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Camı́ de Vera s/n, 46022, València, Spain
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Abstract

In this work, we describe a methodology
based on the Stochastic Finite State Trans-
ducers paradigm for Spoken Language Under-
standing (SLU) for obtaining concept graphs
from word graphs. In the edges of these con-
cept graphs, both semantic and lexical infor-
mation are represented. This makes these
graphs a very useful representation of the in-
formation for SLU. The best path in these con-
cept graphs provides the best sequence of con-
cepts.

1 Introduction

The task of SLU can be seen as the process that,
given an utterance, computes a semantic interpreta-
tion of the information contained in it. This semantic
interpretation will be based on a task-dependent set
of concepts.

An area where SLU systems are typically applied
is the construction of spoken dialog systems. The
goal of the SLU subsystem in the context of a dia-
log system is to process the information given by the
Automatic Speech Recognition (ASR) module, and
provide the semantic interpretation of it to the Dia-
log Manager, which will determine the next action
of the dialog. Thus, the work of the SLU module
can be split into two subtasks, the first of them is
the identification of the sequence of concepts and the
segments of the original sentence according to them,
and the other is the extraction of the relevant infor-
mation underlying to these labeled segments. In this
work we will focus on concept labeling, but we will
also consider the other subtask in our evaluation.

We can distinguish between the SLU systems that
work with the 1-best transcription and those that take
a representation of the n-best (Hakkani-Tür et al.,
2006; Tur et al., 2002). The use of a word graph as
the input of the SLU module makes this task more
difficult, as the search space becomes larger. On the
other hand, the advantage of using them is that there
is more information that could help to find the cor-
rect semantic interpretation, rather than just taking
the best sentence given by the ASR.

In the recent literature, a variety of approaches for
automatic SLU have been proposed, like those ex-
plained in (Hahn et al., 2010; Raymond and Ric-
cardi, 2007; McCallum et al., 2000; Macherey et
al., 2001; Léfèvre, 2007; Lafferty et al., 2001). The
methodology that we propose in this paper is based
on Stochastic Finite State Transducers (SFST). This
is a generative approach that composes several trans-
ducers containing acoustic, lexical and semantic
knowledge. Our method performs this composition
on-the-fly, obtaining as a result a concept graph,
where semantic information is associated with seg-
ments of words. To carry out this step, we use a
different language model for each concept and also
study the use of lexical categorization and lemmas.
The best sequence of concepts can be determined by
finding the best path in the concept graph, with the
help of a language model of sequences of the con-
cepts.

The rest of this paper is structured as follows. In
Section 2, the theoretical model for SLU based on
SFST is briefly presented. Then, in Section 3 the
methodology for converting word graphs into con-
cept graphs is described. A experimentation to eval-
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uate this methodology for the SLU task is shown in
Section 4. Finally, we draw some conclusions and
future work.

2 The SFST approach for SLU

The Bayes classifier for the SLU problem can be ex-
pressed as stated in equation 1, where C represents
a sequence of concepts or semantic labels and A is
the utterance that constitutes the input to the system.

Ĉ = argmax
C

p(C|A) (1)

Taking into account the underlying sequence of
words W , and assuming that the acoustics may de-
pend onW but not onC, this equation can be rewrit-
ten as follows.

Ĉ = argmax
C

max
W

p(A|W ) · p(W,C) (2)

To compute the best sequence of concepts Ĉ ex-
pressed as in equation 2, the proposal made by the
paradigm based on SFST is to search the best path in
a transducer λSLU result of composing four SFST:

λSLU = λG ◦ λgen ◦ λW2C ◦ λSLM (3)

In this equation λG is a SFST provided by
the ASR module where the acoustic probabilities
p(A|W ) are represented, λgen introduces prior in-
formation of the task by means of a lexical cate-
gorization, λW2C provides the probability of a se-
quence of words and labels it with a semantic label
and λSLM modelizes a language model of sequences
of concepts.

3 From word graphs to concept graphs

The output of an ASR can be represented as a word
graph. This word graph can be enriched with se-
mantic information, obtaining a concept graph. This
concept graph constitutes a useful representation of
the possible semantics, considering the uncertainty
expressed in the original word graph. Finally, find-
ing the best path in the concept graph using a lan-
guage model of sequences of concepts provides as
a result the best sequence of concepts Ĉ, the recog-
nized sentence W̃ , and its segmentation according
to Ĉ.

3.1 Topology and semantics of the word graph

To perform the transformations for obtaining the
concept graph, the input graph given by the ASR
should represent the information in the following
way. First, its nodes will be labeled with times-
tamps. Also, for every two nodes i, j such that
i < j − 1, there will be an edge from i to j labeled
with w and weight s if the ASR detected w between
the instants i and j − 1 with an acoustic score s.
Finally, there may exist a λ-transition between any
pair of adjacent nodes. The score of this edge should
be computed by means of a smoothing method.

Defining the word graph in this way allows us to
model on it the distribution p(A|w), where A is the
sequence of acoustic frames between the initial and
final nodes of any edge, and w the word attached to
it. This probability distribution is represented in the
theoretical model by λG.

3.2 Building the concept graph

The concept graph that is obtained has the following
features. First, its set of nodes is the same of the
word graph, and its meaning is kept. There is at most
one edge between every two nodes i and j (i < j)
labeled with the concept c. Every edge is labeled
with a pair (W, c), where W is a sequence of words
and c the concept that they represent. The weight
of the edge is maxW (p(Aj

i |W ) ·p(W |c)), where Aj
i

are the acoustic frames in the interval [i, j[ and W
the argument that maximizes the former expression.

In this specification appears the probability distri-
bution p(W |c), which can be estimated by using a
language model for each available concept.

This concept graph can be built using a Dynamic
Programming algorithm that finds for each concept
c and each pair of nodes i, j, with i < j, the
path from i to j on the word graph that maximizes
p(Aj

i |W )·p(W |c). In this case,W is the sequence of
words obtained by concatenating the words attached
to the edges of the path. Each of the “best paths”
computed in this way will become an edge in the
resulting concept graph.

Thus, in the concept graph it is represented infor-
mation about possible sequences of words that might
have been uttered by the speaker, along with the con-
cepts each of these sequences expresses. This pair is
weighted with a score that is the result of combining
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the acoustic score expressed in the word graph, and
the lexical and syntactic score given by the language
model, which is dependent on the current concept.
Furthermore, this information is enriched with tem-
poral information, since the initial and final nodes
of every edge represent the beginning and ending
timestamps of the sequence of words. Consequently,
this way of building the concept graph corresponds
to the transducer λW2C of equation 3, since we find
sequences of words and attach them to a concept.
However, we also take advantage of and keep other
information, such as the temporal one.

4 Experiments and results

To evaluate this methodology, we have performed
SLU experiments using the concept graphs obtained
as explained in Section 3 and then finding the best
path in each of them. For this experimentation we
have used the DIHANA corpus (Benedı́ et al., 2006).
This is a corpus of telephone spontaneous speech in
Spanish composed by 900 dialogs acquired by 225
speakers using the Wizard of Oz technique, with a
total of 6,229 user turns. All these dialogs simulate
real conversations in an automatic train information
phone service. The experiments reported here were
performed using the user turns of the dialogs, split-
ting them into a set of 1,340 utterances (turns) for
test and all the remaining 4,889 for training. Some
interesting statistics about the DIHANA corpus are
given in table 1.

Number of words 47,222
Vocabulary size 811
Average number of words per user turn 7.6
Number of concepts 30

Table 1: Characteristics of the DIHANA corpus.

In the DIHANA corpus, the orthographic tran-
scriptions of the utterances are semi-automatically
segmented and labeled in terms of semantic units.
This segmentation is used by our methodology as a
language model of sequences of words for each con-
cept. All the language models involved in this exper-
imentation are bigram models trained using Witten-
Bell smoothing and linear interpolation.

In our experimentation, we have considered three
different ways for building the λgen transducer ex-

plained in Section 2. The first way consists of con-
sidering a transducer that given a word as its input,
outputs that word with probability 1. This means
that no generalization is being done.

The second λgen transducer performs a lexical
categorization of some of the nouns of the vocab-
ulary. Some extra words have been added to some
lexical categories, in order to make the task more
realistic, as the lexical coverage is increased. Never-
theless, it also makes the task harder, as the size of
the vocabulary increases. We have used a total of 11
lexical categories.

Finally, the third λgen, transducer we have gen-
erated performs the same lexical categorization but
it also includes a lemmatization of the verbs. This
process is normally needed for real-world systems
that work with spontaneous (and maybe telephonic)
speech.

We have generated three sets of word graphs to
take them as the input for the method. The first of
these sets, G1, is made up by the whole graphs ob-
tained from a word graph builder module that works
without using any language model. The Oracle
WER of these graphs is 4.10. With Oracle WER we
mean the WER obtained considering the sequence of
words S(G) corresponding to the path in the graph
G that is the nearest to the reference sentence.

The second set, G2, is composed by word graphs
that only contain the path corresponding to S(G) for
each graph G ∈ G1. These graphs give an idea of
the best results we could achieve if we could mini-
mize the confusion due to misrecognized words.

The third set, G3 is formed by a synthetic word
graph for each reference sentence, in which only that
sentence is contained. This set of graphs allows us
to simulate an experimentation on plain text.

For our evaluation, we have taken two measures.
First, we have evaluated the Concept Error Rate
(CER) over the best sequence of concepts. The def-
inition of the CER is analogous to that of the WER
but taking concepts instead of words. Second, we
have also evaluated the slot-level error (SLE). The
SLE is similar to the CER but deleting the non-
relevant segments (such as courtesies) and substitut-
ing the relevant concepts by a canonic value for the
sequence of words associated to them.

Tables 2, 3, and 4 show the results obtained using
the different λgen transducers explained before.
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Input word graphs CER SLE
G1 31.794 35.392

G2 11.230 9.104

G3 9.933 5.321

Table 2: CER and SLE without any categorization.

Input word graphs CER SLE
G1 34.565 38.760

G2 11.755 8.714

G3 9.633 4.516

Table 3: CER and SLE with lexical categorization.

From the results of Tables 2, 3, and 4 several facts
come to light. First, we can see that, in all the exper-
iments performed with the G1 set, the CER is lower
than the SLE, while with the other sets the CER is
larger than the SLE. It is due to the fact that the
whole graphs obtained from the word graph builder
have more lexical confusion than those from G2 and
G3, which are based on the reference sentence. This
lexical confusion may cause that a well-recognized
concept is associated to a misrecognized sequence
of words. This would imply that a hit would be con-
sidered for the CER calculation, while the value for
this slot is missed.

Other interesting fact is that, for the G1 set, the
more complex λgen transducers give the worse re-
sults. This is because in these graphs there is a
significant confusion between phonetically similar
words, as the graphs were generated without any
language model. This phonetic confusion, combined
with the generalizations expressed by the lexical cat-
egorization and the lemmas, makes the task harder,
which leads to worse results. Nevertheless, in a real-
world application of this system these generaliza-
tions would be needed in order to have a larger cov-
erage of the lexicon of the language. The experi-
ments on G2 and G3 show that when the confusion
introduced in the graphs due to misrecognized words
is minimized, the use of lexical categorization and
lemmatization helps to improve the results.

5 Conclusions and future work

In this paper we have described a methodology,
based on the SFST paradigm for SLU, for obtaining

Input word graphs CER SLE
G1 36.536 40.640

G2 11.605 8.445

G3 9.458 4.064

Table 4: CER and SLE with lemmatization and lexical
categorization.

concept graphs from word graphs. The edges of the
concept graphs represent information about possible
sequences of words that might have been uttered by
the speaker, along with the concept each of these se-
quences expresses. Each of these edges is weighted
with a score that combines acoustic, lexical, syntac-
tic and semantic information. Furthermore, this in-
formation is enriched with temporal information, as
the nodes represent the beginning and ending of the
sequence of words. These concepts graphs consti-
tute a very useful representation of the information
for SLU.

To evaluate this methodology we have performed
an experimental evaluation in which different types
of lexical generalization have been considered. The
results show that a trade-off between the lexical con-
fusion expressed in the word graphs and the general-
izations encoded in the other transducers should be
achieved, in order to obtain the best results.

It would be interesting to apply this methodology
to word graphs generated with a language model,
although this way of generating the graphs would
not fit exactly the theoretical model. If a language
model is used to generate the graphs, then their lex-
ical confusion could be reduced, so better results
could be achieved. Other interesting task in which
this methodology could help is in performing SLU
experiments on a combination of the output of some
different ASR engines. All these interesting appli-
cations constitute a line of our future work.
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