf. otters or beavers).

Other examples of real world dependencies learnt in the iterative process include lay v+egg n and
woolly a being dependent on be v+mammal n, have v+hair n depending on woolly a and be v+insect n,
or again walk v depending on be v+mammal n and fly v.

5.3 Overall performance

The overall precision of the iterative system is 0.48, which makes it lag behind the baseline by 3%.
The result is disappointing but can be explained when inspecting the output. The strength of the system
in catching meaningful dependencies between features, which we illustrated in the previous section, is
also what makes it lose accuracy on our small dataset. Indeed, the dependencies integrated in the final
classifiers assume that the learnt features were correctly predicted for the animal under consideration.
This is unfortunately not the case, and errors accumulate during bootstrapping. For instance, when
running on the test instance ape, the system classifies the features woolly a and lay v+egg n by relying
on the prediction for be v+mammal n. The precision of the system on that feature, however, is only 0.5.
In order to truly evaluate the performance of the system, we suggest experimenting with a larger dataset.

6 Conclusion

This paper argued that there is a part of lexical semantics which is not dealt with by modelling techniques
relying entirely on corpora. Indeed, standard speech tends to omit information which is true from an ex-
tensional point of view but irrelevant for successful communication. In order to retrieve the extensional
potential of lexical terms, we proposed a separate, distribution-like representation which provides the
expected real-world probabilities of instance-feature pairs and which we refer to as extensional distribu-
tion. We argued that a) for some features, there is a correspondence between corpus data and real world
which can be learnt b) probabilities in the extensional distribution are dependent on each other and it is
possible to infer unknown values from already learnt ones (including those learnt from corpus data).
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Abstract

Motivated by cognitive lexical models, network-based distributional semantic models (DSMs) were proposed in
[Iosif and Potamianos (2013)] and were shown to achieve state-of-the-art performance on semantic similarity
tasks. Based on evidence for cognitive organization of concepts based on degree of concreteness, we investigate
the performance and organization of network DSMs for abstract vs. concrete nouns. Results show a “concrete-
ness effect” for semantic similarity estimation. Network DSMs that implement the maximum sense similarity
assumption perform best for concrete nouns, while attributional network DSMs perform best for abstract nouns.
The performance of metrics is evaluated against human similarity ratings on an English and a Greek corpus.

1 Introduction

Semantic similarity is the building block for numerous applications of natural language processing (NLP), such as
grammar induction [Meng and Siu (2002)] and affective text categorization [Malandrakis et al. (2011)]. Distribu-
tional semantic models (DSMs) [Baroni and Lenci (2010)] arebased on the distributional hypothesis of meaning
[Harris (1954)] assuming that semantic similarity betweenwords is a function of the overlap of their linguistic con-
texts. DSMs are typically constructed from co-occurrence statistics of word tuples that are extracted from a text
corpus or from data harvested from the web. A wide range of contextual features are also used by DSM exploiting
lexical, syntactic, semantic, and pragmatic information.DSMs have been successfully applied to the problem of
semantic similarity computation. Recently [Iosif and Potamianos (2013)] proposednetwork-based DSMsmoti-
vated by the organization of words, attributes and conceptsin human cognition. The proposed semantic networks
can operate under either theattributional similarity or themaximum sense similarityassumptions of lexical se-
mantics. According to attributional similarity [Turney (2006)], semantic similarity between words is based on the
commonality of their sense attributes. Following the maximum sense similarity hypothesis, the semantic similarity
of two words can be estimated as the similarity of their two closest senses [Resnik (1995)]. Network-based DSMs
have been shown to achieve state-of-the-art performance for semantic similarity tasks.

Typically, thedegree of semantic concretenessof a word is not taken into account in distributional models.
However, evidence from neuro- and psycho-linguistics demonstrates significant differences in the cognitive orga-
nization of abstract and concrete nouns. For example, Kiehlet al. (1999) and Noppeney and Price (2004) show that
concrete concepts are processed more efficiently than abstract ones (aka “the concreteness effect”), i.e., participants
in lexical decision tasks recall concrete stimuli faster than abstract. According to dual code theory [Paivio (1971)],
the stored semantic information for concrete concepts is both verbal and visual, while for abstract concepts stored
information is only verbal. Neuropsychological studies show that people with acquired dyslexia (deep dyslexia)
face problems in reading abstract nouns aloud [Coltheart (2000)], verifying that concrete and abstract concepts
are stored in different regions of the human brain anatomy[Kiehl et al. (1999)]. The reversal concreteness effect
is also reported for people with semantic dementia with a striking impairment in semantic memory [Papagno et al.
(2009)].

Motivated by this evidence, we study the semantic network organization and performance of DSMs for estimat-
ing the semantic similarity of abstract vs. concrete nouns.Specifically, we investigate the validity of the maximum
sense and attributional similarity assumptions in network-based DSMs for abstract and concrete nouns (for both
English and Greek).



2 Related Work

Semantic similarity metrics can be divided into two broad categories: (i) metrics that rely on knowledge resources,
and (ii) corpus-based metrics. A representative example ofthe first category are metrics that exploit the WordNet
ontology [Miller (1990)]. Corpus-based metrics are formalized as DSM [Baroni and Lenci (2010)] and are based
on the distributional hypothesis of meaning [Harris (1954)]. DSM can be categorized into unstructured (unsuper-
vised) that employ a bag-of-words model [Agirre et al. (2009)] and structured that rely on syntactic relationships
between words [Pado and Lapata (2007)]. Recently, motivated by the graph theory, several aspects of the human
languages have been modeled using network-based methods. In [Mihalcea and Radev (2011)], an overview of
network-based approaches is presented for a number of NLP problems. Different types of language units can be
regarded as vertices of such networks, spanning from singlewords to sentences. Typically, network edges repre-
sent the relations of such units capturing phenomena such asco-occurrence, syntactic dependencies, and lexical
similarity. An example of a large co-occurrence network is presented in [Widdows and Dorow (2002)] for the
automatic creation of semantic classes. In [Iosif and Potamianos (2013)], a new paradigm for implementing DSMs
is proposed: a two tier system in which corpus statistics areparsimoniously encoded in a network, while the task
of similarity computation is shifted (from corpus-based techniques) to operations over network neighborhoods.

3 Corpus-Based Baseline Similarity Metrics

Co-occurrence-based: The underlying assumption of co-occurrence-based metrics is that the co-existence of
words in a specified contextual environment indicates semantic relatedness. In this work, we employ a widely-
used co-occurrence-based metric, namely, Dice coefficient[Iosif and Potamianos (2010)]. The Dice coefficient
between wordswi andwj is defined as follows:D(wi, wj) =

2f(wi,wj)
f(wi)+f(wj)

, wheref(.) denotes the frequency of
word occurrence/co-occurrence. Here, the word co-occurrence is considered at the sentential level, whileD can
be also defined with respect to broader contextual environments, e.g., at the paragraph level [Véronis (2004)].
Context-based: The fundamental assumption behind context-based metricsis thatsimilarity of context implies
similarity of meaning[Harris (1954)]. A contextual window of size2H + 1 words is centered on the word of
interestwi and lexical features are extracted. For every instance ofwi in the corpus theH words left and right of
wi formulate a feature vectorvi. For a given value ofH the context-based semantic similarity between two words,
wi andwj , is computed as the cosine of their feature vectors:QH(wi, wj) =

vi.vj
||vi|| ||vj||

. The elements of feature
vectors can be weighted according various schemes [Iosif and Potamianos (2010)], while, here we use a binary
scheme.

4 Network-based Distributional Semantic Models

Here, we summarize the main ideas of network-based DSMs as proposed in [Iosif and Potamianos (2013)]. The
network is defined as an undirected (under a symmetric similarity metric) graphF = (V,E) whose the set of
verticesV are all words in our lexiconL, and the set of edgesE contains the links between the vertices. The links
(edges) between words in the network are determined and weighted according to the pairwise semantic similarity
of the vertices. The network is a parsimonious representation of corpus statistics as they pertain to the estimation of
semantic similarities between word-pairs in the lexicon. In addition, the network can be used todiscover relations
that are not directly observable in the data; such relations emerge via the systematic covariation of similarity
metrics. For each word (reference word) that is included in the lexicon,wi ∈ L, we consider a sub-graph ofF ,
Fi = (Ni, Ei), where the set of verticesNi includes in totaln members ofL, which are linked withwi via edges
Ei. TheFi sub-graph is referred to as the semantic neighborhood ofwi. The members ofNi (neighbors ofwi)
are selected according to a semantic similarity metric (co-occurrence-basedD or context-basedQH defined in
Section 3) with respect towi, i.e., then most similar words towi are selected. Next, we present two semantic
similarity metrics that utilize the notion of semantic neighborhood [Iosif and Potamianos (2013)].

4.1 Maximum Similarity of Neighborhoods

This metric is based on the hypothesis that the similarity oftwo words,wi andwj , can be estimated bythe
maximum similarity of their respective sets of neighbors, defined as follows:

Mn(wi, wj) = max{αij , αji}, where αij = max
x ∈ Nj

S(wi, x), αji = max
y ∈ Ni

S(wj , y). (1)

αij (orαji) denotes the maximum similarity betweenwi (orwj) and the neighbors ofwj (orwi) that is computed
according to a similarity metricS: in this work eitherD orQH . Ni andNj are the set of neighbors forwi andwj ,



respectively. The definition ofMn is motivated by the maximum sense similarity assumption. Here the underlying
assumption is that the most salient information in the neighbors of a word are semantic features denoting senses of
this word.

4.2 Attributional Neighborhood Similarity

The similarity betweenwi andwj is defined as follows:

Rn(wi, wj) = max{βij , βji}, where βij = ρ(CNi

i , CNi

j ), βji = ρ(C
Nj

i , C
Nj

j ) (2)

where CNi

i = (S(wi, x1), S(wi, x2), . . . , S(wi, xn)), and Ni = {x1, x2, . . . , xn}.

Note thatCNi

j , CNj

i , andCNj

j are defined similarly asCNi

i . Theρ function stands for the Pearson’s correlation
coefficient,Ni is the set of neighbors of wordwi, andS is a similarity metric (D orQH). Here, we aim to exploit
the entire semantic neighborhoods for the computation of semantic similarity, as opposed toMn where a single
neighbor is utilized. The motivation behind this metric is attributional similarity, i.e., we assume that semantic
neighborhoods encode attributes (or features) of a word. Neighborhood correlation similarity in essence compares
the distribution of semantic similarities of the two words on their semantic neighborhoods. Theρ function incorpo-
rates the covariation of the similarities ofwi andwj with respect to the members of their semantic neighborhoods.

5 Experimental Procedure

Lexica and corpora creation: For English we used a lexicon consisting of8, 752 English nouns taken from the
SemCor31 corpus. In addition, this lexicon was translated into Greekusing Google Translate2, while it was further
augmented resulting into a set of9, 324 entries. For each noun an individual query was formulated and the1, 000
top ranked results (document snippets) were retrieved using the Yahoo! search engine3. A corpus was created for
each language by aggregating the snippets for all nouns of the lexicon.
Network creation: For each language the semantic neighborhoods of lexicon noun pairs were computed following
the procedure described in Section 4 using either co-occurrenceD or context-basedQH=1 metrics4.
Network-based similarity computation: For each language, the semantic similarity between noun pairs was
computed applying either the max-senseMn or the attributionalRn network-based metric. The underlying seman-
tic similarity metric (theS metric in (1) and (2)) can be eitherD orQH . Given that for both neighborhood creation
and network-based semantic similarity estimation we have the option ofD or QH , a total of four combinations
emerge for this two-phase process: (i)D/D, i.e., use co-occurence metricD for both neighborhood selection and
network-based similarity estimation, (ii)D/QH , (iii) QH /D, and (iv)QH /QH .

6 Evaluation Datasets

The performance of network-based similarity metrics was evaluated for the task of semantic similarity between
nouns. The Pearson’s correlation coefficient was used as evaluation metric to compare estimated similarities against
the ground truth (human ratings). The following datasets were used:
English (WS353): Subset of WS353 dataset [Finkelstein et al. (2002)] consisting of 272 noun pairs (that are also
included in the SemCor3 corpus).
Greek (GIP): In total, 82 native speakers of modern Greek were asked to score the similarity of the noun pairs
in a range from 0 (dissimilar) to 4 (similar). The resulting dataset consists of99 nouns pairs (a subset of pairs
translated from WS353) and is freely available5.
Abstract vs. Concrete: From each of the above datasets two subsets of pairs were selected, where both nouns
in the pair are either abstract or concrete, i.e., pairs consisting of one abstract and one concrete nouns were ruled
out. More specifically,74 abstract and74 concrete noun pairs were selected from WS353, for a total of148 pairs.
Regarding GIP,18 abstract and18 concrete noun pairs were selected, for a total of36 pairs.

1http://www.cse.unt.edu/ ˜ rada/downloads.html
2http://translate.google.com/
3http://www.yahoo.com//
4We have also experimented with other values of context window H not reported here for the sake of space. However, the highestperfor-

mance was achieved forH = 1.
5http://www.telecom.tuc.gr/ ˜ iosife/downloads.html



7 Results

The performance of the two proposed network-based metrics,Mn andRn, for neighborhood size of100, is pre-
sented in Table 1 with respect to the English (WS353) and Greek (GIP) datasets. Baseline performance (i.e., no use
of the network) is also shown for co-occurrence-based metricD and context-based metricQH . For the max-sense

Language: Number of Baseline Network Neighbor selection / Similarity computation
dataset pairs D QH metric D/D D/QH QH /D QH /QH

English: 272 0.22 0.30 Mn=100 0.64 0.64 0.47 0.46
WS353 Rn=100 0.50 0.14 0.56 0.57

Greek: 99 0.25 0.13 Mn=100 0.51 0.51 0.04 0.04
GIP Rn=100 -0.11 0.03 0.66 0.11

Table 1: Pearson correlation with human ratings for neighborhood-based metrics for English and Greek datasets.
Four combinations of the co-occurrence-based metricD and the context-based metricQH were used for the defi-
nition of semantic neighborhoods and the computation of similarity scores. Baseline performance is also shown.

similarity Mn=100 metric, the use of the co-occurrence metricD for neighbor selection yields the best correla-
tion performance for both languages. For the attributionalsimilarity Rn=100 metric, best performance is achieved
when using the context-based metricD for the selection of neighbors in the network. As explained in [Iosif and
Potamianos (2013)], the neighborhoods selected by theD metrics tend to include words that denote word senses
(yielding best results for similarity), while neighborhoods computed using theQH metric are semantically broader
including word attributes (yielding best results for attributional similarity). The network-based DSM results are
also significantly higher compared to the baseline for both languages. The best results achieved byD/QH for the
Mn=100, andQH /D for theRn=100 are consistent with the results reported in [Iosif and Potamianos (2013)] for
English. The best performing metric for English isMn=100 (max-sense) while for GreekRn=100 (attributional).
Overall, utilizing network neighborhoods for estimating semantic similarity can achieve good performance6, and
the type of metric (feature) used to select the neighborhoodis a key performance factor.

Next, we investigate the performance of the network metricswith respect to the neighborhood sizen for the
abstract and concrete noun pairs included in English and Greek datasets. The performance of the max-senseMn

(D/QH) metric is shown in Fig. 1(a),(c) for the (subsets of) WS353 and GIP, respectively. The performance over
the whole (abstract and concrete) dataset is shown with a solid line. Similarly the results for the attributionalRn

(QH /D) metric are shown in Fig. 1(b),(d). The main conclusions forthese experiments (for both languages) are:
1) The correlation performance for concrete noun pairs is higher than for abstract noun pairs. 2) For concrete
nouns the max-senseMn metric achieves best performance, while for abstract nounsthe attributionalRn metric is
the top performer. 3) For theRn network metric, very good performance is achieved for abstract noun pairs for a
small neighborhood sizen (around10), while for concrete nouns larger neighborhoods are needed(up to40 and
30 neighbors, for English and Greek, respectively).

Type of neighbors (abstract/concrete)
Neighbor Number of Type of English (WS353) Greek (GIP)

selection metric reference nouns reference nouns abstract concrete abstract concrete

D 15 abstract 76% 24% 82% 18%
D 15 concrete 36% 64% 23% 77%
QH 15 abstract 82% 18% 91% 9%
QH 15 concrete 31% 69% 31% 69%

Table 2: Distribution of abstract vs. concrete nouns in (abstract/concrete noun) neighbourhoods.

In order to further investigate the network organization for abstract vs. concrete nouns, we manually inspected
the top twenty neighbors of 30 randomly selected nouns (15 abstract and 15 concrete) and classified each neighbor
as either abstract or concrete. The distributions of abstract/concrete neighbors are shown in Table 2 as a function
of neighbor selection metric (D vs. QH) and reference noun category. It is clear, that the neighborhoods of
abstract nouns contain mostly abstract concepts, especially for the QH neighbor selection metric (similarly the
neighborhoods of concrete nouns contain mainly concrete concepts). The neighbors of concrete nouns mainly
belong to the same semantic class (e.g., “vehicle”, “bus” for “car”) often corresponding to relevant senses. The

6The best correlation score for the WS353 dataset does not exceed the top performance (0.68) of unsupervised DSMs [Agirre et al. (2006)].
However, we have found that the proposed network metrics obtain state-of-the-art results for other standard datasets,e.g.,0.87 for [Rubenstein
and Goodenough (1965)] and0.91 for [Miller and Charles (1998)].
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Figure 1: Correlation as a function of number of neighbors for network-based metrics. Max-senseMn (D/QH)
for datasets: (a) English and (c) Greek. AttributionalRn (QH /D) for datasets: (b) English and (d) Greek.

neighbors of the abstract nouns have an attributive function, reflecting relative attributes and/or aspects of the
referent nouns (e.g., “religion”, “justice” for “morality”).

8 Discussion

We investigated the performance of network-based DSMs for semantic similarity estimation for abstract and con-
crete noun pairs of English and Greek. We observed a “concreteness effect”, i.e., performance for concrete nouns
was better than for abstract noun pairs. The assumption of maximum sense similarity as encoded by theMn metric
consistently yielded higher performance for the case of concrete nouns, while the semanticsimilarity of abstract
nouns was better estimated via the attributional similarity assumptionas implemented by theRn metric. The
results are consistent with the initial hypothesis that differences in cognitive organization may warrant different
network organization in DSMs. In addition, abstract concepts were best modeled using an attributional network
DSM with small semantic neighborhoods. This is a first step towards the better understanding of the network orga-
nization of DSMs for different categories of concepts. In terms of computation algorithms of semantic similarity,
it might prove advantageous to define a metric that combines the maximum sense and attributional assumptions
based on the semantic concreteness of the words under investigation. Further research on more data and languages
is needed to verify the universality of the findings.
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Abstract

In the finite-state temporality approach, events in natural language semantics have been character-
ized in regular languages, with strings representing sequences of temporal observations. We extend
this approach to natural language constructions which are not regular. Context-free constructions are
detailed and discussed. Superposition, the key operator in the finite-state temporality approach is
investigated for context-free languages. The set of context-free languages is found to not be closed
under superposition. However, as with intersection, the superposition of a context-free language and
a regular language results in a context-free language. Previous work on subsumption and entail-
ment is inapplicable to context-free languages, due to the undecidability of the subset relation for
context-free languages.

1 Introduction

In recent years, events have been encoded as strings of a regular language, where a symbol in the language
represents a set of predicate logic formulae that hold at a particular temporal instant, and the order of the
symbols is associated with temporal order. Temporal granularity is revealed by the “superposition” of
languages, essentially forming a more specific representation by collecting together formulae that hold at
the same time. The representation is supplemented by notions of subsumption and entailment, allowing
comparisons of information content, logical soundness, and completeness.

However, some natural language constructions concerning events are difficult to represent in this
regular framework. These constructions suggest a relationship between the frequency of events, simi-
lar to the dependency of symbol frequencies on other symbol frequencies found in many context-free
languages (L = anbn). Together with their increase in complexity over regular langauges, this makes
context-free languages a natural area of interest in this field.

As an example, take the expression “A as often as B”, where A and B can be thought of as events.
This construction implies a frequency relationship between the occurrence of two events, where A occurs
at least as many times as B, possibly more. These events do not have to occur in an ordered sequence,
where a sequence of As are followed by a sequence of Bs, As and Bs can occur in any order as long
as the overall frequncy relationship is maintained. To be accurate, we must also allow for “instants” of
time that separate any occurrence of the events we are interested in. Representing event A as the symbol
a, event B as the symbol b, and an instant of time in which events may be occurring, but which are not
relevant to our analysis by 2, we get strings of the form a2∗b, a2∗b2∗b2∗a, b2∗b2∗a2∗a2∗a etc.
These strings form a context-free language.

Moens and Steedman (1988) highlight the complicated nature of the phrase “when”. They suggest
that “When A, B” implies not a strictly temporal relationship, but a causal one, making it a prime can-
didate for representation by a context-free language. Note that “When I swear, I put money into the
swear jar” implies that if I swear twice, I put money into the jar twice, but not necessarily in a particular
temporal order. I may swear twice during the day, and have to wait until I get home to put money in the
jar.

More formal (and seemingly less natural) constructions such as “an equal number of times as”, while
rare, do have a place in more formal literature such as legal documents. This particular construction



appears in locations as varied as “The Federal Code of the United States of America” and the bye-laws
of the town of New Canaan,CT: “he shall choose alternates in rotation so that the alternates chosen by
the Chairman shall be seated as nearly an equal number of times as is possible”.1

Our analysis is restriced to the case of there being a frequency relationship between two types of
events. It should be noted that the addition of a third event would lead to strings characterised by
languages that are not context-free, similar to the difference between anbn and anbncn. While these
constructions tend to seem less natural (“I cried as often as I laughed, and I laughed as often as I sang”),
they cannot be discounted.

The above linguistic data, while by no means exhaustive, provides a steady base from which to ex-
plore context-free languages in a finite-state temporality framework. The ubiquity of the phrases “when”
or “whenever” highlights the need for this extension, while their causal nature, as opposed to temporal
nature, suggests further ontological applications.

2 Background

Envisaging events as a sequence of “snapshots”, Fernando (2004) has encoded event-types as regular
languages, made up of symbols representing sets of “fluents”(Φ), similar to those found in McCarthy
and Hayes (1969). As well as representing event types, a regular language can represent sequences of
temporal observations. The diagram below represents these two concepts:

L = ∼ swim(john, x) swim(john, x)
+

swim(john,m)

L′ = mile(m)
∗

The “superposition” of two langauges is the componentwise union of their strings:

L&L′ =
⋃
k≥1
{(α1 ∪ α,

1) . . . (αk ∪ α,
k) | α1 . . . αk ∈ L and α,

1 . . . α
,
k ∈ L

′}

Intuitively, snapshots taken at the same temporal instant are merged, forming a larger picture of the world
at that time:

∼ swim(john, x)mile(m) swim(john, x)mile(m)
+
swim(john,m)mile(m)

The set of regular languages is closed under superposition ensuring that the superposition operation
does not take us to a higher level of complexity(Fernando (2003)). Superposition allows us to define
a reflexive, transitive relation (a pre-order) associated with the concept of subsumption. To preserve
reflexivity subsumption � is defined by:

L� L′ iff L ⊆ L′

Subsuption can be thought of as relating to “information content”. A language that subsumes another
is more specific than that language. It contains all the information of the other language, and more.

3 Superposition and Context-Free Languages

Superposition, as the central operation in the finite-state temporality framework, must be re-examined in
light of our inclusion of context-free languages. The key question is whether the result of superposing
a context-free language with either a regular language or another context-free language, is itself regular,
context-free, or otherwise.

1http://ecode360.com/9045062 - accessed on 30/11/12.



Proposition 1 The set of context-free languages is not closed under superposition.

Proof(by counter-example): Let the set {φ} be represented by the symbol φ , and the set {ψ} be rep-

resented by the symbol ψ . The language L1 = φ
n
ψ

n
is context-free, as is the language L2 =

φ
m
ψ

2m
. L1 is given by the grammar:

S → φ S ψ

S → e
and L2 by the grammar:

S → φ S ψ ψ

S → e
The superposition of these two languages will contain strings consisting of three possible symbols:

{φ} ∪ {φ} = {φ} represented as φ , {φ} ∪ {ψ} = {φ, ψ} represented as φψ , and {ψ} ∪ {ψ} = {ψ}
represented as ψ .

Strings in the language L1 have length 2n, and strings in the language L2 have length 3m. Strings
can only be superposed if they have equal length, therefore only strings of length 6r from both languages
can be superposed, resulting in strings of the same length. Strings in L1 will consist of 3r φ s followed

by 3r ψ s, and strings in L2 will consist of 2r φ s followed by 4r ψ s. The superposition of these two

strings will consist of 2r φ s superposed with φ s, r φ s superposed with ψ s, and 3r ψ s superposed

with ψ s, resulting in strings of the form φ
2r
φψ

r
ψ

3r
. Introducing a homomorphism from φ to ‘a’,

from φψ to ‘b’, and from ψ to ‘c’, we have an equivalent language a2rbrc3r.
If this language were context-free, given that it is infinte, there would be some constant K such

that any string longer than K would be representable as a string uvxyz such that v and y are not empty
and are pumpable. If we choose the string a2KbKc3K as a string longer than K, we should be able to
factorize it in this manner. If we chose v to have both as and bs or both bs and cs, then upon pumping
it, we would have bs before as or cs before bs, which would result in a string not in our language. The
same considerations apply to choosing y. Therefore v and y must each contain only as, or only bs, or
only cs. Pumping v and y would therefore increase the number of one or two of the symbols but not
all three, thereby losing the frequency relationship between the three symbols. The language cannot be
context-free.2

Proposition 2 The superposition of a context-free language with a regular language is context-free.

Proof: Given L1, a context-free language, and L2, a regular language, let P = 〈QP ,Σ,Γ,∆P , qP0, FP 〉
be a pushdown-automaton accepting L1 and A = 〈QA,Σ, δA, qA0, FA〉 be a finite-state-automoton ac-
cepting L2. ∆P is the set of transitions of the form (qi, a, A)→ (qj , γ) interpreted as: when in state qi ,
with input symbol a, and symbol A at the top of the stack, go to state qj and replace A by the string γ, and
δA is the set of transitions of the form (qi, a) → (qj) interpreted as: when in state qi with input symbol
a, go to state qj . We form a pushdown automaton R = 〈QP ×QA,Σ,Γ,∆P×A, (qP0, qA0), FP × FA〉,
with transitions ∆P×A constructed as follows:

1. If ∆P contains a rule of the form (q0, e, e) → (q1, S), then ∆P×A contains a rule of the form
((q0, q0), e, e)→ ((q1, q0), S).

2. If ∆P contains a rule of the form (q1, e, A) → (q1, γ), then ∆P×A contains rules of the form
((q1, qx), e, A)→ ((q1, qx), γ) for every qx ∈ QA.

3. If ∆P contains a rule of the form (q1, a, a) → (q1, e), then ∆P×A contains rules of the form
((q1, qx), a ∪ b, a)→ ((q1, qy), e) if and only if there is a transition (qx, b)→(qy) in δA.

The new transitions are akin to running the PDA and FSA in tandem, where a state (qx, qy), while
strictly a state of R, can be thought to represent the simultaneous states of P and A. A rule of type 1 and



rules of type 2 perform the same stack operations as the PDA they were derived from. Therefore, R can
produce on its stack the same set of strings that P produces on its stack. No input symbol is being read
while these stack operations are performed, therefore R should remain in state (qx, qy). Rules of type 3
ensure that if R is in a state (q1, qy) with an input symbol a ∪ b, and encounters the terminal symbol a
on its stack, along with there being a transition in A from qy to qz on input b, then R will transition to
state (q1, qz), and delete a from its stack. These are exactly the states that P and A would seperately be
in upon reading input a and b respectively. Thus, if P reads a string a1 . . . an and is in a final state with
an empty stack (i.e. P accepts this string), and A reads a string b1 . . . bn and is in a final state (i.e. A
accepts this string), then R will be in a final state upon reading the superposition of these two strings. If
P accepts a language L1 and A accepts a language L2, then R will accept L = L1&L2.2

If we superpose the context-free language that represents “I laughed as often as I cried” with the
regular langauge that represents “an hour” to get a language representing “In an hour, I cried as often as
I laughed”, this language, as the superposition of a context-free langauge and a regular language, will be
context-free.

4 Final Remarks

Further work will involve investigating how the concepts of subsumption and entailment can be related
to context-free languages. In this framework, entailment is defined in terms of subsumption, which is
defined in terms of the subset relation (Fernando and Nairn (2005)). However, according to Hopcroft
et al. (1979), the problem of whether a context-free language is a subset of another context-free language
is undecidable. If the subset relation cannot be calculated for context-free languages, subsumption and
entailment relations break down.

One possible avenue of exploration is the making of regular approximations of context-free languages
(Mohri et al. (2001)). This would preserve the subsumption and entailment relations, but at a possible cost
to accurately representing the context-free construction, possibly losing the exact relationship between
the frequencey of two symbols.
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Abstract

In the problem of recognizing textual entailment, the goal is to decide, given a text and a
hypothesis expressed in a natural language, whether a human reasoner would call the hypothesis
a consequence of the text. One approach to this problem is to use a first-order reasoning tool to
check whether the hypothesis can be derived from the text conjoined with relevant background
knowledge, after expressing all of them by first-order formulas. Another possibility is to express
the hypothesis, the text, and the background knowledge in a logic programming language, and use
a logic programming system. We discuss the relation of these methods to each other and to the
class of effectively propositional reasoning problems. This leads us to general conclusions regarding
the relationship between classical logic and answer set programming as knowledge representation
formalisms.

1 Introduction

In the problem of recognizing textual entailment, the goal is to decide, given a text T and a hypothesis H
expressed in a natural language, whether a human reasoner would call H a consequence of T .
The following example is No. 115 in the collection of problems proposed as the Second PASCAL
Recognizing Textual Entailment Challenge Bar-Haim et al. (2006):

T : The World Bank has also been criticized for its role in financing projects that have been
detrimental to human rights and the natural environment.

H: The World Bank is criticized for its activities.

Expected answer: Yes.

Recognizing textual entailment is a special case of a more general and practically important problem,
textual query answering.

To recognize the fact thatH is “entailed” by T , we often need to use some background commonsense
knowledge. For instance, in the example above it is essential that financing is an activity.

The approach to recognizing textual entailment employed in Bos and Markert (2005) and
implemented in the system Nutcracker1 can be summarized as follows:

(i) T and H are represented first by discourse representation structures Kamp and Reyle (1993) and
then by first-order formulas,

(ii) potentially relevant background knowledge is identified and expressed by a first-order formula BK,

(iii) an automated reasoning system is used to check whether the implication

T ∧ BK → H (1)

is logically valid.
1http://www.cogsci.ed.ac.uk/˜jbos/RTE/.



Related work is described in Akhmatova (2005); Fowler et al. (2005).
The approach to the problem proposed in Baral et al. (2005); Tari and Baral (2005); Nouioua and

Nicolas (2006) is similar, except that it relies on logic programs as the representation language instead
of first-order formulas, and on logic programming systems as computational tools instead of first-order
reasoners. The following example comes from the introduction to Baral et al. (2005):

T : In Paris, on March 15th, John packed his laptop in the carry-on luggage and took a plane
to Baghdad.

H: His laptop was in Baghdad on March 16th.

Expected answer: Yes.

Here again some background commonsense knowledge is needed to recognize that yes is the correct
answer: a trip from Paris to Baghdad by air does not normally take more than a day; a person and his
carry-on luggage are normally in the same city. Baral et al. represent the text T by a set of rules,2 along
with background knowledge BK; H is represented by a ground atom. Then an answer set solver and a
constraint logic programming system are used to establish the fact that H is entailed by logic program
T ∪ BK.

Each of the two knowledge representation languages—first-order formulas and logic programs—has
its own advantages. A first-order formula may have a complex, nested form; this is essential because
discourse representation structures are often deeply nested. On the other hand, the semantics of logic
programs is nonmonotonic; this is crucial when background commonsense knowledge is expressed by
defaults (note the word “normally” in the examples above).

In this paper we argue, however, that these two versions of the logic approach to textual entailment
have more in common than meets the eye. A large part of the work done by Bos and Markert can be
understood in terms of the logic programming methodology advocated by Baral et al. Many textual
entailment problems used to test the Nutcracker system can be solved by the answer set solver DLV3

instead of the first-order theorem prover VAMPIRE4 and the model builder PARADOX5 that were actually
employed in Nutcracker experiments.

The first-order reasoning problems that can be naturally expressed by logic programs have a
distinctive syntactic feature: they belong to the “effectively propositional,” or “near-propositional”
formulas Schulz (2002). The relationship between effectively propositional reasoning (EPR) and answer
set programming (ASP) Lifschitz (1999); Marek and Truszczyński (1999); Niemelä (1999) is one
of the topics discussed in this paper. This will bring us, at the end of the paper, to some general
conclusions regarding the relationship between classical logic and answer set programming as knowledge
representation formalisms.

2 Representing EPR Formulas by Logic Programs

We consider here first-order formulas that may contain equality and object constants, but not function
constants of arity> 0. An EPR formula is the universal closure of a quantifier-free formula in conjunctive
normal form. We will show how to turn any EPR formula F into a logic program π(F ) such that π(F )
has a stable model iff F is satisfiable.

In the definition of π we assume that every clause in F is written as an implication with a conjunction
of atoms (possibly empty) in the antecedent, and a disjunction of atoms (possibly empty) in the
consequent:

A1 ∧ · · · ∧Am → Am+1 ∨ · · · ∨An. (2)

2This is done manually; automating the translation is mentioned in the paper as future work.
3http://www.dbai.tuwien.ac.at/proj/dlv/.
4http://en.wikipedia.org/wiki/Vampire_theorem_prover.
5http://www.math.chalmers.se/˜koen/paradox/ .



Besides the predicate constants occurring in F , the program π(F ) will contain two new predicate
constants: the unary constant u (for “universe”) and the binary constant eq (for “equals”). For any
atomic formula A, by Aeq we denote eq(t1, t2) if A is an equality t1 = t2, and A otherwise.

Program π(F ) consists of

(i) the facts u(c) for all object constants c occurring in F ;

(ii) the rules
eq(X,X)← u(X)
eq(Y,X)← eq(X,Y )
eq(X,Z)← eq(X,Y ), eq(Y,Z);

(iii) the rules
p(Y1, . . . , Yk)← p(X1, . . . , Xk), eq(X1, Y1), . . . , eq(Xk, Yk)

for all predicate constants p occurring in F ;

(iv) the disjunctive rules

Aeq
m+1; . . . ;A

eq
n ← Aeq

1 , . . . , A
eq
m, u(X1), . . . , u(Xk)

corresponding to the conjunctive terms (2) of F , where X1, . . . , Xk are the variables that occur in
the consequent Am+1 ∨ · · · ∨An of (2) but do not occur in its antecedent A1 ∧ · · · ∧Am.

If, for instance, F is

∀X(p(a) ∧ p(b) ∧ ¬p(c) ∧ (p(X)→ X = a)) (3)

then π(F ) consists of the rules

u(a)← u(b)← u(c)←
eq(X,X)← u(X)
eq(Y,X)← eq(X,Y )
eq(X,Z)← eq(X,Y ), eq(Y, Z)
p(Y )← p(X), eq(X,Y )
p(a)
p(b)
← p(c)
eq(X, a)← p(X).

(4)

As usual in answer set programming, by a model (stable model) Gelfond and Lifschitz (1988, 1991)
of π(F ) we understand a model (stable model) of the corresponding ground program. It is clear that
π(F ) is a (possibly disjunctive) program without negation. Its stable models are simply minimal models.
Each rule of π(F ) is safe—every variable occurring in its head occurs also in its body. The stable models
of this program can be generated by the answer set solver DLV.

Theorem For any EPR formula F , the following conditions are equivalent:

(i) F is satisfiable,

(ii) π(F ) has a model,

(iii) π(F ) has a stable model.

If F does not contain equality then this assertion remains valid if all rules containing eq are dropped
from π(F ).



For instance, formula (3) is satisfiable; accordingly, program (4) has a stable model:

{u(a), u(b), u(c), p(a), p(b), eq(a, a), eq(b, b), eq(c, c), eq(a, b), eq(b, a)}.

Proof We begin by proving the second claim, that is, assume that F does not contain equality and that
the rules containing eq are dropped from the program π(F ). From (i) to (ii). F is the universal closure
of a quantifier-free formula, and it is satisfiable. Consequently F has an Herbrand model. By adding to
this model the atoms u(c) for all object constants c we get a model of π(F ). From (ii) to (iii). The result
of grounding π(F ) is a finite program without negation; since it has a model, it has a minimal model.
From (iii) to (i). By removing the atoms u(c) from a model of π(F ) we get an Herbrand model of F .
Consider now the general case, when F may contain equality. Let F ∗ be the formula obtained from F by

• replacing each equality t1 = t2 with eq∗(t1, t2), where eq∗ is a new binary predicate constant;

• conjoining the result with the universal closures of the formulas

eq∗(X,X),
eq∗(X,Y )→ eq∗(Y,X),
eq∗(X,Y ) ∧ eq∗(Y, Z)→ eq∗(X,Z)

and
p(X1, . . . , Xk) ∧ eq∗(X1, Y1) ∧ · · · ∧ eq∗(Xk, Yk)→ p(Y1, . . . , Yk)

for all predicate constants p occurring in F ;

• converting the result to prenex form.

It is clear that F ∗ is an EPR formula that does not contain equality, and that it is satisfiable iff F is
satisfiable. The rules of π(F ∗) that do not contain eq can be obtained from the rules of π(F ) by replacing
each occurrence of eq with eq∗. Consequently π(F ∗) has a model (stable model) iff π(F ) has a model
(stable model). It remains to apply the part of the theorem proved above to F ∗.

This proof shows that, in the case when F does not contain equality, the models of π(F ) are
essentially identical to the Herbrand models of F .

From the theorem we see that testing an EPR formula for satisfiability can be accomplished using
an answer set solver. In the next section we investigate the applicability of this idea to the problem of
recognizing textual entailment.

3 EPR Formulas in Experiments with Textual Entailment

Recall that Bos and Markert [2005] recognize textual entailment by determining whether implication (1)
is logically valid.6 In many cases, the negation

T ∧ BK ∧ ¬H (5)

of formula (1) can be converted to a prenex form with all existential quantifiers in front of the universal
quantifiers (“∃∀-prenex form”). Then the sentence F , obtained from this prenex form by Skolemization
and then converting the quantifier-free part to conjunctive normal form, is an EPR formula. It is clear
that (1) is logically valid iff F is unsatisfiable.

The possibility of converting (5) to ∃∀-prenex form is essential because it guarantees that no function
constants of arity > 0 are introduced in the process of Skolemization. It is clear that conjunction (5) can
be written in ∃∀-prenex form if every conjunctive term can be written in this form.

6Like other existing systems for recognizing textual entailment, Nutcracker is not completely reliable. Generally,
formulas H and T only approximate the meanings of RTE sentence pairs. For instance, Nutcracker currently ignores the
semantics of plurals, tense, and aspect. Also, formula BK may not adequately represent all relevant background knowledge.



How restrictive is this requirement? The website shown in Footnote 1 gives the first-order formulas
corresponding to 799 textual entailment problems from the second PASCAL collection that were
produced by Nutcracker. In 711 cases (89%), both T and ¬H can be converted to ∃∀-prenex form.
The conjunctive terms of BK come from two sources: most are automatically extracted from WordNet,
the others are hand-coded. All conjunctive terms of the first kind are universal sentences, so that each of
them is ∃∀-prenex. Among the hand-coded parts of BK that Bos and Markert chose to include we found
several exceptions, but they are never essential: dropping the “difficult” hand-coded part of BK from any
of the 711 implications (1) that we have studied never makes a logically valid formula invalid.

The model builder PARADOX terminates, in principle, on any EPR formula; it generates a model if
the formula is satisfiable, and reports that it is unsatisfiable otherwise. For this reason, in each of the 711
cases (with the inessential “difficult” terms dropped) Bos and Markert would be able to test the formula
for satisfiability by running PARADOX alone, without invoking also the theorem prover VAMPIRE.

In these 711 cases we could also test the logical validity of (1) by running the answer set solver
DLV, as described in the previous section. Interestingly, the runtime of DLV was smaller than the runtime
of the model builder PARADOX in most cases, even though DLV did some redundant work: whenever
the program π(F ) has a model, it computed one of its minimal models.7 We should add that all these
runtimes are pretty small, usually less than a second.

The main computational difference between model builders, such as PARADOX, and answer set
solvers, such as DLV, is that model builders typically start by looking for a finite model with a small
universe (say, a singleton); if there is no such model then search is extended to larger universes. If
the input is an EPR formula containing N object constants, then answer set solvers ground the given
program with the universe of size N , which means essentially that they only look for a model of
cardinality N . Good answer set solvers, such as DLV, perform grounding “intelligently” and sometimes
introduce auxiliary predicates that make the size of the grounded program smaller.

It is interesting also that among the 711 EPR formulas from Nutcracker experiments that we have
investigated, 514 are Horn—all their conjunctive terms (2) are definite (n = m+1) or negative (n = m).
If F is a Horn EPR formula then the program π(F ) is nondisjunctive; since there is no negation in this
program, it can have at most one stable model. Note that deciding whether a ground nondisjunctive
program without negation has a model can be done in linear time.

4 Conclusion

The properties of the translation π established in this paper suggest that EPR reasoning can be described
as the common part of classical first-order logic and logic programming under the stable model
semantics: (Figure 1). In terms of expressiveness, the availability of formulas more complex than EPR is

with negation

logic programs more complex

first−order formulasEPR

Figure 1: Logic programs vs. first-order formulas: a comparison

a strong side of classical logic; the availability of negation as failure is a strong side of declarative logic
programming. Representations used in the existing work on the analysis of textual inference in terms of
classical logic belong mostly to the common part of the two areas.

7System DLV has the option -OM- that disables testing for minimality, but in our experiments it did not have a noticeable
effect on runtimes.
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Abstract

Since long it has been noted that cross-linguistically recurring polysemies can serve as an indi-
cator of conceptual relations, and quite a few approaches to model and analyze such data have been
proposed in the recent past. Although – given the nature of the data – it seems natural to model and
analyze it with the help of network techniques, there are only a few approaches which make explicit
use of them. In this paper, we show how the strict application of weighted network models helps to
get more out of cross-linguistic polysemies than would be possible using approaches that are only
based on item-to-item comparison. For our study we use a large dataset consisting of 1252 semantic
items translated into 195 different languages covering 44 different language families. By analyz-
ing the community structure of the network reconstructed from the data, we find that a majority of
the concepts (68%) can be separated into 104 large communities consisting of five and more nodes.
These large communities almost exclusively constitute meaningful groupings of concepts into con-
ceptual fields. They provide a valid starting point for deeper analyses of various topics in historical
semantics, such as cognate detection, etymological analysis, and semantic reconstruction.

1 Introduction

What do “milk” and “udders” have to do with each other? Conceptually, they are closely related, since
the former is the product and the content of the latter. Linguistically, they may even look the same, being
referred to by identical word forms in many different languages, such as, e.g., by [nax] in Judeo-Tat (an
Indo-European language), by [ukun] in Oroqen (an Altaic language), or by [mis] in Miao (a Hmong-
Mien language, all data taken from Key and Comrie 2007). Historically, the conceptual relation between
“milk” and “udders” may show up in the form of semantic shifts where a word which was formerly used
to express one of the concepts in a given language is henceforth used to express the other one. Thus, in
Standard Chinese, the word [niou³⁵nai²¹⁴] “milk” is a compound of [niou³⁵] “cow” and [nai²¹⁴] “milk”
which originally meant “udder” (as well as “breast”).1

The situation in which a set of conceptually related meanings is expressed by the same form in a
given language is known as polysemy. In this paper, we show how an analysis of a weighted network
reconstructed from a large database of cross-linguistic polysemies can help to shed light on common
conceptual associations in the world’s languages. We find that the reconstructed network has a strong
community structure: it can be easily separated into communities, i.e. groups of nodes that share more
connections with each other than with nodes outside the group. We detected 104 large communities
consisting of five and more nodes. These communities cover 879 out of 1286 concepts (68%) and almost
exclusively constitute meaningful groupings of concepts into conceptual fields, thus providing a valid
starting point for further analyses in historical linguistics.

1Superscript numbers indicate tones.



2 Polysemy and Conceptual Relations in Synchrony and Diachrony

The term polysemy was first used by Bréal (1897, 154), who explicitly introduced the notion as a di-
rect consequence of semantic change. Indeed, recent approaches to semantic change (e.g. Traugott and
Dasher 2002) emphasize that the development of an initially secondary polysemous reading is the first
stage of a complete semantic change to take place. Given that for semantic change a certain ‘association
[...] between the old meaning and the new [...] might be regarded as a necessary condition’ (Ullmann,
1972, 211), the same kind of “association” can also be assumed to hold for polysemy. There are recent
approaches in historical semantics that explicitly start from polysemous lexical items to extract informa-
tion about what kinds of concepts are associated and what kinds of semantic change seem to be plausible
(Croft et al., 2009). This procedure has the great advantage of providing ‘an important antidote to the
unbridled imagination in postulating etymologies’ (Evans and Wilkins, 2000, 550), where intuitive as-
sessments regarding plausibility as far as semantics is concerned are still frequent. Our approach operates
in a similar vein.

3 Modeling Cross-Linguistic Polysemies as Weighted Networks

The idea to model polysemies as networks itself is not new. It was already underlying Haspelmath’s
(2003) semantic map approach which is used as a heuristic tool to analyze grammatical categories in
linguistic typology. François (2008) applied this approach to the lexical domain, followed by further
work by Croft et al. (2009), Perrin (2010), Cysouw (2010a, 2010b), and Steiner et al. (2011), who also
introduced a simplified procedure to retrieve putative polysemies from semantically aligned word lists.
What is new in our approach, however, is the strict modeling of cross-linguistic polysemies as weighted
networks that shall be briefly introduced in the following.

3.1 Reconstruction

Networks (or graphs) constitute a system representation tool which is used by many different disciplines
(Newman, 2004). We make use of a weighted network model to display and analyze conceptual relations
reconstructed on the basis of cross-linguistic polysemies. Our network has the following structure:

LetC be a set of n concepts c1, . . . , cn whose linguistic representation wewant to analyze on the basis
of a set L of m different languages belonging to o ≤ m language families. Our network is an undi-
rected weighted graphG = (V,E, f), with V = C andE ⊆ {eij := {ci, cj} | ci, cj ∈ C and i ̸= j}.
f is a mapping from E into N with f(eij) ≤ o being the number of language families which use one
word for both ci and cj , and f(E) = {f(eij) | eij ∈ E}.2

In less formal terms, we reconstruct a weighted network by representing all concepts in a given multilin-
gual word list as nodes (vertices), and draw edges between all nodes that show up as polysemies in the
data. The edge weights reflect the number of language families in which these polysemies are attested.

3.2 Analysis

Statistical accounts on cross-linguistic polysemies retrieved from semantically aligned word lists make
it possible to define the similarity between concepts on an item-to-item basis. Here, problems may arise
from the fact that our approach cannot make an a priori distinction between polysemy and semantic vague-
ness on the one hand (Geeraerts, 1993), and polysemy and homophony on the other (compare François’
2008 notion of colexification). While, as Haspelmath (2003, 231) and François (2008, 169f) argue, the
distinction between (true) polysemy and semantic vagueness does not matter from a cross-linguistic per-
spective (and we will make no attempt to distinguish the two), the failure to single out homophones can
lead to wrong assessments regarding concept relations. In German, Dutch, and Yiddish, for example, the
stems expressing the concepts “arm” and “poor” are identical in form. If one naively counted the number

2Many thanks to Daniel Schulzek for helpful comments on the maths.



of languages where the concepts are expressed by the same word, the link would appear to find much
more support in the languages of the world than that between “udder” and “chest”, which is only reflected
in two languages in our data, namely in Aymara and Sirionó (see Supplemental Material), although in
this latter case, the connection between the two concepts seems much more meaningful than in the former
one.

A first way to solve this problem is to count occurrences of links between concepts not on the basis of
languages but of language families, thus avoiding that they result from genetic inheritance. This would
resolve the problem in favor of “udder” and “chest”, since the link between “arm” and “poor” only occurs
in the closely related Germanic languages, whereas Aymara and Sirionó belong to different language
families. The problem can further be addressed by setting up a threshold of occurrences and to ignore
links that exhibit less occurrences. Such an analysis is illustrated in Figure 1, where, starting from a
given concept network, the threshold is successively increased and more and more edges are successively
removed. While such an analysis surely yields the most reliable links, it has the drawback of ignoring
many links that might reflect true – although less frequently attested – conceptual relations.

In order to solve the problem of separating the wheat from the chaff without losing too much wheat,
the network perspective as opposed to the item-to-item perspective can be of great help. For the kind of
networks we are dealing with in this study, an analysis of community structure seems to be specifically
useful. Community structure refers to the property of many networks that do not consist of random
collections of nodes with random connections between them but of ‘distinct “communities” – groups of
vertices within which the connections are dense but between which they are sparser’ (Newman, 2004,
4). It is straightforward to assume that a network reflecting relations between concepts should exhibit
some kind of community structure, given that it is often assumed that concepts can be grouped into
specific conceptual fields. Analyzing the community structure of cross-linguistic polysemy networks
should therefore give us some interesting insights into general concept relations.

udder

chest

nipple, teat

milk (noun)

breast (of 
woman) 

udder

chest

nipple, teat

milk (noun)

breast (of 
woman) 

udder

chest

nipple, teat

milk (noun)

breast (of 
woman) 

(a) no cutoff (b) cutoff < 5 (c) cutoff < 10

Figure 1: Setting up a Threshold of Occurrences.

4 Application

4.1 Data

Our analysis is based on a large multilingual word list consisting of 1252 glosses (“concepts”) translated
into 195 different languages, covering 44 different language families (see Supplemental Material). The
data was taken from three different sources, namely the Intercontinental Dictionary Series (IDS, Key and
Comrie 2007, 133 languages), the World Loanword Database (WOLD, Haspelmath and Tadmor 2009,
30 languages), and a multilingual dictionary provided by the Logos Group (Logos, Logos Group 2008,
32 languages). The data from each of these sources was automatically cleaned and normalized with help
of Python scripts. While the original sources of IDS andWOLD have a total of 1310 glosses, we selected
only those glosses which were at least reflected in 100 languages. The structure of the input data is
illustrated in Figure 2, with two instances of polysemies in Russian and German marked in bold font.



Key Concept Russian German ...
1.1 world mir, svet Welt ...
1.21 earth, land zemlja Erde, Land ...
1.212 ground, soil počva Erde, Boden ...
1.420 tree derevo Baum ...
1.430 wood derevo Wald ...
... ... ... ... ...

Figure 2: Structure of the Data

(a) Complete Network (b) Community Structure

Figure 3: Comparing the Network and its Community Structure.

4.2 Analysis

We created a weighted network from the data, using the number of language families in which a particular
polysemy was reflected as edge weights. We further analyzed the community structure of the data with
help of a weighted version (Newman, 2004) of the Girvan-Newman algorithm for community detection
(Girvan and Newman, 2002).3 This algorithm successively removes the edges with the highest between-
ness from a given network. Edge betweenness is defined as ‘the number of shortest paths between pairs
of vertices that run along it’ (Girvan and Newman, 2002, 7822). We followed Newman (2004) in using
modularity, i.e. the ‘fraction of edges that fall within communities minus the expected value of the same
quantity if edges are assigned at random’ (Newman, 2004, 6), as a criterion to find the best split for the
analysis.

4.3 Results

In Figure 3 the original network (a) and the network’s community structure (b) are contrasted. The original
network consists of one very large connected component of 1141 nodes and only a spurious number of
unconnected nodes. The analysis of the network with help of the Girvan-Newman algorithm yielded a
total of 337 communities of which 104 are rather large, consisting of 5 and more nodes, and covering a
majority of the concepts (879 out of 1289, 68%). Most of these large communities constitute meaningful
groupings of concepts into conceptual fields. Community 5, for example, groups concepts that deal with
the cover of bodies (“feather”, “hair”, “bark”, etc.). Community 28 deals with learning (“study”, “count”,
“try, attempt”, etc.). And community 70 contains concepts related to transport vehicles (“canoe”, “boat”,
and “carriage, wagon, cart”, etc., see Supplemental Material).

Apart from the general question of which items are grouped together in one community, it is also
interesting to investigate the internal structure of the communities more closely. Community 3, for ex-
ample, consists of 18 items which all center around the concepts “tree” and “wood” (see the network
representation using force-directed layout in Figure 4). Cross-linguistically, the conflation of “tree” and

3We are well aware of the fact that there are many other, supposedly better, algorithms for community detection. However,
given that this is a pilot study, we decided to take a rather simple algorithm whose basic ideas are nicely described and easy to
understand, thus limiting our presuppositions about conceptual structures to a minimum.
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Figure 4: Force-Directed Representation of Cluster 3.

“wood” into one lexical form occurs very frequently, and it has been identified previously by several
scholars (Hjelmslev, 1963; Witkowski et al., 1981). Our data is congruent with the traditional literature
in this respect. However, in our network, these central concepts are connected with a substantial number
of contiguously related ones. Thus, “wood” has something to do with “clubs”, “staffs”, “walking sticks”,
and the like, in that these all are artifacts “made from wood”, and “trees” (and “wood”) have also a con-
tiguous relation with “forests” in so far as forests are, simply spoken, “agglomerations of trees”. Unlike
the well-documented association between “wood” and “tree”, to our knowledge most of these further
semantic connections have not yet been documented explicitly from a cross-linguistic point of view.
Hence, as even this single example shows, our analysis contributes to enhancing our knowledge regard-
ing cross-linguistically common conceptual associations. From the perspective of historical semantics,
as Witkowski et al. (1981) argue, polysemies between “tree” and “wood” can be interpreted in diachronic
terms, with terms for “wood” frequently giving rise to terms for “tree”. But there is a diachronic corre-
late also for other concepts in this cluster. For example, the Proto-Indo-European root *dóru- has a direct
descendant in Russian dérevo “tree, wood”. In other languages, however, reflexes are used to denote all
kinds of weapons that were originally made from wood, such as Avestan dāuru “club” (but also “tree
trunk”), or Modern Greek δόρυ “spear”, which regularly meant “wood, tree” (but also “beam, pole”) in
Old Greek (Nussbaum 1968, 147, footnote).

5 Conclusion

Polysemies offer powerful evidence to study conceptual relations and semantic change. In this paper, we
tried to show how the analysis of such data can be enhancedwith the help ofweighted network approaches.
By applying them to a large dataset, we illustrated the potential of cross-linguistic polysemy data for
semantic analyses. The analysis of the community structure of our network not only reproduces findings
from the literature, but also reveals additional cross-linguistic regularities in the conceptual structures
underlying semantic change.

Supplemental Material

The supplemental material accompanying this study contains the word lists of all 195 languages, upon
which the reconstruction of the weighted network was based, and all essential results in form of text files,
including the network, a detailed list and description of all inferred communities, and additional statistics
regarding the languages.
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Abstract

In this paper we consider the issue of answering a query with aquery. Although these are com-
mon, with the exception of Clarification Requests, they havenot been studied empirically. After
briefly reviewing different theoretical approaches on thissubject, we present a corpus study of query
responses in the British National Corpus and develop a taxonomy for query responses. We sketch a
formal analysis of the response categories in the frameworkof KoS.

1 Introduction

Responding to a query with a query is a common occurrence, representing on a rough estimate more than
20% of all responses to queries found in the British NationalCorpus.1 Research on dialogue has long
recognized the existence of such responses. However, with the exception of one of its subclasses—albeit
a highly substantial one—the class of query responses has not been characterized empirically in previous
work. The class that has been studied in some detail are Clarification Requests (CRs) (Rodriguez and
Schlangen, 2004; Rieser and Moore, 2005). However, CRs can be triggered by any utterance, interrog-
ative or otherwise. Researchers on the semantics and pragmatics of questions (see e.g. Carlson, 1983;
Wiśniewski, 2003) have been aware for many years of the existence of one class of query responses—
responses that express questions dependent on the questionthey respond to, as in (1a,b). This lead
Carlson to propose (1c) as a sufficient condition for a query response, which can be formalized using
(1d), assuming notions of resolvedness and aboutness (for which see e.g. Ginzburg and Sag, 2000).

(1) a. A: Who murdered Smith?B: Who was in town?

b. A: Who is going to win the race?B: Who is going to participate?

c. Who killed Smith depends on who was in town at the time.

d. q2 can be used to respond toq1 if q1 depends on q2.

e. q1 depends on q2 iff any propositionp such thatp Resolves q2, also satisfiesp entailsr such thatr is About q1.

Larsson (2002) and Asher and Lascarides (2003) argue that the proper characterization of question
responses is pragmatically based. Asher and Lascarides (2003) propose to characterize non-CR query
responses by means of the rhetorical relationquestion elaboration(Q-Elab) with stress on the plan-
oriented relation between the initial question and the question expressed by the response. Q-Elab might
be informally summarized as follows:

(2) If Q-Elab(α, β) holds between an utteranceα uttered byA, whereg is a goal associated by convention with
utterances of the typeα, and the questionβ uttered byB, then any answer toβ must elaborate a plan to achieveg.

∗The author was supported by the Iuventus Plus grant (IP2011-031-771).
1In the spoken part of the BNC, using SCoRE (Purver, 2001), we found 11312 ?/? cross-turn sequences, whereas 41041

?/. cross-turn sequences, so the ?/? pairs constitute 21.6%. (For the SCoRE syntax seehttp://www.dcs.qmul.ac.uk/
imc/ds/score/help.html.)



Table 1: Tags used to annotate question—question-responsesample
Tag Question-response category

CR clarification requests
DP dependent questions
FORM questions considering the way of answeringq1

MOTIV questions about the underlying motivations behind askingq1

NO ANSW questions aimed at avoiding answeringq1

QA questions providing an answer toq1
IGNORE questions ignoringq1
IND questions with a presupposed answer

The relation of Q-Elab, motivated by interaction in cooperative settings, is vulnerable to examples
such as those in (3). (3a) has one understanding that might becharacterized using dependence (What I
like depends on whatYOU like), but can also be used simply as a coherent retort. (3b) couldpossibly
be used in political debate without it necessarily involving an attempt to discover an answer to the first
question asked.

(3) a. A: What do you like?B: What do you like?

b. A: What is Sarkozy going to do about it?B: What is Papandreou?

In order to better understand the nature of question responses, we ran a corpus study on the British
National Corpus (BNC). The results we obtained show that, apart from CRs, dependent questions are
indeed by far the largest class of question responses. However, they reveal also the existence of a number
of response categories, characterizable neither as dependent questions nor as plan supporting responses.
They include (a) a class akin to what Conversation Analysts refer to ascounters(Schegloff, 2007)—
responses that attempt to foist on the conversation a distinct issue from the current discourse topic and
(b) responses that ignore the current topic but address the situation it concerns.

Attaining completeness in characterizing the response space of a query is of fundamental importance
for dialogue management and the design of user interfaces. Beyond that general goal, a better under-
standing of e.g.countersandsituation–relevant responses, which we believe are rare in task–oriented di-
alogue, is important for adversarial interaction (courtroom, interrogation, argumentation, certain games).
Characterizing their coherence is challenging for all approaches that ground dialogue on cooperativity
principles (e.g. Asher and Lascarides, 2003; Roberts, 2011).

The rest of the paper is structured as follows: in section 2 wepresent the taxonomy underlying our
corpus study; section 3 describes the results; in section 4 we sketch a formal analysis of one of the
response categories in the framework of KoS (Ginzburg and Fernández, 2010). We conclude with a
summary and future work.

2 A corpus-based taxonomy of answering by means of questions

The study sample The taxonomy of query responses was designed after an analysis of 1051 examples
of query-query response pairs obtained from the BNC. The sample was obtained from blocks D, F, G, H,
J, K of the BNC (so it covers a wide range of dialogue domains, like interviews, radio and TV broadcasts,
tutorials, meetings, training sessions or medical consultations). Initially, examples were obtained with
the search engine SCoRE (Purver, 2001) (the search string was?$ | ?$). Subsequently, cross talk and
tag questions were eliminated manually. The sample was classified and annotated by the first author with
tags presented in Table 1 (we discuss the reliability of thisannotation in section 3).

In what follows we describe and exemplify each class of the resulting taxonomy. To make the de-
scription clear we will useq1 for the initial question posed andq2 for a question given as a response to
q1. The taxonomy was built with attention paid to the function of q2 in the dialogue.

Clarification requests (CR) Clarification requests are all question-responses that concern the content
or form of q1 that was not completely understood. This class contains intended content queries (4a),



repetition requests (4b) and relevance clarifications (4c).

(4) a. A: What’s Hamlet about?B: Hamlet? [KPW, 945–946]2

b. A: Why are you in?B: What? A: Why are you in? [KPT, 469–471]

c. A: Is he knocked out?B: What do you mean? [KDN, 3170–3171]

In this paper we will not consider this class in detail, mainly because of existing, detailed work on
this subject such as (Purver, 2006).

Dependent questions (DP) By adependent questionwe understandq2 where a dependency statement
as in (1c) could be assumed to be true. The following examplesillustrate this:

(5) a. A: Do you want me to<pause> push it round?B: Is it really disturbing you? [FM1, 679–680]
(cf. Whether I want you to push it depends on whether it really disturbs you

b. A: Any other questions?B: Are you accepting questions on the statement of faith at thispoint? [F85, 70–71]
(cf. Whether more questions exist depends on whether you are accepting questions on the statement of faith at this
point.)

‘How should I answer this?’ questions (FORM) This class consists of question-responses addressing
the issue of theway the answer toq1 should be given. It is the case where theform of answer toq1
depends on the answer given toq2. This relation betweenq1 and q2 might be noticed in following
examples. Consider (6a). The way B answers A’s question in this case will be dictated by A’s answer to
q2—whether or not, A wants to know details point by point.

(6) a. A: Okay then, Hannah, what, what happened in your group?
B: Right, do you want me to go through every point? [K75, 220–221]

b. A: Where’s that one then?
B: Erm, you know Albert Square? [KBC, 506–507]

Requests for underlying motivation (MOTIV) In the case ofrequests for underlying motivationq2
addresses the issue of motivation behind askingq1. What is important here is that the fact of answering
q1 depends on the answer toq2 (i.e. providing proper reasons for askingq1). In this aspect this class
differs form the previous ones, where we may assume that an agent wishes to provide answer toq1. Most
of question-responses of this kind are of the form “Why?” (32out of 41 gathered examples, cf. (7a)),
but also other formulations were observed (8 out of 41, cf. (7b)). Most direct questions of this kind are:
What’s it got to do with you?; what’s it to you?; Is that any of your business?; what’s that gotta do with
anything?.

(7) a. A: What’s the matter?B: Why? [HDM, 470–471]

b. A: Out, how much money have you got in the building society?B: What’s it got to do with you? [KBM, 2086–
2087]

I don’t want to answer your question (NO ANSW) The role of query responses of this class is to give
a clear signal that an agent does not want to provide an answerto q1. Instead of answeringq1 the agent
providesq2 and attempts to ‘turn the table’ on the original querier.

(8) a. A: Yeah what was your answer?B: What was yours? [KP3, 636–637]

b. A: Why is it recording me?B: Well why not? [KSS, 43–44]

2This notation indicates the BNC file (KPW) together with the sentence numbers (945–946).



Table 2: Frequency of question—question-response categories. The parenthesized percentage is the
category’s percentage of the sample thatexcludesCRs.

Category Frequency % of the Total

CR 832 79.16
DP 108 10.28 (49)
MOTIV 41 3.90 (18)
NO ANSW 26 2.47 (12)
FORM 16 1.52 (7)
QA 13 1.24 (6)
IND 9 0.85 (4)

IGNORE 6 0.57 (3)
Total 1051(219) 100

Indirect answers/responses (IND/QA) This class consists of query responses, which provide (indi-
rectly) an answer toq1. Interestingly, answeringq2 is not necessary in this case. Consider (9a). B by
asking the questionDo you know how old this sweater is?clearly suggests that the answer to A’s ques-
tion is negative. Moreover, B does not expect to obtain an answer to his/her question. This might also be
observed in (9b) (‘of course I am Gemini’).

(9) a. A: Is that an early Christmas present, that sweater?B: Do you know how old this sweater is? [HM4, 7–8]

b. A: Are you Gemini?B: Well if I’m two days away from your, what do you think? [KPA, 3603–3604]

Another means of providing indirect answers can be observedin the corpus data. It is the case that by
askingq2 an agent already presupposes the answer toq1. If we take a look on (10) we note that positive
answer toq1 is presupposed in B’s question (I will help you).

(10) A: Will you help with the<pause> the paint tonight?B: What can I do? [KE4, 3263–3264]

I ignore your question (IGNORE) The last observed class is somewhat harder to grasp. This is the
case whereq2 is related to the situation, but ignoresq1. This is evident in (11). A and B are playing
Monopoly. A asks a question, which is ignored by B. It is not that B does not want to answer A’s question
and that’s why he/she asksq2. Rather, B ignoresq1 and asks a question related to the situation (in this
case the board game).

(11) A: I’ve got Mayfair<pause> Piccadilly, Fleet Street and Regent Street, but I never got aset did I?
B: Mum, how much, how much do you want for Fleet Street? [KCH, 1503–1504]

3 Results and annotation reliability

The results of the performed classification are presented inTable 2. Putting aside CRs, the majoritarian
class is indeedDP. What is striking is the relatively large frequency of adversarial responses (the classes
MOTIV, NO ANSW, IGNORE). FORM, as we discuss below, is the sole class whose coherence clearly
requires reasoning about the querier’s intentions. It is relatively infrequent.

In order to check the reliability of the classification process, the decision tree was tested by three
other annotators. Annotators obtained the sample of 90 (randomly chosen) question-question pairs3

and decision tree. The instruction was to annotate question-reply to the first question in each example.
Some of the examples were enriched with additional context (after q2). Two annotators reported that the
annotation task would be easier if the context would be present for all examples.

The reliability of the annotation was evaluated usingκ (Carletta, 1996). The agreement on the coding
of the control sample by four annotators was moderate (Fleiss κ = 0.44, SE = 0.0206, 95%CI =

3The distribution of the classes was in line with the distribution observed by the primary annotator:CR: 39 examples;DP: 18
examples;MOTIV: 10 examples;NO ANSW: 10 examples;FORM: 4 examples;QA: 4 examples;IGNORE: 3 examples;OTHER:
2 examples.



0.3963 to 0.4770)4. One of the control sample annotators is an experienced linguist with extensive
past work with dialogue transcripts. In this case agreementon the coding was strong (71% agreement
with Cohen’sκ = 0.62, SE = 0.0637, 95%CI = 0.4902 to 0.7398). Two other control sample
annotators are logicians, but with little experience in corpus annotation. For them agreement on the
coding was somewhat lower, i.e. moderate (66% agreement with Cohen’sκ = 0.56, SE = 0.0649,
95%CI = 0.4266 to 0.6810; and54% agreement with Cohen’sκ = 0.42, SE = 0.0674, 95%CI =

0.2829 to 0.5472). The most unproblematic cases wereCR, MOTIV andIGNORE (the largest groups
of examples with at least 3 annotators’ agreement). AlsoDP, NO ANSW andQA had high agreement
between annotators. The main problem was withFORM. We assume that this is caused by the unclarity
in the question introducing this class in the decision tree (‘The way the answer toq1 will be given
depends on the answer toq2’, while for DP it was ‘Is it the case that the answer toq1 depends on the
answer toq2?’). Feedback from two of three control sample annotators reported this as a confusing case.
There were two cases in the control sample on which annotators completely disagreed. These were the
following:

(12) a. A: You know the one you just took out?B: You want it back? [F77, 86–87]

b. A: You want a drink dear?B: Have your sweets for what? [KD1, 5132–5133]

4 Modeling Query Response Categories in KoS

In this section we show how to explicate the coherence relation that underlies theDP query responses
within the framework of KoS. It is worth mentioning that thisframework allows to model also the other
query responses types described in this article, as we will show in an extended version of this paper. KoS
is a framework for dialogue whose logical underpinning is Type Theory with Records (TTR) (Cooper,
2005) and which underlies dialogue systems such as GoDiS andCLARIE (Larsson, 2002; Purver, 2006).
On the approach developed in KoS, there is actually no singlecontext—instead of a single context,
analysis is formulated at a level of information states, oneper conversational participant. The type of
such information states is given in (13a). We leave the structure of the private part unanalyzed here, as
with one exception all our characterizations do not make reference to this; for one approach toprivate,
see e.g. (Larsson, 2002). The dialogue gameboard represents information that arises from publicized
interactions. Its structure is given in (13b)—thespkr,addrfields allow one to track turn ownership,Facts
represents conversationally shared assumptions,PendingandMovesrepresent respectively moves that
are in the process of/have been grounded,QUD tracks the questions currently under discussion:

(13) a. TotalInformationState (TIS) =def
[

dialoguegameboard : DGB
private : Private

]

b. DGBType =def




























spkr: Ind
addr: Ind

utt-time : Time
c-utt : addressing(spkr,addr,utt-time)
Facts : Set(Proposition)
Pending : list(locutionary Proposition)

Moves : list(locutionary Proposition)
QUD : poset(Question)





























The basic units of change are mappings between dialogue gameboards that specify how one game-
board configuration can be modified into another on the basis of dialogue moves. We call a mapping
between DGB types aconversational rule. The types specifying its domain and its range we dub, respec-
tively, thepreconditionsand theeffects, both of which are supertypes of DGBType.

We start by characterizing the moves that typically involveacceptingq1 into the DGB. The potential
for DP responses is explicated on the basis of the two conversational rules in (14a,b): (14a) says that given
a questionq and ASK(A,B,q) being the LatestMove, one can update QUD withq as QUD–maximal.

4All the data established withhttp://www.stattools.net. Access 25.11.2012.



QSPEC is what characterizes the contextual background of reactive queries and assertions. (14b) says
that if q is QUD–maximal, then subsequent to this either conversational participant may make a move
constrained to beq–specific (14c):

(14) a. Ask QUD–incrementation












pre :

[

q : Question
LatestMove = Ask(spkr,addr,q): IllocProp

]

effects :

[

qud =
〈

q,pre.qud
〉

: poset(Question)

]













b. QSPEC


























pre :

[

qud =
〈

q, Q
〉

: poset(Question)

]

effects : TurnUnderspec∧merge











r : AbSemObj

R: IllocRel
LatestMove = R(spkr,addr,r) : IllocProp
c1 : Qspecific(r,q)





































c. q-specific utterance: an utterance whose content is either a propositionp About q or a questionq1 on whichq
Depends

5 Summary and Future Work

The paper provides the first empirically-based study of query responses to queries. The most interesting
finding here is the existence of a number of classes of adversarial responses, that involve the rejec-
tion/ignoring of the original query. Indeed, in such cases the original query is rarely responded to in
subsequent interaction.

We conducted our study in the BNC since it is a general corpus with a variety of domains and
genres. It is of course important to extend this study to moredetailed consideration of specific genres
and domains. A significant challenge for future work is automatic classification of query responses into
a taxonomy like the one provided here. We intend to address this in future work.
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Cooper, R. (2005). Austinian truth in Martin-Löf type theory. Research on Language and Computa-
tion 3(4), 333–362.

Ginzburg, J. and R. Fernández (2010). Computational models of dialogue. In A. Clark, C. Fox, and
S. Lappin (Eds.),Handbook of Computational Linguistics and Natural Language, Oxford. Blackwell.

Ginzburg, J. and I. A. Sag (2000).Interrogative Investigations: the form, meaning and use ofEnglish
Interrogatives. Number 123 in CSLI Lecture Notes. Stanford: California: CSLI Publications.

Larsson, S. (2002).Issue based Dialogue Management. Ph. D. thesis, Gothenburg University.

Purver, M. (2001, October). SCoRE: A tool for searching the BNC. Technical Report TR-01-07, De-
partment of Computer Science, King’s College London.

Purver, M. (2006). Clarie: Handling clarification requestsin a dialogue system.Research on Language
& Computation 4(2), 259–288.

Rieser, V. and J. Moore (2005). Implications for generatingclarification requests in task-oriented dia-
logues. InProceedings of the 43rd Meeting of the Association for Computational Linguistics, Michi-
gan.



Roberts, C. (2011). Information structure: Afterword.Semantics and Pragmatics.

Rodriguez, K. and D. Schlangen (2004). Form, intonation andfunction of clarification requests in german
task-oriented spoken dialogues. In J. Ginzburg and E. Vallduvi (Eds.),Proceedings of Catalog’04, The
8th Workshop on the Semantics and Pragmatics of Dialogue, Universitat Pompeu Fabra, Barcelona.

Schegloff, E. (2007).Sequence Organization in Interaction. Cambridge: Cambridge University Press.
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Abstract

This paper investigates the extraction of semantic representations from bigrams. The major obsta-
cle to this objective is that while these word to word dependencies do contain a semantic component,
other factors, e.g. syntax, play a much stronger role. An effective solution will therefore require
some means of isolating semantic structure from the remainder. Here, the possibility of modelling
semantic dependencies within the bigram in terms of the similarity of the two words is explored. A
model based on this assumption of semantic coherence is contrasted and combined with a relaxed
model lacking this assumption. The induced representations are evaluated in terms of the correlation
of predicted similarities to a dataset of noun-verb similarity ratings gathered in an online experiment.
The results show that the coherence assumption can be used to induce semantic representations, and
that the combined model, which breaks the dependencies down into a semantic and a non-semantic
component, achieves the best performance.

1 Introduction
Distributional semantics derives semantic representations from the way that words are distributed
across contexts. The assumption behind this approach is that words that occur in similar contexts
will tend to have similar meanings. Firth (1957) expressed this in a well known slogan - you shall
know a word by the company it keeps. In application, these representations have proven successful in
automatic thesaurus generation (Grefenstette, 1994), enhancing language models (Coccaro and Ju-
rafsky, 1998) and modelling of reading times (Pynte et al., 2008) and the effects of priming (Landauer
and Dumais, 1997).

However, the high level identification of meaning with distributional properties leaves the ques-
tion of exactly which distributional properties are relevant to semantics a little vague. In practice, re-
searchers evaluate various approaches and select those that produce the best performance. Moreover,
other linguistic characteristics, such as syntax, are also analysed in terms of distributional properties.
Bigram distributions, for example, are commonly used to induce POS classes (e.g Brown et al., 1992;
Clark, 2003), but they have also been investigated as a basis for semantic representations (Bullinaria
and Levy, 2007).

Here we examine the question of what statistical properties can be used to distinguish seman-
tic factors from other dependencies in the distribution of words across bigram contexts. We carry
this out in terms of class based bigram language models, and explore the possibility that semantic
dependencies can be characterised in terms of coherence or similarity across the bigram. We then
evaluate the induced representations in terms of their ability to predict human similarity ratings for
noun-verb pairs. By evaluating the similarity predictions of our models across POS classes in this
way, we assess the ability of the model to focus purely on the semantic content while ignoring other
information, such as syntax.

2 Models
The intention is to induce semantic representations within a bigram model based on the assump-
tion that semantic content is coherent across the bigram. Assume that semantic information can be
captured in terms of a set, S, of semantic topics, with each word, w, having some independent prob-
ability of being used in a topic, p(w|s). Then, if the probabilities of the topics are given by p(s) and
each bigram, w1w2, belongs to a single topic, then the joint probability, p(w1w2), is given by:



p(w1w2) =
∑
s∈S

p(s)p(w2|s)p(w1|s) (1)

Rewriting this in conditional form, with p(s|w1) =
p(s)p(w1|s)

p(w1)
, gives:

p(w2|w1) =
∑
s∈S

p(w2|s)p(s|w1) (2)

This can also be expressed in a form that explicitly connects to the idea of a probability based on
semantic similarity.

p(w2|w1) = p(w2)
∑
s∈S

p(s|w2)

p(s)
p(s)

p(s|w1)

p(s)
(3)

Equation 3 can be thought of as the unigram probability of w2 modulated by its similarity to w1,
measured in terms of a weighted dot product between vectors representing the two words. In this
case, the vector components are a ratio of probabilities measure, p(s|w)

p(s) , which has been widely used
in distributional semantics (e.g. Bullinaria and Levy, 2007).

The key feature of this model is that the word probabilities in Equation 1 are independent of
position in the bigram. It is this assumption that serves to ensure that the induced topics identify a
characterisitic that is stable across the bigram, which, it is hoped, will relate to semantic content.

Relaxing this assumption produces a more general class based model, specifically the aggregate
markov model of Saul and Pereira (1997). Using superscripts to indicate the position a word occurs
in within the bigram, we write this model as:

p(wr
2|wl

1) =
∑
z∈Z

p(wr
2|z)p(z|wl

1) (4)

In contrast to Equation 1, this model makes no assumption of stability of content across the
bigram, and instead allows the word distributions, p(w|z) to be very different in the left and right
positions. Thus, this model ought to more suited to handling the word order effects that the similarity
based model cannot.

To construct a combined model, the bigram probabilities are expressed in terms of a sum over
both S and Z.

p(wr
2|wl

1) =
∑

s∈S,z∈Z
p(wr

2|s, z)p(s, z|wl
1) (5)

These terms can be broken down further based on conditional independence of s and z. The
rightmost probability, p(s, z|wl

1) separates straightforwardly.

p(s, z|wl
1) = p(s|w1)p(z|wl

1) (6)

On the other hand, s and z cannot in general also be conditionally independent given w2. How-
ever, we can use this as an approximation and then normalise the final probabilities.

p̂(wr
2|s, z) =

p(wr
2)p(s|w2)p(z|wr

2)

p(s, z)
(7)

The final model then combines these components and divides through by a normalising constant
N(w1).

p(wr
2|wl

1) =
∑

s∈S,z∈Z

p̂(wr
2|s, z)p(s, z|wl

1)

N(w1)
(8)

N(w1) =
∑
w2

∑
s∈S,z∈Z

p̂(wr
2|s, z)p(s, z|wl

1) (9)



High Medium Low

Group 1
anticipation - predict analysis - derive opinion - vanish
withdrawal - retire invasion - merge disappearance - believe

Group 2
disappearance - vanish anticipation - believe withdrawal - derive

invasion - occupy opinion - predict implication - retire

Group 3
opinion - believe disappearance - retire anticipation - succeed

implication - derive withdrawal - vanish invasion - predict

Table 1: Example items from the noun-verb similarity rating experiment.

2.1 Construction
Models were constructed based on three approaches: similarity based models, as defined by Equation
2, aggregate models, defined by Equation 4, and combined models, defined by Equation 8. The
parameters of these bigram models were optimised over a set of sentences extracted from the BNC
(BNC Consortium, 2001). 80,775,061 words from the written component of this corpus were used
as a training set, with 9,759,769 words forming a development set and the final 9,777,665 words held
back as a test set. Preprocessing included conversion to lowercase, addition of 〈start〉 and 〈stop〉 at
the beginning and ends of sentences, and replacement of words that occurred fewer than 100 times
in the training set with an 〈unk〉 token.

Optimisation of the parameters was based on the EM algorithm (Dempster et al., 1977), with
training stopped when the log-likelihood over the development set began to increase. For the pure
similarity and aggregate approaches, models were trained with numbers of induced classes ranging
from 10 to 2,000. The numbers of classes, |S| and |Z|, for the two components of the combined
models, each ranged from 10 to 100. The ratio of probabilities measure from Equation 3 was used to
construct the components of vectors which then formed the word representations, and similarity of
these vectors was measured in terms of the cosine measure.

For comparison, a bigram language model with back-off and Kneser-Ney smoothing (Kneser and
Ney, 1995) was also constructed using the SRILM toolkit (Stolcke, 2002).

3 Evaluation
The induced representations were evaluated in terms of their ability to predict semantic similarity
ratings for a set of word pairs. We measured the cosine similarity of our word representations and
correlated that with the human ratings to produce a measure of agreement. Because the strongest de-
pendencies within the bigrams are likely to be syntactic effects based on the POS classes of the two
words, measuring semantic similarity across POS classes is particularly relevant. That is, the seman-
tic representations should contain as much information about the meaning of the words as possible,
while containing as little part-of-speech information as possible, which should instead be shifted into
the other part of the model. Predicting the similarity between nouns and verbs should therefore be
an effective evaluation, as these two word classes contain the core of a sentence’s semantic content
while having substantially divergent distributional properties in regards of syntax. In this way, we
can test whether the POS differences are genuinely being ignored to allow just the semantic similarity
to be focussed on.

Thus, an experiment was run to collect similarity ratings for noun-verb pairs. Each participant
rated one of three groups of 36 noun-verb pairs, giving a total of 108 items. Each group consisted of
12 high similarity pairs, 12 medium similarity pairs and 12 low similarity pairs.

Table 1 contains a small sample of these items, with rows corresponding to the three experimen-
tal groups of participants and columns corresponding to the high, medium and low similarity sets of
items seen by each group. The items in the high similarity set (e.g. anticipation-predict) are related,
via an intermediary word, by a combination of morphology (e.g. anticipation-anticipate) and syn-
onymy (e.g. anticipate-predict), drawing on Catvar (Habash and Dorr, 2003) and WordNet (Miller,
1995) to identify these relationships. The medium and low sets are then recombinations of nouns
and verbs from the high set, with the medium items being the most similar such pairings, as rated by
WordNetSimilarity (Pedersen et al., 2004), and low being the least similar.

60 participants were paid $2 each to rate all 36 items from a single group, with equal numbers



seeing each group. The experiments were conducted online, with participants instructed to rate the
similarity in meaning of each pair of words on a scale of 1 to 5. They were initially presented with five
practice items before the experimental materials were presented with randomisation of both within
and between item orders.

Individual Spearman correlations were calculated for each participant’s ratings against the pre-
dicted similarities, and the average of these values was used as the evaluation measure for the seman-
tic representations induced by a model. A t-test on the z-transformed participant correlations was
used to assess the significance of differences between these averages.

The performance of these models simply as language models was also evaluated, in terms of their
perplexity over the test set, T , calculated in terms of the probability assigned to the test set, p(T ),
and the number of words it contains, |T |.

perplexity = p(T )−
1

|T | (10)

4 Results
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Figure 1: Correlations of model similarities with human ratings.

Figure 1(a) plots the average correlation between the model similarities and the human ratings
for the similarity and aggregate representations. Both models show similar strengths of correlation
and a similar pattern in relation to the size of the model, with a peak around the 50 - 200 range. The
highest correlation is 0.18, achieved by the aggregate model with 200 classes, while the similarity
model achieves a peak of 0.15 at |S| = 50. These values are not significantly different, t(59) = 0.71,
p = 0.24. The equivalence in performance of the aggregate and similarity models is not entirely
surprising, as both models, despite their differing forms, are directed at the problem of predicting the
same bigram dependencies. It may therefore be expected that the weaker semantic factors play only
a minor role within the representations generated.

In contrast, the combined models, which allow a separation of the dependencies into distinct
components, are able to achieve higher correlations, as plotted in Figure 1(b). Among these models,
the highest correlation of 0.31, which is significantly greater than the best aggregate model, t(59) =
9.35, p < 0.001, is achieved by a model having |Z| = 50 and |S| = 10. In fact, all the correlations
over 0.2 in Figure 1(b) are significantly greater at the p < 0.001 level, except |Z| = 100, |S| = 10
and |Z| = 20, |S| = 20, which are only significant at the p < 0.05 and p < 0.01 levels respectively.
This leaves only the four lowest performing combined models as not significantly outperforming
the best aggregate model. Nonetheless, these values are substantially lower than the inter-subject
correlations (mean = 0.74, min = 0.64), suggesting that the model could be improved further. In
particular, extending the span of the model to longer ngrams ought to allow the induction of stronger



and more detailed semantic representations. The fact that the best performing model only contains
10 semantic classes underscores the limitations of extracting such representations from bigrams.

In addition to the ability of these models to induce semantic representations, their performance
simply as language models was also evaluated. Figure 2 plots perplexity on the test set against
number of parameters per word (|S| + 2|Z|) for the aggregate and combined models. In general
lower perplexities are achieved by larger models for both approaches, as is to be expected. Within
this trend, the combined model tends to have a lower perplexity than the aggregate model by about
5%. The single case in which the combined model is above the trend line of the aggregate model
occurs for a model with in which a very small aggregate component, |Z| = 10, is dominated by a
large similarity component, |S| = 100.

The performance of these models does not, however, rival that of a standard bigram model with
back-off and Kneser and Ney (1995) smoothing, which achieves a perplexity of 185. On the other
hand, neither the aggregate nor combined models are explicitly designed to address the issue of small
or zero counts.
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Figure 2: Perplexity by Number of Parameters for the Aggregate and Combined Models

5 Conclusions
Our experiments produced two novel results.

Firstly, we have shown that semantic representations can be induced from the dependencies
within bigram word sequences, using an approach that derives word probabilities from similarity.
This is similar in form to prior models (e.g Coccaro and Jurafsky, 1998; Bellegarda, 1997), but
whereas they imported distributional representations from outside the model to enhance their perfor-
mance, we use this model form to induce semantic representations within the model.

Secondly, we have shown that this approach is most effective when the model breaks these de-
pendencies down into both a semantic and a non-semantic component. Typically, semantic classes
have been induced in isolation (Landauer and Dumais, 1997; Bullinaria and Levy, 2007) or applied
to long-range structure while short-range structure is handled by a separate component (Boyd-Graber
and Blei, 2008; Griffiths et al., 2004; Wallach, 2006). Here, we have shown that even simple bigram
dependencies can be conceived as breaking down into semantic and non-semantic components, as
opposed to using those components to model two different types of dependency.

We also introduced a novel evaluation dataset for semantic representations, containing noun-verb
similarity ratings. Correlation of these human ratings with the model similarities allows a quantifica-
tion of the extent to which a model ignores POS information to focus on semantic content.

In future work, we hope to extend the span of our model and to characterise syntax, semantics
and their interaction in a more sophisticated manner. Particularly interesting is the question of the
extent to which the form of our model is specific to languages, such as English, in which syntax is
identified with word order and how this might be adapted to free word order languages.
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Abstract
Current research on linking implicit roles in discourse is severely hampered by the lack of suffi-

cient training resources, especially in the verbal domain: learning algorithms require higher-volume
annotations for specific predicates in order to derive valid generalizations, and a larger volume of
annotations is crucial for insightful evaluation and comparison of alternative models for role linking.

We present a corpus of predicate-specific annotations for verbs in the FrameNet paradigm that
are aligned with PropBank and VerbNet. A qualitative data analysis leads to observations regarding
implicit role realization that can guide further annotation efforts. Experiments using role linking
annotations for five predicates demonstrate high performance for these target predicates. Using our
additional data in the SemEval task, we obtain overall performance gains of 2-4 points F1-score.

1 Introduction

Automatic annotation of semantic predicate-argument structure (PAS) is an important subtask to be
solved for high-quality information access and natural language understanding. Semantic role label-
ing (SRL) has made tremendous progress in addressing this task, using supervised and recently also
semi- and unsupervised methods (Palmer et al., 2010).

Traditional SRL is restricted to the local syntactic domain. In discourse interpretation, however, we
typically find locally unrealized argument roles that are contextually bound to antecedents beyond their
local structure. Thus, by using strictly local methods, we are far from capturing the full potential offered
by semantic argument structure (Fillmore and Baker, 2001; Burchardt et al., 2005).

The task of resolving the reference of implicit arguments has been addressed in previous work:
Gerber and Chai (2012) address the task in the nominal domain by learning a model from manually
annotated data following the NomBank paradigm (Meyers et al., 2004). In contrast, Ruppenhofer et al.
(2010) follow the FrameNet paradigm, which is not restricted to nominal predicates. However, their data
set suffers from considerable sparsity with respect to annotation instances per predicate (cf. Section 2).

Our contribution addresses the problem of sparse training resources for implicit role binding by
providing a higher volume of predicate-specific annotations for non-local role binding, using OntoNotes
(Weischedel et al., 2011) as underlying corpus. A qualitative analysis of the produced annotations leads
to a number of hypotheses on implicit role realization. Using the extended set of annotations, we perform
experiments to measure their impact, using a state-of-the-art system for implicit role binding.

2 Motivation and Related Work

The main motivation for this work relates to the SemEval 2010 Task 10 on implicit role linking1 and the
problem of data sparsity that became evident by the poor performance of the participating systems, at 1%
F1-score (Tonelli and Delmonte, 2010; Chen et al., 2010).2 Later systems could only marginally improve

1http://www.coli.uni-saarland.de/projects/semeval2010_FG
2 The data set provides 245/259 instances of resolvable implicit roles for training/testing. All cases of implicit roles

(580/710) are distributed over 317/452 frame types and a small overall number of frame instances (1,370/1,703 training/testing).



on these results, with performance up to 19% F1-score due to improved recognition of resolvable implicit
roles, heuristic data acquisition, and variations in model properties.3 Gerber and Chai (2010, 2012),
working on a related task following the NomBank/PropBank paradigm, achieved higher performance of
50% F1-score, using as training data a substantial amount of annotations for 10 noun predicates.

3 Corpus and Annotation

3.1 Corpus

While there is a rich source of annotated sentences in the FrameNet paradigm, contextualized FrameNet
annotations are restricted in coverage. As we target high-frequency annotations for specific verbs, and
in order to make annotations available for a corpus that is widely used, we chose OntoNotes (V.4.0)
(Weischedel et al., 2011) as underlying corpus. OntoNotes contains semantic role annotations following
the PropBank annotation style (Palmer et al., 2005). We map these annotations to FrameNet using the
mapping specified in the SemEval 2010 Task 10 data, which is based on SemLink (Loper et al., 2007).

3.2 Selection of Annotation Targets

Our goal was to produce a high volume of annotations for specific verb predicates, ideally reaching a
margin of 100-200 instances involving locally unfilled argument roles (cf. Gerber and Chai (2010)). In
order to make the task feasible for the annotators, we selected predicates and frame readings that are
relatively easy to discriminate, so that the annotators can concentrate on the role linking task.

We applied a number of further selection criteria to make the resulting annotations as useful as possi-
ble: (i) We excluded light verbs, as they are not well covered in FrameNet, and typically involve difficult
sense distinctions. (ii) We only chose predicates (and senses) that are covered in VerbNet, PropBank and
FrameNet, according to the Unified Verb Index.4 This ensures that the corpus can also be used for exper-
imentation using the VerbNet or PropBank paradigm. Finally, (iii) for the selected candidate predicates
and readings, we investigated the FrameNet annotation data base to determine whether the annotated
frames involve a critical number of non-instantiated roles that can be resolved from discourse context.5

In case we found little or no such cases for the candidate reading, the predicate was not chosen.
The list of predicates that resulted from this selection process is given in Table 1. They exhibit

varying numbers of core roles (2-7), frame ambiguity (1-7), and different syntactic properties.

3.3 Annotation Process and Categories

Data preparation. We extracted annotation instances for the selected target predicates from the Onto-
Notes corpus. The resulting corpus consists of overall 1.992 instances. Each annotation instance was
embedded within its full document context. The average document length is 612 words.

Annotation Categories. Our annotation maily follows the SemEval task guidelines for role linking
(Ruppenhofer et al., 2010, 2012), with the exception that we differentiate between non-instantiated (NI)
roles that are resolvable vs. non-resolvable within discourse instead of classifying them as ‘definite
(DNI)’ vs. ‘indefinite (INI)’. This distinction makes the task of linking NIs much clearer, as definite
null-instantiations may or may not be resolvable within the discourse context.6

Two examples of NI occurrences are given below: (1) illustrates a (resolvable) DNI: the implicit
role’s referent is anaphorically bound within the prior discourse. In (2) the non-instantiated role can only
be interpreted existentially within the given discourse (non-resolvable, INI).

3See Tonelli and Delmonte (2011); Ruppenhofer et al. (2011); Silberer and Frank (2012); Laparra and Rigau (2012).
4http://verbs.colorado.edu/verb-index
5Even though FrameNet annotations are out of context, non-realized core roles are marked for definite vs. indefinite inter-

pretation.
6In fact, only 80.9%/74.2% of all DNIs in the SemEval training/test corpus are linked within discourse.



(1) (s3) Nearly 200 American agents went to [Yemen]Source right after the attack on the ”Cole”.
(s9) TheyTheme are leaving frustrated. (Source: resolvable, DNI)

(2) IDonor tried to give as good as I got. (Recepient, non-resolvable, INI; Theme, non-resolvable, INI)

The annotation consists of three sub-tasks that are applied to null-instantiated core roles (NIs) only:
(a) classifying each NI as a resolvable or non-resolvable null instantiation; (b) distinguishing between
Lexical and Constructional Licensing of each NI;7 and (c) linking resolvable DNIs to the closest an-
tecedent mention within the preceding context.8

Before proceeding to these decisions, the annotator determines whether the mapped frame corre-
sponds to the actual predicate meaning in the given context. If not, it is marked as ’NgFNS’ (no genuine
FN sense). We also flag roles whose filler does not correspond to the role definition given in FrameNet
(e.g., roles categorized as ’Physical object’ that are filled by an abstract concept). For each predicate, we
record the chosen frame as well as the mapping to the corresponding readings in PropBank and VerbNet.

Calibration of Annotation Quality. The annotation was performed by two annotators, both students
of Computational Linguistics. Both of them studied the SemEval guidelines and used the first 50 sen-
tences of the SemEval corpus as a trial corpus, in order to validate their understanding of the guidelines.

We performed two calibration experiments, in which we measured Kappa (Cohen, 1960) for the
assignment of role interpretation type (resolvable vs. non-resolvable role), and percentage of agreement
on the chosen antecedent for resolvable roles.

(I) Agreement with SemEval: After initial training, we measured IAA between our main annotator
and the SemEval gold annotations for sentences 51-100 of the SemEval data set. For interpretation
type (resolvable/non-resolvable classification) we achieved a Kappa of 0.77. For NI-linking, we
measured 71.43% agreement (15 out of 21 resolvable roles were correctly linked).

(II) Agreement between Annotators: We determined agreement between both annotators on all an-
notation instances pertaining to the predicate give. For interpretation type, the annotators achieved
a Kappa value of 0.94. For linking, the annotators agreed on the marked antecedent in 85.7% of
all cases (48 out of 56 cases).

After this calibration phase, the annotation was done independently by the two annotators.

4 Data Analysis

Table 1 gives an overview of the annotations we obtained. Overall we annotated 630 NI occurrences
for genuine frame meanings, distributed over 438 verb occurrences (i.e., 1.44 NIs/verb).9 We observe
great variation in the number of NI occurrences for the different predicates (e.g., leave vs. pay). We find
a predominance of non-resolvable over resolvable role classifications (61.6% vs. 38.4%). 78% of the
resolvable NIs are realized within a window of 3 sentences,10 as opposed to 69.6% in the SemEval and
90% in Gerber&Chai’s data. This can be explained by variation in text genre and target categories.

Considering the distribution of NI-realizations and the properties of the corresponding predicates,
we note some tendencies that seem worth investigating on a larger scale, as potential factors determining
null instantiation of roles. Predicates with low frame ambiguity rate (pay, bring, give) tend to have a
higher NI-realization rate than frames with a higher ambiguity rate (leave, put). A higher number of core
roles of the target frame tends to go along with a higher NI-realization potential (bring, pay).

7As the SemEval guidelines for lexical and constructional licensing are not very explicit, and given these annotations are
not required for evaluating system annotations, we do not report details about this part of the annotation.

8If the antecedent is not found in the preceding context, we also inspect the following discourse.
9204 out of all 834 NIs (24.5%) do not pertain to genuine frame readings. These were held out from further data statistics.

109.9% of the fillers were found in the following discourse.



verb frame verb core frame NI occurrences

occ. roles ambig. all other frame frame NIs per resolvable non-resolv.
reading reading occ. frame abs. % abs. %

give GIVING 524 3 1 218 63 155 144 1.08 62 40.0 93 60.0
put PLACING 427 4 3 39 17 22 22 1.00 10 45.5 12 54.5

leave DEPARTING 354 2 7 70 30 40 39 1.03 25 62.5 15 37.5
bring BRINGING 351 7 2 103 38 65 45 1.44 28 43.1 37 56.9
pay COMMERCE 336 5 1 404 56 348 188 1.85 117 33.6 231 66.4

PAY

all 1992 – – 834 204 630 438 – 242 – 388 –

Table 1: Annotated predicates and data analysis: Implicit role interpretation and linking.

give: GIVING all Donor Recepient Theme

Interpretation resolvable 40.0 25.2 13.5 1.3
non-resolvable 60.0 19.4 37.4 3.2

put: PLACING all Agent Cause Theme Goal

Interpretation resolvable 45.5 40.9 4.6 0.0 0.0
non-resolvable 54.4 45.5 9.1 0.0 0.0

leave: DEPARTING all Theme Source

Interpretation resolvable 62.5 0.0 62.5
non-resolvable 37.5 7.5 30.0

bring: BRINGING all Agent Goal Source Carrier

Interpretation resolvable 43.1 9.3 16.9 16.9 0.0
non-resolvable 56.9 21.5 1.5 23.1 10.8

pay: COMMERCE PAY all Buyer Seller Goods Money Rate

Interpretation resolvable 33.6 6.6 14.6 9.2 2.9 0.3
non-resolvable 66.4 2.5 25.3 17.2 10.9 10.3

Table 2: Distribution of resolvable vs. non-resolvable NI roles over predicate roles (in percent).

Further data statistics for particular predicates and which roles they omit under the different NI-
interpretations are given in Table 2. Typically, we find NI-realization concentrated on one or two roles
for a given predicate. Yet, these are observations on a small number of predicates that need substantiation
by further data annotation, with systematic exploration of other determining properties, such as role
meaning or perspectivation (pay/sell; leave/arrive) and the influence of constructional licensing.

5 Evaluation Experiments

We evaluate the impact of predicate-specific annotations for classification using two scenarios: (CV)
we examine the linking performance of models trained and tested on the same predicate by adopting
the 10-fold Cross-Validation scenario used by Gerber and Chai (2012) (G&C).11 (SemEval) Secondly,
we examine the direct effect of using our annotations as additional training data for linking NIs in the
SemEval 2010 task on implicit role binding. We use the state-of-the-art system and best performing
feature set described in Silberer and Frank (2012) (S&F) to make direct comparisons to previous results.

CV. As positive training and test samples for this scenario, we use all annotated (and resolvable) NIs
and randomly split them into 10 folds. Negative training samples (i.e., incorrect NI fillers) are automat-

11Note that this is not a direct comparison as both the annotation paradigm and the data sets are different.



Cross-Validation SemEval 2010 test set
verb precision recall F1 training data FS NgFNS precision recall F1

give 48.8 33.3 39.6 S&F’12
put 33.3 20.0 25.0 no additional data + n.a. 25.6 25.1 25.3

leave 48.3 56.0 51.9 + best heuristic data + n.a. 30.8 25.1 27.7
bring 72.7 27.6 40.0 this paper

pay 35.4 20.0 25.6 + our annotations – – 21.7 21.2 21.5
— — — — + our annotations + – 33.3 22.0 26.5

average 47.7 31.4 36.4 + our annotations + + 34.3 26.3 29.8

Table 3: Results for both evaluations (all figures are percentages). FS indicates whether feature selection
was applied. NgFNS indicates the use of frame annotations that do not match the contextual meaning.

ically added by extracting constituents that overtly fill a role according to the semantic annotations in
the OntoNotes gold standard. We only consider phrases of type NPB, S, VP, SBAR and SG within the
current and the two preceding sentences as potential fillers.12

SemEval. This setting is identical with the linking evaluation in S&F. Like them, we (optionally) apply
an additional step of feature selection (±FS) on the SemEval training data to select a feature subset that
generalizes best across data sets, i.e., the fully annotated novel from the shared task and our predicate-
specific annotations based on OntoNotes. We further compare models trained w/ and w/o non-genuine
frame annotations (±NgFNS). As in the CV setting, we assume that all resolvable NIs are known and
only the correct fillers are unknown. Thus, our results are not comparable to those of participants of the
full SemEval task, who solved two further sub-tasks. Instead we compare to the NI linking results in
S&F, with models trained on the SemEval data and using additional heuristically labelled data.

Table 3 summarizes our results for both settings. They are not strictly comparable due to varying
properties, i.a., the number of available annotations. The CV results show that few annotations can be
sufficient to achieve a high linking precision and f-score (up to 72.7 P, 51.9 F1). However, this is highly
dependent on the target predicate (cf. bring vs. pay). Overall, the results exhibit a similar variance and lie
within the same range as those reported by G&C. Even though the numbers are not directly comparable,
they generally indicate a similar difficulty of linking implicit arguments across lexical predicate types.

In the SemEval setting, we obtain improved precision and recall over S&F’s results (± additional
heuristic data, cf. Silberer&Frank, 2012)) when linking NIs using our additional training data and feature
selection. Using our full additional data set (+NgFNS) we obtain higher performance compared to S&F’s
best setting with heuristically labelled data, yielding highest scores of 34.3% precision and 26.3% recall.
The resulting F1-score of 29.76% lies 2.1 points above the best model of S&F, whose full system also
achieved state-of-the-art performance on the full SemEval task.

6 Conclusions

We presented an annotation effort for implicit role linking targeting five verb predicates. The FrameNet
annotations are mapped to PropBank and VerbNet and will be available for the community. Annotations
follow the SemEval guidelines and were quality-controlled. We annotated 630 NI realizations for the in-
tended predicate senses. Our experiments show that even a moderate amount of annotations per predicate
yield substantial performance gains of 2.1-4.5 points F1-score. Our data set complements the SemEval
corpus in terms of text genre and Gerber&Chai’s data set in terms of category and explicit annotation for
interpretation type. Due to higher-volume predicate-specific annotations, it enables more insightful eval-
uation and comparison between different models, including comparison across frameworks. In future
work, we plan to extend the annotation to further predicates using, i.a., active learning techniques.

12This corresponds to the SentWin setting in Silberer and Frank (2012) and is motivated by the fact that most NI fillers both
in the SemEval training data and in our annotations are located within a span of the current and two preceding sentences.



References
Burchardt, A., A. Frank, and M. Pinkal (2005). Building Text Meaning Representations from Contextually Related

Frames – A Case Study. In Proceedings of the 6th International Workshop on Computational Semantics, IWCS-
6, Tilburg, The Netherlands, pp. 66–77.

Chen, D., N. Schneider, D. Das, and N. A. Smith (2010, July). SEMAFOR: Frame Argument Resolution with Log-
Linear Models. In Proceedings of the 5th International Workshop on Semantic Evaluation, Uppsala, Sweden,
pp. 264–267.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measure-
ment 20(1), 37–46.

Fillmore, C. J. and C. F. Baker (2001, June). Frame Semantics for Text Understanding. In Proceedings of the
NAACL 2001 Workshop on WordNet and Other Lexical Resources, Pittsburgh.

Gerber, M. and J. Chai (2010). Beyond NomBank: A Study of Implicit Arguments for Nominal Predicates. In
Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, Uppsala, Sweden,
pp. 1583–1592.

Gerber, M. and J. Y. Chai (2012). Semantic role labeling of implicit arguments for nominal predicates. Computa-
tional Linguistics 38(4), 755–798.

Laparra, E. and G. Rigau (2012). Exploiting Explicit Annotations and Semantic Types for Implicit Argument
Resolution. In 6th IEEE International Conference on Semantic Computing (ICSC’12), Palermo, Italy.

Loper, E., S. Yi, and M. Palmer (2007). Combining Lexical Resources: Mapping between PropBank and VerbNet.
In Proceedings of the 7th International Workshop on Computational Semantics, Tilburg, the Netherlands.

Meyers, A., R. Reeves, C. Macleod, R. Szekely, V. Zielinska, B. Young, and R. Grishman (2004). Annotating Noun
Argument Structure for NomBank. In Proceedings of the 4th International Conference on Language Resources
and Evaluation, LREC-2004, Lisbon, Portugal, pp. 803–806.

Palmer, M., D. Gildea, and P. Kingsbury (2005). The Proposition Bank: An Annotated Corpus of Semantic Roles.
Computational Linguistics 31(1), 71–106.

Palmer, M., D. Gildea, and N. Xue (2010). Semantic Role Labeling. Synthesis Lectures on Human Language
Technologies. Morgan & Claypool Publishers.

Ruppenhofer, J., P. Gorinski, and C. Sporleder (2011). In Search of Missing Arguments: A Linguistic Approach.
In Proceedings of RANLP, Hissar, Bulgaria, pp. 331–338.

Ruppenhofer, J., R. Lee-Goldman, C. Sporleder, and R. Morante (2012). Beyond sentence-level semantic role
labeling: linking argument structures in discourse. Language Resources and Evaluation. DOI: 10.1007/s10579-
012-9201-4.

Ruppenhofer, J., C. Sporleder, R. Morante, C. Baker, and M. Palmer (2010). SemEval-2010 Task 10: Linking
Events and Their Participants in Discourse. In Proceedings of the 5th International Workshop on Semantic
Evaluations, Uppsala, Sweden, pp. 45–50.

Silberer, C. and A. Frank (2012). Casting Implicit Role Linking as an Anaphora Resolution Task. In *SEM 2012:
The First Joint Conference on Lexical and Computational Semantics, Montréal, Canada, pp. 1–10.
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A Pilot Experiment in Knowledge Authoring as Dialogue∗

Artemis Parvizi† Caroline Jay‡ Christopher Mellish† Jeff Z. Pan† Yuan Ren†

Robert Stevens‡ Kees van Deemter†

Abstract

This project aims to build an ontology authoring interface in which the user is engaged in a dialogue
with the system in controlled natural language. To investigate what such a dialogue might be like,
a layered annotation scheme is being developed for interactions between ontology authors and the
Protégé ontology authoring environment. A pilot experiment has been conducted with ontology
authors, which reveals the complexity of mapping between user-interface actions and acts that appear
in natural language dialogues; it also suggests the addition of some unanticipated types of dialogue
acts and points the way to some possible enhancements of the authoring interface.

1 Introduction

Ontology authoring – the process of creating and modifying an ontology in order to capture the knowl-
edge about a domain – is hard. Studies such as (Rector et al., 2004) and (Dzbor et al., 2006), for example,
have shown that ontology authors frequently misunderstand axioms in the ontology. These studies also
suggest that current ontology authoring tools fail to support some of the actions that authors would like
to perform, and that users would like to be warned against potential mis-uses of axioms and unforeseen
consequences of those axioms.

This paper reports on work in progress, in which we study the interaction of human users with an
ontology authoring interface, with the ultimate aim of developing a tool that will permit a much richer
knowledge authoring experience, thereby addressing the above-mentioned problems associated with ex-
isting knowledge authoring. We envisage developing a plugin to the knowledge authoring interface
Protégé1 that will allow authors to interact with the ontology via a controlled natural language (CNL) di-
alogue that offers users some of the freedom of natural language without causing insurmountable natural
language understanding problems to the system. Specifically, we report on a pilot experiment in which
we observed human editors who were invited to use Protégé while talking to an experimenter, and on a
layered annotation scheme that we are developing for annotating the resulting interactions. Once a stable
annotation scheme has been reached, we shall use the scheme to obtain annotations involving a larger
number of users and a larger number of knowledge authoring tasks, the results of which will inform the
design of the new knowledge authoring interface. In this paper, we focus on the following questions:

• If knowledge authoring is viewed as a dialogue, what would be the main moves that one would
expect to see in these dialogues?

• How are these dialogue moves grounded in lower-level actions like “Finding subsumers for a given
concept”, or “Looking at a concept”?

• How does the annotation of a knowledge authoring dialogue compare to the annotation of real
spoken dialogue?

∗This work was supported by EPSRC grants EP/J014354/1 and EP/J014176/1.
†University of Aberdeen, UK
‡University of Manchester, UK
1http://protege.stanford.edu



Ontology authoring aided by CNL has been addressed from various points. ACE (Fuchs et al., 1999)
and PENG (Schwitter, 2002) allow users to express specifications that can be translated into an unam-
biguous logical language, understandable to machines. CLCE (Sowa, 2004) resembles ACE but, being
closer to English, its output is more readable. SWAT (Power, 2009) uses natural language generation to
enable users to produce description logic statements. Similar to CLCE, (Bernardi et al., 2012)’s work is
another example of a novel controlled language capable of assisting ontology authoring.

Whereas this previous work has addressed the problem of producing isolated utterances relevant
to knowledge authoring using CNL, this project attempts to further develop knowledge authoring by
adopting new interactive methods inspired by human dialogue. For example, we hypothesise that by
allowing an author to pose what-if questions prior to authoring an axiom in an ontology, the authoring
process will run in a more informed manner. The following dialogue is an example of the type of
communication that this project is attempting to make possible during knowledge authoring:

U1 I want a Moral Right to be able to have a date.
S1 Moral Rights currently have no date property.
U2 What if I import timeframe.owl?
S2 That is consistent. There is now a date property.
U3 What if a Moral Right must have exactly one date?
S3 That implies that Attribution Rights and Integrity Rights must have exactly one date.

2 A new dialogue annotation scheme for Knowledge Authoring

We decided to use a layered model of human-computer interaction to analyse the interactions between
knowledge editors and Protégé. This general idea has a long pedigree. Moran (1981) proposed a com-
mand language grammar, Foley et al. (1982) suggested a 4-layer design model, Buxton (1983) expanded
Foley et al.’s model into a 5-layer design model, and Nielsen (1986) presented a virtual communication
protocol. Generally, the aim is to have a better understanding of various aspects of human machine inter-
action, recognising that a high-level action may be “implemented” in various ways. In this section, we
sketch our intial three-level scheme for analysing the interaction between users and Protégé, which was
then modified in light of our experiment.
KLM level. The lowest level of analysis is akin to the Keystroke Level Model (KLM) (Card et al., 1986).
This level records the physical interactions of the user with the system. KLM level includes acts such as
clicks, mouse hovers, and eye movements.
Authoring level. At a higher level of analysis, we wanted to record what it is that users attempt to
do and the high-level actions that they perform to accommodate these goals. Some existing analyses
(Goncalves et al., 2011; Abgaz et al., 2012) have attempted to understand and categorise changes to
the knowledge base during its development. The intention of the present work is not only to categorise
such change, but also to understand users’ thinking and, ultimately, to work towards a greater knowledge
authoring functionality. We decided to group authoring-level acts into general acts and interface acts.
General acts are grouped into (1) various types of observations (for example, looking whether a class
of a given name exists in the ontology; looking to see what instances of a class exist), (2) addition,
updating, and deletion of axioms, (3) noticing and resolving inconsistencies. Interface acts include (1)
common interface features such as undoing or redoing a previous action, and (2) seeking explanations of
inconsistencies.
Dialogue level. Annotation at this level involves a creative step where actions are analysed as if they were
instances of acts in a natural language dialogue. These dialogue acts will provide basis for the design
of an interface for knowledge authoring that is similar to natural dialogue. Annotation of dialogue acts
is standard in the analysis of Natural Language dialogues (Bunt, 1994; Ginzburg, 1994), but this is not
yet used in ontology authoring. Figures 1 and 2 show our initial intuition of dialogue acts, which are
categorised into user and system’s dialogue acts.

• Informative Questions The aim of this type of question is to acquire some information, for exam-
ple, “Where does class X appear in the classification hierarchy?”. The system is intended to search
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Figure 1: User’s Dialogue Acts

through the inferred hierarchy for a response.
• What-if Questions Based on the current context, this type of question informs the user about a
possible future state of the system. The system needs to perform an action and report its conse-
quences. However, the decision to apply the change is made by the user later.
• Check Questions Similar in nature to informative questions, check questions provide answers to
user’s inquiries, but where the user has a strong expectation about the answer.
• Additive Command Informing the system of a certain statement that has to be added or made true
in the ontology. The consistency of the ontology needs to be checked and reported to the user. The
decision how and when to address the inconsistency has to be made by the user later.
• Retracting Command In certain circumstances when the ontology has become inconsistent, the
user can either ask an informative question, or a check question and based on the answer decide to
retract a change; or, the user can simply retract one or more of the uttered statements.
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Figure 2: System’s Dialogue Acts

• Expressive Statements A response to an information seeking or a what-if question. Based on the
type of question to be addressed, the system may or may not be involved in an authoring process.
• Confirmation Statements in Response to Questions Informing the user that an authoring act had
the desired effect.
• Disconfirmation Statements in Response to Question Informing the user of the consequences to
an authoring act, which may not be desired.
• Confirmation Statements in Response to Statements Confirmation of a successful authoring act.
• Proposal Questions A suggestion by the system to undertake an action.
• Clarification Questions A question posed to the user to clarify a command.

3 A Pilot Experiment

The 5 participants in the pilot study were computer scientists who were experienced users of OWL and
Protégé. They were asked to set up the Protégé interface as they normally operated it. They were asked
to explore the People and Pet ontology acquired from the Tones repository 2, and manipulate it as they
saw fit. They were asked to follow the think aloud protocol, and describe their moves. In addition,
their interactions and eye movements were video-recorded. Where the experimenters were unclear about
a description of what was happening, they asked the subject for clarification. Occasionally, when the

2http://owl.cs.manchester.ac.uk/repository/



subject felt unsure how to proceed, the experimenter suggested an action (for example, Why don’t you
look at the axioms now appearing in red?”)

Table 1: A pilot experiment and various levels of annotation

Speech/Action Authoring level Dialogue Level

7:35 “he’s a car driver” Adopt goal 1: (Mick is a car driver) Expression of intention

...
...

...
...

8:57 “make the . . . thing that he’s driving . . . ” Adopt goal 2: (Q123 is a car) Expression of intention

9:01 “I will just remove whatever was there and . . . ” Adopt goal 3: (Q123 is only a car) Expression of intention

9:03 “oh I know!” Abandon goal 3 Retraction of intention

9:03 clicks ‘Types+’ in ‘Description Q123’
Add axiom: (Q123 is a car) Additive command9:04 “add car as well”

9:04 types ‘car’ in ‘Q123’ dialogue

9:05 “and see whether it’s invalid”
Check: (Mick is a car driver) Check Question

9:08 runs reasoner

9:08 “if it is really the same thing then it should be disjoint”
Notice: (vehicle type not disjoint) –

Note goal: (vehicle types disjoint) Expression of desire

9:11 “mm-hm” Confirm check Confirmation statement

9:16 clicks ’Mick’ in ‘individuals’ window Goal achieved: (Mick is a car driver) Retraction of intention

Knowledge authoring sessions were annotated with reference to the scheme outlined above but, cru-
cially, annotators wrote annotations in a free style: the interface did not limit them to a fixed set of
labels implied by our initial annotation scheme. A small annotated segment of one session is presented
in Table 1. In the speech/action column, speech refers to the user’s comments and is displayed within
quotations, and actions refers to the physical interactions between the user and the Protégé interface.

Our initial intuitions about dialogue acts were shown to be far from perfect. Perhaps unsurprisingly,
it became clear that the mapping between KLM, Protégé and dialogue levels can be very complex. An
annotation in one layer can correspond to more than one in another layer. For example, a subject may
observe the definition or the location in the hierarchy of a concept for various conceptual reasons, for
instance to check consistency (a Check Question in our scheme) or to prepare for adding a new concept
(an Additive Command). Difficulties of a similar kind are well known from the annotation of natural
language dialogue, for instance whether a given spoken utterance (for example, “You are 29 years old”)
has declarative or interrogative meaning (Beun, 1989). It also became clear that a separate category is
required where a command is both Additive and Retracting at the same time, such as a Modifying Com-
mand. Furthermore, as displayed in Table 1 at 9:08, an action at one layer may not correspond to an
action in another layer at all. Most interestingly, we discovered that knowledge authoring is full of what
we call Hidden Acts, which do not correspond with actual Protégé actions, but which turn out to play
an important role in the interaction, as evidenced by subjects’ spoken utterances. These include, most
prominently, various types of goal handling, such as the adoption, revision, satisfaction, and abandon-
ment of goals. At the dialogue level, these correspond to the expression of desires (when a goal is set
aside for later) and intentions (when a goal is starting to be pursued).

How does our annotation scheme compare to schemes for the analysis of natural language dialogue,
such as the ISO-standard of (Bunt et al., 2010)? Similarities with our own scheme are easy to find: the
distinction between information seeking and informative providing is an obvious example. Important
differences exist as well. The ISO standard has been developed for annotating a wide class of dialogues.
Our own scheme targets a specific kind of “asymmetric” dialogue, between a person and a machine.
Goals can only be expressed by the person; what-if questions can only be posed by the person (the system
responds, for example, with an Expressive Statement). Furthermore, the person cannot, at present, make



Expressive Statements (given that the addition of an axiom has been modelled as a Command). Proposals
(as opposed to Commands) are only open to the system. Perhaps the most interesting differences between
the two schemes relate to the expression of goals, which appears to be absent from the ISO standard. A
few other natural-language related annotation schemes (e.g, (Leech and Weisser, 2003)) do allow the
expression of “desires”, though the distinction between desires and intentions – reminiscent of Bratman-
style “Beliefs, Desires and Intentions” (Bratman, 1999) – is not made.

4 Where do we go from here?

Our annotation scheme has been updated to reflect the observations reported in the previous section,
adding categories like Expression of Intention and Expression of Desire. Having offered tentative answers
to the three questions mentioned at the end of the introduction to this paper, how do we plan to proceed?

First, we aim to further improve our understanding of knowledge authoring. Our experiment has
given us some relevant insights, as incorporated in our modified annotation scheme, but the validity of
these insights has yet to be proven. To do this we shall write an explicit annotation manual, and ask
annotators to use these in a full-scale experiment. As before, the study proper will have as participants
ontologists working on an ontology they either own or collaborate on in authoring and will not necessarily
be computer scientists. Thus the study proper will observe participants in their everyday work, rather
than a task that was merely an artefact of the study. In such a setting, there is the potential for a think
aloud protocol to distort ‘normal working practices’, which was not an issue in the pilot study. After
the experiment they will be asked to clarify their actions (retrospective think-aloud), and to elaborate
on what they were trying to do (Olmsted-Hawala et al., 2010). Next, we shall ask annotators to use the
annotation manual (and an annotation tool based on the categories defined in the manual) to annotate
a number of episodes from the full-scale experiment. Inter-annotator agreement will then be measured
using standard methods (for example, the κ test), which should tell us whether our annotation scheme,
and the annotations that are based on it, are clear. Where necessary the scheme will be adapted in light
of the experiment and the editors’ clarifications.

As explained in the Introduction, we aim to exploit our improved understanding of knowledge au-
thoring by designing an improved knowledge authoring interface. This will be a difficult step, which
will start with an in-depth study of the outcomes of the full-scale experiment, trying to understand what
ontology authors were attempting to do, and how their actions may be better supported by an improved
knowledge authoring interface. It is too early to say with certainty what these improvements will be
but, in light of our pilot studies, it seems plausible that the new interface will allow ontology authors to
manipulate goals at different levels (“I’d like this concept to be subsumed by concept X”, “I’d like this
concept to have an infinite extension”, “This goal has now been fulfilled and can therefore be deleted”),
ask competency questions (such as questions that knowledge authors are often asked to write down before
starting the authoring process proper) and ask what-if questions that allow users to explore the conse-
quences of potential actions without as yet committing to them. Ultimately, we envisage implementing
the new dialogue moves as a plug-in to Protégé-style knowledge authoring software.
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Abstract

We propose and advocate the use of an advanced declarative programming paradigm – answer set
programming – as a uniform platform for integrated approach towards syntax-semantic processing
in natural language. We illustrate that (a) the parsing technology based on answer set programming
implementation reaches performance sufficient for being a useful NLP tool, and (b) the proposed
method for incorporating semantic information from FRAMENET into syntactic parsing may prove to
be useful in allowing semantic-based disambiguation of syntactic structures.

1 Introduction

Typical natural language processing (NLP) system consists of at least several components including syn-
tactic and semantic analyzers. A common assumption in the design of an NLP system is that these com-
ponents are separate and independent. On one hand, this allows researchers an abstraction necessary to
promote substantial steps forward in each task, plus such a separation permits for more convenient, mod-
ular software development. On the other hand, constraints from ”higher level” processes are frequently
needed to disambiguate ”lower level” processes. For example, consider the syntactically ambiguous
sentence

I eat spaghetti with chopsticks. (1)

Its verb phrase allows for two syntactic structures:

eat
(VP/PP)/NP

spaghetti

NP

VP/PP

with chopsticks

PP

VP

eat
VP/NP

spaghetti

NP

with chopsticks

NP\NP
NP

VP

(2)

In the former, the prepositional phrase “with chopsticks” modifies the verbal phrase “eat spaghetti”,
and in the latter, it modifies the noun phrase “spaghetti”. The sentence

I eat spaghetti with meatballs (3)

is syntactically ambiguous in a similar manner. In order to assign the proper syntactic structure to each
of these sentences one has to take into account selectional restrictions, i.e., the semantic restrictions that
a word imposes on the environment in which it occurs. For instance, in (1) the fact that a chopstick
is an instrument suggests that “with chopsticks” modifies “eat spaghetti” as a tool for eating. Thus,
an approach that integrates syntactic and semantic processing is essential for proper analysis of such
sentences. Modern statistical methods, dominant in the field of syntactic analysis, take into account

∗We would like to thank Vladimir Lifschitz and Ray Mooney for useful discussions and comments related to the topic of
this work. Peter Schüller was supported by a TUBITAK scholarship.



selectional restrictions implicitly by assigning most probable syntactic structure based on observed co-
occurrences of words and structures in corpora. Yet, this is often not sufficient. Sentences (1) and (3)
illustrate this point, as the advanced parsers, including Stanford and Berkeley systems, do not produce
proper syntactic representations for these sentences: instead they favor the same structure for both of
them.1 Similarly, semantic role labelers (joint syntactic-semantic parsers) such as SEMAFOR (Das et al.,
2010) and LTH (Johansson and Nugues, 2007) display the same issue. The FRAMENET project (Baker
et al., 1998) provides information that can disambiguate sentences (1) and (3). For instance, the frame
food corresponds to the word “spaghetti”. This frame contains information that food only takes other
food as constituents. Thus modifying “spaghetti” with “chopsticks” in a parse tree for (1) yields a
forbidden situation.

In this paper we present preliminary work on a system for natural language parsing that targets a
tight integration of syntax and semantics. We illustrate its ability to take into account both quantitative
and qualitative data available for processing natural language, where the former stems from statistical
information available for natural language and the latter stems from lexical and commonsense knowledge
available in lexical datasets such as FRAMENET.

Lierler and Schüller (2012) developed a Combinatory Categorial Grammar (CCG) parser ASPC-
CGTK2. A distinguishing feature of ASPCCGTK is that its design allows for synergy of both quanti-
tative and qualitative information. First, it relies on the C&C part-of-speech supertagger (Clark and
Curran, 2007) – built using latest statistical and machine learning advances in NLP. Second, its imple-
mentation is based on a prominent knowledge representation and reasoning formalism — answer set
programming (ASP), see Brewka et al. (2011). ASP constitutes a convenient framework for represent-
ing constraints posed by selectional restrictions explicitly; thus we can augment implicit information
available from statistical part-of-speech tagging with qualitative reasoning. We believe that the ASPC-
CGTK parser is a strong ground for designing a systematic, elaboration tolerant, knowledge intensive
approach towards an integrated syntax-semantics analysis tool. Performance results on ASPCCGTK re-
ported in (Lierler and Schüller, 2012) suggest that the “planning” approach adopted for parsing in the
system scales to sentences of length up to 15 words. It may be sufficient for a number of applications: for
example, 6.87 is the average number of words in sentences in the GEOQUERY corpus (Zelle and Mooney,
1996). But, in order for ASPCCGTK to become a viable NLP technology it is important to address the
issue of its scalability.

The two contributions of this paper are as follows. First we demonstrate how use of the Cocke-
Younger-Kasami (CYK) algorithm (Kasami, 1965) enhances the performance of ASPCCGTK. We evalu-
ate the new approach implemented in ASPCCGTK on the CCGbank corpus (Hockenmaier and Steedman,
2007) and report the results. Second we propose and illustrate the method on how (a) FRAMENET can
be used for properly disambiguating sentences (1) and (3), and (b) how this information is incorporated
into the ASPCCGTK system. As a result we are able to use the ASPCCGTK parser to generate only the
expected syntactic structures for the sentences in question.

In the future, we will automate a process of extracting selection restriction constraints from the data
available in FRAMENET, by building an interface between ASPCCGTK and FRAMENET. CCGbank will
provide us with extensive real world data for evaluating our approach. Once successful, we will look
into expanding the approach to the use of other semantic annotations datasets for lexical items such as
VERBNET, PROPBANK, NOMBANK and others for more complete sets of lexical constraints.

2 Extending ASPCCGTK for parsing CCG with CYK in ASP

Combinatory Categorial Grammar (Steedman, 2000) is a formalism that uses a small set of combinatory
rules and a rich set of categories. Categories are either atomic such as NP , or complex such as S\NP ,
which is a category for English intransitive verbs. The category S\NP states that an NP to the left of the

1Thanks to Nathan Schulte for carrying out the research supporting this claim by investigating the behavior of nine state-of-
the-art parsers listed at http://nlp.stanford.edu/software/stanford-dependencies.shtml.

2http://www.kr.tuwien.ac.at/staff/former_staff/ps/aspccgtk



word will result in a sentence S. Given a sentence and a lexicon containing a set of word-category pairs,
we replace words by appropriate categories and then apply combinators. For example, in the former
derivation in (2), “eat” has category (VP/PP)/NP and “spaghetti” has category NP . The combinator
used in this derivation is forward application (fa)

A/B B

A
fa

(4)

where A and B are variables that can be substituted for CCG categories. Applying forward application
to “eat” and “spaghetti” substitutes A with VP/PP and B with NP and yields VP/PP . An input
sentence is part of a grammar if some sequence of applying combinators results in the category S at the
root of the parse tree.

The implementation of ASPCCGTK is based on answer set programming – a declarative logic pro-
gramming paradigm. ASP roots in answer set semantics of logic programs (Gelfond and Lifschitz, 1988).
The idea of ASP is to represent a problem by a program whose answer sets correspond to solutions. For
example, for parsing we encode the grammar and the input sentence in a way that each answer set cor-
responds to a valid parse tree of the input. Unlike in an imperative style of programming, in declarative
programming we describe a specification of the problem, which expresses what the program should ac-
complish rather than prescribing how to do it. Answer set solvers use this specification to efficiently
navigate through a search space and find solutions to the problem. For a more detailed and yet brief
introduction of CCG and ASP we refer the reader to (Lierler and Schüller, 2012).

The CYK (Cocke, Younger, and Kasami) algorithm for context-free-grammars was initially pub-
lished by Kasami (1965). It can be extended to CCG using ideas from Lange and Leiß (2009). Given
an input of n words, CYK operates on an n× n triangular chart. Words in the input are associated with
categories in the diagonal of the chart. Combinatory rules combine categories from two chart cells into
a single category in another “corresponding” cell. We illustrate these intuitions using a 3× 3 chart:

AA/B

B

1,1 2,1 3,1

2,2 3,2

3,3

Pi,PjPleft,Pj

Pi,Pdown
(5)

An input is recognized as part of the grammar if the top right chart cell contains the category S after
successive application of combinators to the chart. A realization of CYK for recognition of context-free
grammars in ASP was described by Drescher and Walsh (2011). First, we adapt their approach to CCG.
Second, we extend it to the task of generating parse trees as we are not only interested in recognizing
grammatical inputs but also in producing appropriate parses.

We now show parts of our realization of CYK in the ASP formalism. We represent a chart using a
predicate grid(Pi,Pj,Cat) and initialize the diagonal using the rule

grid(P,P,C) :- category at(C,P).

where the category at predicate is obtained from tagging the input with the C&C supertagger.
Forward application is realized as follows (grid variables are shown in (5), X and Y are variables

that stand for CCG categories):

applicable(fa,Pj,Pi,Pleft,Pdown,X,rfunc(X,Y),Y) :-
grid(Pleft,Pi,rfunc(X,Y)), grid(Pj,Pdown,Y).

grid(Pj,Pi,X) :- applicable( ,Pj,Pi, , ,X, , ).

where rfunc(X,Y) encodes complex category of the form X/Y . The first rule defines where the fa
combinator can be applied to within the chart. The second rule defines which categories this application



creates. For obtaining parse trees, we “guess” for each instance of applicable if that combinator is
actually applied (SrcLeft, SrcDown, and Result stand for CCG categories in the CYK grid):

{ applied(Comb,Pj,Pi,Pleft,Pdown,Result,SrcLeft,SrcDown) } :-
applicable(Comb,Pj,Pi,Pleft,Pdown,Result,SrcLeft,SrcDown).

The curly bracket construct in the head of this rule is what expresses the guess as we can intuitively read
this rule as follows: an expression in the head may hold in case if the body of the rule holds.

To obtain only valid parse trees, we furthermore (i) add rules that constraint the selection of multiple
applied combinators in one cell, (ii) define reachability of diagonal chart cells from the S category in
the top right cell, and (iii) add rules that require all diagonal cells to be reachable.

We believe that the possibility of explicitly representing alternatives and then restricting them by
expressing appropriate conditions using declarative means makes ASP a powerful tool for working with
ambiguities in the field of NLP.

We conducted empirical experiments to compare the performance of the original ASPCCGTK and
the ASPCCGTK enhanced with CYK as described here. We report average times and number of timeouts
when parsing all sentences of Section 00 of the CCGbank corpus (Hockenmaier and Steedman, 2007)
using a timeout of 1200 seconds. The sentences were chunked and tagged by the C&C supertagger. The
benchmark results show that the CYK approach has a significant performance advantage over the old
approach. Columns show average time in seconds for groups of sentences of a certain length. Number
in parenthesis represents the number of timeouts.

Number of Words 1-10 11-15 16-20 21-25 26-30 31-35 36-40 41+

Number of Sentences 195 285 345 330 287 224 118 129

ASPCCGTK (CYK) 0.04 0.18 0.49 1.04 2.11 3.21 6.66 27.01(3)

ASPCCGTK (original) 0.13 1.07 4.90 20.93 68.21(1) 194.59(2) 342.88(24) 497.93(75)

3 Semantic Disambiguation using FRAMENET

FRAMENET is a dataset of semantic relations based on Frame Semantics (Fillmore and Baker, 2001).
Lexical items evoke certain frames that contain frame elements; for example, “eat” evokes an ingestion
frame and everything that is of semantic type food evokes a food frame. Sample information available
in the ingestion and food frames follow:

Frame Frame Element Semantic Type

ingestion INGESTOR sentient
INGESTIBLE ingestible
INSTRUMENT tool
MANNER manner

Frame Frame Element Semantic Type

food CONSTITUENT food constituent

Each frame element is a slot that may be filled only by elements of the correct semantic type. Types are
organized in a taxonomy. For instance, the following part of the taxonomy is relevant to this presentation:

tool is a instrument food is a ingestible food is a food constituent.

We propose a concept of a “semantically coherent” parse tree. Information from FRAMENET allows
us to disambiguate semantically coherent and incoherent trees. We now make these ideas precise. Each
node in a tree is annotated with a tag – either a distinguished tag ⊥ or a pair T ||F where both T and
F are sets consisting of semantic types. Each leaf of a tree is assigned a tag T ||F in accordance with
FRAMENET information for a corresponding word. The set T contains the semantic types associated with
the leaf-word. For instance, for word “spaghetti”, this set Tsp is {food, food constituent, ingestible}.
The set F contains the semantic types associated with the frame elements of a frame evoked by a leaf-
word. For instance, for word “eat” that evokes the ingestion frame, this set Feat is

{sentient, ingestible, tool,manner}.



To define a tag for a non-leaf node of a tree we introduce the following terminology. Any non-leaf node
in a CCG parse tree is a parent of two children: a functor and an argument. Depending on semantic
information assigned to nodes, they act as functors or arguments. For a non-leaf node p, we define a tag
Tp||Fp as follows

Tp||Fp =


⊥ if a tag of either f or a is ⊥
⊥ if Ff ∩ Ta = ∅
Tf ||(Ff \ {s}) if there is a semantic type s ∈ Ff ∩ Ta

where f and a stand for a functor and an argument children of p, respectively. Pairs Ff ||Tf and Fa||Ta

correspond to tags of these children. We say that a parse tree is semantically coherent if there is no node
in the tree annotated by the ⊥ tag.

Recall the syntactic structures (2) corresponding to the verb phrase of sentence (1). The annotated
counterpart of the former structure follows3:

eat
(VP/PP)/NP : ∅||Feat

spaghetti

NP : Tsp||{food constituent}
VP/PP : ∅||{sentient, tool,manner}

with chopsticks

PP : {tool, instrument}||∅
VP : ∅||{sentient,manner}

This subtree is semantically coherent. On the other hand, part of the later structure in (2) constitutes
semantically incoherent subtree:

spaghetti

NP : Tsp||{food constituent}
with chopsticks

NP\NP : {tool, instrument}||∅
NP : ⊥

To implement described process within ASPCCGTK approach, we first manually specify a dictionary
that contains FRAMENET information sufficient for annotating leaf nodes stemming from the words in an
input sentence. We then use logic rules to (a) define annotations for non-leaf nodes of parse trees and (b)
restrict the produced parse trees only to these that are semantically coherent. On the sentences (1) and (3),
the ASPCCGTK parser implementing this approach is capable to enumerate only and all semantically
coherent parses that correspond to syntactic structures expected for the sentences.

4 Conclusions and Future Work

In this work we propose and advocate the use of advanced declarative programming paradigm – answer
set programming – as a uniform platform for integrated approach towards syntax-semantic processing
in NLP. We illustrate that the CCG parser ASPCCGTK based on an ASP implementation reaches per-
formance sufficient for being a useful NLP technology by taking advantage of the data structures of the
CYK algorithm. Even though ASP has a high worst-case complexity, a related declarative paradigm
with the same worst-case complexity was shown to be effective for solving NLP problems: the usage
of Integer Linear Programming in (Roth and Yih, 2007). We also propose a method for disambiguating
syntactic parse trees using the semantic information stemming from the FRAMENET dataset and imple-
ment it within the ASPCCGTK parser. This implementation results in the first step towards a synergistic
approach in syntax-semantic processing by means of technology such as ASP. There is an open question
on how to automatically fetch relevant information from FRAMENET in order to make the proposed im-
plementation widely usable. This is the subject of ongoing and future work. One reasonable direction to
explore is assess the usability of FRAMENET-based semantic role labeling systems for our purposes, in
particular, LTH and SEMAFOR. The CCGbank will serve us as a test bed for evaluating the effectively of
proposed method and directing this research. The source code of the reported implementation is available
online at the ASPCCGTK website under version 0.3.

3The definition of semantically coherent trees presented here is a simplified version of a more complex construct, which
takes into account functors that carry no semantic type information by themselves (for example, a functor corresponding to a
word “with”) but rather inherit this information from its argument.
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Abstract
Utterances in situated activity are about the world. Theories and systems normally capture this by

assuming references must be resolved to real-world entities in utterance understanding. We describe a
number of puzzles and problems for this approach, and propose an alternative semantic representation
using discourse relations that link utterances to the nonlinguistic context to capture the context-
dependent interpretation of situated utterances. Our approach promises better empirical coverage
and more straightforward system building. Substantiating these advantages is work in progress.

1 Introduction

People exhibit sophisticated strategies for using language to coordinate their ongoing practical activities
(Clark and Krych, 2004). Applications such as human–robot interaction must also also support these
strategies (Kruijff et al., 2012). A key question is how to track speakers’ reference to the environment.
Julia Child’s (1), from the “omelette” episode of The French Chef, illustrates the issues:

(1) There’s your omelette, forming itself in the bottom of the pan.

The accompanying video is a close-up of a stovetop from above, with the omelette Child is cooking front
and center. To understand what Child is doing, we need to track the obvious connection between her
utterance and that omelette in that pan.

In this paper, we explore a novel and surprising proposal about how do this: discourse relations.
Discourse relations are kinds of speech acts, which can connect an utterance to ongoing conversation,
establish the coherence of what is said, and allow inference to implicatures and other aspects of the
speaker’s mental state (Asher and Lascarides, 2003, 2013). Child’s (1) we suggest, gets its coherence,
in part, as a report of what’s visible in that situation. Child’s reference to the omelette and the pan is a
consequence of this interpretation, and so need not and should not be separately represented.

Prior work focuses on symbols that refer directly to the world and placeholders that abstract refer-
ence; see Section 2. We introduce our alternative and contrast it with these approaches in Section 3. On
the theoretical side, we argue in Section 4, our approach captures meaning more precisely and provides
a better account of what’s needed to understand and disambiguate situated utterances. On the practical
side, we argue in Section 5, our approach provides a more tractable interface between linguistic process-
ing, situated perception, and deliberation.

2 Background

Our work arises out of an interest in combining grounded representations of meaning with coherence
approaches to discourse. To appreciate the issues, consider a classic case (Bolt, 1980). A user utters (2),
while pointing first at an object in the environment and then at the place it should go.

(2) Put that there.

∗This paper is based on work supported by NSF IIS-1017811. We acknowledge the helpful anonymous reviews.



Kaplan (1989) urges us to treat demonstratives in cases such as (2) as directly referential. In using them,
the speaker gives information about those very things. Computationally, this means that the objects of
demonstrations should be represented using symbols that are locked onto their referents system-wide.
In multimodal interfaces, like Bolt’s (1980), the targets are graphical objects and other locations on a
computer display, for which appropriate internal representations are readily available. For robotics, the
natural strategy is to represent referents using perceptually-grounded symbols anchored in the real world,
as do Yu and Ballard (2004) for example.

Speakers use many utterances referentially, even if the utterances don’t have referential semantics
(Kripke, 1977). Systems need to recognize and represent the speaker’s referential communicative inten-
tions in those cases too (Allen and Perrault, 1980). Bolt’s system, for example, responded to definite
descriptions, as in (3), the same way as it did to demonstratives: it moved those things.

(3) Put the cruise ship north of the Dominican Republic.

When it’s problematic to use grounded symbols, we can use discourse referents alongside them.
Formally, a discourse referent is just a free variable, but it can be associated with anchoring constraints
that describe how it is supposed to be linked up with the world (Zeevat, 1999). In practice, anchoring
involves representing interpretation in two separate tiers (Luperfoy, 1992). Meaning is represented via
variables, the world is represented via suitably grounded symbols, and an evolving assignment of values
to variables embodies the system’s understanding of the real-world reference of expressions in discourse.

Reconciling grounded reference and discourse anaphora is the job of discourse semantics. We can
see this in the planning dialogue of (4), for example.

(4) a. A: Let’s put the cruise ship south of Florida.
b. B: That won’t fit there.

We need to represent A’s utterance as a proposal—a specific kind of problem-solving move that advocates
a particular course of action and commits the speaker to following through on it if others concur. The
move focuses attention on the entities involved in carrying it out: here, the ship, Florida and the region
to its south. Meanwhile, B’s response in (4b) is a rejection—a move that offers a negative assessment
of the current proposal and commits the speaker against adopting it. Note that B’s references with that
and there succeed even if B produces the utterance without any accompanying gesture or demonstration,
because the referent has been activated by an earlier mention in a related utterance (Gundel et al., 1993).

The simplest approach to discourse organization is to represent the state of the discourse with an
information state (Poesio and Traum, 1997) and associate each move with an appropriate update. For
example, we can model utterances such as (2) and (3) as making moves that contribute step-by-step to
broader problem-solving activity; see Lochbaum (1998) or Blaylock (2005). Normally, the information
state specifies once and for all how each thread of ongoing activity places relevant real-world entities at
the center of attention (Grosz and Sidner, 1986; Poesio and Traum, 1997).

We advocate a different approach, based on discourse coherence (Kehler, 2002; Asher and Las-
carides, 2003). The idea is that discourse is fundamentally composed of relational contributions, which
establish connections that link each utterance by inference to segments of the preceding conversation.
The interpretation of an utterance therefore implicitly refers to the interpretation of some prior discourse
and comments on it. On coherence approaches, how an utterance attaches to the discourse determines
what entities are prominent in interpreting it (Hobbs, 1979). Coherence theory does not naturally charac-
terize discourse in terms of state-by-state updates to an overarching model of information and attention.
Kehler and colleagues’ (5) illustrates what’s at stake (Kehler et al., 2008).

(5) Phil tickled Stanley, and Liz poked him.

When we understand the second clause of (5) as a description of a parallel to the first, we prefer to
resolve him to Stanley. When we understand it to describe its results, we prefer to resolve him to Phil.
For coherence theory, the two interpretations of the second clause relate it to the first, and the relation is
what suggests prominent resolutions for its references. The relation in turn structures the discourse into
higher level units that shape possibilities for attaching subsequent utterances.



3 Our Proposal

Coherence theories start from the observation that understanding utterances involves recognizing the
implicit relationships that connect ideas together. The same is true, we argue, for utterances like (1).
Child is not just giving the next step in making an omelette, or giving her audience new information
about the principles of cooking. She’s describing what’s happening on the screen, in terms she expects
her audience to confirm for themselves by examining what they see. An interpreter who doesn’t recognize
this about (1) has failed to understand it.

To sketch the key formal ingredients of our account, we use a simple dynamic semantics (Muskens,
1996) and an expressive ontology of situations and eventualities (Hobbs, 1985; Kratzer, 2002). Dynamic
semantics represents meanings as sequences of updates [v|ϕ] that introduce discourse referents v and
characterize them with conditions ϕ. We add an update 〈πxc〉 introducing a discourse referent x per-
ceptually grounded in c, and an update 〈σxs〉 introducing x as the central entity in grounded situation s
(provided s does uniquely distinguish one). Where necessary, ∂K marks update K as presupposed.

Situations are parts of the world, capturing particular states of particular objects, perhaps as located
in particular spatial regions and changing over particular temporal intervals. Propositions are true in
situations; this is important for perceptual, causal and default reasoning. Eventualities, including David-
sonian events, turn out to be situations that exemplify propositions in characteristic ways. We capture
discourse coherence by specifying relations among situations; these can be discourse referents for situa-
tions introduced by utterances or grounded references to parts of the speech situation.1

We capture the interpretation of (2) by specifying the dynamics of discourse referents and their
grounded interpretations as in (6), using c1 for that and c2 for there.

(6) 〈πxc1〉;〈πyc2〉; [e|command(e),put(e,x,y)]

Things get more interesting when we factor in coherence. We formalize (1) as in (7).

(7) [e|Summary(s0,e)];∂[o, p|omelette(o),pan(p)]; [|forming-self-in(e,o, p)]

The discourse relation Summary(s0,e) captures the interpretive connection between the utterance de-
scribing e and what’s happening simultaneously on the screen in situation s0. Like all coherence rela-
tions, Summary reflects semantic and pragmatic constraints. Semantically, e must be part of s0. Following
Kratzer (2002), this entails that the information describing e is true in s0. Pragmatically, Summary(s0,e)
holds only if the information describing e provides a good answer about “what’s happening” in s0. A
summary appeals to broad, basic categories to provide essential information. We have in mind something
like the “vital nuggets of information” needed to answer definition questions (Voorhees, 2003).

For “That’s an omelette” we offer (8), which defines the central entity in situation s0 as an omelette:

(8) [e|Summary(s0,e)];〈σos0〉; [|omelette(e,o)]

The update 〈σos0〉 formalizes how the discourse relation makes entities prominent for reference, as we
observed in (5). Such updates can capture the interpretation of demonstratives when there’s no explicit
pointing or demonstration in the utterance.

Not all situated utterances offer a Summary of an unfolding situation. For example, utterances can of-
fer Assessments that invite the audience not to define what’s happening but to appraise it. Take “Yummy!”
In commenting on the food this way, the speaker expects the audience to join in her appreciation. A for-
mal characterization of Assessment would appeal to the semantics of predicates of personal taste and
the distinctive pragmatic functions of such judgments, perhaps following Crespo and Fernández (2011).
And speakers can also link up questions and instructions to ongoing activity by suitable relations.

Summary and Assessment could also be used to formalize the interpretation of successive utterances
by relating two described situations. In fact, utterances can relate both to ongoing activity and to previous

1Thus we use situations to capture discourse meaning, not to formalize events of speech or the common ground as in Poesio
and Traum (1997). An alternative approach would follow Zeevat (1999) and Asher and Lascarides (2003) and use labels for
DRSs to capture perceptual and discourse content in discourse relations.



discourse. For example, consider (9) and (10), taken from Vi Hart’s origami proof of the Pythagorean
theorem—a visual narrative much like Child’s where utterances describe ongoing events on the screen.2

(9) We’re just taking advantage of the symmetries of the square for the next step.

(10) This is where you’re choosing how long and pointy or short and fat the right triangle is.

Hart uses (9) while folding a square into eight identical segments to explain how to do the folds. Hart
uses (10) as she describes the next step of folding, to highlight its result for the proof. Thus, these
utterances are linked to the accompanying activity but do not just report what’s going on; and they’re
linked to the ongoing discourse as well. In fact, coherence theory already allows that utterances can bear
multiple connections to prior discourse (Asher and Lascarides, 2003). The closest parallel may be that
of multimodal communication, where Lascarides and Stone (2009) argue that utterances bear discourse
relations both to prior utterances and to simultaneous gesture.

4 Empirical Adequacy

Combining grounded representations with discourse relations, specifically as in (8), makes it possible to
give a better characterization of the logical form of demonstrative utterances in otherwise problematic
cases. In particular, it captures how speakers and interpreters can rely on the world to disambiguate what
they say and to understand one another.

Here’s a telling case. It’s the beginning of spring, 2012, and Jupiter and Venus are shining brightly
very close together—just a few degrees apart—in the evening sky. The speaker has deployed a telescope
facing a window over the western sky. When a visitor arrives, the speaker adjusts the telescope, then
says, without any further demonstration, either (11) or (12).

(11) That’s Jupiter. You can even see four moons.

(12) That’s Venus. You can see the crescent.

We (and our informants) find these utterances unproblematic. But the coherence theory is required to
get their interpretations right. These are comments on what’s visible through the telescope. You can’t
see four of Jupiter’s moons or the crescent of Venus with the naked eye and the speaker isn’t suggesting
otherwise. Moreover, the coherence relation is what’s making it possible for the speaker to refer to Jupiter
or Venus as that. To comment on the view through the telescope is to evoke whatever entity is centrally
imaged in the telescope as a prominent candidate for reference. And nothing else will do. Given the
astronomical conjunction, the speaker couldn’t distinguish Jupiter from Venus by pointing, nor could the
visitor judge which body the telescope was pointed at by the direction of the tube. Letting s1 name the
view through the telescope, we can formalize the key bits of interpretation:

(13) [e|Summary(s1,e)];〈σxs1〉; [|jupiter(e,x)]
(14) [e|Summary(s1,e)];〈σxs1〉; [|venus(e,x)]

The representations get the meaning right. More importantly, they explain how the visitor can recover the
logical form and understand the speaker’s point by recognizing the relationship that makes the speaker’s
utterance coherent, even though the visitor can’t identify which specific body the speaker is referring to
until the visitor looks through the telescope for herself. By contrast, if all you had was representations like
(6), grounded representations of deixis that made reference explicit, you’d incorrectly predict that there’s
an ambiguity to resolve in (11) and (12) even after you understand them as comments about the view
through the scope. You’d have two grounded symbols for bright objects in the western sky, and you’d
have to pick one as the referent of the speaker’s demonstration—or ask for clarification. We take this
as strong evidence against the idea that speakers and hearers must coordinate directly on demonstrative
referents, a common view in both formal and computational semantics (Neale, 2004; Stone, 2004).

2http://www.youtube.com/watch?v=z6lL83wl31E



5 Cognitive Architecture

Systems with grounded language interpretation have to integrate language and perception. Real robotic
understanding systems use a complicated inference process to resolve reference in situated utterances,
in order to figure out what thing in the world is a reference of a demonstration, for example (Kruijff
et al., 2012). It’s not just a matter of selecting the right referent from a set of salient candidates based on
linguistic constraints. Like people, robots have cameras with limited fields of view that must be pointed
at what they see. So when you do a demonstration for a robot, it has to track the pointing movement to
find the possible targets, much as a person would. There is substantial problem solving involved.

The same is true of many other grounded inference tasks involving domain reasoning. We may need
the results to calculate the implications of what we hear, or even to select the most likely interpretation.
But it’s normally prohibitive to try to interleave that problem solving with fine-grained disambiguation,
because it requires systems to solve these hard reasoning problems not just for the intended interpretation
but for any candidate interpretation it considers.

Representing context dependence via coherence provides an attractive framework to divide inter-
pretation into stages and minimize the problem solving that’s necessary to compute logical form. Take
(11) and its representation in (13). Here is a formalism that captures the meaning of the utterance while
spelling out the further work that will be required to resolve reference. According to (13), when you
look through the telescope, you’ll find out what the referent of that is. Recognizing the logical form of
the utterance this way should suffice for understanding. We expect that the discourse relation could be
resolved based on shallow constraints on what information counts as a summary. And the system only
needs to be tracking the ongoing activity enough to link utterances to relevant situations. It can ground
its provisional understanding in perception and action as needed separately.

6 Conclusion and Future Work

We have considered grounded interpretations in coherent discourse, and argued that referential interpreta-
tions in cases like (1), (2) and (11) are understood and derived relationally. This requires representations
of interpretation that explicitly link discourse entities with grounded symbols and track the heteroge-
neous prominence that these entities get in virtue of the diverse relationships that utterances can bear to
ongoing activity. In brief: we relate our talk to the world around us through suitable discourse relations.

Our approach commits us to representing utterances with specific kinds of interpretive connections
to the world. Our characterization of these connections is obviously provisional, and corpus and mod-
eling work is necessary to flesh out the parameters of the approach. We have also suggested that these
representations will be useful in designing systems that communicate about the environment where they
can perceive and act. Experiments with prototypes are clearly necessary to substantiate this claim.
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Abstract
Obtaining gold standard data for word sense disambiguation is important but costly. We show how
it can be done using a “Game with a Purpose” (GWAP) called Wordrobe. This game consists of a
large set of multiple-choice questions on word senses generated from the Groningen Meaning Bank.
The players need to answer these questions, scoring points depending on the agreement with fellow
players. The working assumption is that the right sense for a word can be determined by the answers
given by the players. To evaluate our method, we gold-standard tagged a portion of the data that
was also used in the GWAP. A comparison yielded promising results, ranging from a precision of
0.88 and recall of 0.83 for relative majority agreement, to a precision of 0.98 and recall of 0.35 for
questions that were answered unanimously.

1 Introduction

One of the core aspects of semantic annotation is determining the correct sense of each content word
from a set of possible senses. In NLP-related research, many models for disambiguating word senses
have been proposed. Such models have been evaluated through various public evaluation campaigns,
most notably SenseEval (now called SemEval), an international word sense disambiguation competition
held already six times since its start in 1998 (Kilgarriff and Rosenzweig, 2000).

All disambiguation models rely on gold standard data from human annotators, but this data is time-
consuming and expensive to obtain. In the context of constructing the Groningen Meaning Bank (GMB,
Basile et al., 2012), a large semantically annotated corpus, we address this problem by making use of
crowdsourcing. The idea of crowdsourcing is that some tasks that are difficult to solve for computers but
easy for humans may be outsourced to a number of people across the globe. One of the prime crowd-
sourcing platforms is Amazon’s Mechanical Turk, where workers get paid small amounts to complete
small tasks. Mechanical Turk has already been successfully applied for the purpose of word sense disam-
biguation and clustering (see, e.g., Akkaya et al., 2010; Rumshisky et al., 2012). Another crowdsourcing
technique, “Game with a Purpose” (GWAP), rewards contributors with entertainment rather than money.
GWAPs challenge players to score high on specifically designed tasks, thereby contributing their knowl-
edge. GWAPs were successfully pioneered in NLP by initiatives such as ‘Phrase Detectives’ for anaphora
resolution (Chamberlain et al., 2008) and ‘JeuxDeMots’ for term relations (Artignan et al., 2009). We
have developed an online GWAP platform for semantic annotation, called Wordrobe. In this paper we
present the design and the first results of using Wordrobe for the task of word sense disambiguation.

2 Method

Wordrobe1 is a collection of games with a purpose, each targeting a specific level of linguistic annota-
tion. Current games include part-of-speech tagging, named entity tagging, co-reference resolution and

1http://www.wordrobe.org/



word sense disambiguation. The game used for word sense disambiguation is called Senses. Below we
describe the design of Wordrobe and the data used for Senses.

2.1 Design of Wordrobe

Wordrobe is designed to be used by non-experts, who can use their intuitions about language to annotate
linguistic phenomena, without being discouraged by technical linguistic terminology. Therefore, the
games include as little instructions as possible. All games share the same structure: a multiple-choice
question with a small piece of text (generally one or two sentences) in which one or more words are
highlighted, depending on the type of game. For each question, players can select an answer or use the
skip-button to go to the next question.

In order to encourage players to answer a lot of questions and to give good answers, they are rewarded
in two ways: they can collect drawers and points. A drawer is simply a unit of a few questions – the
more difficult the game, the fewer questions are in one drawer. By completing many drawers, players
unlock achievements that decorate their profile page. While drawers are used to stimulate answering
many questions, points are used to motivate players to play with attention. The points are calculated on
the basis of two factors: the agreement with other players who answered the same question and the bet
that the player put at stake. Players can place a bet reflecting the certainty about their answer. The bet
is always between 10% and 100% of the points that a question is worth. The default choice is a bet of
10% and once a player adjusts the bet, this new value is remembered as the new preset value for the next
question. Higher bets will result in higher gains when the answer is correct, and lower points when the
answer is wrong. Since Wordrobe is designed to create gold standard annotations, the correct choice is
not defined (this is exactly what we want to obtain!). Therefore, the points are calculated on the basis
of the answers given by other players, as in Phrase Detectives (Chamberlain et al., 2008). The idea is
that the majority rules, meaning that the choice that gets selected most by human players is probably the
correct one. So, the more players agree with each other, the more points they gain. As a consequence,
the score of a player is continually updated – even when the player is not playing – in order to take into
account the answers provided by other players answering the same questions.

2.2 Generation of questions for the Senses game

All Wordrobe games consist of automatically generated multiple-choice questions. In the case of Senses,
the word sense labeling game, each question consists of one or two sentences extracted from the Gronin-
gen Meaning Bank with one highlighted word for which the correct word sense in the given context must
be determined. Currently, the game only focuses on nouns and verbs, but it can be easily extended to
include, e.g., adjectives and adverbs. The choices for the questions are automatically generated from the
word senses in WordNet (Fellbaum, 1998).

Of all the occurrences (tokens) of nouns and verbs in the GMB, 92.3% occurs in WordNet. This
results in a total of 452,576 candidate questions for the Senses game. For the first version of Wordrobe,
we selected a subset of the tokens that have at most five different senses in WordNet, such that the number
of choices for each question is restricted. Figure 1 shows a screenshot of a question of Senses.

3 Results

The number of automatically generated questions for the first version of Senses was 3,121. After the
first few weeks of Wordrobe going live, we had received 5,478 answers. Roughly half (1,673) of the
questions received at least one answer, with an average of three answers per question. In order to test the
validity of the method of using a GWAP to obtain reliable word sense annotations, we selected a subset
of the questions with a reasonable response rate and created a gold standard annotation.



Figure 1: Screenshot from Wordrobe game Senses.

3.1 Gold standard annotation

We created a gold standard annotation for a test set of 115 questions with exactly six answers each, which
was used to evaluate the answers given by the players of Wordrobe. Four trained human annotators
individually selected the correct sense for each of the target words in the test set. Fleiss’s kappa was
calculated to evaluate inter-annotator agreement, resulting in κ = 0.79, which is generally taken to reflect
substantial agreement. Unanimity was obtained for 64% of the questions and 86% of the questions had
an absolute majority vote. In a second step of evaluation, the non-unanimous answers were discussed
between the annotators in order to obtain 100% agreement on all questions, the result of which was used
as the gold standard annotation.

3.2 Agreement measures

Given a question and a set of player answers, we need a procedure to decide whether to accept a particular
choice into our annotated corpus. One important factor is agreement: if a great majority of players agrees
on the same choice, this choice is probably the correct one. Smaller majorities of players are more likely
to be wrong. Another important factor is the number of answers: the more players have answered a
question, the more we can presumably rely on the majority’s judgement. In this work, we focus on the
first factor (agreement) because the average answer rate per question is quite low throughout our data
set. We tested a couple of simple agreement measures that determine whether a choice is counted as a
winning answer. We measure recall and precision for each measure with respect to the gold standard.

The simplest measure accepts every choice that has a relative majority. It always accepts some choice,
unless the two choices with the most answers are tied. A stricter measure (“absolute majority”) accepts
only the choices that were chosen by at least a certain fraction of players who answered the question,
with some threshold t ≥ 0.5. We used the values 0.5, 0.7 and 1.0 as threshold, the latter only accepting
choices unanimously picked by players.

The measures described above simply choose the majority answer relative to some threshold, but fail
to take into account the total number of players that answered the question and the number of possible
choices for a question. These factors will become more important when we evaluate questions with a
higher number of answers. We need a measure that determines whether the majority answer is chosen
significantly more often than the other answers. This means that the answers should be significantly
skewed towards one answer. In order to test such an effect, we can use Pearson’s chi-square test, which
determines the goodness-of-fit of a given distribution relative to a uniform distribution. If we take the
distribution of answers over the set of possible choices, we can say that only those questions for which
this distribution significantly differs from a uniform distribution (p < 0.05) are considered to provide
an acceptable answer. Because the number of answers per question in our test set is relatively small, a
significant result means that there is one choice towards which the answers accumulate. Determining
which choice this is can accordingly be done using the relative-majority measure described above.



3.3 Evaluation

We evaluate the annotations obtained from Wordrobe by comparing the data of the test set (115 questions)
to the gold standard. We used each of the agreement measures described above to select the answers with
a high enough majority, and calculated precision (the number of correct answers with respect to the total
number of selected answers), recall (the number of correct answers with respect to the total number of
questions), and the corresponding F-score. The results are shown in Table 1.

Table 1: Precision and recall based on different agreement measures

Strategy Precision Recall F-score
Relative majority 0.880 0.834 0.857
Absolute majority (t = 0.5) 0.882 0.782 0.829
Absolute majority (t = 0.7) 0.945 0.608 0.740
Unanimity (t = 1) 0.975 0.347 0.512
Chi-square test (p < 0.05) 0.923 0.521 0.666

As expected, the highest recall is obtained using the relative majority measure since this measure is
the least conservative in accepting a majority choice. As the threshold for accepting a choice is set
higher, recall drops and precision rises, up to a very high precision for the unanimity measure, but with a
significant loss in recall. The measure based on Pearson’s chi-square test is similar in being conservative;
having only six answers per question in the test set, only the questions that are very skewed towards one
choice give a significant result of the chi-square test.

As described above, each answer is associated with a bet between 10% and 100% of the points
available for a question, which players can adjust based on how certain they are about their answer. The
distribution of bets over all answers shows two significant peaks for these extremes: in 66% of the cases
the maximum bet was chosen, and the default minimum bet was chosen in 12% of the cases. The main
motivation for inserting the betting function was to be able to identify questions that were more difficult
for players by looking for low bets. We tested the correlation between the average bet per question and
the relative size of the majority (indicating agreement between players) over all questions using Pearson’s
product-moment correlation and found a small but significant positive effect (r = 0.150, p < 0.01). We
expect that this effect will increase if more data is available.

In order to test whether questions with high average bets were easier, we repeated the evaluation,
including only questions with a high average bet: b ≥ 80% (see Table 2). Recall is reduced strongly, as
one would expect, but we do observe an increase in precision for all measures except unanimity. This
higher precision suggests that indeed the results of the questions for which players on average place a
high bet are more similar to the gold standard. However, we will need more data to confirm this point.

Table 2: Precision and recall based on different agreement measures for questions with b ≥ 80%

Strategy Precision Recall F-score
Relative majority 0.917 0.478 0.629
Absolute majority (t = 0.5) 0.930 0.461 0.616
Absolute majority (t = 0.7) 0.956 0.383 0.547
Unanimity (t = 1) 0.961 0.217 0.355
Chi-square test (p < 0.05) 0.950 0.330 0.355

4 Discussion

The goal of Wordrobe is to obtain annotations from non-expert annotators that are qualitatively close to
gold standard annotations created by experts. This requires automatic techniques for filtering out low-
quality answers. We evaluated the results obtained using some simple selection techniques with respect



to a gold standard created by experts. We found that even with very conservative settings, optimizing
for precision, we could still get a reasonably high recall (0.347). The highest precision, obtained using
this most conservative measure (unanimity), was 0.975. In fact, a closer look at the data showed that
there was exactly one question on which the choice unanimously picked by players differed from the
gold standard annotation. This question is shown in (1).

(1) Although the last Russian troops left in 1994, the status of the Russian minority (some 30% of
the population) remains of concern to Moscow.
a. soldiers collectively (synonyms: military personnel, soldiery)
b. a group of soldiers
c. a cavalry unit corresponding to an infantry company
d. a unit of Girl or Boy Scouts (synonyms: troop, scout troop, scout group)
e. an orderly crowd (synonyms: troop, flock)

While according to the gold standard annotation the correct answer was (1b), the six players who an-
swered this question in the game unanimously chose (1a) as the correct answer. This example illustrates
the difficulty of the task at hand very well; one could argue for the correctness of both of the possible
answers. In this case, the average bet posed by the players (83%) is not helpful either in determining the
difficulty of the question. This example suggests that using a more fine-grained gold standard annotation,
with a ranking rather than selection of possible answers, may result in higher quality results.

Overall, the measures for calculating agreement show high numbers for precision, which were im-
proved even more by only taking into account the questions that received a high average bet. The main
drawback for this evaluation procedure is the restricted average number of answers per question. Al-
though the recall for the unanimity measure remains at an acceptable level for the test set, this number
is likely to decrease severely for questions with a higher number of answers. On the other hand, the
measure based on the chi-square test is expected to become more reliable in the case of a larger dataset.
In general, the evaluation measures discussed in section 3 are very basic and not robust against small
datasets or unreliable annotators. With the recent uprise of crowdsourcing platforms such as Amazon’s
Mechanical Turk, there has been a revived interest in the task of obtaining reliable annotations from non-
expert annotators. Various methods have been proposed to model annotated data such that it can be used
as a gold standard (see, e.g., Carpenter, 2008; Snow et al., 2008; Beigman Klebanov and Beigman, 2009;
Raykar et al., 2010). The goal of this paper was to provide a general idea of the quality of the data that
can be obtained using games with a purpose. However, creation of a proper gold standard will require
the collection of more data, and the use of more advanced techniques to obtain reliable annotations. As a
first step towards this goal, we will make the data used in this paper available online,2 such that interested
readers can perform their own evaluation methods on this data.

5 Conclusions and future work

In this paper we described and evaluated the first results about the use of a ‘Game with a Purpose’
for annotating word senses. Although the amount of data obtained for each question is still relatively
small (the largest amount of answers given to a reasonably sized amount of questions was 6), the results
on precision and recall compared to the gold standard annotation are promising. We proposed several
measures for determining the winning answer of a question, and compared them with respect to the
precision and recall results. In this paper we focused on obtaining high precision scores, because the
goal of the project is to obtain gold standard annotations which can be used to improve the Groningen
Meaning Bank (Basile et al., 2012). Future work will focus on obtaining larger amounts of data and
evaluating the annotations as part of an integration into the GMB. Moreover, this method for obtaining
annotations will be applied and evaluated with respect to other linguistic phenomena, such as named
entity tagging, noun-noun compound interpretation, and co-reference resolution.

2http://gmb.let.rug.nl/
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S. Piperidis (Eds.), Proceedings of the Eighth International Conference on Language Resources and
Evaluation (LREC’12), Istanbul, Turkey. European Language Resources Association (ELRA).

Beigman Klebanov, B. and E. Beigman (2009). From annotator agreement to noise models. Computa-
tional Linguistics 35(4), 495–503.

Carpenter, B. (2008). Multilevel bayesian models of categorical data annotation. Tech. report, Alias-i.

Chamberlain, J., M. Poesio, and U. Kruschwitz (2008). Addressing the Resource Bottleneck to Create
Large-Scale Annotated Texts. In J. Bos and R. Delmonte (Eds.), Semantics in Text Processing. STEP
2008 Conference Proceedings, Volume 1 of Research in Computational Semantics, pp. 375–380. Col-
lege Publications.

Fellbaum, C. (Ed.) (1998). WordNet. An Electronic Lexical Database. The MIT Press.

Kilgarriff, A. and J. Rosenzweig (2000). Framework and results for English SENSEVAL. Computers
and the Humanities 34(1), 15–48.

Raykar, V., S. Yu, L. Zhao, G. Valadez, C. Florin, L. Bogoni, and L. Moy (2010). Learning from crowds.
The Journal of Machine Learning Research 11, 1297–1322.

Rumshisky, A., N. Botchan, S. Kushkuley, and J. Pustejovsky (2012). Word sense inventories by non-
experts. In N. Calzolari, K. Choukri, T. Declerck, M. U. Doğan, B. Maegaard, J. Mariani, J. Odijk,
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Abstract

Logical metonymy interpretation (e.g. begin the book → writing) has received wide attention
in linguistics. Experimental results have shown higher processing costs for metonymic conditions
compared with non-metonymic ones (read the book). According to a widely held interpretation, it is
the type clash between the event-selecting verb and the entity-denoting object (begin the book) that
triggers coercion mechanisms and leads to additional processing effort. We propose an alternative
explanation and argue that the extra processing effort is an effect of thematic fit. This is a more
economical hypothesis that does not need to postulate a separate type clash mechanism: entity-
denoting objects simply have a low fit as objects of event-selecting verbs. We test linguistic datasets
from psycholinguistic experiments and find that a structured distributional model of thematic fit,
which does not encode any explicit argument type information, is able to replicate all significant
experimental findings. This result provides evidence for a graded account of coercion phenomena in
which thematic fit accounts for both the trigger of the coercion and the retrieval of the covert event.

1 Introduction

Type clash in logical metonymy. Logical metonymy, also known as enriched composition (e.g. The
writer began the novel), is generally explained in terms of a type clash between an event-selecting
metonymic verb (begin) and an entity-denoting object (novel), triggering the recovery of a covert event
(writing). Extensive psycholinguistic work (McElree, Traxler, Pickering, Seely, and Jackendoff (2001)
and Traxler, Pickering, and McElree (2002), among others) has demonstrated extra processing costs for
metonymic constructions. For example, Traxler et al. (2002) combine metonymic and non-metonymic
verbs with entity-denoting and event-denoting nouns (The boy [started/saw]V [the puzzle/fight]NP ) and
report significantly higher processing costs for the coercion combination (metonymic verb combined with
entity-denoting object, e.g. The boy started the puzzle).

Building on this and similar experiments, Frisson and McElree (2008) ascribe the extra processing
cost to “the deployment of operations to construct a semantic representation” of the event (writing the
novel) that is supposed to be triggered by the type clash. However, this explanation remains problematic.
Notably, metonymic interpretations are also possible for event-denoting objects given suitable contexts
(e.g. John is a wrestling fan, he really enjoyed the fight last night→ watching the fight).

Thematic fit in logical metonymy. Another pervasive aspect of language processing is thematic fit in
the shape of selectional preferences, that is, expectations of predicative lemmas about plausible fillers
for their argument slots (e.g., the fact that eat requires a [+edible] object or that crook is a more fitting
object for arrest than cop). While early formalizations of selectional preferences aimed at modeling a
binary distinction between “sensical” and “nonsensical” predicate-argument combinations, later work
such as Wilks (1975) adopted a graded notion of selectional preference. In psycholinguistics, thematic fit
has emerged as a pivotal concept to explain effects on expectations about upcoming input in language



comprehension (McRae, Spivey-Knowlton, and Tanenhaus 1998; Ferretti, McRae, and Hatherell 2001;
Matsuki, Chow, Hare, Elman, Scheepers, and McRae 2011).

Concerning logical metonymy, there is considerable behavioral as well as modeling evidence that
thematic fit plays an important role in metonymy interpretation, that is, the retrieval of covert events for
metonymical constructions. Behavioral studies (Zarcone and Padó 2011; Zarcone, Padó, and Lenci 2012)
as well as computational models (Lapata and Lascarides 2003; Zarcone, Utt, and Padó 2012) found that
the retrieved event will be the event most compatible with our knowledge about typical events and their
participants (as captured, e.g. by generalized event knowledge, (McRae and Matsuki 2009)), that is the
interpretation with the highest thematic fit with the context. This is in contrast to traditional accounts
of logical metonymy (Pustejovsky 1995) which ascribe covert event retrieval to complex lexical entries
associating entities with events corresponding to their typical function or creation mode (qualia: book→
read / write). The advantage of thematic fit-based accounts is that they can account for the influence of
context on interpretation. For example, given baker and child as subjects of finish the icing, baker will
cue spread as a covert event, while child will cue eat, even though it is possible that bakers eat icing or
that children spread it.

Thematic fit as a trigger of logical metonymy. In this paper, we propose that thematic fit can explain
not only the interpretation phase of metonymy (that is implicit event recovery), but also to the triggering
phase. We claim that thematic fit can provide a convincing explanation for the triggering of the coercion
operation: metonymic verbs prefer event-denoting objects, and sentences that have traditionally been
analysed involving a coercion operation have a low thematic fit between the verb and the object. This
account preserves the observation that metonymic verbs disprefer entity-denoting objects, but can explain
it purely in terms of standard graded accounts of selectional preferences1. A thematic-fit based account of
logical metonymy would bring a clear advantage of theoretical economy: it accounts for two phenomena
(triggering and interpretation) with a single mechanism, that is, generalized event knowledge (quantified
in terms of thematic fit). Furthermore, generalized event knowledge / thematic fit operate in any type of
predicate-argument composition (McRae and Matsuki 2009). Thus, an explanation in terms of thematic
fit would bring metonymy closer to “normal” online language comprehension process.

We test this hypothesis by modeling three datasets from well-known experimental studies on metonymy.
We compute thematic fit predictions of all items relying solely on distributional information, without any
information about predicate semantic types, and compare differences in thematic fit across conditions with
corresponding differences in processing cost from the experiments. As we show below, our distributional
model of thematic fit predicts all significant effects that have been found in the experiments previous
experiments and that were interpreted as type-clash effects.

2 Experimental Setup

2.1 A Distributional Model of Thematic Fit

Distributional semantic models (Turney and Pantel 2010) build on the Distributional Hypothesis (Harris
1954; Miller and Charles 1991) which states that the meaning of a word can be modelled by observing
the contexts in which it is used. Current distributional models are typically built by collecting contexts
of word occurrences in large corpora, where “context” can be defined in many possible ways. Pairwise
word similarity is then computed by comparing the similarity between the vectors which record the
word co-occurrences in the data. Distributional models have been successful in modelling a range of
cognitive tasks, including lexical development (Li, Farkas, and MacWhinney 2004), category-related
deficits (Vigliocco, Vinson, Lewis, and Garrett 2004), and thematic fit (Erk, Padó, and Padó 2010).

Distributional Memory (DM, Baroni and Lenci (2010)) is a general framework for building distribu-
tional semantic models from syntactically analysed corpora. It constructs a three-dimensional tensor of

1Similarly, thematic-fit based accounts of selectional preferences encompass binary distinctions (e.g., eat requires a [+edible]
object), while still including more fine-grained differences (e.g., crook is a more fitting object for arrest than cop).



weighted word-relation-word tuples each tuple is mapped onto a score by a function σ : 〈w1 r w2〉 → N,
where w2 is a target word, r as a relation and w1 an argument or adjuct of the target word. For example,
〈marine subj shoot〉 has a higher weight than 〈teacher subj shoot〉. The set of relations can be defined in
different ways, which gives rise to different flavors of DM. We use TypeDM, which uses generic syntactic
relations as well as lexicalized relations (see Baroni and Lenci (2010) for details).

For our experiments, we project the DM tensor onto a W1×RW2 matrix, and we represent each target
word W1 in terms of a vector with dimensions corresponding to pairs of context words and their relations
(R ×W2). On this matrix, we compute a verb’s expectations for its most typical object with a method
similar to Erk et al. (2010) and Lenci (2011): For each verb v, we determine the 20 highest-scoring nouns
in object relation and compute the centroid co(v) of their context vectors. The thematic fit of a new noun
n for v’s object position is then defined as the cosine of the angle between n’s own context vector and
co(v). Since all the vectors’ components are positive, the thematic fit values range between 0 and 1.

2.2 Datasets

As stated above, we model three datasets from psycholinguistic experiments. The datasets fall into two
categories: sentence triplets, and sentence quadruplets. Please refer to the corresponding psycholinguistic
studies (McElree et al. 2001; Traxler et al. 2002) for further details about how the datasets were built.

Sentence Triplets The two datasets in this group consist of sentence triplets: one sentence with a
metonymic verb (“type-shift” in the original papers), paired with two non-metonymic sentences, where
one condition shows high thematic fit and one low thematic fit (“preferred” and “non-preferred” in the
original papers). An example is the writer [finished / wrote / read]V the novel.

McElree dataset. This dataset is composed of 31 triplets of sentences from the self-paced reading
experiment in McElree et al. (2001), for a total of 93 sentences. We excluded two triplets from the
original dataset for problems of coverage, as they included low-frequency words.

Traxler dataset 1. This dataset is composed of 35 triplets of sentences from the eye-tracking experiment
(experiment 1) in Traxler et al. (2002), for a total of 105 sentences. We excluded one triplet from
the original dataset for problems of coverage, as it included low-frequency words.

The finding for these materials was a main effect of verb type on reading times (McElree et al. 2001)
and eye tracking times (Traxler et al. 2002). Pairwise comparisons in both studies yielded (a) higher
processing costs for the metonymic condition and (b) no significant differences between the high- and
low-typicality condition.

Sentence Quadruplets The dataset in this group consists of sentence quadruplets which cross two
factors: (i) metonymic verb vs. non-metonymic verb and (ii) event-denoting object vs. entity-denoting
object. As an example, consider The boy [started / saw]V [the fight / puzzle]NP .

Traxler dataset 2. This dataset is composed of 32 sentence quadruplets from experiments 2 (eye-
tracking) and 3 (self-paced reading) in Traxler et al. (2002), for a total of 120 sentences. We exclude
one triplet from the original dataset for problems of coverage.

The findings for this dataset were a main effect of object type on eye tracking times (experiment 2) and on
reading times (and experiment 3), and a significant verb∗object interaction, with higher processing costs
for the metonymic condition (metonymic verb combined with entity-denoting object).

2.3 Evaluation Method

For each test sentence, we compute the verb-object thematic fit in DM. We assume that processing load
increases with lower thematic fit and that processing cost (reading time and eye tracking time) corresponds
to 1 − thematic fit. We manipulate thematic fit in DM as a dependent variable, and we employ linear



high-typicality low-typicality metonymic

triplets from McElree et al. (2001)
reading times at the obj. + 1 position 360 361 385

1− thematic fit 0.484 0.571 0.763

triplets from Traxler et al. (2002)
eye tracking (total time) 397 405 444

1− thematic fit 0.482 0.576 0.744

Table 1: Comparing behavioral data from McElree et al. (2001) and Traxler et al. (2002) and thematic fit
data from the computational model

regression analyses to test for main effects of factors (object type, verb type) on the dependent variable,
as well as Wilcoxon rank sum task to test the significance of pairwise differences between conditions in
terms of thematic fit. We then verify if the same main effects and significant pairwise differences were
yielded by the psycholinguistic models and by the computational model.

3 Results

Sentence Triplets On the McElree dataset, the model mirrors all effects reported by the experimental
studies, namely by yielding a main effect of the object type (F = 20.247, p < 0.001), and significant
differences between the metonymic condition and both high-typicality (W = 877, p < 0.001) and
low-typicality (W = 740, p < 0.001) conditions, but no significant difference between the high- and
low-typicality conditions (W = 595, p > 0.5).

The model also mirrors the experimental effects found for the Traxler dataset 1. It yields a main effect
of the object type (F = 18.084, p < 0.001), and significant differences between the metonymic condition
and both high-typicality (W = 1050, p < 0.001) and low-typicality (W = 889, p < 0.01) conditions, but
only a marginal difference between the high- and low-typicality conditions (W = 780.5, p = 0.5).

Sentence Quadruplets On the Traxler dataset 2, the model mirrors the main effect of the object type
(F = 8.0039, p < 0.01) and the verb∗object type interaction (F = 8.3455, p < 0.01) reported both by
the self-paced reading and by the eye tracking studies. This result is visualized in Figure 1, which shows
the close correspondence between experimental results from self-paced reading and modeling results.

The model also yields the same pair-wise differences reported by the eye-tracking study: within
the sentences with entity-denoting objects, metonymic verbs yield lower thematic fit compared to non-
metonymic sentences (W = 300, p < 0.05). Within the sentences with metonymic verbs, entity-denoting
objects also yield lower thematic fit compared to entity-denoting objects (W = 208, p < 0.01).

4 Discussion and Conclusions

The distributional models successfully replicate the pattern of results of the psycholinguistic experiments.
For the triplet dataset, the model yields a main effect of verb type, and produces the lowest thematic fit for
the metonymic condition (corresponding to the longest reading times and eye fixations in the experiments);
also, the significant differences detected by the model are the same as those in the experimental studies:
high-typicality vs. metonymic and low-typicality vs. metonymic. Interestingly enough, while the
computational model does not reveal a significant difference between what we called high- and low-
typicality conditions (preferred and non-preferred conditions according to the paper’s terminology),
the psycholinguistic experiments were not able to show one either, suggesting that in the experimental
materials that were employed, the preferred and non-preferred conditions do not differ significantly with
regard to typicality.

For the quadruplet dataset, the model yields a main effect of object type and a significant verb∗object
interaction, producing the lowest thematic fit for metonymic verbs combined with entity-denoting objects.



metonymic verb non-metonymic verb

EN obj. EV obj. EN obj. EV obj.

quadruplets from Traxler et al. (2002)
self-paced reading times at obj. + 1 512 427 467 455

1− thematic fit 0.230 0.336 0.283 0.287

Table 2: Comparing behavioral data (self-paced reading) from Traxler et al. (2002) and thematic fit data
from the computational model. Eye-tracking data mirror the findings of the self-paced reading study.
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Figure 1: Comparing reading times in Traxler et al. (2002) (left, experiment 3) and results from thematic
fit from our model (right).

The significant differences detected by the model were the same as those in the experimental studies:
for the entity-denoting objects, metonymic verbs yielded lower thematic fit than non-metonymic verbs,
whereas this difference was not significant for event-denoting objects; for the metonymic verbs, entity-
denoting objects yielded lower thematic fit than event-denoting objects, whereas this difference was not
significant for non-metonymic verbs.

The model’s success in replicating the results from the psycholinguistic experiments shows that
distributional similarity-based estimates of thematic fit are sufficient to account for the behavioral correlates
of logical metonymy processing (such as longer reading and eye-tracking times) found so far in cognitive
experiments. More precisely, the model, which did not encode any explicit type information, was able to
replicate all significant experimental findings which were formulated based on type distinctions. This
result supports the following general claims that we are currently testing on further experiments: i.) the
two phenomena of triggering and interpretation in logical metonymy can be explained with a single
mechanism relying on general event knowledge activation and integration; ii.) metonymy is actually
much more closer to “normal” online predicate-argument composition processes, both being based on
thematic fit computation. The structured distributional model of the latter proves to be an interesting tool
to critically reanalyze psycholinguistic datasets, by (a) highlighting possible implicit lexical-semantic
biases which may influence the results and (b) providing alternative explanations for them.
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