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Abstract

Current approaches to recognizing discourse relations rely on a combination of shallow, surface-
based features (e.g., bigrams, word pairs), and rather specialized hand-crafted features. As a way
to avoid both the shallowness of word-based representations and the lack of coverage of specialized
linguistic features, we use a graph-based representation of discourse segments, which allows for
a more abstract (and hence generalizable) notion of syntactic (and partially of semantic) structure.
Empirical evaluation on a hand-annotated corpus of German discourse relations shows that our graph-
based approach not only provides a suitable representation for the linguistic factors that are needed in
disambiguating discourse relations, but also improves results over a strong state-of-the-art baseline
by more accurately identifying Temporal, Comparison and Reporting discourse relations.

1 Introduction

Discourse relations between textual spans capture essential structural and semantic/pragmatic aspects
of text structure. Besides anaphora and referential structure, discourse relations are a key ingredient
in understanding a text beyond single clauses or sentences. The automatic recognition of discourse
relations is therefore an important task; approaches to the solution of this problem range from heuristic
approaches that use reliable indicators (Marcu, 2000) to modern machine learning approaches such as
Lin et al. (2009) that apply broad shallow features in cases without such indicators.

Especially on implicit discourse relations, where no discourse connective could provide a reliable
indication, broad, shallow features such as bigrams or word pairs conceivably lack the precision that
would be needed to improve disambiguation results beyond a certain level. Conversely, hand-crafted
linguistic features allow one to encode certain relevant aspects, but they have often limited coverage.
Encoding detailed linguistic information in a structured representation, as in the work presented here,
allows us to bridge this divide and potentially find a golden middle between linguistic precision and
broad applicability.

We propose a graph-based representation of discourse segments as a way to overcome both the shal-
lowness of a word-based representation and the non-specificity or lack of coverage of specialized linguis-
tic features. In the rest of the paper, section 2 discusses the current state of the art in discourse relation
classification. Section 3 introduces feature graphs as a general representation and learning mechanism,
and section 4 provides an overview of the used corpus, as well as feature-based and graph-based repre-
sentations for discourse relations. Section 5 presents empirical evaluation results.

2 Classification of Discourse Relations

Most early work on recognizing discourse relations was tailored towards unambiguously marked, explicit
discourse relations, such as those introduced by because (e.g. in “[Peter despises Mary] because [she
stole his yoghurt]”) since connectives unambiguously signal one particular relation.



In other cases, a connective can be ambiguous, as in the case of German ‘nachdem’ (as/after/since).
Nachdem can signal multiple types of discourse relations (e.g. purely temporal or temporal and causal),
as in (1):1

(1) [arg1 Nachdem sowohl das Verwaltungsgericht als auch das Oberverwaltungsgericht das Verbot
bestätigt hatten,]
[arg2 rief die NPD am Freitag nachmittag das Bundesverwaltungsgericht an].
[arg1 After both the Administrative Court and the Higher Administrative Court had confirmed the
interdiction,]
[arg2 the NPD appealed to the Federal Administrative Court.] (Temporal+cause)

Another type of discourse relations are implicit discourse relations, which can occur between neighbour-
ing spans of text without any discourse connective signaling them:2

(2) [arg1 Mittlerweile ist das jedoch selbstverständlich]
[arg2 Die gemeinsame Arbeit hilft, den anderen zu verstehen.]
[arg1 In the meantime, this has become a matter of course] (implied:since) (Explanation)
[arg2 The common work helps to appreciate the other.]

Researchers concerned with classifying the explicit discourse relations signalled by ambiguous dis-
course connectives, such as Miltsakaki et al. (2005) or Pitler and Nenkova (2009), claim that a small num-
ber of linguistic indicators (e.g., tense or syntactic context) can be used for successful disambiguation of
discourse connectives, while Versley (2011) claims that additional semantic and structural information
can help improving the classification accuracy in such cases.

In the case of implicit discourse relations, the absence of overt clues suggests that a combination
of weak linguistic indicators and world knowledge is needed for successful disambiguation. Sporleder
and Lascarides (2008) use positional and morphological features, as well as subsequences of words,
lemmas or POS tags to disambiguate implicit relations in a reannotated subset of the RST discourse
treebank (Carlson et al., 2003). Sporleder and Lascarides also show that (despite the corpus size of
about 1000 examples) actual annotated relations are more useful than artificial examples derived from
non-ambiguous explicit discourse relations.

Research using the implicit discourse relations annotated in the second release of the Penn Discourse
Treebank (Prasad et al., 2008) shows a focus on shallow features: Pitler et al. (2009) find that the most
important feature in their work on implicit discourse relations are word pairs. Lin et al. (2009) identify
production rules from the constituent parse, as well as word pairs, to be the most important features in
the system, with dependency triples not being useful as a features, and information from surrounding
(gold-standard) discourse relations having only a minimal impact.

Most recent research, such as Feng and Hirst (2012), who classify a mixture of explicit and implicit
discourse relations in the RST Discourse Treebank (Carlson et al., 2003), or Park and Cardie (2012),
use these shallow features as their mainstay, adding surrounding relations and either semantic similarity
(Feng and Hirst) or verb classes (Park and Cardie), leaving open the question how to incorporate more
general linguistic information.

3 Feature-Node Graphs

Different information sources extract features that are relevant to subparts of an argument clause (e.g.,
information status and semantic class of a noun phrase), extracting features locally loses the information
on each part. In contrast, we hope to maintain the information contained in these local features by
representing them in feature-node graphs. This formalism also allows us to take into account more

1TüBa-D/Z corpus, sentence 7462
2TüBa-D/Z corpus, sentence 448
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Figure 1: Example Feature-Node Graph (i), its backbone (ii), and its expansion (iii)

structure than n-grams (which are limited to relatively shallow information) or dependency triples (which
would be too sparse in the case of typical discourse corpora). 3

Formally, a feature-node graph consists of a set V of vertices with labels LV : V → L, a set of edges
E ⊆ V × V with labels LE : E → L, with the addition of a set F : V → P(L) that assigns to each
vertex a set of feature labels.

The backbone of a feature-node graph is simply the labeled directed graph (V,LV , E, LE), without
any features.

The expansion of a feature-node graph is the labeled directed graph (V ′, L′
V , E

′, L′
E) built by ex-

panding the set of nodes to V ′ = V ] {(v, l) ∈ V × L|l ∈ F (v)} with labels L′
V (v) = LV (v) for all

v ∈ V and L′
V ((v, l)) = l for all v ∈ V, l ∈ F (v) and correspondingly adding edges to get the complete

set E′ = E ] {(v, (v, l))|l ∈ F (v)}, with a special symbol z for the labels of newly introduced edges,
i.e. LE(v, (v, l)) = z.

Figure 1 gives an example of a feature-node graph with the vertices X , Y and Z with F (X) = {u},
F (Y ) = {r, s}, and F (Z) = ∅, edges E = {(X,Y ), (X,Z)} and edge labels LE((X,Y )) = ε,
LE((X,Z)) = a.

Representing desired information as features (instead of, e.g., using words, or POS tags, as the node
labels in a dependency graph) is advantageous because that two feature-node graphs of similar structures
will have a common substructure as long as the backbone of that structure is identical. In the case of
words as node labels, any non-identical word would prevent the detection of the common substructure.

Machine Learning on Feature-Node Graphs Using an attributed graph representation, we can apply
general substructure mining and structured learning approaches to extract good candidates for informa-
tive substructures. In contrast to other fields where these approaches have been used (computational
chemistry, computer vision), computational linguistics problems tend to have both larger data sets as
well as larger structures. As a consequent, the naı̈ve application of these structure mining algorithms
would suffer from combinatorial explosion. In particular, a star-shaped graph (i.e., the typical case of a
node with a large number of features) has exponentially many substructures, which would lead to both
efficiency and performance problems, while an explicit distinction between features and backbone nodes
can help by explicitly or implicitly limiting the number of features that a substructure can have in order
to be considered.

In general, all approaches to learn from structure fall into one of three groups: linearization ap-
proaches, which decompose a structure into parts that can be presented to a linear classifier as a binary
feature, structure boosting approaches, which determine the set of included substructures as an integral
part of the learning task, and kernel-based methods which use dynamic programming for computing the
dot product in an implied vector space of substructures. Kernel-based methods on trees have been used
in the re-ranking of answers in a question answering system (Moschitti and Quarteroni, 2011), whereas
Kudo et al. (2004) use boosting of graphs for a sentiment task (classifying reviews into positive/negative
instances). Arora et al. (2010) use subgraph features in a linearization-based approach to sentiment
classification.

For simplicity reasons, we use a linearization-based approach based on subgraph mining. Generating
candidate subgraphs is done using a version of gSpan (Yan and Han, 2002) that we modified to distin-

3For reasons of efficiency as well as learnability, the structures we use to represent each discourse unit are simpler and more
compact than the annotated corpus data from which they are derived.



Relation # total # implicit % implicit % relation
Contingency

Causal
Result 133 88 66.2% 11.0%
Explanation 122 81 66.4% 10.1%

Conditional
Consequence 26 5 19.2% 0.6%
Alternation 7 2 28.6% 0.2%
Condition 13 — 0.0% —

Denial
ConcessionC 60 9 15.0% 1.1%
Concession 34 5 14.7% 0.6%
Anti-Explanation 3 3 100.0% 0.4%

Expansion
Elaboration

Restatement 149 140 94.0% 17.4%
Instance 63 39 61.9% 4.9%
Background 119 109 91.6% 13.6%

Interpretation
Summary 2 1 50.0% 0.1%
Commentary 36 28 77.8% 3.5%

Continuative
Continuation 89 71 79.8% 8.8%
Conjunction 45 1 2.2% 0.1%

Temporal
Narration 127 70 55.1% 8.7%
Precondition 34 23 67.6% 2.9%

Comparison
Parallel 55 23 41.8% 2.9%
Contrast 66 26 39.4% 3.2%

Reporting
Attribution 67 67 100.0% 8.3%
Source 65 65 100.0% 8.1%

%implicit: proportion of relation instances that are implicit, rather than explicit. % rel: percentage of given relation
among all implicit. About 10% of the implicit instances have multiple labels (e.g. Result+Narration).

Table 1: Frequencies of discourse relations in the corpus of Gastel et al. (2011)

guish between ‘backbone’ nodes and features, and restrict the search space to subgraphs with at most
three feature nodes by stopping the expansion of a subgraph pattern whenever it exceeds this limit.

4 Disambiguating Discourse Relations

In order to test our approach to discourse relation classification, we rely on two German data sets an-
notated with discourse relations: The first contains explicit discourse relations signalled by ambiguous
temporal connectives (in particular nachdem – corresponding to English ‘after/as/since’ as the most am-
biguous connective in that dataset), with an annotation scheme that has been described by Simon et al.
(2011). The corpus contains 294 instances of nachdem, along with other, less ambiguous connectives.
The second data set stems from a subcorpus that has received full annotation for all discourse relations,
according to an annotation scheme described by Gastel et al. (2011). This corpus contains 803 implicit
discourse relations that are not marked by a connective (using the criteria set forth by Pasch et al., 2003).

As can be seen from tables 1 and 2, the two annotation schemes include overlapping groups of
relations (Causal, Temporal and Comparison relations), but the implicit relations cover a broader set of
relations, whereas the temporal connectives are annotated with a finer granularity.



Relation # total % relation
Temporal 276 93.9%
Result

situational
enable 94 31.6%
cause 65 21.7%

rhetorical
evidence 12 4.1%
speech-act 6 2.4%

Comparison
parallel 14 4.8%
contrast 16 5.8%

About 65% of nachdem instances have multiple labels.

Table 2: Frequencies of discourse relations in the nachdem data from Simon et al. (2011)

Among the most frequent unmarked relations are Restatement and Background from the Expan-
sion/Elaboration group, which predominantly occur as implicit discourse relations, as well as Result and
Explanation, which occur unmarked in about two thirds of the cases. In other cases, such as Conse-
quence, Concession (is limited to cases of contraexpectation) and ConcessionC (which also includes
more pragmatic concession relations), only a minority of relation instances is implicit whereas the ma-
jority is marked by an explicit connective.

Relations that are typically marked, such as Contrast – see example (3) – or Concession/ConcessionC
– see example (4) – often contain weak indicators for the occurring discourse relation, such as the oppo-
sition policemen-demonstrators in the first case, or the negation of a reference to Arg1 (“this wish will
not be fullfilled soon”).

(3) [arg1 159 Polizisten wurden verletzt.]
[arg2 Zahlen über verletzte DemonstrantInnen liegen nicht vor.] (Contrast)
[arg1 159 policemen were injured.][arg2 No data is available regarding injured demonstrators.]

(4) [arg1 “Nun will ich endlich in Frieden leben.”]
[arg2 Dieser Wunsch Ahmet Zeki Okcuoglus wird so bald nicht in Erfüllung gehen.]
[arg1 “Now I finally want to live in peace.”] (implied: However,)

[arg2 This wish of Ahmet Zeki Okcuoglu will not be fulfilled any time soon.] (ConcessionC)

Improving the performance on explicit discourse relations beyond the easiest cases, especially in the case
of the notoriously ambiguous temporal connectives, is only possible by exploiting weak indicators for a
relation. Features exploiting these weak indicators are a key ingredient to successfully predicting both
implicit discourse relations and the non-majority readings of explicit discourse relations with ambiguous
temporal connectives.

4.1 Linguistic Features

We implemented a group of specialized linguistic features, which are inspired by those that were suc-
cessfully used in related literature (Sporleder and Lascarides, 2008; Pitler et al., 2009; Versley, 2011).

As implicit discourse relations can occur intra- as well as intersententially, the topological relation
between the arguments is classified by syntactic embedding (if one argument is in the pre- or post-field
of the other), or as one preceding, succeeding or embedding the other.

Several features reproduce simple morphosyntactic properties: One feature signals the presence or
of negation in either argument, either as a negating adverb (English not), determiners (no), or pronouns
(none). A negated Arg1 would be tagged 1N+, a non-negated one as 1N-. Tense and mood of clauses
in either argument are also incorporated as features (e.g. 1tense=t for an Arg1 in pas(t) tense). The



head lemma(s) of each argument, which is normally the main verb, is also included as a feature (e.g.
1Lverletzen for the Arg1 of example 3).

We also mark the semantic type of adjuncts present in either relation argument, with categories for
temporal, causal, or concessive adverbials, conjunctive focus adverbs (also, as well), and commentary
adverbs (doubtlessly, actually, probably . . . ). As an example, an Arg1 containing “despite the cold”
would receive a feature 1adj concessive.

The detection of cotaxonomic relations between words in both arguments using the German word-
net GermaNet (Henrich and Hinrichs, 2010). Such pairs of contrasting lemmas, such as hot-cold or
policeman-demonstrator commonly indicate a parallel or contrast relation. If two words share a com-
mon hyperonym (excluding the uppermost three levels of the noun hierarchy, which are not informative
enough), feature values indicating the least-common-subsumer synset (such as temperature adjective)
and up to two hyperonyms are added.

A sentiment feature uses the lists of emotional words and of ‘shifting’ words (which invert the
emotional value of the phrase) by Klenner et al. (2009) as well as the most reliable emotional words
from Remus et al. (2010). The combination of emotional words and shifting words into a feature is
similar to Pitler et al. (2009): according to the presence of positive- or negative-emotion words, each
relation argument is tagged as POS, NEG or AMB. When a negator or shifting expression is present, a
“-NEG” is added to the tag, yielding, e.g. “1polNEG-NEG” for an Arg1 phrase containing the words
‘not bad’.

4.2 Shallow Features

As mentioned in section 2, shallow lexical features empirically constitute a very important ingredient in
the automatic classification of implicit (and ambiguous explicit) discourse relations, despite the fact that
they lack most – semantic or structural – generalization capabilities. We implemented three groups of
features that have been identified as important in the prior work of Sporleder and Lascarides (2008), Lin
et al. (2009) and Pitler et al. (2009).

A first group of features captures (unigrams and) bigrams of words, lemmas, and part-of-speech
tags. In this fashion, the bigram “Zahlen über” from Arg2 of (3) would be represented by word forms
2w Zahlen über, lemmas 2l Zahl über and POS tags 2p NN APPR.4

Word pairs, i.e., pairs consisting of one word from each of the discourse relation arguments, have
been identified as a very useful feature for the classification of implicit discourse relations in the Penn
Discourse Treebank (Lin et al., 2009; Pitler et al., 2009), and, quite surprisingly, also for smaller datasets
such as the discourse relations in the RST Discourse Treebank targeted by Feng and Hirst (2012) or
the ambiguous connective dataset used by Versley (2011).5 Because of the morphological richness
of German, we use lemma pairs across sentences; for example (3), the lemma Polizist from Arg1
and the lemma DemonstrantIn from Arg1, among others, would be combined into a feature value
wp Polizist DemonstrantIn.

Finally, CFG productions were used by Lin et al. (2009) to capture structural information, including
parallelism. Context-free grammar expansions are extracted from the subtrees of the relation arguments
and used as features by marking whether the corresponding rule type occurs only in one, or in both,
arguments. In example (3), the CFG rule ‘PX → APPR NX’ for prepositional phrases occurs in both
arguments, yielding a feature “prBPX=APPR-NX”, whereas the preterminal rule “APPR→ über” only
occurs in Arg2 (yielding “pr2APPR=über”).

4Sporleder and Lascarides (2008) use a Boosting classifier (BoosTexter) that can extract and use arbitrary-length subse-
quences from its training data. As our dataset is small enough that we do not expect a significant contribution from longer
sequences, we approximate the sequence boosting by extracting unigrams and bigrams. As with the other shallow features,
unigrams and bigrams are subject to the same supervised feature selection that is also applied to subgraph features.

5For an illustration of the differences in size, consider that the Penn Discourse Treebank contains about 20 000 implicit
discourse relations in 2159 articles, and the RST Discourse Treebank contains a lower number of 385 documents; Sporleder
and Lascarides used a sample of 1 051 annotated implicit relations which were derived from the RST Discourse Treebank but
manually relabeled according to an SDRT-like annotation scheme.
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Figure 2: The complete graphs built from the implicit relation arguments “Nun will ich endlich in Frieden
leben.” and “Dieser Wunsch Ahmet Zeki Okcuoglus wird so bald nicht in Erfüllung gehen.” – cf. ex. (4).

4.3 Graph construction

The backbone of the graph is built using nodes for a clause (S), and including children nodes for any
clause adjuncts (MOD), verb arguments (ARG). In the case of relation arguments being in a (syntactic)
matrix clause - subclause relationship (e.g. [arg1 Peter wears his blue pullover,] [arg2 which he bought
last year]), the graph corresponding to the matrix clause receives a special node (SUB-CL, or REL-CL
for relative clauses). This is universally the case for the explicit relations in the case of nachdem, but may
also occur in the case of unmarked relations. For example, Background relations are frequently realized
by relative clauses. Non-referring noun phrases (which are tagged as ‘expletive’ or ‘inherent reflexive’
in the referential layer of TüBa-D/Z), receive a node label expletive instead of ARG.

In each of the adjunct/argument nodes, we include syntactic information such as the category of
the node (nominal/prepositional/adverbial phrase, e.g. cat:NX for a noun phrase), the topological field
(cf. Höhle, 1986, e.g. fd:MF for a constituent occurring in the middle field) and, for clause arguments,
the grammatical function (subject, accusative or dative object or predicative complement – e.g., gf:OA
for the accusative object). Clauses nodes contain features for tense and mood based on the main and
auxiliary/modal verb(s) of that clause (e.g., mood=i, tense=s for an indicative/past clause).

In the realm of semantic information, we use the heuristics of Versley (2011) to identify semantic
classes of adverbials, in particular temporal, causal or concessive adverbials, conjunctive focus adverbs,
and commentary adverbs. As the backbone of our graph structure abstracts from syntactic categories and
only distinguishes adjuncts and arguments, it is possible to learn generalizations over different realiza-
tions of the same type of adjunct: for example, temporal adjuncts may be realized as a noun phrase (next
Monday), a prepositional phrase (in the last week), an adverb (later), or a clause (when Peter was ill).

Noun phrase arguments are annotated with information pertaining to their information status, mark-
ing them either as old (if their referent has already been introduced), mediated (if a modifier – e.g. the
genitive John’s in John’s hat – has been previously introduced), or new (if neither the phrase nor any
of its modifiers has a previous mention). Additionally, we use a semantic categorization into persons
(PER), organizations (ORG), locations (LOC), events (EVT) and other entities. In the case of named
entities, this information is derived from the existing named entity annotation in the TüBa-D/Z treebank
(by simply mapping the GPE label to LOC); for phrases with a nominal head, this information is de-
rived using the heuristics of Versley (2006), which use information from GermaNet, semantic lexicons,
and heuristics based on surface morphology. Clauses as well as arguments and adjuncts are annotated
with their semantic head; prepositional phrases are, in addition, annotated with the semantic head of the
preposition’s argument (in the next year).



From the graph representations of relation arguments that are created in this step, frequent subgraphs
are extracted. The subgraphs must occur at least five times in either the Arg1 or Arg2 graph, have at most
seven nodes, of which at least two must be backbone nodes, and at most three can be feature nodes.

For the learning task, features are created by concatenating an identifier for the subgraph (e.g.
graph1234) with a suffix specifying whether it occurs only in the main clause ( 1), only in the sub-
clause ( 2), or in both clauses ( 12). Detecting subgraphs that occur in both clauses allows the system to
take into account parallelism in terms of syntactic and/or semantic properties of parts of each clause.

Both the shallow features and the subgraph features are subject to supervised feature selection: In
each fold of the 10-fold crossvalidation, the training portion is used to score each feature and only include
the most informatives one in each fold. For this, an association measure between the examples from that
training portion and, for each relation label, the examples in the training portion that the label occurs in,
is determined. The best score over all the labels is kept, and is used to filter out features that score less
than the top-N features of that group. Supervised feature selection has been used by Lin et al. (2009),
using pointwise mutual information (PMI) on candidate productions and word pairs, and in the work of
Arora et al. (2010) using Pearson’s χ2 statistic on candidate subgraphs. We tried PMI, χ2 and the Dice
coefficient 2|A∩B|

|A||B| as association measures, and empirically found that the Dice coefficient worked best
in the case of implicit discourse relations.

5 Evaluation Results

For both the 294 explicit nachdem relations and the 803 implicit discourse relations, we use a 10-fold
cross-validation scheme where, successively, one tenth of the data is automatically labeled by a model
from the remaining nine tenth of the data. Multiple relation labels are predicted by using binary clas-
sifiers (one-vs-all reduction) and using confidence values to choose one or several labels among those
that have the most confident positive classification. In the case of multiple positive classifications (e.g.,
if Reporting, Temporal and Expansion all receive a positive classification), relations are only considered
for the ‘second’ label if the most-confident label and the potential second label have been seen together in
the training data (e.g. Contingency and Temporal can occur together, but Reporting will not be extended
by a second relation labels). In a second step, the coarse grained relation label (or labels) is extended
up to the finest taxonomy level (e.g., an initial coarse-grained Contingency label is extended to Contin-
gency.Causal.Explanation). In our experiments, we use SVMperf, an SVM implementation that is able
to train classifiers optimized for performance on positive instances (Joachims, 2005).

Tables 3 and 4 provide evaluation figures for different subsets of the presented features, using ag-
gregate measures over relations both at the coarsest level (for implicit discourse relations, the five cate-
gories Contingency, Expansion, Temporal, Comparison, Reporting), and the finest level (which contains
twenty-one relations in the case of implicit relations).

For each level of granularity, we can measure the quality of the classifier’s predictions in terms of
an average over relation tokens, giving partial credit for partially matching labelings (e.g., a system
prediction of Narration or Narration+Comparison, instead of gold-standard Narration+Result). This
measure, the dice score, assigns partial credit for a relation token when system and/or gold standard
contain multiple labels and both label sets overlap, calculated as 2|G∩S|

|G|+|S| – an exact match would be
scored as 1.0, whereas guessing a sub- or superset (e.g. only Result instead of Result+Narration) would
give a contribution of 0.66 for that example, and overlapping predictions (Result+Comparison instead
of Result+Narration) would get a partial credit of 0.5. As an average over relation types, we can also
calculate an average of the F-score over all relations, yielding the macro-averaged F-score (MAFS).

Because the label distribution is heavily skewed – some relations, such as Restatement, are relatively
frequent with 140 occurrences, while, e.g., Contrast with 26 occurrences, is much less frequent – a
classification that is biased towards the more frequent relations will receive higher token-weighted (dice)
scores and lower type-weighted (MAFS) scores, whereas an unbiased system would receive lower dice
and higher macro-averaged F scores.



3 relations 7 relations Temp Result Comp contr cause evid
Dice MAFS Dice MAFS F1 F1 F1 F1 F1 F1

Temp+enable 0.829 0.573 0.680 0.208 0.97 0.75 0.00 0.00 0.00 0.00
random 0.751 0.562 0.626 0.211 0.94 0.62 0.13 0.06 0.23 0.00
ling 0.830 0.666 0.698 0.358 0.97 0.75 0.28 0.00 0.35 0.37
Ver11 0.846 0.751 0.717 0.361 0.97 0.76 0.52 0.40 0.38 0.26
gr(2000,χ2) 0.839 0.727 0.688 0.381 0.97 0.77 0.45 0.31 0.13 0.23
Ver11+gr(5k,χ2) 0.859 0.774 0.734 0.472 0.97 0.78 0.57 0.51 0.36 0.47

Table 3: Results for disambiguation of nachdem. Rows include the specialized linguistic features of
Versley (2011), as ling, a system additionally using word pairs and CFG (with unsupervised feature
selection), as Ver11, and finally versions including the graph representation (gr and Ver11+gr). Shaded
rows indicate variants using the graph representation.

Disambiguating nachdem For the disambiguation of the ambiguous temporal connective nachdem,
we use a set of linguistic and shallow features to reproduce the results of Versley (2011), similar to that
described in section 3, but with very few exceptions.6 Looking at the aggregate measures, we see that the
graph-based features in isolation already perform quite well, surpassing a version with linguistic features,
but no word pairs or CFG productions. Adding subgraph features with appropriate feature selection to
the complete system (including linguistic and shallow features) yields a further improvement over a
relatively strong baseline.

Implicit relations Table 4 presents both aggregate measures (Dice, macro-averaged F-measure) as well
as scores for the most important coarse-grained relations. We provide results for the full graph (grA), a
version with all features except information status (grB), and finally a minimal version that excludes all
semantic features and lemmas (grC).

In general, both the linguistic features and the graph features perform much better than the shallow
features (with the best single source of information being the complete graph), and also that a combina-
tion of linguistic and all shallow features (all–gr) suffers from

In the second section of the table, the influence of different information sources is detailed. We see
that, despite the skewed distribution of relations, all information sources outperform the most-frequent-
sense baseline by themselves. By providing a higher precision on Expansion relations, and generally
better performance on Reporting relations, the graph-based representation performs better than any of
the other information sources, and is the only information source to provide enough information for the
identification of Comparison relations. The third group of rows, showing combinations of the linguistic
features with the shallow information sources and with the graph representation, shows that, while the
addition of specialized features to the shallow ones yields a general improvement, the graph-based repre-
sentation still works best; for Temporal relations, we see that the noise brought in by the shallow features
hinders their identification more than in the case of the graph-based representation.

The last part of table 4 provides evaluation results for a system using the complete set of information
sources (all), for systems leaving out one of the shallow information sources (all–bi, all–wp, all–pr), and
a system using only linguistic and shallow features but no graph information (all–gr). We see that, in
general, the identification of rare relations such as Temporal, Comparison, and Reporting is helped by the
graph representation (the full system obtains the best MAFS scores of 0.438 and 0.208, for coarse- and
fine-grained relations, respectively, against 0.388 and 0.145 for the system without graph information).
System variants with graph information also obtain higher coarse-grained dice scores (0.564–0.571) than
the version without graph information (0.551 for all–gr). In the same vein, we see that the parsimonious
grC graph gives the best combination result (allC–pr, including linguistic, word pair, unigram/bigram,
and graph features) despite the more informative grA giving the best results in isolation.

6The nachdem relations are predicted without sentiment feature, but with the earlier system’s punctuation and compatible
pronouns features. The shallow features of Versley (2011) include word pairs and context-free rules, with unsupervised feature
selection.



5 relations 21 relations Cont Expn Temp Comp Rept
Dice MAFS Dice MAFS F1 F1 F1 F1 F1

Restatement 0.474 0.129 0.161 0.014 0.00 0.00 0.65 0.00 0.00
random 0.338 0.233 0.096 0.056 0.06 0.27 0.50 0.21 0.14
ling only 0.540 0.396 0.274 0.127 0.40 0.68 0.32 0.00 0.58
bi(5k) 0.516 0.301 0.260 0.098 0.40 0.65 0.00 0.00 0.45
wp(2k) 0.494 0.307 0.198 0.084 0.42 0.65 0.02 0.05 0.40
pr(5k) 0.478 0.154 0.192 0.034 0.12 0.65 0.00 0.00 0.00
grA(20k) 0.559 0.381 0.269 0.163 0.39 0.69 0.24 0.00 0.59
grB(20k) 0.549 0.387 0.274 0.187 0.36 0.69 0.22 0.09 0.57
grC(20k) 0.544 0.382 0.268 0.164 0.36 0.68 0.23 0.09 0.55
ling+bi(5k) 0.545 0.399 0.300 0.141 0.39 0.69 0.33 0.00 0.59
ling+wp(2k) 0.552 0.408 0.277 0.144 0.42 0.68 0.33 0.00 0.61
ling+pr(5k) 0.546 0.399 0.297 0.142 0.40 0.68 0.33 0.00 0.58
ling+grA(20k) 0.574 0.389 0.285 0.161 0.37 0.70 0.28 0.00 0.59
ling+grB(20k) 0.579 0.394 0.294 0.173 0.36 0.71 0.30 0.00 0.60
ling+grC(20k) 0.580 0.411 0.307 0.179 0.37 0.70 0.35 0.03 0.60
all-gr 0.538 0.343 0.273 0.116 0.42 0.68 0.10 0.00 0.52
allA 0.572 0.408 0.306 0.178 0.43 0.70 0.29 0.00 0.62
allB 0.573 0.411 0.301 0.171 0.40 0.70 0.32 0.00 0.63
allC 0.579 0.422 0.309 0.177 0.38 0.70 0.35 0.04 0.65
allA-pr 0.576 0.407 0.300 0.174 0.41 0.70 0.32 0.00 0.61
allB-pr 0.581 0.410 0.298 0.171 0.40 0.70 0.32 0.00 0.62
allC-pr 0.581 0.425 0.310 0.185 0.36 0.70 0.36 0.07 0.64

Table 4: Implicit discourse relations: specialized linguistic features (ling), word/lemma/pos bigrams
(bi), word pairs (wp), CFG productions (pr), and different methods for constructing graphs (grA, grB
and grC). Shaded rows indicate variants using the graph representation.

6 Conclusion

In this article, we presented a novel way to identify discourse relations using feature-node graphs to
represent rich linguistic information. We evaluated our approach on two datasets: one dataset containing
implicit discourse relations and one containing explicit discourse relations with the ambiguous temporal
connective nachdem. We showed in both cases that using the graph-based representation, with appropri-
ate heuristics for supervised feature selection, yields an improvement even over a strong state-of-the-art
system using linguistic and shallow features.

Besides applying the techniques on other corpora, issues for future work would include the use of
unlabeled data to improve the generalization capability of the classifier, or the use of reranking techniques
to combine local decisions into a global labeling.
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the TüBa-D/Z treebank. In GSCL 2011.

Henrich, V. and E. Hinrichs (2010). GernEdiT - the GermaNet editing tool. In Proceedings of the Seventh
Conference on International Language Resources and Evaluation (LREC 2010), pp. 2228–2235.
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