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Preface

In decision science, optimization is quite an obvious and important tool. Depending on
the number of objectives, the optimization technique can be single or multiobjective.
We encounter numerous real life scenarios where multiple objectives need to be
satisfied in the course of optimization. Finding a single solution in such cases is very
difficult, if not impossible. In such problems, referred to as multiobjective optimization
problems (MOOPs), it may also happen that optimizing one objective leads to some
unacceptably low value of the other objective(s). Evolutionary algorithms and
simulated annealing, from the family of meta-heuristic search and optimization
techniques, have shown promise in solving complex single as well as multiobjective
optimization problems in a wide variety of domains.

Language technology and/or Natural language processing (NLP) is an interdisciplinary
field of computer science and linguistics concerned with the interactions between
computers and human (natural) languages. It is a branch of artificial intelligence.
In theory, NLP is a very attractive method of human-computer interaction. Natural
language understanding is sometimes referred to as an AI-complete problem because
it seems to require extensive knowledge about the outside world and the ability to
manipulate it. Modern NLP algorithms are grounded in machine learning, especially
statistical machine learning. Research into modern statistical NLP algorithms requires
an understanding of a number of disparate fields, including linguistics, computer
science, and statistics. Major tasks in NLP include Automatic summarization,
Coreference resolution, Named Entity Recognition, Machine translation, Machine
transliteration, Natural language generation, Natural language understanding,
Morphological segmentation, Part-of-Speech tagging, Question answering, Sentiment
analysis, Speech segmentation, Word sense disambiguation, Information retrieval etc.

In each of the above mentioned tasks, there are various metrics that we often need
to optimize to get the reasonable performance. Many evaluation metrics have been
proposed for solving different problems of NLP. For example, in Information retrieval,
it is often necessary to optimize the recall and precision parameters. In automatic
summarization, it is desired to optimize different objective functions like similarity to
user query, ROUGE metric, important sentence score, difference in length between
the scored sentence and the desired sentence and many others. Other examples of
optimization in NLP include parsing, machine translation, and computational models
of language acquisition.
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This volume contains papers accepted for presentation at the First International
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BioPOS: Biologically Inspired Algorithms for POS Tagging
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ABSTRACT
In this paper we present a new biologically inspired approach to the part-of-speech tagging
problem, based on particle swarm optimization. As far as we know this is the first attempt of
solving this problem using swarm intelligence. We divided the part-of-speech problem into
two subproblems. The first concerns the way of automatically extracting disambiguation rules
from an annotated corpus. The second is related with how to apply these rules to perform the
automatic tagging. We tackled both problems with particle swarm optimization. We tested our
approach using two different corpora of English language and also a Portuguese corpus. The
accuracy obtained on both languages is comparable to the best results previously published,
including other evolutionary approaches.

KEYWORDS: Part-of-speech Tagging, Particle Swarm Optimization, Disambiguation Rules,
Natural Language Processing.
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1 Introduction
The part-of-speech (POS) tagging is a fundamental step for the execution of other natural
language processing (NLP) tasks, like phrase chunking, parsing, named entity recognition,
machine translation, information retrieval, speech recognition, etc. It is the process of classifying
words according to the roles they assume in a sentence. The task is not straightforward because
words in most languages can assume different roles in a sentence, depending on how they
are used. Those roles are normally designated by part-of-speech tags or word classes, such as
nouns, verbs, adjectives and adverbs.

The role of a word in a sentence is determined by it’s surrounding words (context). For instance,
the word fish can assume the function of a verb, "Men like to fish.", or a noun, "I like smoked
fish", depending on how we choose to use it on a sentence. This means that in order to assign
to each word of a sentence its correct tag, we have to consider the context in which each word
appears. However, each of the words belonging to a word’s context can also be used in different
ways, and that means that in order to solve the problem we need some type of disambiguation
mechanism.

Traditionally, there are two groups of methods used to tackle this task, with respect to the
information model used. The first group is based on statistical data concerning the different
context possibilities for a word (stochastic taggers) (Brants, 2000; Araujo, 2002, 2004, 2007;
Araujo et al., 2004; Alba et al., 2006), while the second group is based on rules that capture
the language properties and are used to improve tagging accuracy (Brill, 1995; Wilson and
Heywood, 2005; Nogueira Dos Santos et al., 2008).

The simplest stochastic tagger, called unigram tagger, takes only into account the word itself.
It assigns the tag that is most likely for one particular token. The tagger works like a simple
lookup tagger, assigning to each word the most common tag for that word in the training corpus.
To do that, the learning process just counts, for each word, the number of times it appears with
each of the possible tags. An n-gram tagger is a generalization of a unigram tagger, whose
context is the current word together with the part-of-speech tags of the n-1 preceding tokens.
In this case, the training step saves, for each possible tag, the number of times it appears in
every different context presented on the training corpus. Since the surrounding words can
also have various possibilities of classification, it is necessary to use a statistical model that
allows the selection of the best choices for marking the entire sequence, according to the model.
Most of the stochastic taggers are based on hidden Markov models, and, because of that, a
word’s context consists only in the tags of the words that precede it. However, more recently,
other taggers have emerged that, although based on stochastic information, have used different
models that make possible to consider different context shapes.

One of the most popular taggers based on rules is the one proposed by Brill (Brill, 1995).
Brill’s rules are usually called transformation rules. The system can be divided into two main
components: a list of transformation rules patterns for error correction, and a learning system.
The transformation patterns are handmade and provided to the learning algorithm, which will
instantiate and order them. The search is made in a greedy fashion. The result is an ordered set
of transformation rules, which is then used to perform the tagging. These rules are meant to
correct mistakes in a pre-tagged text, usually achieved by a baseline system that marks each
word with its most common tag. They are applied in a iterative way until no rule can be fired.

As already observed, the only information an n-gram tagger considers from prior context is
the tags, even though words themselves might be a useful source of information. It is simply
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impractical for n-gram models to be conditioned by the context words themselves (and not only
their tags). On the other hand, Brill’s approach allows the inclusion of other type of information
besides the context. In fact, the author also used the learning algorithm to achieve a set of
lexicalized transformation rules, that includes not only the tags but the words themselves.

There are also some other aspects that can be used to determine a word’s category beside it’s
context in a sentence (Steven Bird and Loper, 2009). The internal structure of a word may give
useful clues as to the word’s class. For example, in the English language, -ness is a suffix that
combines with an adjective to produce a noun, e.g., happy→ happiness, ill→ illness. Therefore,
if we encounter a word that ends in -ness, it is very likely to be a noun. Similarly, -ing is a suffix
that is most commonly associated with gerunds, like walking, talking, thinking, listening. We
also might guess that any word ending in -ed is the past participle of a verb, and any word
ending with ’s is a possessive noun.

More recently, several evolutionary approaches have been proposed to solve the tagging problem.
These approaches can also be divided by the type of information used to solve the problem,
statistical information (Araujo, 2002, 2004, 2007; Araujo et al., 2004; Alba et al., 2006), and
rule-based information (Wilson and Heywood, 2005).

Although there is a substantial amount of work about POS tagging applied to the English
language, there are, comparatively, a small number of attempts to approach the problem using
the Portuguese language. One of the main reasons is the limited number of resources that exist
for it. Nevertheless, we can find some work where several of the existing techniques used to
solve the POS tagging are tested on the Portuguese language: transformation based learning
(Aires et al., 2000), Markov models (Kepler and Finger, 2006), entropy guided transformation
learning (Nogueira Dos Santos et al., 2008).

One of the problems of the stochastic taggers, is that they tend to be dependent of the domain in
which they are trained. Also, the information used is in the form of probabilistic values, which
are less comprehensible than data presented in the form of rules, and only contemplates context
information. In this work, we investigate the possibility of extracting, from an annotated corpus,
a set of rules similar to classification rules, that could be used to help the decision process
needed to perform the tagging. With our approach, we hope to be able to learn rules that
prove to be more generic than the information used by the stochastic taggers, so that the tagger
performs well in different domains. We also intend to include in these rules, together with the
context information, other type of data, namely some aspects related with the word morphology.
To accomplish our goals, we chose one technology that has already proven to be successful in
data mining tasks, in particular in the discovery of classification rules (Sousa et al., 2004) - the
particle swarm optimization (PSO) algorithm.

We also investigate the possibility of using a discrete PSO algorithm to perform the tagging,
using the disambiguation rules to guide the evolution of the swarm. The problem of searching
for the best tag assignments can be seen as a combinatorial optimization problem, where
a solution is evaluated with the help of the disambiguation rules previously learned. We
decided to test the application of swarm intelligence to this problem, since other population
based algorithms, in particular genetic algorithms, have been successfully applied to many
combinatorial optimization tasks. In order to evaluate the success of our approach we tested it
on two different languages: English and Portuguese.

The remainder of this paper is organized as follows. In section 2, we describe the two evolution-
ary approaches to the POS tagging problem that we think are the most closely related to the
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work reported in this paper. In section 3, we present the general idea behind particle swarm
optimization. The particle swarm optimization algorithm for disambiguation rules discovery is
outlined in section 4 and the POS-Tagger in section 5. The experimental results are presented
in section 6, and finally, in section 7, we make some concluding remarks.

2 Previous Work

In this section we present a brief description of the two approaches more closely related to our
work, in that both of them use evolutionary algorithms to tackle some aspect of the part-of-
speech problem. We begin with the part-of speech tagger developed by Wilson (Wilson and
Heywood, 2005), and then we discuss the evolutionary tagger developed by Araujo (Araujo,
2002).

2.1 Wilson’s Tagger

The system proposed in (Wilson and Heywood, 2005) is an evolutionary version of the Brill’s
tagging system (Brill, 1995) based on non lexical transformation rules. The authors propose a
genetic algorithm to learn the rewrite rules, instead of the greedy algorithm described by Brill.

In the genetic algorithm presented, an individual of the population is a list of rewrite rules.
The chosen representation was a fixed-length binary representation, in which each individual
represents a set of 378 rules. The initial order of the rules is determined randomly. During the
evolutionary process the order can be changed by the recombination operator.

Each rule is a sequence of 48 bits.The initial population is randomly generated. Each individual
represents an ordered collection of rules that potentially solves the problem of marking the
Wall Street Journal corpus. Each rule takes in consideration the tags of the three words to the
left and to the right of the current word. An extra bit is used for each of the context elements,
to indicate if that element should be considered in the rule. Thus the leftmost bit in the string
indicates whether the triggering environment involves examining the third tag back from the
target tag position. The next six bits indicate what tag should be sought in that position by
using the integer equivalent of the binary representation.

The six bits map onto a 45 part-of-speech tags from the Penn Treebank, and if the integer
equivalent of the six bits exceeds 45, the tag is considered to be the remainder of the integer
division by 45. The next bit indicates whether to examine the second tag back. What tag to
look for there is indicated by the next six bits. The same interpretation is made for the next
seven bits, considering the tag of the previous word. The next six bits indicate what tag is to
replace that of the target position. The tags sough (and wether or not they should be sough) in
the three positions following the target are given by the following 21 bits. The interpretation is
the same as that described for the positions previous to the target position.

The performance of an individual is given by the accuracy of the tagging achieved with the set
of rules it represents. The experimental conditions used by Wilson attempt to follow the ones
used by Brill nonlexicalized tagger. They used only nonlexicalized rules and each individual is
composed by 378 rules. In each rule the tags located 3 positions previous to the target and 3
positions following the target position, are examined. They used a subset of the Pen Treebank
corpus, composed of 600000 words to learn the rules. A closed vocabulary assumption was
adopted. The best result achieved in the training corpus obtained an accuracy of 89.8%. There
is no reference to experiments made in a separate test set with the best set of rules evolved by
the evolutionary algorithm.
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2.2 Araujo’s Tagger
The system proposed in (Araujo, 2002) uses an evolutionary algorithm to perform the tagging.
In order to tag the words of a text, the algorithm must be run separately for each sentence of
the text. In the proposed algorithm, each individual in the population represents a candidate
solution to the tagging problem. Thus, each individual comprises a chromosome composed by
as many genes as the number of words of the sentence to tag. Each gene refers to the sentence
word in the same position, i.e. the gene gi contains information concerning the word, wi of the
sentence to tag. This information includes a candidate tag for the word, and data related with
the context of that part-of-speech. The context information is obtained in an initial step and is
stored as a table - the training table. For each part-of-speech of the training corpus the number
of times each of one appears in every possible context was counted. The authors considered
contexts that include tags appearing before and after a certain part-of-speech. Experiments
with different sizes of context were coducted.

The performance of a particular chromosome was measured using a fitness function defined
as the sum of the evaluation of each of the genes that compose the chromosome. A gene is
evaluated based on the statistical information collected and stored in the training table. The
value obtained is an estimative of the accuracy of the tag proposed by the gene for a particular
word in the sentence.

The evolutionary process aims to choose, for a particular sentence, the sequence of tags that
maximize the total probability, based on the statistical data obtained previously. The authors
conclude that the corpus used for training the system has a great influence on the algorithm
performance, and state that a corpus which proves to be a good sample of the language should
be used. However, that is not always possible, since in most cases the corpora available are
specific to a particular domain.

The results presented were achieved with the Brown corpus. The best results presented, using a
test set of 2500 words, were below 95.5%.

3 Particle Swarm Optimization
PSO is inspired in the intelligent behavior of agents as part of an experience sharing community,
as opposed to an isolated individual reactive response to the environment. The adaptive culture
model (Kennedy and Eberhart, 2001), which is PSO’s framing theory, states that the process of
cultural adaptation is rooted into three principles: evaluate, compare and imitate. Evaluation is
the capacity to qualify environmental stimuli and the sine qua non condition to social learning.
Evaluation itself is both useless and impossible without the ability to compare; all of our metrics
are but a comparison to a well-known unit and a single value becomes pointless without the
values of it peers. At last, imitation is the rawest form of experience sharing from the receiver’s
standpoint; it involves not only observation but also realization of purpose and timing adequacy.

In PSO algorithms, a particle decides where to move next, considering its own experience, which
is the memory of its best past position, and the experience of its most successful neighbor. There
may be different concepts and values for neighborhood; it can be seen as spatial neighborhood
where it is determined by the Euclidean distance between the positions of two particles, or as a
sociometric neighborhood (e.g.: the index position in the storing array). Although some actions
differ from one variant of PSO to the other, the common pseudo-code for PSO is as follows:

The output of this algorithm is the best point in the hyperspace the swarm visited. Since its
introduction, the PSO algorithm has been successfully applied to problems in different areas,
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Algorithm 1 Generic Particle Swarm Optimization Algorithm
Initiate_Swarm()
repeat

for p= 1 to number of particles do
Evaluate(p)
Update_past_experience(p)
Update_neighborhood_best(p,k)
for d= 1 to number of Dimensions do

Move(p,d)
end for

end for
until Criterion

including antenna design, computer graphics visualization, biomedical applications, design
of electrical networks, and many others (Poli, 2008). Amongst the qualities that led to this
popularity are its conceptual simplicity, ease of implementation and low computational costs.
The algorithm works well with small swarms and tends to converge fast to a solution. In
addition, particle swarm optimization has proven itself to be easily adaptable to new domains
of application and to work well when hybridized with other approaches. There are several
variants of PSO, including algorithms for discrete and continuous domains. The variant used in
our work was the discrete PSO introduced by Kennedy (Kennedy and Eberhart, 2001).

3.1 Discrete Swarm Optimization Algorithm

This variant of the PSO considers each bit as a dimension, with 2 possible values 0 or 1. Particle
motion is just the toggling between these two values.

There is a velocity value(Vid) associated with each dimension/bit; this vale is randomly gen-
erated from a range of [−4.0,4.0] when the particle is created and iteratively updated (1)
according to his previous best position (Pid) and the best position in the neighborhood (Pgd).
ϕ1 and ϕ2 are random weights whose role is to provide diversity between individual learning
and social influence.

Vid(t + 1) = Vid(t − 1) +ϕ1(Pid − x id(t − 1)) +ϕ2(Pgd − x i, d(t − 1)) (1)

To determine if a bit will toggle (2), a random number, ρ, is drawn from a uniform distribution
ranging from 0 to 1, and is compared to a normalized value of the velocity associated with this
dimension.

x i,d =
�

1 if ρ < S(vid(t))
0 otherwise (2)

The sigmoid function (3) is used here to insure that the velocity’s value is kept in the range of
[0.0, 1.0].

S(vid) =
1

1+ ex p(−vid)
(3)
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4 Particle Swarm Optimization Algorithm for Disambiguation Rules Dis-
covery

In this section we describe the use of a discrete PSO (DPSO) algorithm to discover a set of
disambiguation rules, that will be used to help the optimization process necessary to solve the
part-of-speech tagging problem. We will approach the problem as if we were trying to solve a
classification problem, by learning a set of classification rules.

The overall structure of our approach was designed to include two nested algorithms. The
innermost algorithm is the classification rule discovery algorithm. Its task is to find and return
the rule which better classifies the training examples. As we said before we adopted a DPSO
to perform this task. The outmost algorithm is a covering algorithm that receives the training
set, divided in two sets - the set of positive examples and the set of negative examples. It then
invokes the classification rule discovery algorithm to reduce this set by removing instances of
the set of positive examples, that are correctly classified by the rule returned by the classification
rule discovery algorithm. This process is repeated until there are no examples to classify (see
algorithm 2).

Algorithm 2 Covering Algorithm
Require: SetOfPosExamples, SetOfNegExamples
Ensure: SetOfRules

while SetOfPosExamples 6=∅ do
BestRule = DPSO(SetOfPosExamples, SetOfNegExamples)
SetOfPosExamples = RemoveExamples(SetOfPosExamples, BestRule)
SetOfRules = Add(SetOfRules, BestRule)

end while

4.1 Rule Representation

Classification rules are no more than conditional clauses, involving two parts: the antecedent
and the consequent. The former is the conjunction of logical tests, and the latter gives the class
that applies to instances covered by this rule. These rules take the following format:
IF at t riba = val1 AND at t ribb = val2 ..... AND at t ribn = vali THEN classx .

In evolutionary rule classifier systems there are two distinct approaches to individual or particle
representation: the Michigan and the Pittsburgh approaches (Freitas, 2003). In the Michigan
approach each individual encodes a single rule, whereas in the Pittsburgh approach each
individual encodes a set of rules. In our work, we follow the Michigan approach, and rules
are coded using binary strings; each attribute is assigned with the necessary bit number to
accommodate its value range. An extra bit is used to represent any value, meaning that no
logical test is performed to this attribute when this bit is activated. As we stated in Introduction,
our aim is to discover a set of rules that take into consideration not only context information
but also information about the words’ morphology.

We decided to test our approach on the English and Portuguese languages. Thereby, since the
structure of the languages are different, we needed to extract disambiguation rules from a
English and a Portuguese corpora. We adopted a slightly different type of rules for the two
languages. For the context, we decided to consider the same information that was used in the
work of Brill (Brill, 1995) and Wilson (Wilson and Heywood, 2005). Thus, we consider six
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attributes: the lexical categories of the third, second and first words to the left, and the lexical
categories of the first, second, and third words to the right. These attributes were used for the
rules of both languages. For the words’ morphology information we decided to include, for the
English language as well as for the Portuguese language, the following attributes: ’The word is
capitalized?’, ’The word is the first word of the sentence?’. In addition, for the English language,
we incorporated on the rules’ antecedent these attributes: ’The word ends with ed?’ ’The word
ends with ing?’, ’The word ends with es?’ , ’The word ends with ould?’ , ’The word ends with
’s?’, ’The word ends with s?’, ’The word has numbers or ’.’ and numbers?’.

The possible values for each of the first six attributes are the values of the corpus tag set
from which the evolutionary algorithm will extract the rules. This set will depend on the
annotated corpus used, since the set of used labels will vary for different annotated corpora.
The maximum number of tags on the tag sets we used was 29, so we used six bits to represent
each attribute. The first bit indicates whether the attribute should or should not be considered,
and the following five bits represent the assumed value of the attribute in question. We adopted
a table of n entries, to store the tag set, with n representing the cardinality of the set, and used
the binary value represented by five bits to index this table. If the value exceeds the number n,
we used the remainder of the division by n.

The remaining k attributes were encoded by 2× k bits, two bits for each of the k attributes.
In the same way, the first bit indicates if the attribute should, or shouldn’t be considered and
the second bit, indicates whether the property is, or is not, present. In short, for the English
language each particle was composed by 6×6+2×9 = 54 bits, and for the Portuguese language
each particle was made by 6× 6+ 2× 2= 40 bits.

In general, there are three different ways to represent the predicted class in an evolutionary
algorithm (Freitas, 2003). One way is to encode it into the genome of the individual, or the
particle, opening the possibility of subjecting it to evolution (de Jong et al., 1993; Greene and
Smith, 1993). Another way is to associate all individuals of the population to the same class,
which is never modified during the execution of the algorithm. Thus, if we are to find a set of
classification rules to predict k distinct classes, we need to run the evolutionary algorithm, at
least k times. In each i-th execution, the algorithm only discovers rules that predict the i-th
class (Janikow, 1993). The third possibility consists in choosing the predicted class in a more or
less deterministic way. The chosen class may be the one that has more representatives in the
set of examples that satisfy the antecedent of the rule (Giordana and Neri, 1995), or the class
that maximizes the performance of the individual (Noda et al., 1999) . We adopted the second
possibility, so we didn’t need to encode the rule’s consequent. This choice determines that the
covering algorithm needs to be ran for each tag of the tag set adopted for the experimental
work.

4.2 Rule Evaluation - Establishing Reference Points

Rules must be evaluated during the training process in order to establish points of reference for
the training algorithm. The rule evaluation function must not only consider instances correctly
classified, but also the ones left to classify and the wrongly classified ones. The formula used
to evaluate a rule, and therefore to set its quality, is expressed in equation 4. This formula
penalizes a particle that represents a rule that ignores the first six attributes, which are related
with the word’s context, forcing it to assume a more desirable form. The others are evaluated
by the well known Fβ -measure. The Fβ -measure can be interpreted as a weighted average of
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precision and recall. We used β = 0.09, which means we put more emphasis on precision than
recall.

Q(X ) =
�

Fβ(X ) if context(X) = True
−1 otherwise (4)

contex t(X ) =
�

True if X tests at least one of the first six attributes
False otherwise (5)

Fβ(X ) = (1+ β
2)× precision(X )× recal l(X )

β2 × precison(X ) + recal l(X )
(6)

precision(X ) =
T P

T P + F P
(7)

recal l(X ) =
T P

T P + FN
(8)

where:

• TP - True Positives = number of instances covered by the rule that are correctly classified,
i.e., its class matches the training target class;

• FP - False Positives = number of instances covered by the rule that are wrongly classified,
i.e., its class differs from the training target class;

• FN - False Negatives = number of instances not covered by the rule, whose class matches
the training target class.

4.3 Pre-processing Routines - Data Extraction

For the English language we used the Brown corpus to create the training set that we provided
as input to the discrete PSO for the extraction of the disambiguation rules. The corpus used for
the Portuguese language was the Mac-Morpho. For each word of both corpus we collected the
values for every attribute included in the rule’s antecedent, creating a specific training example.
Then, for each tag of the tag set, we built a training set composed by positive and negative
examples of the tag.

Usually, the set of positive (negative) examples of a class is composed by examples that do
(do not) belong to that particular class. However, in our case, we are not interested in finding
typical classification rules, our goal is not to solve a classification problem, we just need rules
that help to choose the best tag from a set of possible tags. This set is not all the tag set, but a
subset of it, usually composed by a small number of elements. When we have a word that has
only one possible lexical class, the tagging is straightforward. The problematic words are the
ones that are ambiguous. Thus, our training set should only include examples corresponding
to ambiguous words. The building process used to define each of the training sets was the
following: for each example ei of the set of examples, with word w and tag t, if w is an
ambiguous word, with S the set of all its possible tags, then put ei in the set of positive examples
of tag t, and put ei in the set of negative examples of all the tags in S, except t.
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4.4 Experimental Work

We developed our system in Python and used the resources available on the NLTK (Natural
Language Toolkit ) package in our experiences. The NLTK package provides, for the English
language, among others, the Brown corpus and a sample of 10% of the Wall Street Journal
(WSJ) corpus of the Penn Treebank. These corpora are the most frequently used to test taggers’
performances on the English language and the ones used in the approaches we mentioned
earlier. The Mac-Morpho corpus is also available for the Portuguese language.

4.4.1 English Language

The corpus used for the extraction of the disambiguation rules for the English language was
the Brown corpus. Tagged corpora use many different conventions for tagging words. This
means that the tag sets vary from corpus to corpus. Besides, our approach determines that, to
extract the disambiguation rules from a set of annotated texts, we need to run our algorithm for
each of the tags belonging to the tag set. However, our intention was to test the rules extracted
from the Brown corpus on a different corpus of the same language, namely the WSJ corpus.
Since these corpora have different tag sets we will not be able to measure the performance of
our tagger on the WSJ corpus with the rules found on the Brown corpus. To avoid this, we
decided to use the simplify_tags=True option of the tagged_sentence module of NLTK corpus
readers. When this option is set to True, NLTK converts the respective tag set of the Brown
and WSJ corpora to a uniform simplified tag set, composed by 29 tags. This simplified tag set
establishes the set of classes we use in our algorithm for the English language. We ran the
covering algorithm for each one of the classes that had ambiguous words in the brown corpus.

We processed the Brown corpus and, for each word found, we built the correspondent instance.
The total number of examples extracted from the corpus equals 929286. We used 5 subsets of
this set (with different cardinality) to conduct our experiments We used sets of size: 30000,
40000, 50000, 60000, 70000. The examples were taken from the beginning of the corpus. For
each subset adopted, we built the sets of positive and negative examples for each ambiguous
tag, using the process described in the previous section. We used a compacted representation of
the examples: for each different example we saved the number of times it appears in the set

The discrete PSO algorithm was run with a swarm of 20 particles for a maximum of 200
generations. These values were established after some preliminary experiments. We ran the
algorithm 4 times for each of the sets, and tested the resulting rules by providing them to
the PSO-Tagger, which we will describe next. The set that produced the best results on the
PSO-Tagger was the one with 50000 tokens. The discovery algorithm found a total number of
3385 rules for this set.

4.4.2 Portuguese Language

Like we said before, we used the Mac-Morpho corpus to extract the disambiguation rules for
the Portuguese language. This corpus contains 1.2 million manually tagged words. Its tag set
contains 22 POS tags and 10 more tags that represent additional semantics aspects. We carried
out our experiments using only the 22 POS tags.

We processed the Mac-Morpho corpus in much the same way we processed the Brown corpus.
But in this case we used the first 60% of the Mac-Morpho sentences to build the examples used
to define the sets of positive and negative examples for each of the tags of the tag set used
in this corpus. A compacted representation was also used. Notwithstanding, to reduce the
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number of examples of each set, we eliminated the ones that only appeared one, two or three
times, depending on the cardinality of the positive and negative sets. Between positive and
negative examples, we considered a total of 107200 different examples . We ran the discrete
PSO algorithm with 20 particles during 200 generations. The set of rules found that provided
the best tagging had 5988 rules.

5 PSO-Tagger

The PSO-Tagger was designed to receive as inputs a sentence, a set of disambiguation rules and
a dictionary. The returned output is the input sentence with each of its words marked with the
correct POS tag. The discrete PSO algorithm evolves a swarm of particles, that encode, each of
them, a sequence of tags to mark the ambiguous words of the input sentence. Since we adopted
the discrete version of the PSO algorithm, we used a binary representation for the particles. To
encode each of the tags belonging to the tag set, used in the experimental work, we used a
string of 5 bits. Therefore, a particle that proposes a tagging for a sentence with n ambiguous
words will be represented by n× 5 bits.

5.1 Representation

Each five bits of a particle encode a integer number that indexes a table with as much entries as
the possible tags for the correspondent ambiguous word. If the integer number given by the
binary string exceeds the table size, we use as index the remainder of the division by the table
size value. As we said before, we intend to use the disambiguation rules, found by the discovery
algorithm described in the previous section, to guide the evolution of the swarm particles. Since
these rules have six attributes related with the word context, and other k attributes concerning
morphological properties of the words, we need to build, from the input sentence and from
the tags proposed by the particles, the values of each one of the attributes contemplated in the
rules’ antecedents.

Although the particles only propose tags for the ambiguous words, the tags of the unambiguous
ones will be needed to extract the attributes’ values. Thus, before optimization begins, the
discrete PSO marks each of these words with the correspondent tag, by simple input dictionary
lookup. So a particle completes the previous lookup based tagging, and provides a full marked
sentence. This sentence can then be used to extract a set of instances composed by the 6+ k
attributes, so that the disambiguation rules can be applied. This way, each pair wi/t i in the full
annotated sentence results in a (6+ k+ 1)-tuple made by the 6+ k attributes and by t i . The
English disambiguation rules had k = 9, and the Portuguese disambiguation rules k = 2. When
there is no word in one of the positions contemplated in the context, we adopted the use of an
extra tag named ’None’.

5.2 Particles’ Evaluation

The quality of a particle is given by the tagging quality of the full input sentence. To evaluate
the tagging of the sentence, we use the disambiguated rules to measure the quality of each
instance extracted from the sentence. The quality of the overall tagging is given by the sum
of the evaluation results for each instance. Let’s consider t i to be the class presented in the
last position of the 16-tuple of instance instancek. If Rt i

represents the set of disambiguation
rules for the lexical category t i , and rk ∈ Rt i

a disambiguation rule that covers the instance
instancek, then the quality value of instancek is given by the quality measure Qk associated
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with rule rk.

F(instancek) =
�

Quali t y(rk) if rk is found
0 otherwise (9)

If Sp is the set of all instances extracted from the annotated sentence determined by the particle
p, the quality of particle p is given by

F i tness(p) =
∑
i∈Sp

F(i) (10)

Although a particle only suggests tags for the ambiguous words in the sentence, the quality
of the instances defined by the unambiguous words is affected by the tags established by the
particle. Therefore, the overall tagging evaluation should also consider these instances.

6 Experimental Results

We tested our PSO-Tagger on two different languages: English and Portuguese. For the English
language we carry out experiments on two different corpora: in a test set of the WSJ corpus of
the Penn Treebank made of 8300 tokens, and on a test set of 22562 tokens of the Brown corpus.
In both cases the POS-Tagger received as input the set of disambiguation rules learned from the
Brown corpus.

For the Portuguese language, we tested the tagger on a test set of the Mac-Morpho corpus
with 21466 tokens. In this case the algorithm received as input the set of disambiguation rules
learned from the Mac-Morpho training set.

We ran the algorithm 20 times with a swarm of 10 and 20 particles during 50 and 100
generations for the three corpora. The results achieved are shown in table 1. As we can see, the
best average accuracy on the WSJ corpus was 96.91% and the best average accuracy on the
Brown corpus was 96.72%. The best results on the Brown corpus were achieved with a swarm
of 20 particles over 50 generations. A maximum accuracy of 96.75% was found. A swarm of 20
particles over 100 generations gave the best results for the WSJ corpus. In this case, the best
tagging found had an accuracy of 97.04%.

For the Portuguese corpus, the best average accuracy obtained was 96.83%, when the POS-
tagger was executed with 10 particles over 100 generations. The best accuracy, 96.89%, was
found during a run of the algorithm with 20 particles over 50 generations.

Both results allow us to conclude that the PSO-Tagger usually finds a solution very quickly. Like
we said before, this algorithm works well with small swarms and tends to converge fast to a
solution. Table 2 presents the best results achieved by the approaches we mentioned earlier,
along with the best ones achieved by the PSO-Tagger. Observing table 2, we can see that the
PSO-Tagger accuracy is very promising, since it is among the best values presented.

Naturally, the difficulty level of the tagging task depends on the number of ambiguous words of
the sentence we want to tag. Although it is possible to construct sentences in which every word
is ambiguous (Hindle, 1989), such as the following: "Her hand had come to rest on that very
book."; those situations are not the most common. After counting the number of ambiguous
words that appear in the sentences of the 10% of the Brown corpus we reserved for testing
the tagger, we observed that, in average, there are 6.9 ambiguous words per sentence. This
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Corpus Particles Generations Average Standard Deviation Best
Brown 10 50 96.68 0.022 96.72

100 96.67 0.028 96.72
20 50 96.7 0.024 96.75

100 96.69 0.024 96.73

WSJ 10 50 96.9 0.054 96.99
100 96.91 0.054 97.04

20 50 96.88 0.053 96.99
100 96.91 0.031 96.98

Mac-Morpho 10 50 96.82 0.029 96.86
100 96.83 0.029 96.86

20 50 96.82 0.033 96.89
100 96.81 0.026 96.86

Table 1: Results achieved on the English and Portuguese corpora by the PSO-Tagger after 20
runs with a swarm of size 10 and 20, during 50 and 100 generations.

explain the considerable low number of particles and generations needed to achieve a solution.
We could argue that in those conditions the use of a PSO algorithm is unnecessary, and that a
exhaustive search could be applied to solve the problem. However, we can not ignore the worst
case scenario, where, like we see above, all the words, or a large majority of the words, on a
very long sentence may be ambiguous. Furthermore, we observed that the sentence average
size of the Brown corpus is of 20.25 tokens, with a maximum of 180. The largest number of
ambiguous words on a sentence belonging to this corpus is 68. Even for the smallest degree
of ambiguity, with only two possible tags for each word, we have a search space of 268, which
fully justifies the use of a global search algorithm such as a PSO.

The results achieved show that there are no significant differences on the accuracy obtained
by the tagger on the two test sets of the English language. At this point, it is important to
emphasize that the disambiguation rules used on the tagger were extracted from a subset
(different from the test set used in this experiments) of the Brown corpus. Which bring us to
the conclusion that the learned rules are generic enough to be used on different corpora, and
are not domain dependent. The results achieved for the Portuguese language showed that our
strategy also performed well for other languages different from English.

7 Conclusions

We described a new evolutionary approach to the POS tagging problem that achieved competi-
tive results when compared to the best ones published (see table 2). Although there are other
approaches to this task based on evolutionary algorithms, in particular genetic algorithms, as far
as we know this is the first attempt that uses a PSO algorithm to tackle the POS problem. Our
method also differs from previous ones on the information model used to guide the evolutionary
process. More specifically, in this work, we used a set of disambiguation rules, including
morphological information, in opposition to the stochastic data that is usually adopted in the
evolutionary approaches we have found in the literature. We believe that this approach brings a
important level of generalization to the model, which results in good tagging performances even
when applied to other corpora. Beside the traditional experiments made on English corpora,
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Corpus Tagger Training Set Test Set Average Best
Brown PSO-Tagger 50000 22562 96.7 96.75

(Araujo, 2002) 185000 2500 - 95.4
GA (Alba et al., 2006) 165276 17303 96.37 96.67
PGA (Alba et al., 2006) 165276 17303 96.61 96.75

WSJ PSO-Tagger none 8300 96.91 97.04
(Wilson and Heywood, 2005) 600000 none - 89.8
(Brill, 1995) 600000 150000 - 97.2
(Alba et al., 2006) 554923 2544 - 96.63

Mac-Morpho PSO-Tagger 107200 21466 96.83 96.86
ETL-Tagger 1M 200K - 96.75

Table 2: Results achieved by the PSO-Tagger on corpora of English and Portuguese language,
along with the results achieved by the approaches more similar to the one presented here. The
ETL-Tagger are the one presented in (Nogueira Dos Santos et al., 2008)

we also tested our strategy on a different language, namely the Portuguese language. The
results attained showed that the tagger also achieves competitive accuracy when applied to the
Portuguese language.

The PSO-Tagger proved to be capable of tackling the combinatorial optimization problem,
performing the tagging task with good results, while using limited resources in terms of swarm
size and number of generations. Although we consider our results to be promising, we are
aware of the necessity of evaluating our approach with a larger tag set and of applying it to
more corpora. We also believe that the algorithms’ parameters could be better tuned, and
for that we intend to conduct a larger set of experiments. Likewise, we think that further
experiments, with different sets of attributes for the disambiguation rules, should be conducted.
Finally, we think that the overall evolutionary approach could be successfully applied to other
disambiguation problems, like the phrase chunking and named-entity recognition problems.
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344@�� ��� &�'() �����+	���� ��� (����� 3445�� ����� ��	 ���	� �� �������� ������
�	��		� ��	 �		�	��	 ��� ��������	 �	���� ��	 	*	���
	 �� �	��	��	��	
	� ����	������ ����
����� /����	���  �	 ����� �� � ������ � ����	����
	 ����� ������	�	� �� ���������
 �	 ����	� &�'() ��	��� ��	 ����	�� ����	������� ����� 
������ ��������� 	
��������
�	����� �� �	��	��	��	
	� ����	������������+	���� 	� ���� 344:�� &�'() �	�	����	� ��	
���� �������	 ����� ����� ���������� �	���	� �� ����� �	���� ��� ��������� >��	
	��
&�'() ��� � �	
	�	 �����	�A �� �		�� ���� ����	�� ���	 �� �	�	����	 �������	 �������
 ��� �����	� �	���	� �� �������	 �� �	���+����� � � ��������� ��������� 	
�������� ����
�	� ����� ���������� �����	��	� �������� ��	 ������� � ��	 ����	� ����� �����
	 ��	�
���������� �����	��	 �� ��	��  �	�	��	� �	 ������	 �� ������+����� �	���� �� �	�	����	
��	 ����� 	,��	���� �� ��������� 	
�������� ���	� �� �������

!�� �	���� �	�	���	� � ��		 ��������	 ���	� �� ���	� ����	�������� �� �������� ������
)���	��	����� �� ��	� �� ������� ����������� ����	 ���� ������	� ���������� ����� ����
�������� ������ ���	�
	�� ��� �	���� ����������	� ��	 ��		 ��������	 �	�	����� ��	
���	� ����� ��	 ��������� �� �	�	����	 �������	 ������� %	 �	
	���	� � �	� ���������
	
�������� ����	� ���	� �� ��� ������+����� �	���� ��� ��	 � �	��� �� �	����� �����	��	�
%	 �	������	 ���� ����	� ���	���� $���� �	��� ��� ������+����� �� ����� ��-!)��
!�� 	
�������� 	��	���	��� �������	 ���� ��	 ����	����� ���	 � �-!) �� �����	� ����
���� � &�'() �� �		�	��	 ��� ��������	 �	�� ����� ���������� ���� �	��	��	�� 	
	�
������ �-!) ��	� �	�����  �	�	��	� ��� ������+����� �	���� �� 	*	���
	 �� �	��	��	
����	����� ���	� ���	�
	�� �	 ���.��	� ���� �-!) ���
��	� ��	 ����	�� ����	������ ����
����� /����	��� ����� �	
	��� ��������� 	
�������� ����	�� ���	� �� �������  �	�	��	�
��� ������+����� �	���� �� 	*	���
	 �� �	
	��� � ����	��������� ��� ��������� ���������
	
�������� ����	��


 ������� �� �������	� ������	�� ������ ����� �� ������

&� �� �!"� # �� ��� "!$#��%� �� �������	 ����� ��� �	 �	�	����	� �	����	 ��	
����	�� �	�	�� ���� �� ����� �	����� >��	
	�� &�'() ��� �	�	����	 �������	 ������
����� ���������� ����� ���� ����� �	���� ��� ���������  � �� ��� ���� ����	����� ���	
�� �		�	��

��� 	�����	�  ���	 < ����� � �	����� �������	������� ������� ������� ����	 ���������
��	 -���	�� )����� 6���	��	��	 �-)6� �� ��� �	��	��	� �� ������A

���������	 ����� ����	 � ��	 ������� �������� ���	� '
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�
����
�	 � ����� ����	 ����	� �� ���	� �	��	� ' ���	 � �	���

j < 3 = @ ? B 5 8 : <4 << <3
nj � ����� ����� �	�� �
 ��
�� ��� � ���� 	 ��� ����


��� ����

i mi 4 4 4 4 4 4 4 4 4 4 4 4 4
< ����� 4 4 � < < < < < < < 3 3 3
3 ����� 4 4 < � 3 3 3 3 3 3 3 3 3
= 	 4 4 < 3 3 3 3 3 3 3 � = =
@ ��� 4 4 < 3 3 3 3 3 3 3 = � @

����
?

����
4 4 < 3 3 3 3 3 3 3 = @ @

�	�
�
B

��
�
4 4 < 3 3 3 3 3 3 3 = @ @

5 ��
�� 4 4 < 3 3 3 � = = = = @ @
8 � 4 4 < 3 3 3 = = � @ @ @ @

 ���	 <A ������	 <A ( ������� ����������� ����	�

&�  ���	 <� ��	 
���	� ������ i ��� j� ������	 � ��	 ����	 �	��	���
	�� �	���	 ��	 ����
��������� �� �		�	��	 ��� ��������	�  �	 ���� ����	� � ��	 ��������	 �� <3� ����� �� ��	
������� 
���	 � j� ��� ��	 ���� ����	� � ��	 �		�	��	 �� 8� ����� �� ��	 �������

���	 � i�  �	 
���	� �� ��	 ����	 ��	 ������	� �� ��� �<��

Di,j =





0, i = 0 �� j = 0
max(Di−1,j , Di,j−1), mi �= nj

Di−1,j−1 + 1, mi = nj

�<�

 �	 �	���� � -)6 �� @ �� ��� �<� ��  ���	 <� ���	�
	�� ��	 ����	� � -)6 ����	� ��
3�  �	 -)6 ����	� ��	 ��	 �	��	��	� � �������� ����� �	��		� ��	 ��������	 ��� ��	
�		�	��	� &�  ���	 <� ��� -)6 ����	� ��	 ������	� ��� ��	 ��������	 ��� �		�	��	 ��
����� �	����

��� ���� ����

���������	 C����� ����	D � ��	 ������� �������� C���	�D C'D
�
����
�	 � C����� ����	D ����	� �� C���	�D �	��	� C'D ���	 � ��	 �	���
��� ���� ����

���������	 C����� ����	D C� ��	D ������� �������� ���	� '
�
����
�	 � C����� ����	D ����	� �� ���	� �	��	� ' ���	 C� ��	D �	���

&� -)6 ����	 7�� <� ��	 �������� ����� ��	 E�����F� E����	F� E���	�F� ��� E'F� &� -)6 ����	
7�� 3� ��	 �������� ����� ��	 E�����F� E����	F� E�F� ��� E��	F�  �	�	 �������� �����
����	����� �� ���� 
���	� ��  ���	 <�  �	 ����	����
	 �����	� ��� ��	 ������  �	�	��	�
��	 ����	� � ������ �� = ������ E����� ����	F� E���	�F� E'F� �� -)6 ����	 7�� <� ��� ��	
����	� � ������ �� 3 ������ E����� ����	F� E� ��	F� �� -)6 ����	 7�� 3� &� ���� 	�����	�
-)6 ����	 7�� < ���� �	 �	�	��	� �	����	 �� ��� ��	 ���� �������	 ������ &� -)6 ����	
7�� 3� E� ��	F �� ��	 ��������	 ��	� ��� ����	����� �� E� ��	F �� ��	 �		�	��	�  �	�	��	�
-)6 ����	 7�� < ��� � ���	 �������	 ����� ������	� ���� -)6 ����	 7�� 3�
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&� ��	 �	�	��������� � ������� "!$#��% ����� �!" �	�	�� -)6 ����	 7�� 3� �������
���� �� ����� �	����� &� -)6 ����	 7�� 3� ��	 ��������	� � ����� �� ��� ������ �E�����
����	F� E� ��	F� ��	 3� ���	�
	�� �� -)6 ����	 7�� <� ��	 ��������	� � ����� �� ���		
������ �E����� ����	F� E���	�F� E��	F� ��	� �	��	���
	��� 3� <� ��� <�  �	�	��	� �� �!"
�	�	��� -)6 ����	 7�� 3� �� ����� ��	 ����	� � ������ �� ������ �	����	 ��	 �	�����
�	���	� � ����� 
���	 �� ��	 ����������� � ��	 ����	� ��� "!$#��% ���� �	�	��� -)6
����	 7�� 3� �� ����� ��	 �	����� � ��� ������ ��	 3�

&� ��������� &�'() �	�	��� -)6 ����	 7�� < �	����	 �� ��	� ���������� � ��	 ��������
� ��	 ������ ��� ���� ��	 ����� �	����� &� -)6 ����	 7�� 3� ��	 ��������� � E� ��	F
�� ��������	 ��� �		�	��	 ��	 ����	�� ��*	�	��� &� &�'() � ��	 ����	 �� ��������	� �����
��	 �	���� ��� �������� � ����� �� 	��� -)6 ����	 ��	� �	
	��� -)6 ����	� ��	 ������	�
�������� ���� �3� ��� �=�� !��� ��	 -)6 ����	� ����� ��� ��	 ����	�� ����	� �� �	�	��	��

score =
∑

c∈cGnum

(
length(c)β × pos

)
�3�

pos =
(
1.0− | ci

m
− cj

n
|
)

�=�

&� ��� �3�� c �	��� ��	 ������� ��� β �� ��	 �	���� �����	�	� ���	� �� ��	 �	���� �
	��� ����� �β > <�4��  �	 pos �����.	� ��	 ��*	�	��	 � ��	 �	����
	 �������� � ��	 �����
c �	��		� ��	 ��������	 ��� �		�	��	� &� ��� �=�� m ��� n �	��	���
	�� �������	 ��	
��������	� � ����� �� ��	 ��������	 ��� �		�	��	� &� ��������� ci ��� cj �	��	���
	��
�������	 ��	 �������� � ������ � ��	 ��������	 ��� �		�	��	�  �	 ����	 �� -)6 ����	 7��
< �� =�@:==�= 21.2×(1.0−| 18− 2

12 |)+11.2×(1.0−| 78− 6
12 |)+11.2×(1.0−| 88− 8

12 |)� ��	� β �� <�3�
��� ��	 ����	 �� -)6 ����	 7�� 3 �� =�@@B<�= 21.2× (1.0−|18 − 2

12 |)+21.2× (1.0−|38 − 10
12 |)��

 �	�	��	� &�'() �	�	��� -)6 ����	 7�� <� ����	 ����	 �� ����	� ���� ���� � -)6 ����	
7�� 3� (� �� ��	��� �� �� ��������� �� ��������� 	
�������� ���	� �� ������ ������ ��	
���������� ����� ���� ��	 �	���� ��� �������� � �������

>��	
	�� &�'() ��� � 
	�� �	
	�	 �����	�� &� �	����	� ���� ����	����� ���	 �� �	����
��� -)6 ����	� �� �	�	����	 ��	 -)6 ����	 ����� ��� ��	 ���� �������	 ������� ���	�
	��
�� ���� ���	� &�'() ���� ���� ��� 
���	� � �	��� �� ��	 ������� ����������� ����	
�������� ������ ��� 
���	� �� ��� ����	����� �� ����� ���� ����� �	��		� ��	 ��������	
��� �		�	��	 �	���� &� "!$#��% ��� �� �!"� ��� ���� ����	����� ���	 �� �		�	�
�	����	 ��	� �� ��� ������	� ��� -)6 ����	� �� �	�	����	 ��	 ������� >��	
	�� ��	� ������
�	�	�� ��	 ���� �������	 ������� !�	 ��� �� ��	 ���	�� ��������� 	
�������� ����	�� ���	�
�� ������ ��	�	�� �	
	�	 �����	���  � ���
	 ���� �����	�� �	 ������	 �� ������+�����
�	���� �� �	�	����	 ��	 ���� �������	 ����� 	,��	�����

� ���	�	���	�� ������ ��� ����� ������	���	��

��� ����	�� ���� ��� �����	� ��������	�� ���� �� ��� ����

���������

 ���	 3 ����� �� 	�����	 � ��	 ������� ����������� ����	 �	�	���	� �� ������ ��������
����� �� ��	 �������� ��	 ��������	 ��� �		�	��	 ����	���A
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���������	 ����� ���	� �	�	����	 ��	 ������ �� �	������� ������ ����	�
�
����
�	 �� ������	�	�� � �	��������� �� ��	 �	���� ���	� ��	 ������ ����	 �� �	�	��
���	�

j � � � � � � � � � �� �� �� ��

�� �� �� ��� ��

nj ���
�� 	 ������ 	
 ��� ����
 ���� � ��� ��
� �	��� �� ����

���
� ���	
 ���
��

i mi 4 4 4 4 4 4 4 4 4 4 4 4 4 4
� ���� 4 4 4 4 4 4 4 4 4 4 4 4 4 4
� ����� 4 4 4 4 4 4 4 4 4 4 4 4 4 4

��

� ���� 4 4 4 4 4 4 4 4 4 4 4 4 4 4
���
�

� ��� 4 4 4 4 4 � < < < � < < < <
� ����� 4 4 4 4 4 < < < < < < < < <
� �	 4 4 4 4 4 < < < < < < < < <

��

� ����
 4 4 4 4 4 < < < < < < < < <
��
�

� 	 4 4 � < < < < < < < < < < <
� ��� 4 4 < < < � 3 3 3 � 3 3 3 3

���
��

��
�
4 4 < < < 3 3 3 3 = � = = =

���	���� 4 4 < < < 3 3 3 3 = = = = =

 ���	 3A ������	 3A 0������ ����������� ����	�

&� &�'() � -)6 ����	� � ���		 ����� ��	 ������	� ��� ��	 ������� ����������� ����	
�  ���	 3� �������� ��� 
���	� � �	��� �� �	�����	� �	����

��� ���� ����

���������	 ����� ���	� �	�	����	 ��	 ����� �� �	������� C�D C��	 ������D ����	�
�
����
�	 ������	�	�� C�D �	��������� �� ��	 �	���� ���	 � C��	 ������D ����	 �� �	�	��
���	�
��� ���� ����

���������	 ����� ���	� �	�	����	 C��	D ����� �� �	������� � C��	 ������D ����	�
�
����
�	 ������	�	�� � �	��������� �� C��	D �	���� ���	 � C��	 ������D ����	 �� �	�	��
���	�
��� ���� ����

���������	 ����� ���	� �	�	����	 ��	 ����� �� �	������� C�D C��	D C������D ����	�
�
����
�	 ������	�	�� C�D �	��������� �� C��	D �	���� ���	 � ��	 C������D ����	 �� �	�
�	����	�

&� ��	 	�����	 ��
	� ���
	� ��	 -)6 ����	� ���� ��	 ���� �������	 ������ ��	 -)6 ����	
7�� < ��� 7�� 3� -)6 ����	 7�� 3 �� �	�	��	� �� &�'() �� ��	 ���������� � ��	
�������� � ����� E��	F� >��	
	�� &�'() �		�� ���� ����	����� ���	 �	����	 �� ����
���� ��� 
���	� � �	��� ���� �� ��� ����	����� �� ��	 �������� ����� ��  ���	 3�
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!�� �	���� �	����	� ��	 ���������� � ��	 �������� ����� �� � ������� �����������
����	 ���� � ��		 ��������	�  �	�	��	� ��� �	���� ��� 	������+	 �������� ����� �������
�������� ��	 
���	� � �	��� ���� �� ��� ����	����� �� ��	 �������� ����� �� ��	 �������
����������� ����	�  ��� �	��� ���� ��� �	���� ��� �	��	��	 ����	����� ���	�

������ ��� �	���� �	�	���	� ��	 ������� ����������� ����	 ��� 	������� ���� D[i,j] �����
����	����� �� ��	 �������� ������ &�  ���	 3� ��	 
���	� ����� �� ���� ���	��	 ����	�����
�� ��	 �������� ������  �	�	��	� ��� D[i,j] � ��	 �������� ����� ��	 D[4,5]� D[4,9]� D[8,2]�
D[9,5]� D[9,9] ��� D[10,10]� !�� �	���� �	����	� �� ������� ����������� ����	 ��	�
	��������� � ��	 �������� ������ ���	�
	�� ��� �	���� ����� D[i,j] ��� ����	 �� �����

���	�� ���� D[i,j] ����	������ �� � ���	 � ��	 ��		 ��������	� �����	 < ��	�	��� ��
	�����	 � ��	 ���� � D[i,j]�

3

2

1

D [10,10]

D [4, 5] D [4, 9]

D [9, 5]D [9, 9]

value

D [8, 2]

D [i, j]

�����	 <A ������	 � ��	 ������� � D[i,j]�

!�� �	���� �	�	���	� � ��		 ��������	 ������� ��� D[i,j]� �����	 3 ����� ��	 ��������� ��
������� �	��		� ��� ���	� �� � ��		 ��������	�

for(s = level_num; s > 1; s--)

for(t = 1; t > num_1; t++)

for(u = 1; u > num_2; u++)

If i in D [i, j] t> i in D [i, j]u and i in D [i, j]t > j in D [i, j]u

Start:

End:

level_num = # of level in value

num_1 = # of D [i,j]s

num_2 = # of D [i,j]s-1

D [i, j]t -> D [i, j]u # generation of link

�����	 3A (�������� �� � ���� �� ��	 ��		 ��������	�

&� ���� 3� ��	 
���	 � levelGnum �� = �	����	 ��	 �	
	� � 
���	� � D[i,j] �� <H=� ���	�
	��
��	 
���	 � numG1 �� < �	����	 D[i,j] �� ��	 �	
	� � 
���	 = �� ���� D[10,10] ��� ��	 
���	
� numG2 �� 3 �	����	 D[i,j] �� �	
	� � 
���	 3 �� D[9,9] ��� D[9,5]� !�� �	���� ������	�
D[10,10] ���� D[9,9]� (� � �	����� ��	 ���� �� �	�	���	� �	����	 i = 10 �� D[10,10] �� ����	�
���� i = 9 �� D[9,9] ��� j = 10 �� D[10,10] �� ����	� ���� j = 9 �� D[9,9]�  �	�	��	� D[10,10]

��� D[9,9] ��� �	 ����	��	� �� ��	 �������� ���� �	��	��	� &� ���� D[10,10] ��� D[9,5]�
��	 ���� �� �	�	���	� �	����	 i = 10 �� D[10,10] �� ����	� ���� i = 9 �� D[9,5]� ��� j = 10 ��
D[10,10] �� ����	� ���� j = 5 �� D[9,5]�

22



���	�
	�� ��� �	���� ��	��.����� 	�����	� ��	 �	
	� � 
���	� 3 ��� <� (� � �	����� ��
D[9,5] ��� D[4,5]� ��	 ���� �� ��� �	�	���	� �	����	 j = 5 �� D[9,5] �� ��� ����	� ���� j = 5
�� D[4,5]� &� D[9,5] ��� D[4,9]� ��	 ���� �� ��� �	�	���	� �	����	 j = 5 �� D[9,5] �� ���
����	� ���� j = 9 �� D[4,9]�  �	�	��	� D[9,5] �� ��� ����	��	� ���� D[4,5] ��� D[4,9] �� ��	
�������� ���� �	��	��	� �������� ��	 D[4,9] �� �	�	�	� �� ��	 ���	 �	����	 �� ��� �� ����
���� ���	� ���	�� �����	 = �	����� ��	 ��		 ��������	 ����� ��	 ��������� ��	�	��	� �� ����
3� !�� �	���� ��	� ��� �	����	 ��	 �������� � ����	 ������ �	��� ���� �� ��� ����	�����
�� ��	 �������� ����� �� ��	 ������� ����������� ����	�  �	�	��	� ��� �	���� ���
�	��	��	 ��	 ����	����� ���	�

3

2

1

D [10,10]

D [4, 5] D [4, 9]

D [9, 5]D [9, 9]

value

D [8, 2]

D [i, j]

�����	 =A ������	 � ��	 ��		 ��������	�

��
 ������	���	�� 	� ���� ���������

!�� �	���� ����������	� ��	 ��		 ��������	 ����� ���� ���	� ����� ��	 ��������� ���
��	 �	���	���
	 � ��	 �	���� ��� �������� � ������ �� �	��	��	 ��	 ����	����� ���	� �����	
@ ����� ��	 ��������� �� �	�	����� � ���	� �� � ��		 ��������	�

&� ��� �	����� ��	 ���	� �	�	��	� ��	 ��	 ��	� ���� �������	 ���� ���	� ���	�� ��� ����	
�� ����� ��	 ��*	�	��	 � �	����
	 �������� �	��		� i ��� j �� ��	 �����	�� ����� ��� ���	�
�� ��	 �	
	� � 
���	�  ��� �	��� ���� ��� �	���� 	*	���
	�� ��	� ���� �	���� ��� ��������
� ������� &� ��	 	�����	 � ��	 ��		 ��������	 �� ���� =� D[10,10]� ����� �� ��	 ���	 ��
��	 ��� �	
	�� ��� D[8,2] ��� D[4,5]� ����� ��	 ��	 ���	� �� � ���	� �	
	�� ��	 �	�	��	� .����
7	��� ��� �	���� �	�	��� ���� ��	 ���� ��������� ���	 ����� D[9,9] ��� D[9,5] � �	
	� 3�

;� ���� @� ��	 
���	 � numG1 �� 3 ������ D[9,9] ���D[9,5]�� ��� ��	 
���	 � numG2 �� 3 �����
D[8,2] ��� D[4,5]��  �	�	��	� ��� �	���� ������	� D[9,9] �	��	���
	�� ���� D[8,2]� D[4,5]�
��� D[9,5] ���� D[8,2]� (� � �	����� �	���	� D[9,9] ��� D[9,5] �� �	�	��	� �� � ���	 �� ����
���	 �	����	 ��	�	 ���	� ��	 ��� �������� ���������� ���� D[8,2] ��� D[4,5]� ���	�
	��
��	 
���	 � numG3 �� < ������ D[10,10]��  �	�	��	� ��� �	���� ������	� �	��	���
	�� D[9,9]

���� D[10,10]� ��� D[9,5] ���� D[10,10]� "	����� ���� ���� D[9,9] �� �	�	��	� �� � ���	 �	����	
i = 9 �� D[9,9] �	���	� i = 10 �� D[10,10] �� ������ < ��� j = 9 �� D[9,9] ���� �	���	�
j = 10 �� D[10,10] �� ������ <A D[9,9] �� ���������� ���� D[10,10]�

���	�
	�� ��� �	���� �	�	��� ��	 ���	 �� ����� ��	 ��*	�	��	 � ���� �������� �� ��	
�����	��� &� ���� 	�����	� ��	 
���	 � ��*	�	��	� � ���� �������� ��	� �	��	���
	�� 4�<3?:
�I| 9

11 − 9
13 |� �� D[9,9] ��� 4�@==B �I| 9

11 − 5
13 |� �� D[9,5]�  �	�	��	� ���� D[9,9] �� �	�	��	� ��

��	 ���	 � ��		 ��������	� ��� D[9,5]� ����� ��	� ��� �������	 ���� ���	� ���	� ��� ��	
��*	�	��	 � ���� �������� �� ��� ��	 �����	��� �� �	�	�	� ��� ��	 ��		 ��������	� �����	 ?
�	����� ��	 .��� ��		 ��������	� !�� �	���� ������� ��	 -)6 ����	 ����� ���� � .��� ��		
��������	�
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for(s = level_num-1; s > 1; s--)

for(t = 1; t > num_1; t++)

for(u = 1; u > num_2; u++)

If i in D [i, j] t-1== i in D [i, j]u and i in D [i, j]t-1 == j in D [i, j]u

Start:

End:

level_num = # of level in value

num_1 = # of D [i,j]s

num_2 = # of D [i,j]s-1

tree.node(D [i, j]
t ) # addition node to tree

LOOP:

go to LOOP

for(v = 1; v > num_3; v++)

If i in D [i, j] t+1== i in D [i, j]v and i in D [i, j]t+1 == j in D [i, j]v

num_3 = # of D [i,j]s+1

tree.node(D [i, j]
t ) # addition node to tree

go to LOOP

min_D [i, j] = min_diff(D [i,j]
s)

tree.node(min_D [i, j] ) # addition node to tree

�����	 @A (�������� �� �	�	����� � ���	� �� � ��		 ��������	�

3

2

1

D [10,10]

D [4, 5]

D [9, 9]

value

D [8, 2]

D [i, j]

�����	 ?A ������	 � ��	 .��� ��		 ��������	�

(� � �	����� ��� �	���� ��� �	�	�	 -)6 ����	� ���� ��
	 �� �������	 ����� ������ -)6
����	 7�� = �	�����	� �� 6	����� =�<�A ��� �	���� ��� �	��	��	 ����	����� ���	 ����� ����
�	�	����� D[i,j]�

 �!�"# �������	� ������	�� ������ ��	�� ����

%	 �	
	���	� � �	� ��������� 	
�������� ����	� �� ������	 ������������ !�� ����	�
��	� ��	 ������+����� �	���� �	�����	� �� 6	����� =� ���	�
	�� �� ��	� � �	��� �� �	�����
���������� �� ����	��	 ��	 �������� ������ %	 �	������	 ���� ����	� �� �	���� $����
�	��� ��� ������+����� �� ����� ��-!)�� )�����	� ��	 �������� 	�����	� �����
�	�����

���������	 ����� ���	 �	�	����	 ��	 ����� �� �	���� � ��	 ������ ����	
�
����
�	 ������	�	�� � �	��������� �� ��	 �	���� ���	� ��	 ������ ����	 �	 �	�	����	

�-!) ��������	� ����	� ����� ��� �������  � �� ��� �� ��	� ��	 �������� ���� �@� ��� �?��

24



R =



∑RN

i=0

(
αi

∑
c∈cGnum length(c)β

)

mβ




1
β

�@�

P =



∑RN

i=0

(
αi

∑
c∈cGnum length(c)β

)

nβ




1
β

�?�

���� �@� ��� �?� �	��	���
	�� ���� ��	 �	���� ��� ��	������� �����	 B ��	�	��� �� 	�����	
� �	�	��������� � ��� ������ �	��		� ��	 �		�	��	 ��� ��������	�

reference :
array rule determine [the] limit to [design] of [the wiring route]

arrangement of restriction on [the] [design] rule , [the wiring route] 
be determine

(1) First process for determination of chunks : 

candidate :

reference :
array [rule] [determine] [the] limit to [design] of [the wiring route]

arrangement of restriction on [the] [design] [rule] , [the wiring route] 
be [determine]

(2) Second process for determination of chunks : 

candidate :

reference :
array [rule] [determine] [the] limit to [design] [of] [the wiring route]

arrangement [of] restriction on [the] [design] [rule] , [the wiring route] 
be [determine]

(3) Third process for determination of chunks : 

candidate :

i=0:

12+12+32=11

i=1:

12+12=2

i=2:

12=1

�����	 BA ������	 � �	�	��������� � ��� �������

�-!) �	�	����	� ���� ��	 -)6 ����	 ����� ��	 ����	�� �	�����	� �� 6	����� =� ���	�
	��
-)6 ����	� ��	 �	�	����	� �	�����
	�� �� ��� �������� ������ &� ���� B� E��	F� E�	����F�
��� E��	 ������ ����	F ��	 �	�	��	� �� ������ �� ��	 .��� ����	�� �� �	�	��������� �
�������  �	�	��	� ��	 
���	 �

∑
c∈cGnum length(c)β �� <<�I12.0 + 12.0 + 32.0� ��	� β ��

3�4� &� ��	 �	���� ����	�� �� �	�	��������� � ������� E���	F ��� E�	�	����	F ��	 �	�	��	�
�� �������  �	 
���	 �

∑
c∈cGnum length(c)β �� 3�I12.0+12.0�� �������� E�F �� �	�	��	� ��

� ����� �� ��	 ����� ����	�� �� ����� �	�	����������  �	 
���	 �
∑

c∈cGnum length(c)β ��

<�I12.0��  �	�	��	� ��	 
���	 � ��	 "	�������� ����	� �� �	�	��������� � �������	 -)6

������ RN � �� ���� �@� ��� �?� �	���	� 3�  �	 
���	 �
∑RN

i=0

(
αi

∑
c∈cGnum length(c)β

)

�� <3�3?�I0.50 × 11 + 0.51 × 1 + 0.52 × 1� ��	� α �� 4�?� ���	�
	�� ��	 
���	� � R ���

P �� ���� �@� ��� �?� ��	� �	��	���
	�� 4�=<83 �I
√

12.25
112.0 � ��� 4�3B:3 �I

√
12.25
132.0 �� �-!)

������� ��	 .��� ����	 �� ��� �B� ��
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score =
(1 + γ2)RP

R+ γ2P
. �B�

&� ��� �B�� γ �� �	�	����	� �� P/R�  �	 
���	 � γ �� 4�8@B4 ��	� R �� 4�3B:3 ��� P

�� 4�=<83�  �	 .��� ����	 �� 4�3855�I (1+0.84602)×0.3182×0.2692
0.3182+0.84602×0.2692 � �� ��� �B�� �-!) ���

������ ���� �������� ����� ����� �	����� ���	�
	�� �� ��� ������ ��	 ����	 	,��	����
�	�	������� ��	 �������	 -)6 ����	 ����� ��	 ������+����� ����	���

$ %����	�����

$�� %����	����� ���������

"		�	��	� ��� ��������	� �	�	 ������	� ��� ���	�� ���� �� 7 )&"�5���/�� 	� ���� 3448��
$���� ��	�	 ����� <@ ������	 ����������� ����	�� ��������	� <44 J����	�	 �	��	��	� ����
<44 ������� �	��	��	��  �	�	��	� ��	 ����	� � ��������	� �� <�@44 �I14×100�� ���	�
	��
��� �		�	��	� ��	 ��
	� �� 	��� ��������	 ������	� �� 	��� ������	 ����������� ����	��
������ �	 ������	��-!)� ��� ����	� ����� ���� ��	 ������+����� ����	�� ��-!) �������
�	���� ��� &�'() ��� ��	 �	���	���
	 � ��	 ����	�� ���	�

���	�
	�� �	 ��������	� ��	 ����	������ �	��		� ��	 ����	� �� ��	 ��������� 	
��������
����	�� ��� ����	� �� ����� /����	��� &� ��	 ����	� �� ����� /����	��� ��	 �����
/���	 	
�����	� <�@44 ��������	� ��� ��	 �	���	���
	 � ��	����� ��� K�	��� �� � ����	
� < �� ?� %	 ��	� ��	 �	���� 
���	 �� ��	 	
�������� �	����� � ���		 ����� /���	� ��
��	 .��� ����	� � <H?� %	 ��������	� ��	 '	�����L� ����	������ ��	,��	�� ��� 6�	�����L�
���� ����	������ ��	,��	�� �	��		� ��	 ����	� ������	� ����� ��	 ��������� 	
��������
����	�� ��� ��	 ����	� �� ����� /����	��� �� ��	 �	��	��	��	
	� ��� ����	���	
	�� &�
��	 ��������� 	
�������� ����	�� �� ������	 ������������ ���		 ����	�� ������ �-!)�
&�'() � ��� "!$#��%� ����� ��	 ����	�� ���	� �� ��	 ������ ��	 ��	�� &�'() 
	��	������ �������	� ���� ����	������ ��	,��	��� �� 7 )&"�5 ���������+	���� 	� ���� 344:��
&� "!$#��%� <�3 ��� ��	� �� ��	 
���	 � �	���� �����	�	� �� ��	 �	���� � ����� ��
��	�������� 	��	���	���� &� �-!) ��� &�'() � 4�< ��� ��	� �� ��	 
���	 � �	�����
�����	�	� ������ α� �� ��	 ��*	�	��	 � ����� �	��	��	 ��� <�3 ��� ��	� �� ��	 
���	 �
�	���� �����	�	� ������ β� �� ��	 �	���� � ������ �� ���� �@� ��� �?��  �	 �-!) �����
�	��� �	����	� ��� ����� ���� ��	 �	��� �� ��� �		�	��	� ��� ��������	� ����� ������
������	� ��  �		 ���	��6������ <::@��

$�
 %����	����� &�����

��� <�@44 ����� �	�	��	� 8 �����
�-!) 343 �	� B �	�

�-!) -����
� '���� <@@ �	� ? �	�
&�'() <@: �	� 5 �	�

 ���	 =A '���	����� ���	�

&�  ���	 =� ��	 ����	����� ���	 � �-!)� �-!) ������� �	����� ��� &�'() �	�	
�	��	���
	�� 343 �	�� <@@ �	�� ��� <@: �	� ����� ��� <�@44 ����� � ��� �		�	��	� ���
��������	��  �	 ����	����� ���	 � �-!) ��� ��	 ����	�� �	����	 � ��	 ��	 � �	���
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�� ��	��	� ��	 ����	� � �����	��  �	 ����	����� ���	 � �-!) ������� �	���� �� ����
? �	� ���	� ���� ���� � &�'() �  �	 �	���� �� ���� ��	 ����	� � -)6 ����	� �	��		�
��	 �		�	��	� ��� ��������	� ��	 ������ ��
������� �����A �	�� ���� <44� !�� ������+�����
�	���� 	������� ��� ���	���� �� ���	� ��	�	 ��	 ����	� � -)6 ����	� ��	 ����	�  �	�	��	�
�	 �	�	��	� 	���� ����� � ��� �		�	��	 ��� ��������	 �	��	��	� ���� ���	 ���� =44 -)6
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ABSTRACT 

Machine transliteration has received significant research attention in last two decades. It 
is observed that Hindi to English and Marathi to English named entity machine 
transliteration is comparably less studied. Currently, research work in this domain is 
carried out by using grapheme based statistical approaches. But, to achieve better 
accuracy for the transliteration, an adequate bilingual text corpus is a mandatory 
requirement for statistical approaches. 

This paper focuses on Hindi to English and Marathi to English direct machine 
transliteration of Indian-origin named entities such as proper names, place names and 
organization names. Proposed phonetic based statistical approach uses phoneme and 
named entity length as features for supervised learning and transliterates them in 
English using full consonant based phonetic scheme without support of corpus. This 
system takes Indian origin named entities as an input in Hindi and Marathi using 
Devanagari script and transliterates it into English by using only two weights.   
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1. Introduction 

Historically, India has been a multilingual country and Indian constitution officially 
recognizes 22 languages with 11 different scripts and 6000 dialects used in different 
states spread across the country (Mudur 1999). Hindi is the national language of the 
India and spoken by more than 500 million Indians. Hindi is the world’s fourth most 
commonly used language after Chinese, English and Spanish. Marathi is one of the 
widely spoken languages in India especially in the state of Maharashtra. Hindi and 
Marathi uses the “Devanagari” script for writing and draw their vocabulary mainly from 
Sanskrit. It is challenging to transliterate out of vocabulary (OOV) words like names and 
technical terms occurring in the user input across languages with different alphabets and 
sound inventories. Transliteration is the conversion of a word from one language to 
another without losing its phonological characteristics.  Machine transliteration is 
usually used to support the machine translation (MT) and cross-language information 
retrieval (CLIR) to convert the named entities (Padariya 2008). 

Existing approaches for Named Entity (hence forth denoted as NE) machine 
transliterations are linguistic-based and statistical-based (Karimi 2011). The linguistic 
approach uses hand-crafted rules, based on pattern matching which need a linguistic 
analysis to formulate rules. Statistical approach tries to generate transliterations using 
statistical methods based on bilingual text corpora. Transliterations are generated on the 
basis of statistical models, which are derived from the analysis of bilingual text corpora.  

Hindi/Marathi to English direct NE machine transliteration is quite difficult due to the 
many factors such as difference in writing script, difference in number of 
characters/alphabets, concept of capitalization of leading characters, phonetic 
characteristics, relative character length, presence of a number of exonyms, endonyms 
and historical variants for many place names, number of valid transliterations and 
availability of the parallel corpus (Saha 2008). 

In most of the grapheme based statistical methods parallel corpus is used and trained for 
the adequate number of entries using one of the learning approaches such as HMM, 
CRF, SVM etc. As shown below, for the NE / िवजयराघवगढ़ (vijayrāghavgarh)/ which is 
place name, character alignment is obtained using the available tools (like Moses, 
GIZA++, SRILM,) and then, aligned corpus is trained using one or more statistical 
probability approaches. 

Source Language     Target Language 

    िव ज य रा घ व ग ढ़   vi ja y rā gha v ga rh              

The accuracy of statistical methods depends on how good corpus is prepared and how 
good learning algorithm is.  We have not found any complete named entity bilingual 
corpus for the Indian languages.   

2. Pure and Full Consonant   

The basic consonant shape in the Indian script always has the implicit vowel /अ(a)/ and 
hence there is no explicit matra form for the short vowel ‘a’.  For example, the NE  name 
/कमल (kamal)/ is linguistically written as कमल = क्+अ+म+्अ+ल्+अ = k+a+m+a+l+a. 
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However, there are equivalent matras for all the other vowels (◌ा◌ा◌ा◌ा –ā/A/aa, ि◌ि◌ि◌ि◌-i, ◌ी◌ी◌ी◌ी-I, ◌ु◌◌ुु◌,ु-
u, ◌ू◌◌ूू◌,ू-U, ◌े◌◌ेे◌-ेe, ◌ै◌◌ैै◌ै-ai, ◌ो◌ो◌ो◌ो-0, ◌ौ◌ौ◌ौ◌ौ-au), which get attached to the basic consonant shape 
whenever the corresponding vowel immediately follows the consonant. The written form 
of a basic consonant without the implicit ‘a’ vowel either has an explicit shape or it has 
the graphical sign ‘◌्’, known as the Halant (or Virama in Marathi) attached to its basic 
consonant shape (e.g. क्). This is referred to as the ’Halant form’ of the consonant or 
pure consonant. The Halant is the vowel अ (a) omission sign. It serves to cancel the 
inherent vowel अ of the consonant to which it is applied (Mudur 1999).  

When Devanagari vowel phoneme ‘a’ is added to any generic consonant phoneme then 
the consonant phoneme is called full consonant. It is necessary to have inherent ‘a’ 
attached to consonant to add the phone of ‘a’ vowel to it. If inherent ‘a’ is not added to 
the independent consonant phoneme, it becomes very difficult to utter its transliteration 
in English as well as to obtain its back transliteration in Devanagari from English.  For 
example NE  /कमलकमलकमलकमल (kəməl)/ will be spelled as  /kml/ and would be back transliterated 
as  / ᭥ल᭥ल᭥ल᭥ल/ which is tri-conjunct (Joshi 2003). 

Unicode and ISCII character encoding standards for Indic scripts are based on full form 
of consonants (Singh 2006). Table 1 shows the pure consonants and full consonants with 
their English equivalent. 

Pure Consonant in 
Devanagari 

English 
Equivalent 

Full Consonant in 
Devanagari 

English 
Equivalent 

क् k क् + अ = क ka 

ख् kh ख् +अ =ख kha 

ग् g ग् + अ = ग ga 

TABLE 1 - Pure and Full Consonant 

Following are few examples about how to use the pure and full consonant approach. 
 Pure Consonant Approach                                  Full Consonant Approach 
 स् + अ + ई  = सई (s + a + i = sai)                                     स + ई = सई (sa + i  = sai) 
 प ्+ अ + क् +ई = पकᳱ (p + a + k +i = paki)                     प + क + ◌ी = पकᳱ (pa + ka + i) 

In proposed approach, the input NE for example / िवजयराघवगढ़ /, is segmented into 
basic syllabic units such as  िव ज य रा घ व ग ढ़ and transliterated into English by mapping 
source language phonetic units into target language phonetic unit using full consonant 
based phonetic mapping scheme. IAST (International Alphabet of Sanskrit Transliteration) 
converter can be used to obtain the baseline transliteration. The baseline transliteration 
for    NE / िवजयराघवगढ़ / is shown below.  

Source Language     Baseline Transliteration  

िव ज य रा घ व ग ढ़     vi ja ya rā gha va ga rh 

The NE /िवजयराघवगड/ is made up of three NEs िवजय (Vijay), राघव (Rāghav) and गड 
(garh) respectively. As it is a multi word NE and consists of three segments, there are 
three breakpoints (less stressed positions) at /ya/, /va/ and /rh/, hence the inherent ‘a’ 
mapped by full consonant mapping should be deleted to get the correct transliteration as 
/vijayrāghavgarh/.  
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It is challenging task to find out the number of segments in the given NE, in order to find 
the boundaries of the segments to remove the inherent ‘a’ attached due to full consonant 
mapping.  The segments in the NE are obtained by assigning two weights based on the 
number of diacritics used to form a phonetic unit and the length of the source language 
NE is used as a feature for supervised learning to obtain the multiple classes for the 
segmentation. Segmentation is used to identify and delete the schwa (less stressed 
positions) which is a major issue in direct translation without training the corpus. 

3. Related Work 

Existing basic models for NE machine transliterations are Grapheme-based and 
Phoneme-based. The grapheme based model treats transliteration as an orthographic 
process and tries to map the source language graphemes directly to the target language 
graphemes. Phoneme-based model considers transliteration as a phonetic process. 
Under such frameworks, transliteration is treated as a conversion from source grapheme 
to source phoneme followed by a conversion from source phoneme to target grapheme.  

The major contributors in the area of machine transliteration in India are C-DAC 
(Center for Development of Advanced Computing), NCST (National Center for Software 
Technology) and Indictrans Team. In the early 1980's, the development of GIST 
(Graphics and Intelligence - Based Script Technology) was a major breakthrough. C-
DAC developed the hardware based solution GIST based on ISCII (Indian Script Code 
For Information Interchange). The second development was Unicode based encoding 
standard UTF-8 for Indic script (BIS 1991). The third development (2003) was a 
phonemic code based scheme for effective processing of Indian languages and used 
successfully in turnkey jobs such as telephone directory in Hindi, bilingual certificate for 
Mumbai University, and collector voters’ list (Joshi 2003). The applications they have 
localised are Indian Railways Reservation Charts, Mahanagar Telephone Nigams and 
Bilingual Telephone Directories.  

One of the early works on transliteration is done by Arbabi. They combined neural 
networks and expert systems for Arabic-English pair using phoneme model (Arbabi 
1994). Knight and Graehl developed a five stage statistical model to do back 
transliteration, that is, to recover the original English name from its transliteration into 
Japanese Katakana (Knight 1997).  Stalls used this for back transliteration from Arabic 
to English (Stalls 1998). Al-Onaizan and Knight have produced a simpler Arabic-English 
transliterator and evaluated how well their system can match a source spelling (Al-
Onaizan 2002). Their work includes an evaluation of the transliterations in terms of 
their reasonableness according to human judges. Work in the field of Indian Language 
CLIR was done by Jaleel and Larkey, which was based on their work in English-Arabic 
transliteration for CLIR [Jaleel 2003]. Their approach was based on Hidden Markov 
Model using GIZA++. Phoneme-based models, based on weighted finite state 
transducers (Knight 1997) and Markov window (Jung 2003) considers transliteration as 
a phonetic process. OM transliteration scheme provided a script representation which is 
common for all Indian languages (Ganapathiraju 2005). Punjabi machine transliteration 
for Punjabi language from Shahmukhi to Gurmukhi used the set of transliteration rules 
(Malik 2006). Sproat presented a formal computational analysis of Brahmi scripts 
(Sproat 2002-2004). Kopytonenko focused on computational models that perform 
grapheme-to-phoneme conversion (Kopytonenko 2006). Ganesh, Harsha, Pingali and 
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Verma have developed a statistical transliteration technique which is language 
independent. They selected a statistical model for transliteration which is based on 
Hidden Markov Model alignment and Conditional Random Fields (Ganesh 2008). Sujan 
Kumar Saha, Partha Sarathi Ghosh, Sudeshna Sarkar, and Pabitra Mitra have proposed 
a two-phase transliteration methodology (Saha 2008). The transliteration module uses 
an intermediate alphabet, which is designed by preserving the phonetic properties. 
Ekbal, Naskar and Bandyopadhyay made significant attempt to develop transliteration 
systems for Indian languages to English and especially for Bengali-English 
transliteration (Ekbal 2007-2010). Manoj K. Chinnakotla, Om P. Damani, and Avijit 
Satoskar have developed a reasonable transliteration system for resource scared 
languages by judiciously applying statistical techniques to monolingual resources in 
conjunction with manually created bilingual rule bases (Chinnakotla 2010). The 
statistical technique used is the Character Sequence Modeling (CSM), called Language 
Modelling.  They have proved that if the word origin is used for the transliteration, then 
the system performs better than statistical methods.  Jong-Hoon Oh approach is based 
on two transliteration models (Oh 2009). They used three different machine learning 
algorithms CRF, MIRA and MEM for building multiple machine transliteration engines. 
Literature survey shows that the maximum word accuracy achieved is 95.5%, for English 
to Russian (Martin 2009) using grapheme based statistical approach. In India the 
maximum word accuracy achieved is 91.59% for Hindi to English (Saha 2008) using 
phonetic model  

4. Approach 

The objective of the work is to transliterate named entities from Hindi and Marathi into 
English.  Following Hindi/Marathi language related terminologies are used. 

Akshara - It is the minimal articulatory unit of speech in Hindi/Marathi (Pandey 1990). 

Swara – It is a pure vowel in Devanagari. Swaras is plural of Swara. 

Vyanjana – It is a consonant in Devanagari. Vyanjanas is the plural form of it. 

Jodaakshar – It is the conjugates in Devanagari. 

Syllable - It is made up of phonetic units to establish minimum rhythm. 

Schwa - The schwa is the vowel sound in many lightly pronounced unaccented syllables 
in words of more than one syllable. It is represented by /ə/ symbol (Naim 2009). 

 The overall process is carried out as follows. 

Step 1: Preparation of phonetic map table for Devanagari to English transliteration 
using full consonant approach with local language context.  

Step 2: Formation of Devanagari Phonetic Units. 

Step 3: Generation of Intermediate Phonetic Code (denoted hence forth by IPC) by 
mapping Devanagari phonetic units to equivalent phonetic unit using phonetic map.  

Step 4: Pruning of inherent ‘a’ generated by vowel matras due to full consonant 
approach as well as half consonants ‘a`’ generated by conjuncts (Jodakshar) from 
intermediate code. (Outcome of this step is denoted hence forth as Modified 
Intermediate Phonetic Code MIPC). 
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Step 5: Empirical analysis for multiword named entity formation in Hindi and Marathi. 

Step 6: Statistical Model.   

Step 7:  Segmentation and classification using supervised learning  

Step 8:  Transliteration Example 

4.1 Preparation of phonetic map table   

The possibility of different scripts between the source and target languages is the 
problem that transliteration systems need to tackle. Hindi/Marathi uses the Devanagari 
script whereas English uses the Roman script. Devanagari script used for Hindi have 12 
pure vowels, two additional loan vowels taken from the Sanskrit and one loan vowel 
from English. According to Cambridge Advanced Learner's Dictionary English has only 
five pure vowels but, the vowel sound is also associated with the consonants w and y 
(Koul 2008). There are 34 pure consonants, 5 traditional conjuncts, 7 loan consonants 
and 2 traditional signs in Devanagari script and each consonant have 14 variations 
through integration of 14 vowels while in Roman script there are only 21 consonants. 
The 34 pure consonants and 5 traditional conjuncts along with 14 vowels produce 546 
different alphabetical characters (Mudur 1999). Table 2 show 15 vowels along with their 
matra signs and 34 pure consonants in Devanagari script. The consonant /ळ/ is used 
only in Marathi language. 

Vowel Matra Vowel Matra Pure consonants 

अ No matra ॠ ◌ॄ◌◌ॄॄ◌ ॄ क ख ग घ ङ 

आ ◌ा◌ा◌ा◌ा ए ◌े◌◌ेे◌ े च छ ज झ ञ 

इ ि◌ि◌ि◌ि◌ ऎ ◌ै◌◌ैै◌ ै ट ठ ड ढ ण 

ई ◌ी◌ी◌ी◌ी ओ ◌ो◌ो◌ो◌ो त थ द ध न 

उ ◌ु◌◌ुु◌ ु औ ◌ौ◌ौ◌ौ◌ौ प फ ब भ म 

ऊ ◌ू◌◌ूू◌ ू अ ं ◌ं◌◌ंं◌ ं य र ल व श 

ऋ ◌ृ◌◌ृृ◌ ृ अ: ◌ः◌ः◌ः◌ः ष स ळ ह  

Loan Vowel    ऑ ॅ ◌ॅ◌◌ॅॅ◌ॅ                        

TABLE 2 - Vowels and Consonant in Hindi and Marathi 

Table 3 shows the 5 traditional conjuncts, 7 loan alphabets, 2 traditional signs and 2 
special nasal signs in Devanagari script (Walambe 1990]. 

 Traditional Conjuncts ᭃ     ᮢ     ᭄     ᮰      ᳒ 

 Additional Consonants ड़   ढ़ 

Loan Consonants क़   ख़   ग़   ज़    फ़ 

Traditional Signs ॐ  ᮰ी 
Special nasal ◌ं    ◌ँঁ 

TABLE 3 - Traditional Conjuncts in Hindi and Marathi 

Table 4 shows the phonetic based mapping scheme used to transliterate Devanagari 
consonant and vowel phones into equivalent English Phones using full consonant 
approach. It includes all alphabets of Devanagari script used in both Hindi/Marathi and 
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fully based on the National Library of Kolkata and ITRANS of IIT Madras, India 
(Unicode 2007). It is to note that the first vowel /अअअअ/ in Hindi/Marathi is mapped to 
English letter ‘a’ (short vowel) while the second vowel /आआआआ/ is mapped to ‘ā’ (long vowel 
as per IPA) in English.  The alphabet ‘a’ in English is a short vowel equivalent to /अअअअ/ 
which is also a short vowel in Devanagari while /आआआआ/ in Devanagari is a long vowel and 
mapped capital ‘ā’ or ‘A’ in our phonetic scheme to generate the IPC.   

᳞ंजनवणᭅ 
CONSONANT PHONEME 

 

Glo- 
ttal 

कोमल 

ताल᳞ 
Velar 

कᳯठन 

ताल᳞ 
Palatal 

मूधᭅ᭠य 
Retroflex 

द᭠᭜य 
  Dental 

ओ᳧य 
Labial 

 
 
 

᭭पशᭅ 
Stops 

 

 

अघोष 
Voiceless 

 

अ᭨पᮧाण 
Unaspirated 

 क    क़ 
ka  qa 

च 
cha 

ट 
Ta 

त 
ta 

प 
pa 

महाᮧाण 
Aspirated 

 ख    ख़ 
kha, khha 

छ 
Cha 

ठ 
Tha 

थ 
tha 

फ      फ़ 
pha fa 

 

सघोष 
Voiced 

 

अ᭨पᮧाण 
Unaspirated 

 ग      ग़ 
ga, ghha 

ज       ज़ 
ja     za 

ड        ड़ 
Da   Dha 

द 
da 

ब 
ba 

महाᮧाण 
Aspirated 

 घ 
gha 

झ 
jha 

ढ         ढ़ 
Dha , rha 

ध 
dha 

भ 
bha 

नािसय 
Nasals 

 ङ 
nga 

ञ 
nya 

ण 
Na 

न 
na 

म 
ma 

Anuswara and Anunasik 
 

 ◌ं◌◌ंं◌ ं or ◌ँ◌◌ँँ◌ ँ                            ◌ं◌◌ंं◌ ं or ◌ँ◌◌ँँ◌ ँ 
  M (default)     N (depends on next consonant) 

अधᭅ᭭वर वणᭅ 
Semivowels 

  य 
ya 

र 
ra 

ल 
la 

व 
va/wa 

 

संघषᱮ 
Fractives 

 

अघोष 
Voiceless 

: 
-h 

 श 
sha 

ष 
Sha 

स 
sa 

 

सघोष 
Voiced 

ह 
ha 

    िज᭪हामूलीय                                              उप᭟मानीय 
      िवसजᭅनीय 

᭭वरवणᭅ 
VOWEL 

PHONEMES 

᮳᭭व  
Short 

अ 
a 

 इ 
i 

ऋ 
Ru 

ऌ 
lRu 

उ 
u 

दीघᭅ  
Long 

आ 
A/ ā 

 ई     ए 
I/ee   e  

ॠ 
RU 

ॡ 
lRU 

ऊ    ओ 
U    oo 

संयुᲦ 
Diapthongs 

  ऎ 
ai 

  औ 
au/ou 

पारंपाᳯरक जोडाᭃरे 
Traditional Conjuncts 

   ᭃ            ᭄             ᳒            ᮰          ᮢ         ॐ         ᮰ी 
       ksha    dnya       dya        shra       tra       om    Shree 

᭭वतंᮢ वणᭅ 
Independent Consonant 

   ळ 
  La 

TABLE 4 - Full Consonant based Phonetic Scheme 

4.2 Formation of Devanagari Phonetic Units 

As Unicode uses full consonant approach it treats Devanagari consonant phoneme and 
vowel phoneme as a separate units as shown below.  
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िवजयराघवगढ़(Vijayrāghavgarh) -> व + ि◌ + ज + य + र + ◌ा + घ + व + ग +ढ़ 

This feature of Unicode is very useful in the creation of Devanagari Phonetic Units. From 
internal representation of Unicode, phonetic units are formed for Devanagari names as 
shown below. 

िवजयराघवगढ़  -> िव | ज | य | रा | घ | व | ग | ढ़ 

4.3 Generation of Intermediate Phonetic Code  

The phonetic scheme is based on full consonant approach and dependent on vowel 
matra ‘अ’. The inherent ‘a’ is added even if any other vowel matra is present with 
Devanagari phoneme unit. The script generated in English for Devanagari phonetic unit 
with inherent ‘a’ using the phonetic mapping scheme is denoted as Intermediate 
Phonetic Code (IPC). Table 5 shows how IPC in English is generated for the Devanagari 
consonant phoneme ‘क’ when it is combined with different vowel phoneme of 
Devanagari script. 

Devanagari 
Consonant 

Devanagari 
 Vowel 

Devanagari 
Vowel   Matra 

Devanagari 
 Syllabic Unit  

IPC in  English   

क अ No Matra क ka 

क आ   ◌ा का kaA 

क इ ि◌ ᳰक kai 

क ई ◌ी कᳱ kaI 

क उ ◌ु कु kau 

क ऊ ◌ू कू kaU 

क ऋ ◌ृ कृ  kaRu 

TABLE 5 -IPC for Devanagari Consonant 'क’ 

The following method is used to generate the IPC in English.  

• Devanagari name divided into the syllabic units are called as Source Transliteration 
Units (STU). STU is equivalent to phonetic unit of Devanagari. The STU can be 
represented using following regular expression. 

        STU = ((V) | (C) | (CV) | (CCV) | (C…CV)) (G)   
        where C = Consonant, V = Vowel and G = Nasalization of vowels 
• English name divided into the syllabic units called as Target Transliteration Units 

(TTU). TTU is equivalent to a phonetic unit of English. The regular expression for 
English  can be written as    TTU = C*V*   

• The Devanagari name is represented as a collection of Devanagari phonetic units. 
        Name in Devanagari = { STU1, STU2, … STUn }    
• The English name is represented as a collection of English phonetic units. 
        Name in English = { TTU1, TTU2, … TTUm } 
• IPC is obtained by using direct mapping of STUs to TTUs on one to one basis. 
Table 6 shows the few examples for IPC in English for the Devanagari NE. 

NE STUs TTUs IPC in English 

नोवरोझाबाद नो|व|रो|झा|बा|द nao|va|rao|jhaā|baā|da naovaraojhaābaāda 

TABLE 6 - IPC Examples 
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4.4 Pruning 

An IPC is generated by mapping STUs to TTUs. STUs are generated from the Devanagari 
name which uses Unicode encoding.  Due to the full consonant nature of Unicode, there 
is an inherent ‘a’ followed by consonant phoneme for all Devanagari vowel matras in IPC 
form. The inherent ‘a’ generated for Devanagari phonetic units having any vowel matra 
should be removed. One of the problems in Devanagari to English transliteration is the 
transformation of conjugates. When the half consonant cluster (Virama/Halant ◌्) 
appears in Devanagari script, it is mapped in English with the letter symbol ‘a`’ which 
appears in between two consonant phonemes.  There is no practice to represent such 
half consonant in English. All the viramas in Devanagari script mapped as a half 
consonants ‘a`’ should be eliminated from the IPC. The output after pruning inherent ‘a’ 
and ‘a`’ is denoted as Modified IPC (MIPC). Table 7 shows the example of removal of 
inherent ‘a’ if matra or half consonant is present. 

STU TTU If matra , remove ‘a’ If conjunct, remove  ‘a` Modified IPC 

कै kaai kai ---  
 

kailāshanātha 
ला laā lā --- 

श sha --- --- 

ना naā nā --- 

थ tha ---- --- 

TABLE 7 - IPC to MIPC for Devanagari NE ‘Kailashnath’ 

4.5 Empirical analysis for multiword named entity formation 

An example shown in Table -7, the NE /कैलाशनाथ/ is transliterated as /kailāshanātha/. 
The NE /कैलाशनाथ/ is multi-word name consists of  /कैलाश/ and  a suffix /नाथ/ . An ‘a’ 
followed by ‘sh’ should be deleted as well as the last ‘a’ also should be deleted to obtain 
the correct transliteration.  

कैलाशनाथ → [कै | ला | श | ना | थ] → [kaai | laā| sha | naā | tha]  → [kai | lā | sha | nā | tha] → 
[kai | lā| sh | nā | th] →[kailāsh | nāth] →kailāshnāth 

It has been observed that the minimum length of the NE is 1 akshara (formed using 1 
syllabic unit) and maximum length is 8 aksharas.  There are very few named entities 
consisting one syllable. From the number of aksharas in the named entities, 8 categories 
are made. One akshara is considered equivalent to one phonetic unit in the Devanagari 
NEs. It is found that nearly 50% NEs used in India are a combination of two or more 
individual named entities (denoted hence forth NEs). For one akshara, two aksharas and 
three aksharas NEs, transliteration is quite simple. As the length of a NE increases, the 
segmentation becomes important to find out the number of words used to form the NE 
in order to separate the rhythms within it and in turn number of phonetic units in each 
rhythm.   

Most of the four aksharas, five aksharas, six aksharas, seven aksharas and eight aksharas 
NEs are formed with the combination of two or three different rhythmic units. Table 8 
shows the observations of possible combinations of phonetic segments from 
pronunciation point of view.   
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NE Segmentation Segment 
Lengths 

Number of  Aksharas =4 

᮰ीवधᭅन(Shriwardhan) ᮰ी  +  वधᭅन(Shrī + wardhan) 1  +  3 

बाजीराव(Bājīrāo) बाजी  +  राव (Bājī+ rāo) 2  +  2 

धवल᮰ी(Dhawalshrī) धवल  +  ᮰ी (Dhawal + shrī) 3  +  1 

Number of  Aksharas =5 

मनमोहन(Manmohan) मन  + मोहन (Man + mohan) 2  +  3 

मािणकराव(Mānikrāo) मािणक  + राव (Mānik + rāo) 3  +  2 

᮰ीनारायण(Shrinārāyan) ᮰ी  + नारायण (Shrī + nārāyan) 1  +  4 

Number of  Aksharas =6 

करमरकर(Karmarkar) कर+मर+ कर  (Kar + mar + kar) 2 +  2  + 2 

ᮧेमनारायण(Premnārāyan) ᮧेम  +  नारायण (Prem + nārāyan) 2  +  4 

भारतभुषण(Bhāratbhushan) भारत+ भुषण (Bhārat + bhushan) 3  +  3 

जनादᭅनराव(Janārdhanrāo) जनादᭅन  + राव (Janārdhan + rāo) 4  +  2 

Number of  Aksharas =7 

राजगुᱧनगर(Rajgurunagar) राज+गुᱧ+नगर(Raj+guru+nagar) 2 +  2  + 3 

मनमाधवराव(Manmādhavrāo) मन+माधव+राव(Man+mādhav+rāo) 2 +  3  + 2 

पंढरपुरकर(Pandharpurkar) पंढर  +  पुर  +  कर(Pandharpurkar) 3 +  2  + 2 

ᮧकाशनारायण(Prakāshnārāyan) ᮧकाश+नारायण(Prakāsh + nārāyan) 3  +  4 

िगᳯरराजᳰकशोर(Girirājkishor) िगᳯरराज  + ᳰकशोर(Girirāj + kishor) 4  +  3 

पुᱧषोᱫमदास(Purushottamdās) पुᱧषोᱫम+ दास(Purushottam + dās) 5  +  2 

Number of  Aksharas =8 

िवजयराघवगढ़(Vijayrāghavgarh) िवजय+राघव+गढ़ (Vijay+rāghav+garh) 3 +3 +2 

नारायणगावकर(Nārāyangāvkar) नारायण+गाव+कर(Nārāyan +gāv+kar) 4 +2+ 2 

पुᱧषोᱫमनगर 
(Purushottamnagar) 

पुᱧषोᱫम+नगर (Purushottam+nagar) 5  +  3 

िᮢभुवननारायण 
(Tribhuvannārāyan) 

िᮢभुवन+ नारायण (Tribhuvan+nārāyan) 4  +  4 

TABLE 8 –Segment Length analysis of Multiword Named Entities 

Empirical analysis given in Table 8, confirms that there are always minimum two 
segments in four to eight aksharas NE. These observations are useful to find out the 
stressed and unstressed syllables in the multi word NEs which is required to find the 
break points. These break points are referred to as schwa positions, where the 
occurrence of ‘a’ vowel is not pronounced and hence deleted.  

4.6 Statistical Model 

Following terminologies are used in the statistical model  

Input: NE in source language is denoted by source word (SW) 

Output: NE in the target language as output (English) is denoted by target word (TW).  

• SW is divided into the phonetic units called Source Transliteration Units (STUs).  

• The TTUs is used to denote Target Transliteration Units (TTU). TTU is equivalent to 
phonetic unit of English after mapping STU.  
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• The Devanagari name is represented as a collection of Devanagari phonetic units. 

• Name in Devanagari = STU1, STU2, … STUn }    

• The English name is represented as a collection of English phonetic units. 

• Name in English = { TTU1, TTU2, … TTUm } 

• WSTU is the weight assigned to a phonetic unit (STU) of the source language. 

• WTTU is the weight assigned to a phonetic unit (TTU) of the target language. 

If the STU contains any of the vowel matra from [◌ा, ि◌ ,◌ी, ◌ु ,◌ू ,◌े ,◌ै,◌ो,◌ौ, ◌ं ◌ः ] or 
complete vowel  [अ, आ, इ,ई, उ, ऊ, ए,ऎ,ओ,औ] , weight 2 is assigned to it, otherwise weight 1 
is assigned. The same weights are mapped to the corresponding TTUs. Weight 
assignment is represented using mathematical equations (1) and (2). 

�����  � � 	 �
 ����� ��� ����� ���� �� ������� �����      
  �  �
 ����� ����� ����� ����                                         �                                                   (1) 

�����  � � 	 �
 ����� ��� ��, �, �,  , !, ", #, $�, $"% !& '&�(�)�) *+ (!,-!,$,. 
  �  �
 ����� ���  (!,-!,$,.  /!00!1�) *+  -2!&. 3!1�0 �$%               �                                 (2) 

where i = 1..n  

The probability is calculated for individual phonetic units. As the basis of the method is 
phonetic model, the probability of mapping STU to TTU is always 1 for the diacritic 
marks [◌ा◌ा◌ा◌ा, ि◌ि◌ि◌ि◌ ,◌ी◌ी◌ी◌ी, ◌ु◌◌ुु◌ ु,◌ू◌◌ूू◌ ू,◌े◌◌ेे◌ े,◌ै◌◌ैै◌,ै◌ो◌ो◌ो◌ो,◌ौ◌ौ◌ौ◌ौ, ◌ं◌◌ंं◌ं ◌ः◌ः◌ः◌ः] and  complete vowels  [अ, आ, इ,ई, उ, ऊ, ए,ऎ,ओ,औ] . 
When a NE written in Devanagari script is transliterated using English script, the 
implicit अ attached to the single consonant either gets mapped to ‘a’ or null depending 
on  the patterns of stress and intonation in a language. The initial probability for all 
inherent short vowel /a/ is taken as 0. 

45����|����7 � � � �
 ����� 8 ���� � ����� � 	 
 9 �
 ����� 8 ���� � ����� � �  �                 where i = 1..n                               (3) 

If the result of equation (3) is zero for any TTU, then segments are formed (for the NE 
having aksharas more than 3) if any, and the probability is recalculated for each segment 
using the TTU position in the word. 

45����|����|�:;<_>?>�>@A�7 �  �� �
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  Ex-Or 
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4.7 Segmentation and classification 

In our approach, classification is obtained by using the supervised learning approach. 
Following is the analysis of the named entities in Hindi and Marathi to obtain the 
classification based on the position and weight of the phonetic entity. Most of the four 
aksharas named entities are formed with the combination of two different words. As the 
length of the Devanagari word is 4 and different weights are 2, the possible 
combinations can be sixteen as shown in Table 9. 
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SN Weight Pattern Segmentation Named   Entity Segments 

1 1111 11 + 11 (2 + 2) दशरथ (Dashrath) दश + रथ 

2 1121 11 + 21 (2 + 2) सलमान(Salmān) सल + मान 

3 2111 21 + 11 (2 + 2) िगरधर(Girdhar) िगर + धर 

4 2121 21 + 21 (2 + 2) शामराव(Shāmrāo) शाम + राव 

5 1112 11 + 12 (2 + 2) मनकणाᭅ(Mankarna) मन + कणाᭅ 
6 2112 21 + 12 (2 + 2) िशवदᱫ(Shivdatta) िशव + दᱫ 

7 1122 11 + 22 (2 + 2) मनवᱶᮤ(Manvendra) मन + वᱶᮤ 

8 2122 21 + 22 (2 + 2) धृतरा᳦(Dhrutrāshtra) धृत + रा᳦ 

9 1211 12 + 11 (2 + 2) वरेकर(Varekar) वरे + कर 

10 1221 12 + 21 (2 + 2) फᱫेलाल(Fattelāl) फᱫे + लाल 

11 2211 22 + 11 (2 + 2) िनलोफर (Nilofar) िनलो + फर 

12 1222 12 + 22 (2 + 2) झकारीया(Zakārīyā) झका + रीया 
13 2221 22 + 21 (2 + 2) फैजाबाद(Faizābād) फैजा + बाद 

14 1212 12 + 12 (2 + 2) मनोरमा(Manoramā) मनो + रमा 
15 2212 22 + 12 (2 + 2) िव᳡कमाᭅ (Vishwakarma) िव᳡ +कमाᭅ 
16 2222 22 + 22 (2 + 2) चंᮤमौली (Chandramaulī) चंᮤ + मौली 

TABLE 9 - Weight Patterns for NE of length 4 

From Table 9 following two observations, two inferences and two classes are obtained. 

Observations from named entities 1 to 8 in Table 9 are 

• Weight patterns 1 to 8 have weight 1 at second position. 
• The second position has low weight hence the right boundary of the first segment. 

Observations from named entities 9 to 16 in Table 9 are 

• Weight patterns 9 to 16 have weight 2 at the second position. 
• The second position has high weight in the basic pattern. 

Inference 1: From a transliteration point of view, for the four aksharas NE, if the 
weight pattern has weight 1 at second position; it indicates that the NE consists of two 
segments. In this case, the NE can be divided into two segments of 2 and 2 aksharas, 
respectively and short vowel ‘a’ of second akshara which is schwa gets removed.  

Inference 2: From a transliteration point of view, for the four aksharas NE, if the 
weight pattern has weight 2 at the second position, then no segmentation is needed due 
to high weight.  

Classification:  Class I: Named entities having weight 1 at the second position  

                            Class II: Named entities having weight 2 at the second position 

One of the inferences for eight aksharas NE having 3 segments like /िवजयराघवगढ़/ is 

Inference 3: From a transliteration point of view, for the eight aksharas named entity, 
if the weight pattern has weights 1211 or 1221 from the position third to the sixth, it 
indicates that the named entity consists of three segments. In this case, the named entity 
can be divided into three segments of 3, 3 and 2 aksharas respectively.   
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Similar analysis is performed for NEs where numbers of aksharas were equal to 5,6,7,8. 
Summary of the analysis is given in Table 10.   

Number of 
Aksharas 

Possible 
combination 

Number of 
patterns observed 

Number of 
Inferences 

Number of 
classes found 

4 16 16 2 2 

5 32 24 3 3 

6 64 39 4 4 

7 128 17 7 7 

8 256 8 4 4 

TABLE 10 -Summary of Classification 

4.8 Transliteration Example 

From the statistical analysis of 15224 named entities (Main Data Sources: Voters’ list of 
State of Maharashtra and Atlas of India both of which are available in Marathi/Hindi 
and English), twenty inferences are drawn. With the help of supervised learning, twenty 
classes are used for segmentation and finding the schwa identification and deletion. The 
overall implementation is illustrated by taking the NE of eight aksharas. 
Input in Devanagari →→→→ िवजयराघवगढ़  
Phonetic Units in Devanagari→→→→ [िव] [ज] [य] [रा] [घ] [व] [ग] [ढ़] 
Phonetic Units in English →→→→[vi][ja][ya][rā][gha][va][ga[][rh] 
Weight Assignment (Eq 2) →→→→ [2][1][1][2][1][1][1][1] 
Initial Probabilities (Eq  3)→→→→[1][0][0][1][0][0][0][0] 
Segmentation (Inference 3)→→→→[vi][ja][ya], [rā][gha][va] and [ga][rh] Three Segments   
Probabilities (Eq 4,5 and 6) →→→→[1][1][0] , [1][1][0] and [1][0]    
Schwa Deletion            →→→→ Segment ending Schwas 
Final Probabilities (Eq 6) →→→→ [1][1][1][1][1][1][1][1] 
Transliteration in English→→→→ vijayrāghavgarh 

5. Experimentation and Results   

Table 11 shows the results of the 15224 names transliterated by using phonetic model 
and statistical approach for segmentation and schwa deletion. 

Number of 
Akshras 

Number of 
Names 

Number of Correct 
Transliteration (Top-1) 

Number of Incorrect 
Transliterations 

2 1839 1832 (99.619%) 07 (0.381%) 

3 6061 6040 (99.635%) 21 (0.365%) 

4 4780 4646 (97.196%) 134 (2.804%) 

5 1970 1785 (90.609%) 185 (9.391%) 

6 497 442 (88.933%) 55 (11.067%) 

7 61 57 (93.442%) 4 (6.558%) 

8 16 12 (75%) 4 (25%) 

 15224         14814 (97.306%)                410 (2.694%) 

TABLE 11 - Results of phonetic model using statistical approach 
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The results of accuracy (Top-1) for phonetic model using statistical approach are 
depicted in figure 1.  

 

FIGURE 1 - Top-1 Accuracy 

Figure 2 depicts the results of Top-1 accuracy, Mean F-Score, Top-2 MRR, Precision and 
Recall for phonetic model using statistical approach (Li 2009). 

 

FIGURE 2 - Results Using Performance Metrics 

Table 12 is used to generate multiple transliteration candidates (Chinnakotla 2010) . 

Hindi क ख ग ड व ई श ᭃ औ 

English k,c,q k,kh g, gh d,dh w,o,b,bh i,e,ee,ey sh,s ksh,x au,ou 

Table 12 : Mapping Table for Multiple Candidates Generation 

Conclusion 

We presented optimized direct machine transliteration for Hindi to English and Marathi 
to English language pairs using full consonant approach using only two weights and 
without corpus. As Hindi and Marathi languages are phonetically rich languages, 
phonetic based model is used. The accuracy of the transliteration decreases as the length 
of the Hindi and Marathi named entity increases in terms of number of aksharas. The 
accuracy of the transliteration decreases if the named entity is made up of multiple 
smaller length named entities. We showed that, a transliteration system can be built 
from phonetics, based on local linguistic word formation logic and supervised learning 
and its accuracy is 97.3%. The phonetic based statistical approach shows the significant 
improvement in the accuracy for the named entities consisting of four aksharas, five 
aksharas, six aksharas, seven aksharas and eight aksharas.  
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ABSTRACT 

Beginning in the first century AD, Buddhist texts underwent a series of translations during a 

period of nearly 1300 years. The identification of the translator, textual apocrypha, and 

translation style in Buddhist texts are always important issues. This study proposes an approach 

to find the most discriminative features that characterize the different Buddhist translation texts 

or other translation texts. We studied five different kinds of features that can be extracted from 

translation texts and exploited the F-score and SVM classifier to find the most discriminative 

features. Not only did we use the translated Buddhist texts, Kalama Sutta, for our experiment, but 

we also chose The Canterbury Tales to perform the same experiment and compare the results. 

According to our experiment results, the newly considered fifth-type features are very effective 

to identify translators. The selected features will be very useful for further studies of translator 

characteristics. 

 

KEYWORDS : Feature selection, translator identification, F-score, SVM classifier 
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1 Introduction 

Translation is an activity to transform linguistic information to another language. Translation as a 

product that is a written text in a target-language (TL), which represents the result of a translation 

process, has been described and analysed by a comparison with the respective source-language 

(SL) text. The relation between the SL text and the TL text had been the object of the numerous 

and highly abstract models of equivalence (Koller 1978; 21983: 95; Ladmiral 1981: 393). In 

most cases, these models were prescriptive in nature and of very limited use for the practical 

translator. Problems in translating are caused at least as much by discrepancies in conceptual and 

textual grids as by discrepancies in languages.
1
 Humankind has been engaged in transforming 

language for thousands of years, it affects the development of culture and language. “No 

language can exist unless it is steeped in the context of culture; and no culture can exist which 

does not have, at its center, the structure of natural language.”
2
 Translation activities can promote 

exchanges between different cultures and languages, and it is also very important in the spread 

and development of religion. For example, efforts to translate The Bible have occurred in Europe 

and around the world since it was first compiled during the fourth century AD. Translations of 

The Bible helped many countries to lay the foundation of language. In China, Buddhist texts also 

experienced a long history of translation during nearly 1300 years from the Eastern Han Dynasty 

to Song Dynasty (from 25 AD to 1297 AD). Different from the translation of texts from two 

other major global religions, Christianity and Islam, the translation and interpretation of Buddhist 

texts has been done with a very open attitude. Therefore, the identification of the translator, 

textual apocrypha, and translation style in Buddhist texts are particularly important. 

This study tries to find the discriminative features in translations of Buddhist texts and other 

translated texts. Using these features we can set up a training model to identify the translator. 

Translator identification is a process of examining the characteristics of translation texts to 

distinguish who is the translator. Similar processes have been used in authorship identification, 

writing forensics, and similarity detection efforts to statistically analyze literary style. Most of the 

previous studies addressed the literary-style recognition and authorship analysis problems, which 

actually initiated this research domain of translation identification. The following sections 

present related works, the method and procedure, and the experimental evaluation. 

2 Related Work 

In early studies, researchers analyzed word usage of different authors to identify authors; 

however, the effectiveness of this approach is limited since word usage is highly dependent on 

the topic of the article. To achieve generic authorship identification in various applications, it 

need content free features. In early work, features such as sentence length and vocabulary 

richness (Yule, 1939 and 1944) were proposed. Later, Burrows (1987) used the high frequency 

words of occurrence of sets (typically 30 or 50) on The Federalist Papers. Holmes (1995) 

analyzed the use of shorter words. Such word-based and character-based features required 

intensive efforts in selecting the most appropriate set of words that best distinguished a given set 

                                                           
1 Anton Popovič, ‘The Concept of “Shift of Expression” in Translation Analysis’ in James Holmes (ed.), The Nature of 
Translation (The Hague and Paris: Mouton, 1970). 
2 Robert Scholes, Structuralism in Literature (New Haven: Yale University Press, 1974), p. 10. 
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of authors (Holmes & Forsyth, 1995), and sometimes those features were not reliable 

discriminators when applied to a wide range of applications. 

Few studies about the translator identification and textual apocrypha can be found in the past. 

However, there are many important results from the previous studies in authorship identification 

and literary-style recognition. The most convincing study in the field of authorship identification 

and literary-style recognition was conducted by Mosteller and Wallace in 1964. They studied the 

mystery of the authorship of The Federalist Papers, and their conclusion was generally accepted 

by historical scholars and became a milestone in this field. 

For many major previous studies in literary-style recognition since the 1960s, lexical and 

syntactic features were most commonly used as the characteristics of literary-style. The most 

used approaches were statistical methods and machine-learning techniques. Few researchers have 

addressed multiple-language issues. These studies are summarized in Table 1. 

2.1 Translation Identification 

There are no scholarship paper can be found in Translation Identification or Translator 

Identification. But, the text style detection techniques to identify translator is very similar to 

Authorship Identification. This study refers to two major techniques for text style detection  in 

Authorship Identification, statistical analysis and machine learning method. In early studies, most 

analytical tools used in authorship analysis were statistical univariate methods, such as Mosteller 

and Wallace (1964),  Farringdon (1996), and Holmes (1998) . The advent of powerful computers 

instigated the extensive use of machine learning techniques in authorship analysis, such as 

Tweedie et al. (1998), Khmelev and Tweedie (2001), De Vel et al. (2001) and Argamon et al. 

(2003). In general, machine-learning methods achieved higher accuracy than did statistical 

methods. In Table 1, T1 denotes the use of the technique of statistical analysis and T2 denotes the 

use of the technique of machine learning. 

2.2 Techniques in Identification 

Due to the international nature of the Internet, it is important to study authorship identification in 

a multilingual context, but only Stamatatos et al. (1999 and 2001) conducted authorship 

identification with multiple languages, analyzing English and Greek newspaper articles. Peng, 

Schuurmans, Keselj, & Wang (2003) conducted experiments with Greek, English, and Chinese 

data to examine the performance of authorship attribution across multiple languages. In all three 

languages, the best accuracy achieved was 90%. However, the performance with Chinese 

writings was not as good as that with English writings, as shown in Table 1. 

Our study is based on those previous studies and uses a machine-learning technique to recognize 

the translation-style of Buddhist texts. We also propose a framework for translator identification 

and literary-feature extraction. Machine learning methods have been used to establish an 

individual translator’s translation-style vector-space-based model. According to the identification 

model, the identity of the translator of Buddhist texts can be clarified in the cases when the 

identity of the translator has previously been uncertain or unknown. 

In order to find the more discriminative text-features, this study adopts an iteration of a feature 

extraction mechanism. The feature extractor can analyze and extract the text features in texts 

from the feature vector. After iterating the feature extraction method, the more discriminative 

text features are found. 
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Previous studies Used type of 

features 

Multilanguage Authors Training size 

(# of docs) 

(Mosteller & Wallace, 1964)  T1 No 3 85 

(Ledger & Merriam, 1994)  T1 No 2 N/A 

(Merriam & Matthews, 1994) T2 No 2 50 

(Martindale & McKenzie, 1995) T1+T2 No 3 85 

(Mealand, 1995)  T1 No 1 N/A 

(Holmes & Forsyth, 1995) T1+T2 No 3 85 

(Farringdon, 1996)  T1 No N/A N/A 

(Baayen et al., 1996)   T1 No 2 2 

(Tweedie et al., 1996)  T2 No 3 85 

(Tweedie & Baayen, 1998)  T1 No 8 16 

(Binongo & Smith, 1999)  T1 No 2 5 

(Stamatatos et al., 1999)  T1 Yes 10 20 

(De Vel et al., 2001)  T2 No 4 1259 

(Stamatatos et al., 2001)  T1 Yes 10 300 

(Khmelev & Tweedie, 2001) T2 No 45 380 

(Corney et al., 2002) T2 No N/A N/A 

(Baayen et al., 2002)   T1 No 8 72 

(Peng et al., 2003) T2 Yes 20 500 

(Zheng et al., 2006)  T2 Yes 20 40 

TABLE 1 – Previous studies in literary-style recognition and authorship identification. (T1 

denotes the technique of statistical analysis and T2 denotes the technique of machine learning) 

3 Method 

In this study, we reduce the problem of translator identification to a classification problem. A 

learning classifier is able to learn based on a sample. Statistical methods are used to establish an 

individual translation-style vector-space-based model, such as Support Vector Machines (SVM), 

decision trees, etc. However, the focus of this study is not in the classification. The classification 

model just uses to extract the discriminative text features. 

In order to find the more discriminative text features, this study adopts an iterative feature extract 

method using the F-score measure. The feature extractor can analyze and extract the text features 

in Buddhist texts, distinguishing them by the classification model. After the iteration of the 

feature extraction method, the more discriminative text features are found. The procedure for 

identifying translators by using feature extraction can be divided into three steps, as shown in 

Figure 1: 

Step 1: Corpus Collection 

In order to profile the translation styles of each translator and generate a translator identification 

model, in the first step we need to collect the translated Buddhist texts and a list of potential 

translators. 
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Step 2: Feature Extraction 

Based on the classification model, the feature extractor analyzes and extracts the features in 

Buddhist texts. An iteration of feature extraction occurs using the F-score measure to find the 

more discriminative features. After feature extraction, each unstructured text is represented as a 

vector of the translation-style features. 

Step 3: Model Validation  

As done in a typical classifier learning process, the Buddhist text collection is divided into two 

subsets. One subset, called the training set, is used to train the classification model. The 

classification techniques applied in this process might lead to models with different predictive 

powers. The other subset is called the testing set, which is used to cross-validate the prediction 

power of the translator-identification model generated by the classification model. If the 

performance of the classifier is verified by the testing set, it can be used to identify the new 

translations. An iterative training and testing process might be needed to develop a good 

translator-prediction model.  

Corpus collection

Feature Vector

Construction

Setp1

Corpus

Collection

Setp2

Feature  

Extraction

Setp3

Model

Validation

Recursive

Feature Selection

Training Set preparation

Cross Validation

Extract more

discriminative Features

By F-Score Measure

 

FIGURE 1 – Procedure of translator identification and feature extraction 

3.1 Corpus Collection 

In “Linguistic Aspects of Translation,” Roman Jakobson (1960) distinguishes three types of 

translation: 

1. Intralingual translation or rewording (an interpretation of verbal signs by means of other signs 

in the same language). 

2. Interlingual translation or translation proper (an interpretation of verbal signs by means of 

some other language). 

3. Intersemiotic translation or transmutation (an interpretation of verbal signs by means of signs 

of nonverbal sign systems). 
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In the message collection, two important texts must be collected: the original Buddhist texts and 

the texts of translators. 

The main purpose of this study is to identify the translator of Buddhist texts. However, in order 

to do so, the identification model must be very versatile. Therefore, another literary work—a 

collection of English tales—was chosen as a testing corpus. For our studies, we used two kinds 

of translation texts as sample corpora: the Kalama Sutta as the Buddhist text and The Canterbury 

Tales as the collection of English tales. Each of these texts are well-known and versions of each 

have been translated by different translators. There is a difference between these two literary 

works. The Buddhist text, Kalama Sutta, was translated from different languages. However, the 

English tales, The Canterbury Tales, were written in the same language but at different time 

periods. The background of these two translation texts and their translators is described below. 

3.1.1 Buddhist Text 

Kalama Sutta is one of training corpora for Buddhist texts in this study. The original sutta is the 

Pali version, and it was translated into English. The sutta starts off by describing how the Buddha 

passes through the village of Kesaputta and is greeted by its inhabitants, the Kalamas of the title. 

They ask for his advice; they say that many wandering holy men and ascetics pass through the 

village, expounding their teachings and criticizing the teachings of others. So whose teachings 

should they follow? He delivers in response a sermon that serves as an entry point to the 

Buddhadhamma for those unconvinced by mere spectacular revelation. 

Buddha proceeds to list the criteria by which any sensible person can decide which teachings to 

accept as true. He tells the Kalamas not to believe religious teachings just because they are 

claimed to be true or even through the application of various methods or techniques. Direct 

knowledge grounded in one's own experience can be called upon. He advises that the words of 

the wise should be heeded and taken into account. Not, in other words, passive acceptance but, 

rather, constant questioning and personal testing to identify those truths that you are able to 

demonstrate to yourself actually reduce your own stress or misery. 

Two important translators who had translated the Kalama Sutta into English were Thānissaro 

Bhikkhu (born 1949) and Bodhi Bhikkhu (born 1944). This study used their translations of 

Buddhist texts to generate a translation-style identification model and find the more 

discriminative features of their translations. 

3.1.2 Canterbury Tales 

The Canterbury Tales is a collection of stories written in Middle English by Geoffrey Chaucer at 

the end of the 14th century. The tales were mostly written in verse, although some are in prose, 

and they are told as part of a story-telling contest by a group of pilgrims as they travelled 

together on a journey from Southwark to the shrine of Saint Thomas Becket at the Canterbury 

Cathedral. The prize for this contest was a free meal at the Tabard Inn at Southwark on their 

return. 

Following a long list of works written earlier in his career, including Troilus and Criseyde, House 

of Fame, and Parliament of Fowls, the Canterbury Tales was Chaucer's magnum opus. He uses 

the tales and the descriptions of the characters to paint an ironic and critical portrait of 

contemporary English society and particularly of the Church. Structurally, the collection bears 

the influence of The Decameron, which Chaucer is said to have come across during his first 
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diplomatic mission to Italy in 1372. However, Chaucer peoples his tales with “sondry folk” 

rather than Boccaccio's fleeing nobles. 

A modernised version or translation was published by A. S. Kline in 2007 that retained Chaucer's 

rhyme scheme and remained close to the original, but eliminated archaisms that would require 

explanatory notes. Another version was translated and edited by Gerard NeCastro in 2007. Both 

of these versions are written in modern English, translated from Middle English. 

3.2 Feature Extraction 

Most previous studies addressed the authorship identification problem, which actually initiated 

this research domain. Table 3 summarizes major studies in authorship identification since the 

1960s. Lexical and syntactic features were most commonly used. Statistical approaches were 

extensively used in the past, but more applications of machine learning techniques have been 

observed recently. 

3.2.1 Feature type 

Lexical features can be further divided into character-based and word-based features. In our 

research, we included character-based lexical features used in de Vel (2000), Forsyth and Holmes 

(1996), and Ledger and Merriam (1994), vocabulary-richness features in Tweedie and Baayen 

(1998), and word-length-frequency features used in Mendenhall (1887) and de Vel et al. (2000). 

Syntactic features, including function words, punctuation, and parts of speech, can capture an 

author’s writing style at the sentence level. The discriminating power of syntactic features is 

derived from people’s different habits of organizing sentences. 

Structural features represent the way an author organizes the layout of a piece of writing. De 

Vel (2000) introduced several structural features specifically for e-mail. Because e-mail contains 

many general structural features, we adopted those features applicable for online texts. In 

addition, we added features, such as paragraph indentation and signature-related features. In total, 

we adopted 14 structured features, including 10 features from de Vel (2000) and four newly 

proposed features. 

Content-specific features are important discriminating features. The selection of such features is 

dependent on specific application domains. 

Translation features include the simplification feature and explicit features, as shown in Table 2. 

Features Label Content 

Lexical features F1 Average word/sentence length, Vocabulary richness 

Syntactic Features F2 Frequency of function words, Use of punctuation 

Structural Features F3 Paragraph length, Indentation 

Content-specific Features F4 Frequency of keywords 

Translation Features F5 Simplification and explicit features 

TABLE 2 – Features of Authorship Identification 
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3.2.2 Iterative Selection 

This paper used the F-score as a feature filter to find the more discriminative features. It is a 

simple technique that measures the discrimination of two sets of real numbers. Given training 

vectors xk, k = 1,…, m, if the number of positive and negative instances are n+ and n–, 

respectively, then the F-score of the ith feature is defined as follows (Y.-W. Chen, 2005): 
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ikx is the ith feature of the kth negative instance 

The numerator indicates the discrimination between the positive and negative sets, and the 

denominator indicates the one within each of the two sets. The larger the F-score is, the more 

likely this feature is more discriminative.  

There are five steps in this F-score measure: 

1. Calculate the F-score of every feature. 

2. Pick some possible thresholds to remove low and high F-scores. 

3. For each threshold, do the following: Drop features with an F-score below this threshold. 

Randomly split the training data into Xtrain and Xvalid. Let Xtrain be the new training data. 

Use the SVM procedure to obtain a predictor; use the predictor to predict Xvalid. Repeat the 

steps above five times, and then calculate the average validation error. 

4. Choose the threshold with the lowest average validation error. 

5. Eliminate features with an F-score below the selected threshold.  

After the execution of above steps, apply the SVM procedure again. 

3.3 Classification Model 

This study used a support vector machine (SVM) method as a classification technology. SVM is 

a set of related supervised learning methods that analyze data and recognize patterns, which can 

be used for classification and regression analysis. As in a typical classifier learning process, the 

translation of texts is divided into two subsets. One subset, called the training set, is used to train 

the classification model. The classification techniques applied in this process might lead to 

models with different predictive powers. The other subset is called the testing set, which is used 

to validate the prediction power of the translator-identification model generated by the 

classification model. If the performance of the classifier is verified by the testing set, it can even 

be used to identify a new translator. An iterative training and testing process might be needed to 

develop a good translator-prediction model. This paper uses LIBSVM as an SVM tool. 

LIBSVM is a set of an integrated software. Components of LIBSVM have different functions: C-

SVC and nu-SVC are used for support vector classification, epsilon-SVR and nu-SVR are used 

for regression, and one-class SVM is used for distribution estimation. It supports multi-class 

classification.  
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3.4 Training Set 

A classification task usually involves separating data into training and testing sets. Each instance 

in the training set contains one target value (i.e. the class labels) and several attributes (i.e. the 

features or observed variables). The goal of SVM is to produce a model (based on the training 

data) that predicts the target values of the test data given only the test data attributes.  

3.5 Cross Validation. 

This study uses LIBSVM to find two parameters for an RBF kernel: C and γ automatically. It is 

not known beforehand which C and γ are best for a given problem; consequently some kind of 

model selection (parameter search) must be done. The goal is to identify a good set of parameters 

(C; γ) so that the classifier can accurately predict unknown data (i.e. testing data). It is important 

to note that it might not be useful to achieve high levels of training accuracy (i.e. a classifier that 

accurately predicts training data whose class labels are indeed known). A common strategy is to 

separate the dataset into two parts, of which one is considered unknown. An improved version of 

this procedure is known as cross-validation. In v-fold cross-validation, we divide the training set 

into v subsets of equal size. Sequentially one subset is tested using the classifier trained on the 

remaining v-1 subsets. Thus, each instance of the whole training set is predicted once so the 

cross-validation accuracy is the percentage of data that are correctly classified. 

4 Experiments 

4.1 Experimental Design 

To examine different features and techniques, we designed several translation identification tasks. 

First, four feature sets were created. In this case, we use F1, F2, F3, and F4 to denote lexical, 

syntactic, structural, and content-specific features, respectively. The first feature set contained 

lexical features (F1) only. Syntactic features were added to F1 to form the second feature set 

(F1+F2). Structural features were added to form the third feature set (F1+F2+F3). The fourth and 

fifth feature sets contained four types (F1+F2+F3+F4) and five types (F1+F2+F3+F4+F5) of 

features, respectively. We chose this incremental method in this order because it represents the 

evolutionary sequence of style features, and we intended to examine the effect of adding 

relatively new features to existing ones. Second, we adopted SVM classifiers as the classifiers. A 

5-fold cross-validation was used to estimate the accuracy of the classification model. 

For this study, we used the Buddhist text corpus, Kalama Sutta, and the English tales corpus, The 

Canterbury Tales. The basic information about these two corpora is shown in Table 3. 

4.2 Experimental Results 

Using the SVM classifier, we found that the maximum validation accuracy of Lexical Features 

(F1) was 68.42% and 100% in the Kalama Sutta and The Canterbury Tales texts, respectively. 

The maximum validation accuracy of Syntactic Features (F2) was 86.84% and 100%, 

respectively. The maximum validation accuracy of Structural Features (F3) was 68.42% and 

55.26%, respectively. The maximum validation accuracy of Content-specific Features (F4) was 

92.01% and 78.94%, respectively. The maximum validation accuracy of Translation Features (F5) 

was 89.47% and 100%, respectively. Details are shown in Tables 4 and 5 and in Figure 2. 
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Item Kalama Sutta The Canterbury Tales 

Corpus size 38 samples 38 samples 

File size 0.6M 1.4M 

Number of Samples  38 paragraphs 38 paragraphs 

Number of Words 37772 3201248 

Size of Vocabulary 798 22875 

Average bytes per sample 1069.9 906012.1 

Average characters per sample 534.9 45306.1 

Training/Testing 5-fold cross validation 5-fold cross validation 

Dimensions of feature vector  69 69 

Type of classifiers   SVM SVM 

TABLE 3 – Basic information of the translation corpora 

Feature sets Feature sizes Extracted features sizes Maximum validation accuracy 

F1 14 2 68.42% 

F2 81 80 86.84% 

F3 6 2 68.42% 

F4 231 231 92.10% 

F5 28 13 89.47% 

F1+F2 95 45 86.84% 

F1+F2+F3 101 23 92.10% 

F1+F2+F3+F4 332 81 97.36% 

F1+F2+F3+F4+F5 360 81 97.36% 

TABLE 4 – Maximum validation accuracy for different features of Kalama Sutta 

Feature sets Feature sizes Extracted features sizes Maximum validation accuracy 

F1 14 2 100% 

F2 81 80 100% 

F3 6 2 55.26% 

F4 231 231 78.94% 

F5 28 13 100% 

F1+F2 95 45 100% 

F1+F2+F3 101 23 100% 

F1+F2+F3+F4 332 64 100% 

F1+F2+F3+F4+F5 360 71 100% 

TABLE 5 – Maximum validation accuracy for different features of The Canterbury Tales 
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FIGURE 2 – Line chart of the maximum validation accuracy for different features in SVM 

As seen in Tables 5 and 6, the best maximum validation accuracy for Kalama Sutta is 92.10% in 

Content-specific Features (F4). However, the maximum validation accuracy for The Canterbury 

Tales is 100% in Lexical Features (F1), Syntactic Features (F2) and Translation Features (F5). 

For Kalama Sutta, although the features F4 performance is relatively good, features F2 and F5 

continue to be essential features. For The Canterbury Tales, features F4 and F3 are not good, 

relatively. 

There are five combinations of feature sets: F1 (Lexical Features), F1+F2 (Lexical and Syntactic 

Features), F1+F2+F3 (Lexical, Syntactic, and Structural Features), F1+F2+F3+F4 (Lexical, 

Syntactic, Structural, and Content-specific Features), and all five features, F1+F2+F3+F4+F5 

(Lexical, Syntactic, Structural, Content-specific, and Translation Features). The size of F1 is 14, 

maximum validation accuracy is 68.42% for Kalama Sutta; F1+F2 is 86.84%; and F1+F2+F3 is 

92.10%. Both of the maximum validation accuracy values of Features F1+F2+F3+F4 and 

F1+F2+F3+F4+F5 are 97.36% for Kalama Sutta. However, the maximum validation accuracy of 

all feature combinations is 100% in CT1.4M.  

For Kalama Sutta, the best maximum validation accuracy from Table 5 is 92.10% in Content-

specific Features (F4). Also from Table 5, both of the maximum validation accuracy values of 

Features F1+F2+F3+F4 and F1+F2+F3+F4+F5 are 97.36%. It can be seen that the Content-

specific Features (F4) dominate the results of maximum validation accuracy among all features 

of the Kalama Sutta. However, in The Canterbury Tales, the dominant features are Lexical 

Features (F1), Syntactic Features (F2), and Translation Features (F5), as shown in Table 6. The 

comparison of maximum validation accuracy values between Kalama Sutta and The Canterbury 

Tales is shown in Figure3. 

0

20

40

60

80

100

120

F1 F2 F3 F4 F5

A
cc

u
ra

cy
 

Feature Set 

max validation accuracy

of KS0.6M

max validation accuracy

of CT1.4M

59



 

FIGURE 3 – Comparison of maximum validation accuracy values for different feature sets 

This study used the F-score measure as a feature filter to find the more discriminative features in 

different combinations of feature sets. Details are shown in Figure 4. 

 

 

FIGURE 4 – Comparison of the number of extracted features for different feature sets 

As shown in Tables 4 and 5 and in Figure 4, the number of F1 features is 14, the number of 

discriminative features is 2 extracted by the iteration filter in both Kalama Sutta and The 

Canterbury Tales. The number of F1+F2 features is 95, and the number of discriminative 

features extracted by the iteration filter in both corpora is 45. The number of F1+F2+F3 feature is 

101, and the number of discriminative features extracted by the iteration filter in both corpora is 

only 23. The number of F1+F2+F3+F4 feature is 332, and the number of discriminative features 

extracted by the iteration filter in Kalama Sutta is 81. However, the number of discriminative 

features extracted by the iteration filter in The Canterbury Tales is only 64. The number of 

F1+F2+F3+F4+F5 feature is 360, and the number of discriminative features extracted by the 

iteration filter in Kalama Sutta is also 81 (the same as Feature F1+F2+F3+F4). And, the number 

of discriminative features extracted by the iteration filter in The Canterbury Tales is 71. 
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5 Conclusion 

From the results of our experiment, the Content-specific Features (F4) dominate the results of 

maximum validation accuracy among all features in Kalama Sutta. However, in The Canterbury 

Tales, the dominant features are Lexical Features (F1), Syntactic Features (F2) and Translation 

Features (F5), as shown in Tables 5 and 6. 

Additionally, as seen in Tables 5 and 6 and in Figure 4, the number of discriminative features 

extracted by the iteration filter in Kalama Sutta is 81. Also, the number of discriminative features 

extracted by the iteration filter in The Canterbury Tales is 71. It means that fewer features can 

effectively discriminate the features in translation texts. The number of discriminative features 

for Kalama Sutta and The Canterbury Tales are compared for each feature set in Table 6. 

Corpus Features sizes F1 F2 F3 F4 F5 

Kalama Sutta 
81/360 

 

0/14 

 

12/80 

(14.8%) 

0/6 

 

69/230 

(85.2%) 

0/28 

 

The Canterbury Tales 
71/360 

 

2/14 

(2.8%) 

25/80 

(35.2%) 

0/6 

 

41/230 

(57.7%) 

3/28 

(4.3%) 

TABLE 6 – Comparison of discriminative features. 

The F4 feature set (Content-specific Features) has a great impact in Kalama Sutta. There are 69 

discriminative features selected from all 230 F4 features (about 85.2%). However, it has less 

impact in The Canterbury Tales; only 41 discriminative features were selected from all 230 F4 

features (which still accounts for 57.7%). 

There are 81 more discriminative features extracted from feature sets F2 and F4. We can identify 

these features in Kalama Sutta. The content of the F4 feature set (Content-specific Features) in 

Kalama Sutta can be divided into Proper Noun and Adjective, and further analyzed. In the same 

way, we can also use 71 more discriminative features extracted from F1, F2, F4, and F5 to 

identify the translation text of The Canterbury Tales.  

In future, using the discriminative features, we can develop an authorship-identification model to 

be used in the prediction of the authorship of unknown translation texts. The result of authorship 

identification will help the investigator focus his or her efforts on a small set of texts and authors. 

More formally, a support vector machine constructs a hyper-plane or set of hyper-planes in a 

high or infinite dimensional space, which can be used for classification, regression, or other tasks. 

Intuitively, a good separation is achieved by the hyper-plane that has the largest distance to the 

nearest training data points of any class (so-called functional margin), because in general the 

larger the margin, the lower the generalization error of the classifier. 
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ABSTRACT
Semi-supervised learning methods address the problem of building classifiers when labeled
data is scarce. Text classification is often augmented by rich set of labeled features representing
a particular class. As tuple level labling is resource consuming, semi-supervised and weakly
supervised learning methods are explored recently. Compared to labeling data instances
(documents), feature labeling takes much less effort and time. Posterior regularization (PR) is a
framework recently proposed for incorporating bias in the form prior knowledge into posterior
for the label. Our work focuses on incorporating labeled features into a naive bayes classifier
in a semi-supervised setting using PR. Generative learning approaches utilize the unlabeled
data more effectively compared to discriminative approaches in a semi-supervised setup. In
the current study we formulate a classification method which uses the labeled features as
constraints for the posterior in a semi-supervised generative learning setting. Our empirical
study shows that performance gains are significant compared to an approach solely based
on Generelized Expectation(GE) or limited amount of labeled data alone. We also show an
application of our framework in a transfer learning setup for text classification. As we allow
labeled data as well as labeled features to be used, our setup allows the presence of limited
amount of labeled data on the target side of transfer learning where feature constraints are
used for transferring knowledge from source domain to target domain.

KEYWORDS: Classification,Posterior Regularization.
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1 Introduction

Semi-supervised learning methods (O. Chapelle and Zien, 2006) address the difficulties of
integration of information contained in labeled data and unlabeled data. Though labeled data
is scarce, unlabeled data is abundantly available. The success of Semi-supervised methods
is based on the premise of using the hidden structure of unlabeled data and aligning it with
the limited amount of labeled data. Apart from unlabeled data, there are auxiliary forms of
information in the form of labeled features. For example, sentiment analysis which focuses
on sentiment classification is often leveraged with sentiment lexicon, which contains prior
sentiment orientation of commonly occurring words. They can be used as prior knowledge in
building the classifiers. Such auxiliary information has to be incorporated in the form of bias
into the learning algorithm.

Though there have been efforts to build informative priors (Raina et al., 2006) or lexicon
based classifiers in (Melville et al., 2009), they have been of limited success and often interact
with the model in complex ways. Recently there have been research efforts from multiple
perspectives addressing the same issue. Generalized Expectation Criteria (GE) is one such
approach for regularizing the model based on rich set of constraints. GE allows us to specify
global constraints which are allowed to be arbitrary combinations of features.

(Druck et al., 2008) used GE for building classifier solely based on labeled features. But one
of the problems encountered while using GE criteria is, the model parameters and constraint
parameters when exist together in a semi-supervised setup, increases the computational com-
plexity of the algorithm. (Bellare et al., 2009) and (Druck and McCallum, 2010) addressed
this issue using alternative projections approach, which is an extension of EM to discriminative
learning methods. Another approach for parameter estimation which is developed simultane-
ously is Posterior Regularization framework (Ganchev et al., 2010) which is initially proposed
for generative learning methods (Graça et al., 2007). In the initial framework in (Graça et al.,
2007), constraints chosen were of limited expressibility (instance based).

1.1 Generative vs Discriminative

Generative approaches solve the inference problem modeling the joint distribution of dependent
and independent variables. Discriminative methods directly model the conditional of the
objective. Previous research by (Ng and Jordan, 2002) indicated that generative approaches
outperform discriminative when limited amount of labeled examples are present and may
under perform discriminative approaches given large amount of labeled data. Particularly in a
semi-supervised setting as observed by (Nigam, 2001) where the unlabeled data is also taken
while learning, generative methods shown promising results as they maximize both conditional
as well model marginal together.

They proved this in the context of text classification using Multinomial Naive Bayes (MNB)
approach. This view is further strengthened by recent work by (Su et al., 2011). In an another
work (Druck and McCallum, 2010) has shown how discriminatively constrained generative
models based on HMM, can benefit in a semi-supervised learning setup for sequence labeling
task. We use PR framework for building a naive bayes classifier using feature labels as well as
labeled tuples.
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1.2 Transfer Learning

Transfer Learning approaches also address the issue of learning from unlabeled data using
labeled data of a related domain. Such approaches are very effective in the context of widespread
use of social networks which require text classification as the basic primitive. (Dai et al., 2007)
has shown a method of transferring naive bayes classifier using KL-Divergence of source and
target domains. A detailed survey of transfer learning approaches is addressed in (Pan and Yang,
2010). In this work we will go through an approach for transfer learning where transfer happens
through feature constraints from labeled source domain to target domain. Our framework allows
seamless integration of domain knowledge in the form of feature constraints, labeled data as
well other domains which have abundant labeled data. Our contributions include constraining
naive bayes with feature expectations and simplifying the transfer learning problem seamlessly
in a semi-supervised setup.

2 Related Work

Feature prior induction into the model has been studied by (Druck et al., 2008). Work done
by (Liu et al., 2004) is one of the earlier efforts for using labeled features in (classification)
sentiment analysis. They use paradigm words for each class and prepare a model document
for each class and compare geometric similarity of unlabeled documents with these documents
for training an EM algorithm. (Melville et al., 2009) used a similar approach where he made
a generative assumption of all class specific features being equally likely to appear in their
respective class specific documents and all the other words being equally likely to appear in any
document. They call this Lexical Classifier and pool multinomials from both lexical classifier as
well as MNB from limited amount of labeled data. The prior they induce is rather less intuitive
and user does not have much ease in controlling the prior. In the present method discussed in
this paper, the prior can be fine-tuned and gives best results when domain expert gives exact
prior knowledge.

Topic models presented by (Blei et al., 2003) using Latent Dirichlet Allocation (LDA) are
used for inferring the latent topic structure hidden in the document distribution. It is totally
unsupervised approach, hence LDA topic based features can be used as prior knowledge for our
algorithm. Recently (Lin and He, 2009) used topic models for sentiment analysis. They further
used GE expressions to bias the classifier based on sentiment lexicon. It is very effective in the
context of sentiment analysis, as the presence of certain words surely effects the sentiment of
entire document in one way or other. But they used GE terms along with Sentiment enhanced
LDA model with regularization. In a study by (Druck et al., 2009) they have shown how
the optimization problem gets complicated with the presence of GE parameters and model
parameters in a semi-supervised setup. They have used Dynamic Programming to compute
the covariance among the GE parameters and model parameters from labeled data. (Lin and
He, 2009) don’t use such approach, it is not well defined way of integrating GE terms with
the generative model. In a similar context, (Mann and McCallum, 2010) have shown label
regularization can be safely added in a semi-supervised setting. But it’s use is limited.

Addressing the difficulties of semi-supervised learning with GE, (Bellare et al., 2009) has
introduced the method of alternate projections. They use EM algorithm in a discriminative setup.
They take two kinds of projections I-Projection and M-Projection which are computationally
intensive. But we prefer a generative approach so as to take the benefit of document-word
distribution which are even present in a unlabeled corpus. (Su et al., 2011) points out that
the traditional EM formulation as given by (Nigam, 2001) reduces the conditional likelihood
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of the model learnt from the labeled data. They avoid this problem in a rather efficient way
which avoids the iterative procedure of EM and prove their results over large of amount of
text-classification datasets. There are other methods (Sindhwani et al., 2008) which make use
of graph laplacian successfully in a semi-supervised setup using Co-Clustering. These methods
are computationally intensive and our method is simpler as we just use a unified constrained
learning. As co-clustering methods model the higher order co-occurrences well they show
performance gains at the cost of more computation. As in the current work our emphasis is on
modeling a unified framework for learning from features and labels, we don’t consider laplacian
regularization anymore. As Naive Bayes method is generative, (Druck et al., 2007) has first
described the method for building a hybrid classifier based on generative and descriminative
pair, to fix the bias of generative learning. (Fujino et al., 2008) has given a method for building
a hybrid classifier maximizing the joint likelihood of generative and discriminative classifiers.
But the method need not converge to a stationary point as the two objectives are different. In
our current work, we rather use expectation constraints over unlabeled data. So it is possible to
express the optimization function as a single objective function.

(Pan and Yang, 2010) has given a detailed survey of transfer learning methods. In one of
their works (Pan et al., 2010) they show a novel method of constructing a graph of domain-
independent and domain-dependent features and show how spectral clustering can be used
for effective domain adaptation. As part of our transfer learning application we don’t consider
building a graph, and hence use simple features based on mutual information. Our results
are comparable to that of (Blitzer, 2008) with out spending any extra effort in dimensionality
reduction. (Ganchev et al., 2010) have also addressed the problem of transfer learning using
multi-view learning using agreement constraints between the views. Our approach is to develop
a semi-supervised framework where we have feature transfer from related domain in the form
of expectation constraints and some labeled training data. (?) have shown a method for transfer
learning using hybrid generative/discriminative framework. It again suffers from convergence
issues as two different objectives are combined.

3 Preliminaries

MNB method has been used for text classification because of it’s simplicity. In a semi-supervised
learning setup where learning has to be performed with limited labeled data and abundant
unlabeled data Naive Bayes approach found it’s application as it accounts for the marginal
distribution over unlabeled data into it’s objective. (Nigam, 2001) found that expectation
maximization (EM) algorithm (Dempster et al., 1977) can be successfully applied in the semi-
supervised context, treating missing labels of unlabeled data as latent variables of EM. We will
now review the Naive Bayes approach.

3.1 Multinomial Naive Bayes

We assume D denote the set of documents and V defines the vocabulary of words. Let Y be set
of labels. In the supervised learning setting, where |D| documents are given, MNB solves the
following inference problem by maximum likelihood.

p(y|x)∝ p(x |y)p(y)

and p(x |y) factors nicely into
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p(x |y) =
∏
wi∈x

p(wi |y)

The parameters of the model are computed as

p(wi |y) =
Nyi +δ∑

i Nyi + |V |δ

where δ is used for avoiding zero probabilities (known as Lidstone smothing). If we disregard
the smoothing, the above probability is simply the empirical ratio of a particular word’s
frequency compared to sum of all words frequencies appearing over the set of documents of the
class.

p(wi |y) =
Nyi∑
j Ny j

Nyi =
|D|∑
t=1

f t
y i

3.2 Semi-supervised learnig

Classification accuracy depends on the amount of training data available while building the
classifier. In a semi-supervised learning setting we assume that in addition to the labeled
training data DL we also have large amount of unlabeled data DU (|DL | << |DU |). As the
joint likelihood of the labeled and unlabeled data is not in closed form, EM (Dempster et al.,
1977) can be applied which results in the following iterative procedure. The algorithm starts by
inferring model parameters from limited amount of labeled data and uses these parameters for
inferring probabilistic labels for each of the unlabeled documents in E-step. M-step consists of
inferring the parameters using these probabilistic labels for unlabeled document and labels for
labeled documents.

Ini t ial : θ 0
L = argmax

θ

∑
x∈DL

logpθ (x .y)

EStep : ∀x∈DL∪DU computepθt
(y|x)

MStep : θt+1 = arg max
θ

∑
x∈DL UDU

logPθt
(x , y).

Nyi =
∑

x∈DU
f x
i Pθt

(y|x)

The Expectation and Maximization steps are repeated till convergence. Nyi is denominator in
deciding the probability of feature(word) fi being in class y (For simplicity we have omitted
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the terms from labeled data DL ). f x
i gives the count of feature in document x. (Su et al., 2011)

showed how conditional estimates of P(y|x) from labeled data improves both accuracy and
performance of naive bayes approach. θt gives the current estimates of the parameters for the
model. The modified approach of (Su et al., 2011) computes Nyi is computed as follows

Nyi = Pθ l
t
(y|x)

∑
x∈DU ∪DL

f x
i

Here θ l
t are the parameters learnt from DL .

3.3 Learning From Labeled Features

As suggested by (Druck et al., 2008), it is far easier to label features than labelling documents.
They have suggested a method for learning from features using Kullback Liebler (KL) constraints
(GE) on feature expectations. Their approach is based on discriminative log-linear models. The
objective is given as below.

G( fk) = K L( f̂k, EU(Epθ (y/x) fk))

O =−
∑

k

G( fk)−
∑

i

θ 2
i

2σ2

Here G is GE objective function which evaluates the expectation of conditional given a document
has the constraint feature. But discriminative methods can not leverage the marginal word
distributions over documents, as they directly maximize the likelihood of p(y|x). In one of
their later studies, (Druck and McCallum, 2010) have used both discriminative and generative
approaches to get the advantages of both.

4 Expectation Maximization and Posterior Constraints

In this section we review an alternate view of expectation maximization as given in (Neal and
Hinton, 1993). We are given a problem of modeling a distribution of x,z where x is observed
data and z is unobserved or latent(here we use z instead of y for explicitly distinguishing
observed and unobserved and also to be in sync with notation widely used in literature). In the
document classification task, unobserved are missing labels for unlabeled documents. Given a
sample S = x1, ..., xn observed instances of data. EM maximizes the likelihood of pθ (x) using
two block ascent steps.

E : qt+1(z|x) = argmin
q(z|x)

K L(q(z|x)||pθ t (z|x)) = pθ t (z|x) (1)

M : θ t+1 = arg min
θ

ES


∑

z

qt+1(z|x)logpθ (x , z)


 . (2)

As suggested by (Ganchev et al., 2010) this view of EM allows us to add constraints over the
posterior. Instead of directly using pθ t (z|x) we can constrain the posterior to some set Q (set
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of constrained posteriors). Their work addressed the induction of instance based constraints for
word alignment. The constrained E step looks as follows.

E : qt+1(z|x) = arg min
q(z|x)∈Q

K L(q(z|x)||pθ t (z|x)) (3)

The affine constraints used by them are of the form Eq[ f (x , z)] ≤ b. Multiple such constraints
are stacked into a vector Eq[f(x,z)]≤ b and it now looks like

E : qt+1(z|x) = arg min
q

K L(q(z|x)||pθ t (z|x))s.tEq[f(x,z)]≤ b. (4)

It is proved in (Graça et al., 2007) that local maximum of this constrained EM is indeed
local maximum of regularized likelihood. Instead of these constraints we can use any convex
constraints which has the effect of changing the regularization term. If we use L2 constraints
then it is equivalent to solving the same optimization problem with L2 regularization.

4.1 Feature Expectation Constraints

(Druck et al., 2008) has first shown the utility of feature constrained learning. The constraints
specify our prior belief about the presence of certain words strongly biasing the class of the
document. For example the presence of word ’puck’ strongly indicative of document being
about hockey. If we know that 90% of documents which contain ’puck’ are of class ’hockey’,
then we can express our constraint as 0.90N documents should have class ’hockey’ (where N
is the number of all the documents which contain ’puck’). We can specify the same using the
following L2 based constraint.

1

2β

 f̂ y −
∑

j

[ f (w j , y)]


2

2

(5)

Here f̂ y is feature expectation of a feature f and summation on the right runs over all the
documents counting the number of documents containing feature f. It’s conjugate is −µ′ f̂ y +
β

2

µ
2

2 . The conjugates of various convex functions and fenchel’s duality are well treated in
(Dudik, 2007).

4.2 Modified EM approach

In our problem we have k L2 constraints of the above type and we use these constraints for
learning from unlabeled data. The set Q represents the distributions constrained by these
k constraints. So we have to find the auxiliary distribution q(z|x) which has minimum KL
divergence with pθ t (z|x) subjected to q restricted to Q. This is similar to Maximum Entropy
principle of discriminative approaches. This is called I-Projection and it is used in (Graça et al.,
2007), (Druck and McCallum, 2010), (Bellare et al., 2009) in a similar setting. The dual form
of complete objective is

µ(t+1) = arg max
µ

µ′ f̂ −
∑

z

pθ t (z|x)ex p(µ′ f (z, x))− β
2

µ
2

2 (6)
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Here β is a regularization constant. µ is a vector of parameters for the constraints. f̂ is a vector
of feature expectations. Here at µ∗ of the above objective function, the distribution qµ∗ where
qµ(z|x)∝ pθ t (z|x)ex p(µ′ f (z, x)) gives the optimal constrained distribution we are looking for.
The gradient of this objective is f̂ − Eqµ[ f (x , z)]−βµ. We solve this using L-BFGS which is a
general purpose unconstrained optimization procedure. The complexity of each step of the EM
algorithm is the cost of normal E step using MNB and the cost of constrained objective over the
unlabeled data. If the unlabeled data is more L-BFGS might take longer time to converge to a
optimal solution. Stochastic gradient descent method can be used in our objective for faster
convergence. The M Step of the algorithm remains simple as we are using MNB. Computing
the updated parameters of the M step uses qt+1(z|x) instead of p(z|x).
5 Transfer Learning using Constraints

There are few efforts of transfer learning (Pan et al., 2010) (Dai et al., 2007) (Tan et al., 2009).
In this section we will see how our method of constrained naive bayes is useful in building a
simple scheme for transfer learning(TL). Finding the domain independent features is the key for
the success of transfer learning approach. In a transfer learning setup we have labeled data only
on the source side and the objective is to transfer the knowledge of inference from source task
to target task(where no labeled data is available). In many TL tasks low dimensional embedding
is factored out from the labeled source data and unlabeled target data. Letter this embedding
is used along with source-domain classifier to do the target classification. In our framework
we can figure out useful features for transfer learning and compute the feature expectations
of these features in the source domain. If the features selected are informative for transfer
learning, the feature expectations will behave similarly in the target domain. This allows us to
transfer knowledge in a semi-supervised setup. So we can use the feature constraints learnt
from a related domain to be used in target domain where only limited amount of supervision is
available in the form of labeled features or labeled instances.

5.1 Method

Let DS and DT be source and target domains of our interest. DS consists of labeled documents
(x , y) where x ∈ X document space and y ∈ Y label space. The target domain consists of
documents (x) where x ∈ X . Though they come from the same document space (vocabulary).
The mutual information(MI) of a feature fi with respect to the labels Y is

M I( fi) =
∑
y∈Y

p( fi , y)ln
�

p( fi , y)
(p( fi) ∗ p(y))

�
(7)

We select features of highest mutual information which occur in both domains. Though there
are other methods of selecting informative features, we found this method giving better results.

6 Experiments

We evaluate our algorithm on 5 datasets which are previously used by Gregory Druck at.al
(Druck et al., 2008). We further divide the dataset into binary classification problems. For
datasets involving more than two classes we use multi-class classification. We use 65/35

1http://www.umass.edu/ mccallum/code-data.html
2http://www.cs.waikato.ac.nz/ml/weka/
3http://cs.cmu.edu/ webkb
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Table 1: Datasets Description

NameOfDataset Description
20 newsgroups(20NG) 1 20000 instances 20 classes

Ohscal 2 111162 instances 10 classes
SRAA 73,218 instances 4 classes

WebKB 3 4199 instances 4 classes
News3 9,558 instances 44 classes

training/test split through out our experiments. We took 20 news group, sraa and webkb from
the same source as that of (Druck et al., 2008). Ohscal and News3 represent classification
problems with large number of classes. They are taken from 2 and 3 respectively. We use
information gain to simulate a human-expert providing us the labeled features.

6.1 BaseLine Approaches

We use EM-MNB as the base-line approach for semi-supervised learning. We also use GE-FL as
the baseline classifier based on Druck’s implementation. A semi-supervised learning algorithm
leveraging labeled features and labeled data is called EM-FL (EM with Feature Labaling). The
labeled features for the classification are learnt using mutual information. 1 to 16 labeled
features are used for each class.

6.2 Comparison with Base Line Approaches

Together with the labeled features we also use some labeled examples. We used mallet library
for our implementation. It has GE-FL and EM-MNB implemented in it. We vary the number of
labeled examples among 1,2,4,8,16 per class. As the number of labeled examples increases,
our algorithm’s performance asymptotically approaches that of EM-MNB (unless the labeled
features contain some information not expressed in the labeled tuples) . But when labeled
examples are scarce, our method takes the benefit of labeled features and performs all the time
better than EM-MNB by large amount. Each of the experiments are repeated for 10 runs and
the average accuracy is reported. On 20 News and WebKB datasets, EM-FL fared significantly
better than GE-FL. On sraa and new3 datasets, GE-FL fared better than EM-FL. The reason
for this behavior is, GE-FL learns it’s model based on limited number of feature constraints.
The parameters of the model for features not in the constraint set estimated based on their
co-occurrence with the constraint features. In our model, we have to cope with labeled features
as well as labeled examples, so when the feature constraints carry more information GE-FL
outperforms our approach. The two parameters of EM-FL are weight for unlabeled data and
gaussian prior variance. The optimal parameters are found by using a grid search of possible
values for these parameters with values between 0.1 to 1.5 with in a span of 0.1 and optimal
values are used for each of our experiments. For the ohscal dataset EM algorithm fared well.
This is because of the amount of unlabeled data available for learning. But EM-FL is also closer
and infact fared better than EM when the number of labeled examples per class is lesser.

4http://mallet.cs.umass.edu
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Dataset Algo Number of Labeled Examples per class
1 2 4 8 16

20 News EM-FL 71.5(1.51) 71.59(1.53) 71.83(1.35) 71.92(1.39) 72.53(1.53)
EM 14.29(5.15) 19.22(3.62) 21.02(4.38) 25.5(7.47) 29.98(6.45)
GE-FL 62.9(1.53)

news3 EM-FL 70.7(2.41) 70.65(2.06) 71.0(1.84) 71.08(1.63) 71.73(1.24)
EM-FL 21.64(6.44) 29.15(6.68) 36.04(5.33) 47.75(5.38) 57.3(2.91)
GE-FL 75.39(2.53)

ohscal EM-FL 57.19(0.84) 57.35(0.74) 57.95(0.68) 58.4(1.11) 59.22(1.06)
EM 38.48(7.24) 46.53(5.27) 51.01(4.1) 57.34(2.26) 59.88(2.13)
GE-FL 57.28(0.64)

sraa EM-FL 94.94(1.25) 94.98(1.23) 94.93(1.22) 94.91(1.24) 94.73(1.43)
EM 58.02(25.38) 69.79(15.26) 79.44(12.76) 85.84(6.5) 91.43(1.52)
GE-FL 99.43(0.04)

webkb EM-FL 86.12(0.81) 86.15(0.75) 86.09(0.8) 86.01(1.03) 86.36(0.88)
EM 45.55(23.4) 42.03(16.24) 52.08(20.22) 43.16(9.07) 55.08(18.67)
GE-FL 82.53(1.06)

Table 2: Performance Results for varying number of labeled samples

6.2.1 Varying Unlabeled Data

Dataset Algo fraction of unlabeled examples used
0.1 0.2 0.3 0.4 0.5

20 News EM-FL 50.01(4.85) 59.47(1.84) 64.61(2.18) 67.01(1.36) 69.72(0.94)
EM 11.14(2.8) 18.55(3.67) 23.27(6.84) 27.53(2.94) 31.38(5)
GE-FL 56.36(1.19) 59.63(1.84) 60.42(1.07) 60.94(0.52) 62.69(0.99)

SRAA EM-FL 79.67(0.48) 82.49(0.43) 88.27(0.33) 92.05(0.71) 94.71(0.43)
EM 58.36(2.74) 72.56(8.84) 79.44(0.34) 79.43(0.46) 79.67(0.4)
GE-FL 99.18(0.1) 99.35(0.1) 99.32(0.12) 99.37(0.04) 99.44(0.08)

news3 EM-FL 41.92(1.94) 54.05(2.84) 60.98(1.13) 64.26(0.73) 67.99(1.59)
EM 42.25(2.59) 41.06(3.21) 42.84(2.54) 45.27(2.6) 48.17(2.3)
GE-FL 56.1(5.52) 64.79(1.11) 68.53(1.56) 67.61(2.05) 71.02(0.81)

ohscal EM-FL 62.43(2.153) 65.21(1.526) 64.98(0.957) 65.03(0.996) 62.83(2.016)
EM 61.54(2.14) 63.59(1.577) 63.02(1.22) 64.19(1.2) 61.48(2.039)
GE-FL 49.284(2.91) 53.55(2.052) 54.21(1.377) 57.74(0.906) 55.5(0.568)

webkb EM-FL 73.76(3.1) 79(4.48) 81.93(1.5) 84.04(1.03) 85.17(1.49)
EM 73.76(8.25) 65.59(7.26) 74.95(1.28) 78.31(2.16) 74.26(3.8)
GE-FL 77.07(2.74) 78.75(1.23) 81.05(1.28) 81.05(0.6) 81.05(1.5)

Table 3: Performance Results for varying fraction of unlabeled data
We have conducted a set of experiments by varying the number of unlabeled data samples from
which the classifier is learnt using feature constraints. For each dataset, we vary the amount of
training data from 0.1 to 0.5 in steps of 0.1, of the total amount of data. The amount of test
data is fixed at 0.1 fraction of total data. The number of feature constraints are kept same as
the previous experiment. We kept the number of labeled examples available for training EM-FL
and EM algorithms as 512. As observed in the Table 3, EM-FL performs better than GE-FL in 3
datasets. GE-FL learns the classifier very accurately for the sraa dataset as observed before.

6.2.2 Performance

Training a GE-FL classifier from a large dataset such as news3 requires significant computation
resources as it is based on global optimization requiring L-BFGS to be run on a parameter space
equal to the number of features. Our approach consists of much lighter optimization where
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the number of parameters for L-BFGS is much smaller, hence converges faster. (Fujino et al.,
2008) have given that the number of steps for convergence of their objective function is 160,
under similar conditions on webkb dataset, our objective converges in 15 steps. Training GE-FL
classifier on news3 dataset took 110.78 seconds (on a system with 2GHz processor and 2GB
RAM) where as training a EM-FL classifier takes 42.59 seconds.

6.3 TransferLearning

Table 4: Multi Domain Sentiment Dataset for Transfer Learning

NameOfDataset Description No of Classes No of Features
Books 5 2000 instances 2 classes 473,856

DVD 2000 instances 2 classes
Electronics 2000 instances 2 classes

Kitchen 2000 instances 2 classes

We use Multi Domain Sentiment analysis dataset developed by (Blitzer, 2008). This dataset
contains product reviews collected at amazon. There are 4 sets of reviews, each of which
contains 2000 positive/negative documents. It is already pre-processed. We make 12 transfer
learning tasks of these 4 datasets. Here B–D indicates the task is to use labeled data of Books
dataset and learn a classifier for the domain DVD for which there is no labeled data. We use
100 features collected through mutual information from source domain and use them as the
constraints for the target domain to learn a classifier. We just use mutual information which
requires one pass through the dataset. In most cases our approach is comparable to that of
(Blitzer, 2008). But we observe that our results are a notch behind that of the results obtained in
(Pan et al., 2010). This is because our approach does not take the benefit of co-clustering which
requires building the graph of co-occurrences. We conducted another experiment varying the

B–D D–B B–E E–B B–K K–B D–E E–D D–K K–D E–K K–E
Base 0.759 0.762 0.66 0.719 0.719 0.729 0.667 0.735 0.734 0.758 0.851 0.825

GE-FL 0.773 0.771 0.707 0.767 0.775 0.735 0.713 0.781 0.737 0.795 0.822 0.821
SCL 0.758 0.797 0.759 0.754 0.789 0.686 0.741 0.762 0.814 0.767 0.859 0.868

Table 5: Transfer Learning Results

number of labeled features. We varied them from 50-250 in steps of 50. We observed that too
many features is not benefiting the classification accuracy and roughly 150-200 features are
enough to improve significantly from the baseline. In all our experiments we averaged over the
10 runs of the same algorithm. The results are plotted and given in figure 1.

7 Conclusion & Future Work

Though the problem of adapting naive bayes approach with discriminative constraints has been
addressed previously most of them are based on working with multi-objective optimization
problem, which does not have theoretical convergence properties. In the current work, we
instead used an objective function which learns both from labeled data and feature constraints

5http://www.cs.jhu.edu/ mdredze/datasets/sentiment/
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Figure 1: Performance of Feature transfer Learning

over unlabeled data and yet resulting in a single point solution. Our experimental results show
how very few feature constraints (infact one cosntraint per class) can also help to improve
the classifier by a significant margin over the base-line. From a computational efficiency point
of view, our approach takes much lesser time compared to GE-FL as we use a combination of
naive bayes and maximum entropy. It still remains an open question how to incorporate GE
type of constraints in a semi-supervised setup. We have shown an application of our framework
to the transfer learning problem. Empirical results show that it is competent with state of art
approaches with out incurring extra computational burden.

References

Bellare, K., Druck, G., and McCallum, A. (2009). Alternating projections for learning with
expectation constraints. In UAI, pages 43–50.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine
Learning Research, 3:993–1022.

Blitzer, J. (2008). Domain Adaptation of Natural Language Processing Systems. PhD thesis,
University of Pennsylvania.

Dai, W., Xue, G.-R., Yang, Q., and Yu, Y. (2007). Transferring naive bayes classifiers for text
classification. In Proceedings of the 22nd national conference on Artificial intelligence - Volume 1,
AAAI’07, pages 540–545. AAAI Press.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete
data via em algorithm. Journal of the Royal Statistical Society Series BMethodological, 39(1):1–
38.

76



Druck, G., Mann, G., and McCallum, A. (2008). Learning from labeled features using general-
ized expectation criteria. In Proceedings of the 31st annual international ACM SIGIR conference
on Research and development in information retrieval, SIGIR ’08, pages 595–602, New York, NY,
USA. ACM.

Druck, G., Mann, G. S., and McCallum, A. (2009). Semi-supervised learning of dependency
parsers using generalized expectation criteria. In ACL/AFNLP, pages 360–368.

Druck, G. and McCallum, A. (2010). High-performance semi-supervised learning using
discriminatively constrained generative models. In ICML, pages 319–326.

Druck, G., Pal, C., McCallum, A., and Zhu, X. (2007). Semi-supervised classification with
hybrid generative/discriminative methods. In KDD, pages 280–289.

Dudik, M. (2007). Maximum entropy density estimation and modeling geographic distributions
of species. PhD thesis, Princeton, NJ, USA. AAI3281302.

Fujino, A., Ueda, N., and Saito, K. (2008). Semisupervised learning for a hybrid genera-
tive/discriminative classifier based on the maximum entropy principle. IEEE Trans. Pattern
Anal. Mach. Intell., 30(3):424–437.

Ganchev, K., Graça, J. a., Gillenwater, J., and Taskar, B. (2010). Posterior regularization for
structured latent variable models. J. Mach. Learn. Res., 11:2001–2049.

Graça, J., Ganchev, K., and Taskar, B. (2007). Expectation maximization and posterior
constraints. In NIPS.

Lin, C. and He, Y. (2009). Joint sentiment/topic model for sentiment analysis. In CIKM, pages
375–384.

Liu, B., Li, X., Lee, W. S., and Yu, P. S. (2004). Text classification by labeling words. In
Proceedings of the 19th national conference on Artifical intelligence, AAAI’04, pages 425–430.
AAAI Press.

Mann, G. S. and McCallum, A. (2010). Generalized expectation criteria for semi-supervised
learning with weakly labeled data. Journal of Machine Learning Research, 11:955–984.

Melville, P., Gryc, W., and Lawrence, R. D. (2009). Sentiment analysis of blogs by combining
lexical knowledge with text classification. In KDD, pages 1275–1284.

Neal, R. M. and Hinton, G. E. (1993). A new view of the em algorithm that justifies incremental
and other variants. Learning in Graphical Models, pages 355–368.

Ng, A. Y. and Jordan, M. I. (2002). On discriminative vs. generative classifiers: A comparison
of logistic regression and naive bayes. Advances in neural information processing systems,
2(14):841–848.

Nigam, K. P. (2001). Using unlabeled data to improve text classification. PhD thesis, Pittsburgh,
PA, USA. AAI3040487.

O. Chapelle, B. S. and Zien, A. (2006). Semi-Supervised Learning. MIT Press, Cambridge, MA,.

77



Pan, S. J., Ni, X., Sun, J.-T., Yang, Q., and Chen, Z. (2010). Cross-domain sentiment classifica-
tion via spectral feature alignment. In WWW, pages 751–760.

Pan, S. J. and Yang, Q. (2010). A survey on transfer learning. IEEE Trans. Knowl. Data Eng.,
22(10):1345–1359.

Raina, R., Ng, A. Y., and Koller, D. (2006). Constructing informative priors using transfer
learning. In ICML, pages 713–720.

Sindhwani, V., Hu, J., and Mojsilovic, A. (2008). Regularized co-clustering with dual supervi-
sion. In NIPS, pages 1505–1512.

Su, J., Shirab, J. S., and Matwin, S. (2011). Large scale text classification using semisupervised
multinomial naive bayes. In ICML, pages 97–104.

Tan, S., Cheng, X., Wang, Y., and Xu, H. (2009). Adapting naive bayes to domain adaptation for
sentiment analysis. In Proceedings of the 31th European Conference on IR Research on Advances
in Information Retrieval, ECIR ’09, pages 337–349, Berlin, Heidelberg. Springer-Verlag.

78



Proceedings of the First International Workshop on Optimization Techniques for Human Language Technology, pages 79–94,
COLING 2012, Mumbai, December 2012.

Optimization and Sampling for NLP from a Unified Viewpoint

Marc DYMETMAN1 Guillaume BOUCHARD1 Simon CARTER2

(1) Xerox Research Centre Europe, Grenoble, France
(2) ISLA, University of Amsterdam, The Netherlands

{marc.dymetman,guillaume.bouchard}@xrce.xerox.com; s.c.carter@uva.nl

Abstract

The OS* algorithm is a unified approach to exact optimization and sampling, based on
incremental refinements of a functional upper bound, which combines ideas of adaptive
rejection sampling and of A* optimization search. We first give a detailed description of
OS*. We then explain how it can be applied to several NLP tasks, giving more details on two
such applications: (i) decoding and sampling with a high-order HMM, and (ii) decoding and
sampling with the intersection of a PCFG and a high-order LM.

1 Introduction

Optimization and Sampling are usually seen as two completely separate tasks. However, in
NLP and many other domains, the primary objects of interest are often probability distributions
over discrete or continuous spaces, for which both aspects are natural: in optimization, we are
looking for the mode of the distribution, in sampling we would like to produce a statistically
representative set of objects from the distribution. The OS∗ algorithm approaches the two
aspects from a unified viewpoint; it is a joint exact Optimization and Sampling algorithm that is
inspired both by rejection sampling and by classical A∗ optimization (O S ∗).

Common algorithms for sampling high-dimensional distributions are based on MCMC techniques
[Andrieu et al., 2003, Robert and Casella, 2004], which are approximate in the sense that they
produce valid samples only asymptotically. By contrast, the elementary technique of Rejection
Sampling [Robert and Casella, 2004] directly produces exact samples, but, if applied naively to
high-dimensional spaces, typically requires unacceptable time before producing a first sample.

By contrast, OS∗ can be applied to high-dimensional spaces. The main idea is to upper-bound
the complex target distribution p by a simpler proposal distribution q, such that a dynamic
programming (or another low-complexity) method can be applied to q in order to efficiently
sample or maximize from it. In the case of sampling, rejection sampling is then applied to q,
and on a reject at point x , q is refined into a slightly more complex q′ in an adaptive way. This
is done by using the evidence of the reject at x , which implies a gap between q(x) and p(x), to
identify a (soft) constraint implicit in p which is not accounted for by q. This constraint is then
integrated into q to obtain q′.

The constraint which is integrated tends to be highly relevant and to increase the acceptance rate
of the algorithm. By contrast, many constraints that are constitutive of p are never “activated”
by sampling from q, because q never explores regions where they would become visible. For
example, anticipating our HMM experiments in section 3.1, there is little point in explicitly
including in q a 5-gram constraint on a certain latent sequence in the HMM if this sequence
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is already unlikely at the bigram level: the bigram constraints present in the proposal q will
ensure that this sequence will never (or very rarely) be explored by q.

The case of optimization is treated in exactly the same way as sampling. Formally, this consists
in moving from assessing proposals in terms of the L1 norm to assessing them in terms of the
L∞ norm. Typically, when a dynamic programming procedure is available for sampling (L1
norm) with q, it is also available for maximizing from q (L∞ norm), and the main difference
between the two cases is then in the criteria for selecting among possible refinements.

Related work In order to improve the acceptance rate of rejection sampling, one has to lower
the proposal q curve as much as possible while keeping it above the p curve. In order to do that,
some authors [Gilks and Wild, 1992, Görür and Teh, 2008], have proposed Adaptive Rejection
Sampling (ARS) where, based on rejections, the q curve is updated to a lower curve q′ with
a better acceptance rate. These techniques have predominantly been applied to continuous
distributions on the one-dimensional real line, where convexity assumptions on the target
distribution can be exploited to progressively approximate it tighter and tighter through upper
bounds consisting of piecewise linear envelopes. These sampling techniques have not been
connected to optimization.

One can find a larger amount of related work in the optimization domain. In an heuristic
optimization context the two interesting, but apparently little known, papers [Kam and Kopec,
1996, Popat et al., 2000], discuss a technique for decoding images based on high-order language
models where upper-bounds are constructed in terms of simpler variable-order models. Our
application of OS∗ in section 3.1 to the problem of maximizing a high-order HMM is similar to
their (also exact) technique; while this work seems to be the closest to ours, the authors do
not attempt to generalize their approach to other optimization problems amenable to dynamic
programming. Among NLP applications, [Kaji et al., 2010, Huang et al., 2012] are another
recent approach to exact optimization for sequence labelling that also has connections to
our experiments in section 3.1, but differs in particular by using a less flexible refinement
scheme than our variable-order n-grams. In the NLP community again, there is currently a
lot of interest for optimization methods that fall in the general category of “coarse-to-fine"
techniques [Petrov, 2009], which tries to guide the inference process towards promising regions
that get incrementally tighter and tighter. While most of this line of research concentrates
on approximate optimization, some related approaches aim at finding an exact optimum.
Thus, [Tromble and Eisner, 2006] attempt to maximize a certain objective while respecting
complex hard constraints, which they do by incrementally adding those constraints that are
violated by the current optimum, using finite-state techniques. [Riedel and Clarke, 2006]
have a similar goal, but address it by incrementally adding ILP (Integer Linear Programming)
constraints. Linear Programming techniques are also involved in the recent applications of Dual
Decomposition to NLP [Rush et al., 2010, Rush and Collins, 2011], which can be applied to
difficult combinations of easy problems, and often are able to find an exact optimum. None of
these optimization papers, to our knowledge, attempts to extend these techniques to sampling,
in contrast to what we do.

Paper organization The remainder of this paper is structured as follows. In section 2, we
describe the OS∗ algorithm, explain how it can be used for exact optimization and sampling,
and show its connection to A∗. In section 3, we first describe several NLP applications of the
algorithm, then give more details on two such applications. The first one is an application to
optimization/sampling with high-order HMMs, where we also provide experimental results;
the second one is a high-level description of its application to the generic problem of optimiza-
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tion/sampling with the intersection of a PCFG with a high-order language model, a problem
which has recently attracted some attention in the community. We finally conclude and indicate
some perspectives.

2 The OS* algorithm
OS∗ is a unified algorithm for optimization and sampling. For simplicity, we first present its
sampling version, then move to its optimization version, and finally get to the unified view. We
start with some background and notations about rejection sampling.

Note: The OS∗ approach was previously described in an e-print [Dymetman et al., 2012], where
some applications beyond NLP are also provided.

2.1 Background
Let p : X → R+ be a measurable L1 function with respect to a base measure µ on a space
X , i.e.
∫

X
p(x)dµ(x) < ∞. We define p̄(x) ≡ p(x)∫

X
p(x)dµ(x)

. The function p can be seen as

an unnormalized density over X , and p̄ as a normalized density which defines a probability
distribution over X , called the target distribution, from which we want to sample from1. While
we may not be able to sample directly from the target distribution p̄, let us assume that we can
easily compute p(x) for any given x . Rejection Sampling (RS) [Robert and Casella, 2004] then
works as follows. We define a certain unnormalized proposal density q over X , which is such
that (i) we know how to directly sample from it (more precisely, from q̄), and (ii) q dominates
p, i.e. for all x ∈ X , p(x)≤ q(x). We then repeat the following process: (1) we draw a sample
x from q, (2) we compute the ratio r(x)≡ p(x)/q(x)≤ 1, (3) with probability r(x) we accept
x , otherwise we reject it, (4) we repeat the process with a new x . It can then be shown that this
procedure produces an exact sample from p. Furthermore, the average rate at which it produces
these samples, the acceptance rate, is equal to P(X )/Q(X ) [Robert and Casella, 2004], where
for a (measurable) subset A of X , we define P(A)≡

∫
A

p(x)dµ(x) and Q(A)≡
∫

A
q(x)dµ(x). In

Fig. 1, panel (S1), the acceptance rate is equal to the ratio of the area below the p curve with
that below the q curve.

2.2 Sampling with OS∗

The way OS∗ does sampling is illustrated on the top of Fig. 1. In this illustration, we start
sampling with an initial proposal density q (see (S1)). Our first attempt produces x1, for which
the ratio rq(x1) = p(x1)/q(x1) is close to 1; this leads, say, to the acceptance of x1. Our second
attempt produces x2, for which the ratio rq(x2) = p(x2)/q(x2) is much lower than 1, leading,
say, to a rejection. Although we have a rejection, we have gained some useful information,
namely that p(x2) is much lower than q(x2), and we are going to use that “evidence” to define
a new proposal q′ (see (S2)), which has the following properties:

• p(x)≤ q′(x)≤ q(x) everywhere on X ;

• q′(x2)< q(x2).

One extreme way of obtaining such a q′ is to take q′(x) equal to p(x) for x = x2 and to q(x)
for x 6= x2, which, when the space X is discrete, has the effect of improving the acceptance rate,
but only slightly so, by insuring that any time q′ happens to select x2, it will accept it.

1By abuse of language, we will also say that a sample from p̄ is a sample from p.
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Figure 1: Sampling with OS∗ (S1, S2), and optimization with OS∗ (O1, O2).

A better generic way to find a q′ is the following. Suppose that we are provided with a
small finite set of “one-step refinement actions" a j , depending on q and x2, which are able to
move from q to a new q′j = a j(q, x2) such that for any such a j one has p(x) ≤ q′j(x) ≤ q(x)
everywhere on X and also q′j(x2)< q(x2). Then we will select among these a j moves the one
that is such that the L1 norm of q′j is minimal among the possible j’s, or in other words, such that∫

X
q′j(x)dµ(x) is minimal in j. The idea is that, by doing so, we will improve the acceptance

rate of q′j (which depends directly on ‖q′j‖1) as much as possible, while (i) not having to explore
a too large space of possible refinements, and (ii) moving to a representation of q′j that is only
slightly more complex than q, rather than to a much more complex representation for a q′ that
could result from exploring a larger space of possible refinements for q.2 The intuition behind
such one-step refinement actions a j will become clearer when we consider concrete examples
below.

2.3 Optimization with OS∗

The optimization version of OS∗ is illustrated on the bottom of Fig. 1, where (O1) shows on
the one hand the function p that we are trying to maximize from, along with its (unknown)
maximum p∗, indicated by a black circle on the p curve, and corresponding to x∗ in X . It also
shows a “proposal” function q which is such — analogously to the sampling case — that (1) the

2In particular, even if we could find a refinement q′ that would exactly coincide with p, and therefore would have the
smallest possible L1 norm, we might not want to use such a refinement if this involved an overly complex representation
for q′.
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function q is above p on the whole of the space X and (2) it is easy to directly find the point x1
in X at which it reaches its maximum q∗, shown as a black circle on the q curve.

A simple, but central, observation is the following one. Suppose that the distance between
q(x1) and p(x1) is smaller than ε, then the distance between q(x1) and p∗ is also smaller than
ε. This can be checked immediately on the figure, and is due to the fact that on the one hand
p∗ is higher than p(x1), and that on the other hand it is below q(x∗), and a fortiori below q(x1).
In other words, if the maximum that we have found for q is at a coordinate x1 and we observe
that q(x1)− p(x1)< ε, then we can conclude that we have found the maximum of p up to ε.

In the case of x1 in the figure, we are still far from the maximum, and so we “reject” x1, and
refine q into q′ (see (O2)), using exactly the same approach as in the sampling case, but for one
difference: the one-step refinement option a j that is selected is now chosen on the basis of how
much it decreases, not the L1 norm of q, but the max of q — where, as a reminder, this max
can also be notated ‖q‖∞, using the L∞ norm notation.3

Once this q′ has been selected, one can then find its maximum at x2 and then the process can
be repeated with q1 = q, q2 = q′, ... until the difference between qk(xk) and p(xk) is smaller
than a certain predefined threshold.

2.4 Sampling L1 vs. Optimization L∞
While sampling and optimization are usually seen as two completely distinct tasks, they can
actually be viewed as two extremities of a continuous range, when considered in the context of
Lp spaces.

If (X ,µ) is a measure space, and if f is a real-valued function on this space, one defines the Lp

norm ‖ f ‖p, for 1≤ p <∞ as: ‖ f ‖p ≡
�∫

X
| f |p(x)dµ(x)
�1/p

[Rudin, 1987]. One also defines
the L∞ norm ‖ f ‖∞ as: ‖ f ‖∞ ≡ inf{C ≥ 0 : | f (x)| ≤ C for almost every x}, where the right
term is called the essential supremum of | f |, and can be thought of roughly as the “max” of the
function. So, with some abuse of language, we can simply write: ‖ f ‖∞ ≡maxx∈X | f |. The space
Lp, for 1 ≤ p ≤∞, is then defined as being the space of all functions f for which ‖ f ‖p <∞.
Under the simple condition that ‖ f ‖p <∞ for some p <∞, we have: limp→∞ ‖ f ‖p = ‖ f ‖∞.

The standard notion of sampling is relative to L1. However we can introduce the following
generalization — where we use the notation Lα instead of Lp in order to avoid confusion with
our use of p for denoting the target distribution. We will say that we are performing sampling of
a non-negative function f relative to Lα(X ,µ), for 1≤ α <∞, if f ∈ Lα(X ,µ) and if we sample
— in the standard sense — according to the normalized density distribution f̄ (x)≡ f (x)α∫

X
f (x)αdµ(x)

.

In the case α=∞, we will say that we are sampling relative to L∞(X ,µ), if f ∈ L∞(X ,µ) and
if we are performing optimization relative to f , more precisely, if for any ε > 0, we are able to
find an x such that |‖ f ‖∞ − f (x)|< ε.
Informally, sampling relative to Lα “tends” to sampling with L∞ (i.e. optimization), for α
tending to∞, in the sense that for a large α, an x sampled relative to Lα “tends” to be close to
a maximum for f . We will not attempt to give a precise formal meaning to that observation
here, but just note the connection with the idea of simulated annealing [Kirkpatrick et al.,

3A formal definition of that norm is that ‖q‖∞ is equal to the “essential supremum” of q over (X ,µ) (see below), but
for all practical purposes here, it is enough to think of this essential supremum as being the max, when it exists.
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1983], which we can view as a mix between the MCMC Metropolis-Hastings sampling technique
[Robert and Casella, 2004] and the idea of sampling in Lα spaces with larger and larger α’s.

In summary, we thus can view optimization as an extreme form of sampling. In the sequel we
will often use this generalized sense of sampling in our algorithms.4

2.5 OS∗ as a unified algorithm

The general design of OS∗ can be described as follows:

• Our goal is to OS-sample from p, where we take the expression “OS-sample” to refer to a
generalized sense that covers both sampling (in the standard sense) and optimization.

• We have at our disposal a family Q of proposal densities over the space (X ,µ), such that,
for every q ∈Q, we are able to OS-sample efficiently from q.

• Given a reject x1 relative to a proposal q, with p(x1)< q(x1), we have at our disposal a
(limited) number of possible “one-step” refinement options q′, with p ≤ q′ ≤ q, and such
that q′(x1)< q(x1).

• We then select one such q′. One possible selection criterion is to prefer the q′ which
has the smallest L1 norm (sampling case) or L∞ norm (optimization). In one sense,
this is the most natural criterion, as it means we are directly lowering the norm that
controls the efficiency of the OS-sampling. For instance, for sampling, if q′1 and q′2 are two
candidates refinements with ‖q′1‖1 < ‖q′2‖1, then the acceptance rate of q′1 is larger than
that of q′2, simply because then P(X )/Q′1(X )> P(X )/Q′2(X ). Similarly, in optimization, if
‖q′1‖∞ < ‖q′2‖∞, then the gap between maxx(q′1(x)) and p∗ is smaller than that between
maxx(q′2(x)) and p∗, simply because then maxx(q′1(x))<maxx(q′2(x)). However, using
this criterion may require the computation of the norm of each of the possible one-step
refinements, which can be costly, and one can prefer simpler criteria, for instance simply
selecting the q′ that minimizes q′(x1).

• We iterate until we settle on a “good” q: either (in sampling) one which is such that
the cumulative acceptance rate until this point is above a certain threshold; or (in
optimization) one for which the ratio p(x1)/q(x1) is closer to 1 than a certain threshold,
with x1 being the maximum for q.

The following algorithm gives a unified view of OS∗, valid for both sampling and optimization.
This is a high-level view, with some of the content delegated to the subroutines OS-Sample,
Accept-or-Reject, Update, Refine, Stop, which are described in the text.

4Note: While our two experiments in section ?? are based on discrete spaces, the OS∗ algorithm is more general, and
can be applied to any measurable space (in particular continuous spaces); in such cases, p and q have to be measurable
functions, and the relation p ≤ q should be read as p(x)≤ q(x) a.e. (almost everywhere) relative to the base measure
µ.
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Algorithm 1 The OS∗ algorithm

1: while not Stop(h) do
2: OS-Sample x ∼ q
3: r ← p(x)/q(x)
4: Accept-or-Reject(x , r)
5: Update(h, x)
6: if Rejected(x) then
7: q ← Refine(q, x)
8: return q along with accepted x ’s in h

On entry into the algorithm, we assume that we are either in sample mode or in optimization
mode, and also that we are starting from a proposal q which (1) dominates p and (2) from
which we can sample or optimize directly. We use the terminology OS-Sample to represent either
of these cases, where OS-Sample x ∼ q refers to sampling an x according to the proposal q or
optimizing x on q (namely finding an x which is an argmax of q, a common operation for many
NLP tasks), depending on the case. On line (1), h refers to the history of the sampling so far,
namely to the set of trials x1, x2, ... that have been done so far, each being marked for acceptance
or rejection (in the case of sampling, this is the usual notion, in the case of optimization, all but
the last proposal will be marked as rejects). The stopping criterion Stop(h) will be to stop: (i)
in sampling mode, if the number of acceptances so far relative to the number of trials is larger
than a certain predefined threshold, and in this case will return on line (8), first, the list of
accepted x ’s so far, which is already a valid sample from p, and second, the last refinement q,
which can then be used to produce any number of future samples as desired with an acceptance
ratio similar to the one observed so far; (ii) in optimization mode, if the last element x of the
history is an accept, and in this case will return on line (8), first the value x , which in this mode
is the only accepted trial in the history, and second, the last refinement q (which can be used
for such purposes as providing a “certificate of optimality of x relative to p”, but we do not
detail this here).

On line (3), we compute the ratio r, and then on line (4) we decide to accept x or not based on
this ratio; in optimization mode, we accept x if the ratio is close enough to 1, as determined by
a threshold5; in sampling mode, we accept x based on a Bernoulli trial of probability r.

On line (5), we update the history by recording the trial x and whether it was accepted or not.

If x was rejected (line (6)), then on line (7), we perform a refinement of q, based on the
principles that we have explained.

2.6 A connection with A*

A special case of the OS∗ algorithm, which we call “OS∗ with piecewise bounds”, shows a deep
connection with the classical A∗ optimization algorithm [Hart et al., 1968] and is interesting in
its own right. Let us first focus on sampling, and suppose that q0 represents an initial proposal
density, which upper-bounds the target density p over X . We start by sampling with q0, and on
a first reject somewhere in X , we split the set X into two disjoint subsets X1, X2, obtaining a
partition of X . By using the more precise context provided by this partition, we may be able

5When X is a finite domain, it makes sense to stop on a ratio equal to 1, in which case we have found an exact
maximum. This is what we do in our experiments in section 3.1.
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Figure 2: A connection with A∗.

to improve our upper bound q0 over the whole of X into tighter upper bounds on each of X1
and X2, resulting then in a new upper bound q1 over the whole of X . We then sample using q1,
and experience at some later time another reject, say on a point in X1; at this point we again
partition X1 into two subsets X11 and X12, tighten the bounds on these subsets, and obtain a
refined proposal q2 over X ; we then iterate the process of building this “hierarchical partition”
until we reach a certain acceptance-rate threshold.

If we now move our focus to optimization, we see that the refinements that we have just
proposed present an analogy to the technique used by A∗. This is illustrated in Fig. 2. In A∗, we
start with a constant optimistic bound — corresponding to our q0 — for the objective function
which is computed at the root of the search tree, which we can assume to be binary. We then
expand the two daughters of the root, re-evaluate the optimistic bounds there to new constants,
obtaining the piecewise constant proposal q1, and move to the daughter with the highest bound.
We continue by expanding at each step the leaf of the partial search tree with the highest
optimistic bound (e.g. moving from q1 to q2, etc.).

It is important to note that OS∗, when used in optimization mode, is in fact strictly more general
than A∗, for two reasons: (i) it does not assume a piecewise refinement strategy, namely that
the refinements follow a hierarchical partition of the space, where a given refinement is limited
to a leaf of the current partition, and (ii) even if such a stategy is followed, it does not assume
that the piecewise upper-bounds are constant. Both points will become clearer in the HMM
experiments of section 3.1, where including an higher-order n-gram in q has impact on several
regions of X simultaneously, possibly overlapping in complex ways with regions touched by
previous refinements; in addition, the impact of a single n-gram is non-constant even in the
regions it touches, because it depends of the multiplicity of the n-gram, not only on its presence
or absence.

3 Some NLP applications of OS∗

The OS∗ framework appears to have many applications to NLP problems where we need to
optimize or sample from a complex objective function p. Let us give a partial list of such
situations:

• Efficient decoding and sampling with high-order HMM’s.

• Combination of a probabilistic context free grammar (PCFG) with a complex finite-state
automaton (FSA):
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– Tagging by joint usage of a PCFG and a HMM tagger;

– Hierarchical translation with a complex target language model

• Parsing in the presence of non-local features.

• PCFG’s with transversal constraints, probabilistic unification grammars.

We will not explore all of these situations here, but will concentrate on (i) decoding and
sampling with high-order HMM’s, for which we provide details and experimental results, and
(ii) combining a PCFG with a complex finite-state language model, which we only describe at
a high-level. We hope these two illustrations will suffice to give a feeling of the power of the
technique.

3.1 High-Order HMMs

Note: An extended and much more detailed version of these HMM experiments is provided in
[Carter et al., 2012].

The objective in our HMM experiments is to sample a word sequence with density p̄(x)
proportional to p(x) = plm(x) pobs(o|x), where plm is the probability of the sequence x under
an n-gram model and pobs(o|x) is the probability of observing the noisy sequence of observations
o given that the word sequence is x . Assuming that the observations depend only on the current
state, this probability can be written:

p(x) =
∏̀
i=1

plm(x i |x i−1
i−n+1) pobs(oi |x i) . (1)

Approach Taking a tri-gram language model for simplicity, let us define w3(x i |x i−2 x i−1) =
plm(x i |x i−2 x i−1) pobs(oi |x i). Then consider the observation o be fixed, and write p(x) =∏

i w3(x i |x i−2 x i−1). In optimization/decoding, we want to find the argmax of p(x), and in
sampling, to sample from p(x). Note that the state space associated with p can be huge, as we
need to represent explicitly all contexts (x i−2, x i−1) in the case of a trigram model, and even
more contexts for higher-order models.

We define w2(x i |x i−1) = maxx i−2
w3(x i |x i−2 x i−1), along with w1(x i) = maxx i−1

w2(x i |x i−1),
where the maxima are taken over all possible context words in the vocabulary. These quantities,
which can be precomputed efficiently, can be seen as optimistic “max-backoffs” of the trigram
x i

i−2, where we have forgotten some part of the context. Our initial proposal is then q0(x) =∏
i w1(x i). Clearly, for any sequence x of words, we have p(x)≤ q0(x). The state space of q0

is much less costly to represent than that of p(x).

The proposals qt , which incorporate n-grams of variable orders, can be represented efficiently
through weighted FSAs (WFSAs). In Fig. 3(a), we show a WFSA representing the initial proposal
q0 corresponding to an example with four observations, which we take to be the acoustic
realizations of the words ‘the, two, dogs, barked’. The weights on edges correspond only to
unigram max-backoffs, and thus each state corresponds to a NULL-context. Over this WFSA,
both optimization and sampling can be done efficiently by the standard dynamic programming
techniques (Viterbi [Rabiner, 1989] and “backward filtering-forward sampling” [Scott, 2002]),
where the forward weights associated to states are computed similarly, either in the max-product
or in the sum-product semiring.
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Figure 3: An example of an initial q-automaton (a), and its refinement (b).

Consider first sampling, and suppose that the first sample from q0 produces x1 = the two dog
barked, marked with bold edges in the drawing. Now, computing the ratio p(x1)/q0(x1) gives
a result much smaller than 1, in part because from the viewpoint of the full model p, the
trigram the two dog is very unlikely; i.e. the ratio w3(dog|the two)/w1(dog) is very low. Thus,
with high probability, x1 is rejected. When this is the case, we produce a refined proposal q1,
represented by the WFSA in Fig. 3(b), which takes into account the more realistic bigram weight
w2(dog|two) by adding a node (node 6) for the context two. We then perform a sampling trial
with q1, which this time tends to avoid producing dog in the context of two; if we experience a
reject later on some sequence x2, we refine again, meaning that we identify an n-gram in x2,
which, if we extend its context by one (e.g from a unigram to a bigram or from a bigram to a
trigram), accounts for some significant part of the gap between q1(x2) and p(x2). We stop the
refinement process when we start observing acceptance rates above a certain fixed threshold.

The case of optimization is similar. Suppose that with q0 the maximum is x1 = the two dog
barked, then we observe that p(x1) is lower than q0(x1), reject x1 and refine q0 into q1. We
stop the process at the point where the value of qt , at its maximum xqt

, is equal to the value of
p at xqt

, which implies that we have found the maximum for p.

Setup We evaluate our approach on an SMS-message retrieval task. Let N be the number
of possible words in the vocabulary. A latent variable x ∈ {1, · · · , N}` represents a sentence
defined as a sequence of ` words. Each word is converted into a sequence of numbers based on
a mobile phone numeric keypad, assuming some level of random noise in the conversion. The
task is then to recover the original message.

We use the English side of the Europarl corpus [Koehn, 2005] for training and test data (1.3
million sentences). A 5-gram language model is trained using SRILM [Stolcke, 2002] on 90%
of the sentences. On the remaining 10%, we randomly select 100 sequences for lengths 1 to 10
to obtain 1000 sequences from which we remove the ones containing numbers, obtaining a test
set of size 926.

Optimization We limit the average number of latent tokens in our decoding experiments to
1000. In the plot (d1) of Fig. 4 we show the average number of iterations (running Viterbi then
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Figure 4: SMS experiments.

updating q) that the different n-gram models of size 3, 4 and 5 take to do exact decoding of
the sentences of fixed length (10 words) in the test-set. We can see that decoding with larger
n-gram models tends to show a linear increase w.r.t. n in the number of iterations taken. Plot
(d2) shows the average number of states in the final automaton q for the same sentences, also
showing a linear increase with n (rather than the exponential growth expected if all the possible
states were represented). We also display in Table 1 the distribution of n-grams in the final
model for one specific sentence of length 10. Note that the total number of n-grams in the full
model would be ∼3.0×1015; exact decoding here is not tractable using existing techniques. By
comparison, our HMM has only 118 five-grams and 9008 n-grams in total.

n: 1 2 3 4 5
q: 7868 615 231 176 118

Table 1: # of n-grams in our variable-order HMM.

Sampling For the sampling experiments, we limit the number of latent tokens to 100. We
refine our q automaton until we reach a certain fixed cumulative acceptance rate (AR). We also
compute a rate based only on the last 100 trials (AR-100), as this tends to better reflect the
current acceptance rate. In plot (s3) of Fig. 4, we show a single sampling run using a 5-gram
model for an example input, and the cumulative # of accepts (middle curve). It took 500
iterations before the first successful sample from p.

We noted that there is a trade-off between the time needed to compute the forward probability
weights needed for sampling, and the time it takes to adapt the variable-order HMM. To resolve
this, we use batch-updates: making B trials from the same q-automaton, and then updating our
model in one step. By doing this, we noted significant speed-ups in sampling times. Empirically,
we found B = 100 to be a good value, leading to an order of magnitude improvement in speed.
In plots (s1) and (s2), we show the average # of iterations and states in our models until
refinements are finished (for an AR-100 of 20%), for different orders n over sentences of length
10 in the test set. We note linear trends in the number of iterations and states when moving
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to higher n; for length=10, and for n= 3,4,5, average number of iterations: 3-658, 4-683,
5-701; averager number of states: 3-1139, 4-1494, 5-1718. In particular the number of states
is again much lower than the exponential increase we would expect if using the full underlying
state space.

3.2 OS∗ for intersecting PCFG’s with high-order LM’s

We now move to a high-level description of the application of OS∗ to an important class of
problems (including hierarchical SMT) which involve the intersection of PCFG’s with high-order
language models. The study of similar “agreement-based” problems involving optimization (but
not sampling) over a combination of two individual tasks have recently been the focus of a lot
of attention in the NLP community, in particular with the application of dual decomposition
methods [Rush et al., 2010, Rush and Collins, 2011, Chang and Collins, 2011]. We only sketch
the main ideas of our approach.

A standard result of formal language theory is that the intersection of a CFG with a FSA is a CFG
[Bar-Hillel et al., 1961]. This construct can be generalized to the intersection of a Weighted
CFG (WCFG) with a WFSA (see e.g. [Nederhof and Satta, 2003]), resulting in a WCFG. In our
case, we will be interested in optimizing and sampling from the intersection p of a PCFG6 G
with a complex WFSA A representing a high-order language model. For illustration purposes
here, we will suppose that A is a trigram language model, but the description can be easily
transposed to higher-order cases.

Let us denote by x a derivation in G, and by y = y(x) the string of terminal leaves associated
with x (the “yield” of the derivation x). The weighted intersection p of G and A is defined as:
p(x)≡ G(x).A(x), where A(x) is a shorthand for A(y(x)).

Due to the intersection result, p can in principle be represented by a WCFG, but for a trigram
model A, this grammar can become very large. Our approach will then be the following: we
will start by taking the proposal q(0) equal to G, and then gradually refine this proposal by
incorporating more and more accurate approximations to the full automaton A, themselves
expressed as weighted automata of small complexity. We will stop refining based on having
found a good enough approximation in optimization, or a sampler with sufficient acceptance
rate in sampling.

To be precise, let us consider a PCFG G, with
∑

x G(x) = 1, where x varies among all the finite
derivations relative to G.7 Let us first note that it is very simple to sample from G: just expand
derivations top-down using the conditional probabilities of the rules. It is also very easy to find
the derivation x of maximum value G(x) by a standard dynamic programming procedure.

We are going to introduce a sequence of proposals q(0) = G, q(1) = q(0).B(1), ..., q(i+1) =
q(i).B(i+1), ..., where each B(i) is a small automaton including some additional knowledge
about the language model represented by A. Each q(i) will thus be a WCFG (not normalized)
and refining q(i) into q(i+1) will then consist of a “local” update of the grammar q(i), ensuring a
desirable incrementality of the refinements.

Analogous to the HMM case, we define: w3(x5|x3 x4) = maxx2
w4(x5|x2 x3 x4), w2(x5|x4) =

maxx3
w4(x5|x3 x4), and w1(x5) =maxx4

w4(x5|x4).

6A Probabilistic CFG (PCFG) is a special case of a WCFG.
7Such a PCFG is said to be consistent, that is, it is such that the total mass of infinite derivations is null [Wetherell,

1980]. We do not go into the details of this (standard) assumption here.

90



TwoDog1 

0 1 
two dog 

else 

else 

two 

 

1 

1 

1 

1 

Figure 5: The “TwoDog” automaton.

Let’s first consider the optimization case, and suppose that, at a certain stage, the grammar q(i)

has already “incorporated” knowledge of w1(dog). Then suppose that the maximum derivation
x (i) = argmax(i)(x) has the yield: the two dog barked, where w1(dog) is much larger than the
more accurate w2(dog|two).

We then decide to update q(i) into q(i+1) = q(i).B(i+1), where B(i+1) represents the additional
knowledge corresponding to w2(dog|two). More precisely, let us define:

α≡ w2(dog|two)
w1(dog)

.

Clearly α ≤ 1 by the definition of w1, w2. Now consider the following two-state automaton
B(i+1), which we will call the “TwoDog” automaton:

In this automaton, the state (0) is both initial and final, and (1) is only final. The state (1) can
be interpreted as meaning “I have just produced the word two”. All edges carry a weight of 1,
apart from the edge labelled dog, which carries a weight of α. The “else” label on the arrow
from (0) to itself is a shorthand that means: “any word other than two”, and the “else” label on
the arrow from (1) to (0) has the meaning: “any word other than dog or two”.

It can be checked that this automaton has the following behavior: it gives a word sequence the
weight αk, where k is the number of times the sequence contains the subsequence two dog.

Thus, when intersected with the grammar q(i), this automaton produces the grammar q(i+1),
which is such that q(i+1)(x) = q(i)(x) if the yield of x does not contain the subsequence two dog,
but such that q(i+1)(x) = αk.q(i)(x) if it contains this subsequence k times. Note that because
q(i) had already “recorded” the knowledge about w1(dog), it now assigns to the word dog in
the context of two the weight w2(dog|two) = w1(dog).α, while it still assigns to it in all other
contexts the weight w1(dog), as desired.8

We will not go here into the detailed mechanics of intersecting the automaton “TwoDog” with the
WCFG q(i), (see [Nederhof and Satta, 2008] for one technique), but just note that, because this
automaton only contains two states and only one edge whose weight is not 1, this intersection
can be carried efficiently at each step, and will typically result in very local updates of the
grammar.

8Note: Our refinements of section 3.1 might also have been seen as intersections between a weighted FSA (rather
than a weighted CFG) and a “local” automaton similar to “TwoDog”, but their implementation was more direct.
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Figure 6: The “TwoNiceDog” automaton.

Higher-order n-grams can be registered in the grammar in a similar way. For instance, let’s sup-
pose that we have already incorporated in the grammar the knowledge of w2(dog|nice) and that
we now wish to incorporate the knowledge of w3(dog|two nice), we can now use the following
automaton (“TwoNiceDog” automaton), where β = w3(dog|two nice)/w2(dog|nice):

For optimization, we thus find the maximum x (i) of each grammar q(i), check the ratio
p(x (i))/q(i)(x (i)), and stop if this ratio is close enough to 1. Else, we choose an n-gram in
x (i) which is not yet registered and would significantly lower the proposal q(i)(x (i)) if added,
build the automaton corresponding to this n-gram, and intersect this automaton with q(i).

Sampling is done in exactly the same way, the difference being that we now use dynamic
programming to compute the sum of weights bottom-up in the grammars q(i), which is really a
matter of using the sum-product semiring instead of the max-product semiring.

4 Conclusion

In this paper, we have argued for a unified viewpoint for heuristic optimization and rejection
sampling, by using functional upper-bounds for both, and by using rejects as the basis for
reducing the gap between the upper-bound and the objective. Bringing together Optimization
and Sampling in this way permits to draw inspirations (A∗ Optimization, Rejection Sampling)
from both domains to produce the joint algorithm OS∗.

In particular, the optimization mode of OS∗, which is directly inspired by rejection sampling,
provides a generic exact optimization technique which appears to be more powerful than A∗ (as
argued in section 2.6), and to have many potential applications to NLP distributions based on
complex features, of which we detailed only two: high-order HMMs, and an agreement-based
model for the combination of a weighted CFG with a language model. As these examples
illustrate, often the same dynamic programming techniques can be used for optimization and
sampling, the underlying representations being identical, the difference being only a change of
semiring.

Both optimization and sampling are prominent questions in NLP generally, in the contexts of
inference as well as of learning. In particular, we are currently working on applying these
techniques to decoding and training tasks for phrase-based and also hierarchical statistical
machine translation.
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ABSTRACT 

This paper presents an iterative approach to extracting Chinese terms. Unlike the traditional 

approach to extracting Chinese terms, which requires the assistance of a dictionary, the proposed 

approach exploits the Support Vector Machine classifier which learns the extraction rules from 

the occurrences of a single popular term in the corpus. Additionally, we have designed a very 

effective feature set and a systematic approach for selecting the positive and negative samples as 

the source of training. An ancient Chinese corpus, Chinese Buddhist Texts, was taken as the 

experiment corpus. According to our experiment results, the proposed approach can achieve a 

very competitive result in comparison with the Chinese Knowledge and Information Processing 

(CKIP) system from Academia Sinica. 

  

KEYWORDS : Chinese Term Extraction, Iterative Term Extraction, Support Vector Machine 

(SVM), Contextual Information, Single String Term Extraction. 
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1 Introduction 

Chinese Term Extraction (CTE) is a fundamental issue in Chinese natural language processing 

studies. Existing research on term extraction evolved from two different types of corpora: pure-

text corpora and labeled corpora (L.-F. Chien, 1997). In addition to the pure text, the labeled 

corpora contain an abundance of known information, such as terms, parts of speech, or even the 

syntactic tree structure. Grammar-based term extraction approaches are conventionally used with 

a labeled corpus (L.-F. Chien, 1997), and character-statistics-based term extraction approaches 

are usually used with pure-text corpora. However, both existing term extraction approaches need 

additional known information, prepared as supplements, which are independent from the corpus 

itself, and on principle, the more known information is prepared, the better the quality of the 

extracted terms. For instance, terms and part-of-speech labels within labeled corpora and 

dictionaries for verifying candidate terms found during the process of extracting terms from a 

pure-text corpus are usually additional prepared information. 

Because all existing studies require more known information, this paper proposes the design of a 

process that extracts terms from a pure-text corpus without any additional information, especially 

known terms. In order to extract terms without a dictionary or other supplemental information, 

we introduce an iterative machine-learning term-extraction process. In this process, a Support 

Vector Machine (SVM) is exploited as the core of our learning mechanism. In order to extract 

terms starting from one specified term, the first step of our proposed approach is to generate the 

positive and negative examples with the one specified term and train an optimized SVM 

classification model with the proposed “term features” from an experimental corpus. Then, we 

can use the model to extract terms from the same corpus. In the iterative process, the previous 

results of the SVM term extraction are prepared as the training samples for the next SVM term 

extraction iteration. In our experiment, we specified one popular term as the initial learning 

sample and revealed the increasing rate of extracted terms of each iteration. The performance 

evaluation of the proposed approach was achieved by comparing the terms extracted using the 

iterative process with the terms verified by experts in chosen paragraphs from the experimental 

corpus. 

In previous works, machine-learning algorithms have been used in many term-extraction studies. 

However, they have all extracted from labeled corpora with abundant known information (details 

are in the “Related Works” section). On the other hand, the concept of using an iterative process 

also has been proposed in other term-extraction research. For instance, the iterative model has 

been adopted by researchers studying the Sinica Corpus(Institute of Information Science and 

CKIP group in Academia Sinica, Since 1990). They used a segmentation tool to increase the term 

database, and then they further enhanced the segmentation tool with a larger term database. In 

our iterative approach, we have addressed a very extreme situation: starting from a single 

specified term. 

In order to focus on the proposed idea of generating a learning sample, adding a contextual 

information extension, and developing an iterative extraction process, we executed the bi-gram 

CTE on a Middle Ages Chinese corpus, because bi-gram terms are the major part of Chinese 

texts (A. Chen, He, Xu, Gey, & Meggs, 1997) and also of the corpus used in our experiment
1
. 

                                                           
1 The book index of the corpus we used for our experiment  [15] listed 404 uni-gram terms, 2678 bi-gram terms,  
2227 tri-gram terms, 2404 quadri-gram terms, and 3334 other terms.  
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From the perspective of the machine-learning approach, terms with different lengths in a CTE 

might have some unique features that provide better classification results, and we leave studying 

these to our future work. 

2 Related Works 

Existing CTE research developed from studies using two types of corpora: labeled corpora and 

pure-text corpora. Labeled corpora are word-segmented corpora and usually contain abundant 

grammar information, such as parts of speech and even syntactic structures. The major purpose of 

a labeled-corpus CTE is to identify unknown words, also called out-of-vocabulary (OOV) terms, 

and to solve word-segmentation mistakes caused by natural language ambiguity problems in a 

corpus. Because labeled corpora contain grammar information, labeled-corpus CTE studies 

usually applied the grammar-based approaches. Other studies conducted serial unknown word 

identification on the Sinica Corpus (Sinica, Since 1990) using morphology rules (K.-J. Chen & 

Bai, 1998; K.-J. Chen & Ma, 2002; Ma & Chen, 2003). 

The other type of corpora is pure-text corpora, which are growing with increased usage of text 

digitization and the World-Wide Web. The purpose of conducting a CTE on pure-text corpora is 

to recognize keywords, key phrases (L.-F. Chien, 1997; L. Chien, 1999), or domain-specific 

terms in a specific corpus. Because pure-text corpora are not accompanied by additional known 

information, character statistic-based approaches were usually used for CTEs of pure-text corpora. 

Therefore, many statistical patterns of Chinese terms have been proposed. For example, Chien’s 

“Completed Lexicon Pattern” (L.-F. Chien, 1997) is a simple and effective design of Chinese 

terms in context, in which association and left and right context dependency were included. 

2.1 Existing Machine-Learning Algorithms Used for Term Extraction 

Many machine-learning algorithms are used in the study of CTE. The Hidden Markov Model 

(HMM) was used widely, because it is effective for modeling natural languages. Yu et al. (Yu, 

Zhang, Liu, Lv, & Shi, 2006) used different layers of HMMs to identify names of people, 

locations, and organizations in the ICTCLAS (Institute of Computing Technology Chinese 

Academy of Sciences, Since 2002) corpus. Cen et al. trained dual HMMs—a POS labeling model 

and a term boundary labeling model—to extract domain-specific terms (Cen, Han, & Ji, 2008). 

Xie et al. used a lexical chain of semantic relationships to extract key phrases from news-oriented 

Web pages (Xie, Wu, Hu, & Wang, 2008). However, all of the existing CTE research applied 

HMMs on labeled corpora, because labeled corpora have additional information, such as parts of 

speech or semantic relationships, which correspond to node-state patterns in the HMM. 

Another popular machine learning algorithm used for CTE is the Support Vector Machine (SVM). 

Different from an HMM, the SVM is a multi-vector classification algorithm (Boser, Guyon, & 

Vapnik, 1992), and it is also a 2-phrase algorithm that employs a model-training phrase and a 

model-using (predicting) phrase. The major task of using the SVM is selecting a learning sample 

and a sample feature. Several researchers have used the SVM for CTE with the CoNLL-2000 

Chunking Corpus (Sang & Buchholz, 2000): Goh used the SVM for recognizing person’s names 

(Ling, Asahara, & Matsumoto, 2003). It used family names, contextual chunked marks and parts 

of speech as sample features. Li et al. extracted bi-gram and tri-gram terms using the SVM (Li, 

Huang, Gao, & Fan, 2005). The sample features they used were in-word probability of a 

character (IWP), analogy to new words, anti-word list, and frequency. The previously mentioned 
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CTE research studies still conducted extraction with a labeled corpus. However, this paper 

proposes a process to extract terms in a pure-text corpus using the SVM, and it also proposes a 

method of selecting a learning sample and a feature without additional known information. 

3 Iterative Machine-Learning Term Extraction 

Under the precondition of performing extraction without known information other than texts, the 

first problem in this machine-learning extraction process is how to generate sufficient number of 

good representational learning samples and sample features from a closed corpus. This section 

introduces a “negative sample selection” process, which fulfills the need to have a high capacity 

of differentiation in the known information. Also, a sufficient number of contextual lexicon 

parameters were added into the sample features in order to heighten the differentiation ability of 

the known information.  

When considering the iterative process, we designed the process to increase the number of 

learning samples by filtering the extraction results during each iteration of the process. Therefore, 

this section will discuss three iterative issues: initial learning sample selection, iterative learning 

sample filtering, and the last convergence conditions of the entire iterative process.  

3.1 Structure of the Iterative Machine-Learning Term-Extraction Process 

There are six steps within the three phases of the iterative machine-learning term extraction 

process (see numbers 1 through 6 in the chart below). The first phase, also Step 1, is the initial 

selection of known information, the one known term. The second phase, the SVM machine-

learning term extraction, includes Steps 2, 3, and 4. In Step 2, the SVM input dataset, in which 

data is in the form of positive/negative sample-features, is transformed and generated from the 

known information. The output of Step 3, SVM model training, is a sample classification model, 

which is used in step 4, SVM predicting, to extract terms from unknown strings in the corpus. 

Unknown strings, in the bi-gram extraction process, are all bi-gram strings in the corpus, and all 

unknown strings also need to be translated into a sample-features dataset for SVM predicting. 

The iterative process stops when the increase of the term sizes between two subsequent SVM 

outputs is less than 2%, and it is checked in Step 5. For the next round of the iterative extraction 

process, Step 6 filters out initial known terms from the SVM output terms. The third phrase, 

evaluation, starts when the iterative process stops. The evaluation method compares the extracted 

terms from the iterative process with verified terms by experts and judges their precision, recall 

rate, and f-measure. The iterative processing chart is depicted in Figure 1. 

3.2 Initial Known Information Selection 

In Step 1, initial selection, the most frequent term in the corpus used in the experiment was 

selected as the initial known term. Although there was only one initial term, the available number 

of actual learning samples is the same as the word frequency of the initial term, because learning 

samples are contextually dependent. In this way, we were able to ensure the appropriate size of 

the initial learning samples. 
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FIGURE 1 – The iterative machine-learning term-extraction process 

3.3 Sample-feature Generation 

Sample-feature Generation, step 2, generates learning samples from the initial known term(s) and 

feature parameters from each learning sample. There are three main components of sample-

feature generation: (1) positive and negative learning sample generation, (2) lexicon features 

selection, and (3) contextual information extension. 

3.3.1 Positive and Negative Sample Selection. 

In this term extraction process, learning samples include positive samples and negative samples. 

Positive samples are the strings in which selected initial term(s) are located in a corpus. Negative 

samples are the new strings produced from shifting one character to the right or to the left in the 

context of the positive samples. In this way, every positive sample typically comes with two 

negative samples, and this can increase the number of learning samples, which is beneficial for 

the processing of the SVM classification algorithm. More importantly, shifting one character in 

context can break the lexicon pattern of the original sample, and this fulfills the need to have a 

high capacity of differentiation within the learning samples. Figure 2 shows a positive sample 

and its two negative sample selections. 

A B R1 R2L1L2

A BA bi-gram term ->

Two Negative Samples ->

The context of a match ->

One Positive Sample -> A B R1 R2L1L2

A B R1L1L2

A B R1 R2L1

L3

R3

 

FIGURE 2 – Positive and negative sample selection 

99



3.3.2 Features Selection  

There are 10 types of features chosen for a learning sample in this extraction process, including 

frequency, the number of distinct characters to the left and right of the learning sample, the 

number of breaking symbols (non-Chinese characters and paragraph marks) to the left and right 

of the learning sample, association, and the usage of freedom to the left and right of the learning 

sample. Among these features, association and the usage of freedom (also called left and right 

context dependency) refer to the “estimation of complete lexical patterns” proposed by Chien (L.-

F. Chien, 1997), as shown in Figure 3.  

 

FIGURE 3 – The estimation of complete lexical patterns (L.-F. Chien, 1997) 

Each of the lexical patterns is estimated using Equations 1, 2, and 3, as described below: 

 Association (AEc) = f(x) / ( f(y) + f(z) – f(x) )     (1) 

Where x is the lexical pattern to be estimated; x = x1, x2, …, xn, y and z are the two longest 

composed substrings of x with length n–1; y = x1, …, xn–1, z = x2, …, xn. Then, f(x) is the 

frequency of x, f(y) is the frequency of y and f(z) is the frequecny of z. 

 Left Context Dependency (LCD) = f(max_xL) / f(x)       (2)  

f(max_xL) is the maximum frequency  of the occurrence of distinct characters to the left of the 

lexical pattern x.  

 Right Context Dependency (RCD) = f(max_xR) / f(x)    (3)  

f(max_xR) is the maximum frequency of the occurrence of distinct characters to the right of the 

lexical pattern x.  

The list of the 10 types of features are shown in Table 1. 

1. Frequency 

2. The number of distinct character to the left 

3. The maximum occurrence frequency of distinct character to the left 

4. The number of breaking symbols to the left 

5. The number of distinct character to the right 

6. The maximum occurrence frequency of distinct character to the right 

7. The number of breaking symbols to the right 

8. Association: AEc 

9. Left-context dependency (LCD) 

10. Right-context dependency (RCD) 

TABLE 1 – Feature list 
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3.3.3 Contextual Feature Extension  

The concept of contextual information has often been used in information extraction research as 

well as in existing CTE research for entity identification (Ji, Sum, Lu, Li, & Chen, 2007; Ling et 

al., 2003). In order to enhance the effect of contextual information on the classification results, in 

our study, the initial learning samples (also called original samples) were designed to extend into 

longer learning samples. Then, the features of every bi-gram within the new samples, as shown in 

Table 1, are collected as the contextual information of the original samples. According to the 

result of the experiments, not included in this paper, the best length of the longer learning 

samples was two characters on both the left and right sides. For instance, an original bi-gram 

learning sample will extend to become a 6-gram learning sample, and the feature parameter will 

become five times larger than before, because there will be 5 bi-grams within the new sample. 

Table 2 shows the differences of sample lengths and feature parameters before and after the 

contextual extension. 

Before After 

Original n-gram learning sample: 

 

Extended learning sample: 

 

Contextual bi-gram set: 0 Contextual bi-gram set: 4 

 

Number of original features: 10 

10 features (see Table 1) for . 

Number of original features: 10 

10 features (see Table 1) for . 

 

extend 

 

Number of contextual info. features: 40 

10 features (see Table 1) for each extended bi-gram, 

 

TABLE 2 – Contextual feature extension 

In addition to the features in Table 2, to increase the number of features of the contextual 

information, we also added into the feature set all uni-gram frequencies within an extended 

learning sample. Therefore, an extended bi-gram learning sample, a 6-gram string, will actually 

have a total of 56 features, including six uni-gram frequencies and 50 features coming from five 

bi-gram feature sets. 

3.4 SVM Machine-Learning Term Extraction 

The Support Vector Machine (SVM) algorithm constructs a hyper-plane in a high-dimensional 

space for classification or other tasks. A good separation is achieved by the hyper-plane farthest 

from the nearest training data point of any class. 
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FIGURE 4 – Support Vector Machine (SVM) 

In Figure 4, W is the good separation (the classification hyper-plane) of the two classes—white 

spots and black spots—and H1 and H2 are support hyper-planes. 
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In our study, libsvm tools (Chang & Lin, 2011) were used to execute the SVM algorithm during 

the term-extraction process. The SVM algorithm includes two phases: model training and 

unknown-term predicting. In the model-training phase, the input data is the sample-feature 

dataset of learning samples generated from the sample feature generation step, and the output 

data is a classification model file. Meanwhile, all strings (not distinct) with the same length as the 

learning samples in the corpus are considered unknown samples. Unknown samples will convert 

to the sample-feature dataset in the exactly same way learning samples generation converts to its 

dataset. In the unknown-term-predicting phase, the input data is the sample-feature dataset of 

unknown samples and the classification model file output from the earlier phase, and the output 

data are unknown strings that are predicted as terms. The predicted output data are the term 

extraction results. 

3.5 Iterative Convergence Condition 

The stop condition of the iterative extraction process occurs when the increase between the term 

sizes from two subsequent extraction results is less than 2%.  

3.6 Iterative Learning Sample Selection 

Step 6, filtering, in Figure 1, filters the extracted terms, which will become learning samples for 

the next extraction round. The libsvm tools provide the function of probability estimation, 

predicting the probability of each unknown sample being classified into a certain category. In this 

step, the rate of probability is then adjusted to filter out the learning samples for the next round. 

According to the default setting in libsvm, an unknown sample is considered a term when its 

predicted probability rate is greater than or equal to 50%. Also, in this iterative extraction process, 

the learning samples for the next round are chosen when the predicted probability rate is greater 

than or equal to 90%. 
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3.7 Evaluation of the Term Extraction Results 

In this paper, precision, recall, and f-measure were used to evaluate the effectiveness of the term 

extraction results. The correct answers were pre-decided by experts for a chosen paragraph in the 

corpus and then compared with the extraction results. The experts did not examine the extracted 

results directly. The evaluation results are shown in the next section. 

4 The Experiment 

As part of a Chinese text archive from the Middle Ages provided by the Chinese Buddhist 

Electronic Text Association (CBETA), the collection of Saddharma Puṇḍarīka (Lotus of the true 

Dharma) was used as the experimental corpus, which consists of 16 sutras labeled from T0262 to 

T0277 in the Taisho Revised Tripitaka. This corpus contains 514,722 Chinese characters, among 

which are 3,041 distinct uni-grams, 82,688 distinct bi-grams, and 202,187 distinct tri-grams. 

Generally, ancient Chinese corpora are rarely used in term extraction research due to the 

difficulty of collecting known information. However, for our study, the design of the initial 

known information selection and the contextual sample-features generation in the iterative 

learning process produced good extraction results regarding the ancient Chinese corpus. 

Another reason for using Buddhist texts is that the Middle Age Chinese literature, of which the 

Buddhist canon is representative, is mainly composed by bi-gram terms, the same as is current 

Chinese literature (梁曉虹, 2005). So, theoretically this iterative term extraction process can be 

directly applied to other forms of current Chinese texts as well. The experiment in this section 

focuses on bi-gram term extraction from the collection of Saddharma Puṇḍarīka (CBETA) to list 

the iterative experiment results and further compares them with the results of other term 

extraction algorithms. 

In the corpus, Sàtánfēntuólìjīng, a sutra (T0265) from the collection of Saddharma Puṇḍarīka, 

was chosen to be the evaluation text. In Sàtánfēntuólìjīng, there are 1,430 non-distinct bi-grams 

which have been prepared with experts’ judgments of true bi-gram terms. The ratio size of the 

evaluation text is 0.32% of the entire corpus, which consists of 442,513 non-distinct bi-grams.  

4.1 Iterative Term Extraction 

This section shows the experimental results of the iterative extraction process. The size of the 

experimental corpus is 2,058,888 bytes. There are a total of 514722 symbols encoded by UTF-32, 

and 442513 non-distinct Chinese bi-grams in the corpus. The initial selected bi-gram term is 一
切 and the number of initial learning samples are 2387, with the term frequency of 一切 in the 

corpus. 

Table 3 shows the results of numbers of initial learning samples and SVM extraction terms, and 

increasing ratios of total and unique extraction terms in 8 rounds. 

In Table 3, values in the “Extraction ratio” row are determined by the following equation:  

 
 experimentour for  used corpus in the grams-bi  totalofnumber  the 442513

 terms"extraction SVM" ofnumber  

 

 

103



Iterative Rounds 1 2 3 4 5 6 7 8 

Initial learning samples 2387 18259 55360 120826 148781 160849 166583 169777 

SVM extraction terms 18259 55360 120826 148781 160849 166583 169777 171570 

Extraction ratio 4.126% 12.51% 27.30% 33.62% 36.34% 37.64% 38.36% 38.77% 

Subsequent increasing ratio  +8.39% +14.79% +6.32% +2.72% +1.30% 

(<2.00%) 

+0.72% 

(<2.00%) 

+0.41% 

(<2.00%) 

Unique extraction terms 15 1044 8148 12287 14679 16422 17520 18174 

Unique terms  increasing times  *69.60 *7.80 *1.50 *1.19 *1.12 *1.06 *1.04 

TABLE 3 – The extraction convergence table 

The “Subsequent increasing ratio” row shows increasing ratios of the “Extraction ratio” row. The 

“Unique extraction terms” row indicates the distinct number of “SVM extraction terms,” and the 

“Unique terms increasing times” row shows the number of times the number of extracted distinct 

terms increased when compared to the previous round. 

Based on the iterative experiment results, the sixth round should be the final extraction result in 

this experiment, because the saturation condition is set when the increase in the number of terms 

from one SVM to the next is less than 2%. Meanwhile, the states of the increase in number of the 

SVM extraction terms, the total bi-gram terms, and the Unique extraction terms are different. The 

increase of unique terms is about to saturate in the third round, which is two or three rounds 

before the saturation of the increase of total extraction terms. 

4.2 Evaluation 

In the corpus, Sàtánfēntuólìjīng (Tripitaka sutra number T0265) was chosen to be the texting data. 

There are 1,430 non-distinct Chinese bi-grams in Sàtánfēntuólìjīng, and the ratio size of the 

texting data is 0.32% of the entire corpus. In the testing data, the number of positive samples 

(expert verified bi-gram terms) is 332, and the number of negative samples (expert verified non-

bi-gram terms) is 1098. The evaluation indices are listed below. 

RecallPrecision

RecallPrecision2
F-measure

ative False Negtive  True Posi

iveTrue Posit
Recall

itive False Postive  True Posi

iveTrue Posit
Precision












 

Iterative Rounds True Positive False Positive False Negative True Negative 

1 26 3 306 1095 

2 85 24 247 1074 

3 201 128 131 970 

4 235 188 97 910 

5 251 219 81 879 

6 255 228 77 870 

7 256 234 76 864 

8 257 238 75 860 

TABLE 4 – Table of the classifier prediction compared to the experts’ judgments 
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Iterative Rounds Accuracy Precision Recall F-measure 

1 78.4% 89.7% 7.8% 14.35% 

2 81.0% 78.0% 25.6% 38.54% 

3 81.9% 61.1% 60.5% 60.79% 

4 80.1% 55.6% 70.8% 62.28% 

5 79.0% 53.4% 75.6% 62.58% 

6 78.7% 52.8% 76.8% 62.57% 

7 78.3% 52.2% 77.1% 62.25% 

8 78.1% 51.9% 77.4% 62.13% 

TABLE 5 – The evaluation calculation 

Extended learning sample:    

One initial / original bi-gram:    

Four contextual bi-gram units:   

FIGURE 5 – The contextual bi-gram set 

No. Feature Explanation F-source 

1 RCD of   0.4420 

2 LCD of   0.3304 

3 LCD of   0.3281 

4 RCD of   0.3144 

5 The number of distinct character to the left of   0.2284 

6 The number of distinct character to the right of   0.2199 

7 AEc of   0.2108 

8 The number of distinct character to the left of   0.1598 

9 RCD of   0.1513 

10 The number of breaking symbols to the left of   0.1480 

11 LCD of   0.1390 

12 The number of distinct character to the right of   0.1338 

13 The number of distinct character to the right of   0.1295 

14 Frequency of   0.1256 

15 The number of distinct character to the left of   0.1123 

TABLE 6 – Top 15 features sorted by f-score 
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4.3 Features Selection Analysis 

This section analyzes the importance of features used in the SVM extraction process. A total of 

56 features were calculated and sorted by the f-score algorithm proposed by Chen and Lin’s 

SVM feature-selected research (Y.-W. Chen & Lin, 2006).  

Figure 5 shows that one extended learning sample is represented by 5 bi-grams, including one 

original bi-gram and 4 contextual bi-grams. And Table 6, the top 15 features of training dataset, 

shows that the learning sample and contextual features extension has a great influence on the 

SVM classification extraction. 

5 Comparison 

This section discusses the comparison of the bi-gram term extraction results from three different 

term extraction algorithms with the verification answers by experts using the same corpus. The 

first set of results come from the iterative machine learning extraction process proposed by this 

paper. The second set is the control group using the same process with two controlled conditions: 

(1) using 2,678 known terms from the book index of the corpus (大藏經學術用語研究會, 198-?) 

as the initial known terms and (2) using no iterative extraction and executing the SVM extraction 

process only once. With this control group, we can compare the extraction differences between 

using known terms outside of the corpus and known terms trained iteratively inside of the corpus. 

The third extraction algorithm used for comparison is the Sinica CKIP system (Chinese 

Knowledge Information Processing Group), which represents the term segmentation and 

extraction algorithms based on a “term database.” 

In Table 7, the “MLTE iterative” row using the sixth round extraction results from the previous 

experiment, and the “MLTE_dic” row is the extraction result of the dictionary control group. The 

comparison table shows that the SVM algorithm with dictionary-known terms more effectively 

extracted terms, but the iterative SVM algorithm extraction had the highest recall rate, and both 

extraction results from the SVM algorithm had a higher F-measure values than the CKIP 

recognition results on bi-gram. 

 Precision Recall F-measure 

MLTE_dic 65.8%(202/307) 60.8%(202/332) 63.20 % 

MLTE_iterative 52.8%(255/483) 76.8%(255/332) 62.58 % 

CKIP 62.5%(203/325) 61.1%(203/332) 61.80 % 

TABLE 7 – Comparison of 3 extraction results 

6 Discussions 

For this study, we proposed an iterative machine-learning term-extraction process that does not 

use known information other than the pure-text corpus itself. In this process, the effective 

selection of learning samples and sample features were designed specifically for two classes of 

SVM machine-learning algorithms. Based on the experimental results of this iterative extraction 

process, there are some issues and problems deserving further discussions: 

1. The design of the process to extract n-gram terms of any given length. The current iterative 

process in this paper can only extract fixed-length n-gram terms. In order to extract terms of 
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any length and integrate the extraction results of terms of varied lengths, it is more ideal to 

directly design a method to extract samples and sample feature parameters for terms of any 

given length and to establish the extraction model. 

2. The testing and discussion of the applicability of this iterative extraction process with 

different types of corpora, such as current Chinese texts or Web messages. 

3. The discussion of the initial learning sample selection, which is a changeable parameter in 

the initial learning sample in this extraction process. Besides the most frequent terms in the 

corpus, if we use other high frequency terms or if we take into account other factors, such as 

parts of speech the process might provide different extraction results and issues for further 

discussion. 
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ABSTRACT
In this article we propose a method based on simulated annealing for the parameter estimation of
probabilistic algorithms, where the solution provided by the algorithm can vary from execution
to execution. Such algorithms are often very interesting to solve complex combinatorial
problems, yet they involve many parameters that can be difficult to estimate manually due to
their randomized output. We applied and evaluated a method for the parameter estimation
of such algorithms and applied it for an Ant Colony Algorithm for WSD. For the evaluation,
we used the Semeval 2007 Task 7 corpus. We split the corpus and took in turn one text as a
training corpus and the four remaining texts as a test corpus. We tuned the parameters with an
increasing number of sentences from the training text in order to estimate the quantity of data
necessary to obtain an efficient and general set of parameters. We found that the results greatly
depend on the nature of the text, even a very small amount of training sentences can lead to
good results if the text has the right properties.
RÉSUMÉ (French)
Estimation de paramètres à base de Recuit Simulé sous incertitude appliquée à un algo-
rithmes à colonies de fourmis probabiliste.
Nous proposons une méthode basée sur un Recuit Simulé pour l’estimation de paramètres pour
des algorithmes probabilistes où les solutions générées varient. Ces algorithmes sont souvent
très intéressant pour la résolution de problèmes combinatoires complexes, mais ils requièrent
de nombreux paramètres pouvant être difficiles à estimer manuellement à cause de la nature
aléatoire des solutions. Nous avons appliquésPlus spécifiquement, nous appliquons et évaluons
cette méthode à pour estimer les paramètres de tels algorimes et l’appliquons à un Algorithme
à Colonies de Fourmis pour la désambiguïsation lexicale. Pour l’évaluation, nous avons utilisé
le corpus de Semeval 2007 Tâche 7. Nous avons repectivement séparé un texte comme corpus
d’entraînement et les quatre autres comme corpus de test. Nous estimons les paramètres pour
un nombre croissant de phrases pour déterminer combien de données sont nécessaires pour
obtenir un ensemble de valeurs de paramètres générales et efficaces. Nous concluons que la
qualité des résultats dépends de la nature des textes. Même des petites quantités de de phrases
peuvent suffir à obtenir de bons résultats, du moment que le texte à les bonnes propriètés.

KEYWORDS: Word Sense Disambiguation, Parameter Estimation, Simulated Annealing, Uncertainty,
Stochastic Algorithms.

KEYWORDS IN FR: Désabiguïsation Lexicale, Estimation de Paramètres, Recuit Simulé, Incertitude, Algo-
rithmes Stocastiques.
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1 Introduction
Word Sense Disambiguation (WSD) is a very difficult yet central task in Natural Language Processing
(NLP), that pertains to the labelling of the words of a text with the senses that most closely match the
context. Numerous approaches exist to tackle WSD, yet many of these methods have in common a
sizeable complexity, reflected by a number of parameters that need to be tuned in order to obtain the best
performance. Depending on the number of parameters, it can be very difficult for a human to directly
estimate the optimal parameters. Even then, it remains a question of guesswork with no guarantee of
success.

This issue is all the more salient with algorithms and models that typically involve many parameters upon
which the results greatly depend. Such algorithms for WSD include Neural Networks (Veronis and Ide,
1990), Simulated Annealing (SA) (Cowie et al., 1992), Genetic Algorithms (GA) (Gelbukh et al., 2003)
and Ant Colony Algorithms (ACA) (Schwab and Guillaume, 2011), and many other machine learning
methods.

In such approaches, the values of the parameters are paramount. They are what make the algorithms
work for specific applications such as WSD. Yet, the authors of the aforementioned articles give little
insight as to how the parameters are determined. They only provide the “best” values. Although a trial
and error approach is a good start when devising an algorithm or tailoring it to a new application, it makes
the adaptation and the scalability of such systems an issue. Naturally, for well known and understood
algorithms such as Simulated Annealing, there are some theoretical criteria to select the parameters.
However, the process remains to be repeated for every new setting and can be tedious to perform.

Furthermore, even with few parameters, evaluating all possible parameter configurations is a prohibitively
long process. For example, in the case of a stochastic algorithm with 10 parameters that have 20 possible
values each, assuming the algorithm needs to be run 100 times (due to its stochastic nature) and that
one execution takes on average 30 seconds, the time necessary to evaluate all parameter combinations is
2012 ·100×30 = 3×1015s which is almost 1 billion years! Thus, the advantages of considering automated
or adaptive heuristic approaches to the estimation of parameters are clear.

In the case of a deterministic algorithm, many combinatorial optimisation methods can be used with little
effort. However, due to the complexity of WSD, many approaches are statistical or probabilistic in nature
and the use classical combinatorial optimization heuristics becomes impossible. Therefore, we adapt the
classical simulated annealing algorithm to work for an uncertain objective function based on the ideas of
(Painton and Diwekar, 1995), by using standard non-parametric statistical significance tests.

First, we present the tools and the metrics for the evaluation of WSD, followed by the description of the
Ant Colony Algorithm considered in this article. Then, we briefly survey other approaches for parameter
estimation under uncertainty and express the problem formally. Subsequently, we present the general
formulation or simulated annealing and different aspects pertaining to it and then present its adaptation
to uncertain objective function. We then present and analyse our experimental protocol and the results of
the experiments. Finally, we conclude on the results and draw some perspectives for future research.

2 Evaluation of WSD Systems
The use of Precision and Recall constitutes the standard evaluation metrics for WSD systems.

Precision represents the number of correctly disambiguated words among all the attempted words, while
Recall represents the number of correctly disambiguated words among all the ambiguous words in the
document. It is customary to compute the F1 score between Precision and Recall as 2·P·R

P+R
, in order to have

a single evaluation metric that equally captures the information conveyed by both Precision and Recall.

In this work in particular we use the Semeval 2007 Task 7 all words coarse grained corpus for the
evaluation of the quality of the disambiguation. The all-words task provides a corpus of texts, where in
each text all ambiguous words (T) need to be disambiguated by tagging them with Wordnet 2.1 sense
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keys. An algorithm must correctly tag as many ambiguous words as possible (T P) depending on the
context. A sense is considered correct if the sense key assigned to it matches the sense provided in the
gold standard or any of its subsumed senses (hence coarse-grained). If we write the number of incorrectly
assigned senses as (T N), then, for this particular task, precision can be expressed as P = T P

T P+T N
and recall

as R= T P
T

The choice of the all words task in particular is based on the functioning of the algorithm that is more
adapted to a globally coherent text, rather than independent sentences or words. As such, the metrics
available for the evaluation are Precision, Recall and F-measure, which leads to some important restrictions
on the methods or criteria available for parameter estimation as will be detailed in the subsequent sections.

3 Context: an ant colony algorithm for WSD
The ant colony algorithm presented by (Schwab and Guillaume, 2011) and (Schwab et al., 2012) that our
work focuses on, offers some interesting properties regarding the quality of the solutions, which are on par
with state-of-the-art knowledge rich WSD systems, combined with a fast execution time compared to the
latter systems. Furthermore, it is also well suited to working on full texts at a time with a full annotation
coverage.

Moreover, its stochastic nature leads to the generation of solutions with variable precision scores, which
is usually not a very sought after property in algorithms. However, this variability enables the use of
voting strategies that lead to results approaching supervised WSD systems and overcome the elusive (for
unsupervised and knowledge-based systems) First Sense Baseline. Due to the quick execution time (in the
60s to 65s range), voting strategies can directly be applied while still leading to cumulative execution
times for several executions that are lower to that of other systems.

However, those qualities are also a major disadvantage when it comes to selecting and tuning the
parameters of the algorithm. Not only are there relatively many, but they can only be determined manually
to some extent through painstaking trial and error modifications, with no guarantees of optimality.
Notwithstanding with the fact that the stochastic nature of the algorithm makes it rather impractical to
determine whether the improvement resulting from a given parameter change is simply due to random
variations of the solution distribution or really to significant variations.

3.1 Parameter model
Let us now review the various parameters of the system, their typical value ranges and meaningful
increments. The parameters are summarized in Table 2. There are seven parameters in total, five of
which are discrete and represented by integers and two continuous parameters represented as positive
real numbers between zero and one.

Given the number of parameters, even with some knowledge about how the algorithm works, one can at
best chose sensible parameter value ranges in order to limit the combinatorial explosion.

Initially, before the estimation method proposed in this paper, we determined the values of some parameters
by making iterative and independent changes. Of course such an approach is limited due to the fact that it
is a heuristic based on the assumption that the parameters of the system are independent. For ACA it is in
fact the opposite, as it is with other methods.

The values obtained through this process were ω = 10, Ea = 1, Emax = 8, E0 = 10, δv = 0.9, δ =
0.9, LV = 90 and yielded results around 75% on the Semeval 2007 Task 7 corpus (Schwab and Guillaume,
2011).

Furthermore, given the number of parameters and their value ranges, an exhaustive enumeration is
intractable. If we calculate the number of combinations (assuming 0.01 steps for continuous variables),
we obtain 60× 60× 100× 55× 25× 35× 100 = 17325 · 108 combinations. Knowing that due to the
stochastic nature we may need to make at least 50 or 100 executions, we get to 17325 · 109 combinations.
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Notation Description Value Exploration
granularity

Ea Energy taken by an ant when it arrives on a
node

1–60 1

Emax Maximum quantity of energy an ant can carry 1–60 1
δφ Evaporation rate of the pheromone between

two cycles
0.0–1.0 0.01

E0 Initial quantity of energy on each node 5–60 1
ω Ant life-span 5–30 (cycles) 1
LV Odour vector length 20–200 5
δV Ratio of odour vector components (words) de-

posited by an ant when it arrives on a node
0.0–1.0 0.01

Table 2: Parameters of the Ant Colony Algorithm and their typical value-ranges

Assuming leaps in computational power or heavy parallelism that would make the algorithm take only
one second to run, the search for the optimal parameters would still take 549372 years.

For this reason, we are interested in finding and automated way of estimating the optimal parameters. Of
course, when dealing with linguistic data, there is no such thing as optimal. By optimal, we merely mean a
set of parameters that yield results with F-scores as high as can be achieved.

4 Related work
In the context of this article, when considering WSD algorithm evaluated as described in Section 2,
the output of the evaluation of the algorithm output is simply a F-score percentage. In order to apply
classical estimation theory approaches (Kay, 1993), we would need to either find a model of the posterior
PDF, or to empirically estimate it. However, given the size of the search space and the cost of running
the algorithm, this would be very much equivalent to making an exhaustive search. Furthermore, the
relationship between the values of the parameters and the resulting scores are non-linear. However, there
are some models that attempt to provide a probability distribution for precision, recall, and F-measure for
information retrieval that could potentially be applied to WSD (Goutte and Gaussier, 2005).

In fact, it is much simpler to treat the estimation as a combinatorial optimisation problem, by attempting
to simply maximize the f-score value. In this context, given that we want the ability to handle many
parameters that can take many discrete values, we need to consider heuristics for an efficient estimation
of complex non-linear multivariate functions.

A popular choices for parameter estimation are Genetic Algorithms (GA) or Simulated annealing (SA)
among others. For instance, GAs have been widely applied, either in a general parameter estimation
context, such as in (Sharman and McClurkin, 1989), (Yao and Sethares, 1994) or (Paterakis et al., 1998);
or for specific application domains such as robotics (Bolhasani, 2004), applied statistics (Pan et al., 1995),
meteorology (Lee et al., 2006), chemistry (Katare et al., 2004) and many others.

For WSD, (Daelemans et al., 2003) and (Decadt et al., 2004) have also proposed to use GAs for joint
parameter estimation and feature selection. Although joint optimisation is very interesting, it is application
and task specific, and would be difficult to implement in a probabilistic setting.

All the techniques mentioned above are meant to optimise a deterministic objective function. When the
objective function itself is uncertain or noisy, instead of a single value, one has a set of observation samples
with different values that have to be dealt with. The main issues are the question of how to know what
value to consider for the maximisation and how to take the variability into account to avoid effects due to
random chance.

One model of stochastic simulated annealing has been proposed in (Painton and Diwekar, 1995) and then
further extended in (Kim and Diwekar, 2002), where the evaluation function is sampled several times, and
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the expected value is incorporated into a modified objective function, with the variance acting a penalty
term.

5 Problem formalization
Before describing the parameter estimation algorithm, it is important to formulate in a more formal and
generic way the parameter model of any WSD algorithm with a randomized output.

Let ~θ = [θ1,θ2, . . . ,θi , . . .θn] ∈ Θ, be the parameter model of a WSD algorithm, where Θ = Θ1 ×Θ2 ×
. . .×Θi × . . .×Θn and each Θi is a finite discrete set of integers or a bounded real range.

For example, in the case of the parameter model of the ant colony algorithm, the general form of θ
would be θ = {ω, Ea, Emax , E0, δv ,δ, LV }. The initial set of parameters would be an instance written as
θI = {10, 1, 8, 10, 0.9, 0.9,90}.
We can represent a deterministic WSD system with a function WSDC , that for a given corpus C and a
parameter vector ~θ 1 returns a F − score value between 0 and 1:

WSDC :Θ→ 0≤ x ∈ R≤ 1 (1)

θ 7→ Fscore (2)

Thus, the problem of finding the best θ , θ ∗ can be formalized as follows:

θ ∗ = arg max
θ∈Θ

WSDC (θ) (3)

In other words, if we define a sequence θn that enumerates possible parameter combinations in Θ, the
problem can be expressed as:

θ ∗n =

(
θn if WSDC (θn)>WSDC (θn−1)
θn−1 otherwise

(4)

However, when the WSD system is probabilistic, there isn’t a unique F-score given for a θn, but every
evaluation of WSDC may potentially return a different F-score value. Thus, WSDC follows an unknown
probability distribution X that depends on θn: WSDC (θn)∼ X (θn).

A sensible approach in this case would be to follow the model (Fig. 1b) proposed by (Painton and Diwekar,
1995), and to evaluate the objective function WSDC several times and then consider the expected value as
an estimator of the resulting distribution. However, even if the means are different, there is no guarantee
the difference is not due to random chance.

The more general way to deal with this uncertainty about the statistical significance of the difference
of expected values is to simply apply a standard statistical test in order to determine the significance
level and decide whether or not to go ahead with the comparison. Another simpler approach, the one
retained in fact, is to integrate into the scoring function a penalty factor that directly takes into account
the variability of the distributions. This problem will specifically be addressed in more detail in Section
6.3.

6 Simulated Annealing

6.1 General Presentation
Simulated annealing is a stochastic combinatorial optimisation technique originally proposed by (Kirk-
patrick et al., 1983). Given a function f (θ) that takes a vector of discrete parameters θ , Simulated

1From now on, the vector arrow will be omitted and ~θ will be written as θ .
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(a) Classical optimisation model (b) Stochastic optimisation model
Figure 1: Classical optimisation model versus stochastic optimisation model

Annealing aims at finding the combination of parameter that maximises or minimises that function.
(Kirkpatrick et al., 1983) draw a parallel between statistical mechanics and combinatorial optimisation and
apply ideas from the Metropolis-Hastings algorithm (Metropolis et al., 1953) (simulation of the behaviour
of many body systems) to combinatorial optimisation.

The principle of Simulated annealing is to first start from an initial configuration (combination) of the
function parameters θ0 as well as an initial temperature T0. The initial θ0, is often chosen randomly, but
putting an already good solution can accelerate the search.

Then, the algorithm iteratively applies a random change operator R to the current configuration in order
to obtain a modified configuration θ

′
= R(θ).

The value of the modified configuration f (θ
′
) is compared to the value of the current configuration f (θ ),

such that ∆ f = f (θ
′
)− f (θ). An acceptance function P(∆ f ) is then used to determine whether to keep

the current configuration or to accept the modified configuration.

In the original SA algorithm, the acceptance function is expressed using the Metropolis criterion and the
Boltzmann distribution as shown in Equation 5.

P(∆ f ) =

(
1 if ∆ f < 0

ex p
�−∆ f

T

�
otherwise

(5)

With gradient descent or hill climbing search, only configuration that have a higher score are kept, while
inferior configurations are systematically rejected. The problems with these approaches lies in the fact
that complex functions often have many local minima and maxima, and the algorithm will likely converge
on such a minimum or maximum.

Simulated Annealing, on the other hand, has a probability of accepting inferior configurations as a
local minima/maxima escape strategy. The initial temperature is chosen so that at the beginning of the
exploration, inferior configurations are almost always kept. After each iteration of the simulation, the
temperature decreases and with it the probability to keep inferior configuration. As such, the algorithm
starts with a wide and coarse exploration of the search space and then gradually converges on a fine
grained exploration of a specific area around a minimum or maximum (hopefully close to the global
minimum or maximum).

The convergence criterion for the algorithm can either be when the temperature reaches a threshold called
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freezing temperature or when the system is deemed to stabilize (usually a number of cycles during which
improvements to the objective function are marginal or non-existent).

6.2 Cooling schedule and candidate generation
In SA, the way the temperature decreases is key to the performance of the algorithm. A logarithmic
cooling schedule (Tn =

T0

ln(n)
) is theoretically sufficient in order to guarantee convergence (Ingber, 1996),

however, it is too slow for many problems. A more common cooling schedule is geometric Tn = T0 · (α)n,
where alpha is the cooling factor. However, on the one hand the slope of the cooling curve will be very
steep even for α close to one and on the other hand, the curve itself is convex. This means that the slope
of the curve will get steep very fast, thus leading to a fast convergence at the cost of optimality.

For this reason, (Ingber, 1996) proposes in his Adaptive Simulated Annealing algorithm to use an inverse
exponential cooling schedule that will decrease quickly at the start and then slow down. Such a schedule
corresponds much better to combinatorial optimisation algorithms, where we want to start with a broad
search (accepting many inferior configurations) and then focus on a specific area of the search space.
(Ingber, 1996) proposed the expression in equations 6 and 7, which we adopted for our implementation.
Here, m and n are two scaling factors that can be used to tune the schedule for specific problems.

Tk = T0 · ex p
�
−ci · k

1
|θ |
�

(6)

ci = m · ex p
�−n

D

�
(7)

Furthermore, the traditional SA, generates a new candidate configuration by uniformly selecting an index
of the vector and by applying a random uniform change on the value, over the full range of possible
values for that index. (Ingber, 1996) argues that once the system is colder, there is no point to explore the
full range. Indeed, exploring an increasingly smaller neighbourhood as the temperature lowers and the
systems converges on a specific area of the search space, allows an increase in computational efficiency
while having no negative effects on the end result.

Equation 8 presents the probability distribution used for the candidate generation for each parameter,
where ui ∈ U(0, 1) is a uniform random number between 0 and 1.

y = si gn
�

u− 1

2

�
Tk

��
1+

1

Tk

�|2u−1|
− 1

�
(8)

From there, the new value of a parameter θ (i) of θ at iteration k can be determined with the expression in
Equation 9 for a real parameter and Equation 10 for an integer parameter.

θ
(i)
k+1 = θ

(i)
k + y(θ (i)max − θ (i)min) (9)

θ
(i)
k+1 = θ

(i)
k + by(θ (i)max − θ (i)min)c (10)

6.3 Handling uncertainty
As mentioned in Section 5, when dealing with an uncertain objective function, one needs to add an extra
loop in the process, in order to generate samples from the evaluation of the objective function f and then
to use the expected value as a global objective function.

For a given θ , we can build a list of samples Ls(θ) =
⋃N

i=0{ f (θ)} and then consider a modified objective
function that uses the expected value of the sample distribution: ΦE(θ ) = xθ , where xθ =

1
N
·∑xi∈Ls(θ) x i .

Then, ΦE can be used directly instead of f as the global objective function.
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6.4 Adaptive Penalty term
In order to deal with the variability of the distributions, (Painton and Diwekar, 1995) propose to add

to the expression of ΦE , a penalty factor based on the scaled standard deviation σθ =
q∑

xi∈Ls(θ)(xi−xθ )2

N
,

weighted by a quantity that depends on the temperature. More specifically, their expression for ΦE is:

ΦE(θ) = xθ + b(T ) · 2 ·σθp
N

(11)

b(T ) =
b0

kT (12)

Where b0 is a small constant, k is a constant that represents the rate of increase of b(T) and T the
temperature of the system.

Given that at the beginning, the temperature is high, the search is wide into the search space. Thus,
accepting non-significant changes has little adverse effect, although it leads to less evaluation of the
objective function (which is costly to compute in principle).

6.5 Significance testing
In this article, we take a slightly different approach, by integrating a standard statistical test directly in the
metropolis criterion, and by using ΦE as only the expected value. Not only are such tests widely available
in existing libraries, additionally, we avoid the hassle of adding two more constants to the estimation
algorithm.

Depending on the properties of the distribution, different tests may be applied. The most widely used test
for significance is the unpaired two-sample student t-test. However three important pre-requisites must be
met before the test can be applied.

The distributions of samples in the groups must be normal, the samples in the groups must be independent,
and the variances of the groups must be equal. In the case of simulated annealing under uncertainty, there
is no guarantee that the distributions all keep these properties. Thus, in order to use the t-test (Press et al.,
1988), ot would be required to test the hypotheses for every new re-sampling of the objective function.
This could be achieved by applying the Shapiro–Wilk (Shapiro and Wilk, 1965) test to test the normality
assumption and Levene’s test (Levene, 1960) for the equality of variances.

In case the equality of variances criterion is not met, there is an alternative, Welch’s t-test (Welch, 1947)
that does not make that assumption. However, if the distribution is not normal, there is no other choice
but to apply a non-parametric test.

A much simpler alternative, is to directly apply a non-parametric significance test, such as the
Mann–Whitney U unpaired test, as there are no assumption about the distribution of the samples.
The only requirement is that the values are ordinal and not regularly paced.

6.5.1 Modified Metropolis criterion

Since the objective function returns a numerical value, the Mann–Whitney U can be applied directly in the
metropolis criterion as such:

P(∆ f ) =

(
1 if ∆PhiE < 0 and pθ < α

e
−∆PhiE

T otherwise
(13)

The test is based on the formulation of a null-hypothesis that states that the distribution of the two groups
of samples are equal. Here, pθ is the p-value (probability of true positives) resulting from the test and α a
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threshold. If the p-value is below the threshold, then we reject the null-hypothesis and conclude that the
distributions must be different.

For example with α = 0.05 the null-hypothesis will be rejected if the probability of having a type I error is
more that 95%: in other words, (1− p)> (1−α).
The Mann–Whitney U (Mann and Whitney, 1947) is based on the comparison of the ranks of the samples
within each group. The first step toward calculating the p-value is to group all the sample together, to sort
them in ascending order, and to assign a rank to each value. From the respective ranks of the samples, can
be computed Rθ , is the sum of ranks for Ls(θ) and R

θ
′ the sum of ranks for Ls(θ

′
). Here, the number of

samples for both groups are always equal to N.

6.5.2 Computing the p-value

From the sum of ranks, the U statistic can be computed as U = min
�

Rθ − N(N−1)
2

; R
θ
′ − N(N−1)

2

�
=

min
�

Rθ ; R ~
θ
′
�
− N(N−1)

2
.

For a sufficiently large N , the U statistic is an approximation of the normal distribution, and after applying
a standardization by calculating the z statistic, the p-value can be retrieved from the probability density
function of the normal distribution:

z =
U − U

σU
U =

N 2

2
σU =

r
N 2(2N + 1)

12
pθ = N(z, U ,σU) =

1p
2π ·σU

e
− 1

2

�
z−U
σU

�2

(14)

Despite the apparent complexity of the process of calculating and testing the p-value, the Mann–Whitney
U test is rather standard and available in many libraries for various programming languages, including
Java that we used for our implementation.

7 Experimental protocol
The principle used for the evaluation of the variant of simulated annealing considered for the estimation
of parameters in an uncertain setting, was to consider the Semeval 2007 Task 7 annotated corpus. We split
the corpus into a training and a test set in order to evaluate the parameter search with the Ant Colony
Algorithm for WSD originally proposed in (Schwab and Guillaume, 2011) and then further improved upon
in (Schwab et al., 2012). Furthermore, we want to determine exactly how much data was necessary to
obtain a good set of parameter values.

Normally, in order to obtain a reliable training and thus parameters, it would be necessary to have a
somewhat larger test set and to split it into several parts by randomly aggregating words to perform
a k − f old cross validation. However, the Ant Colony algorithm is meant to work on a full text as it
exploits its structure. Notably, the order of the words and the continuity of sentences are very important.
Making cross-validation sets randomly would thus only create a very noisy training data. Even just
picking sentences at random still compromises the global coherence of the solutions found, and thus the
parameters.

This is why we only considered a training on successively larger portions of our training corpus. More
specifically, the experiments were carried out with 6,12,18,24,30 and 36 sentences in order from the first
sentences to the full text in multiples of 6.

Furthermore, it is apparent that the nature of the training text itself has a big importance on the resulting
parameters found. It is necessary to use a text that is as general as possible in terms of the senses it uses
and of its theme as well as lexically varied. Even though, k− f old cross validation cannot be applied
directly in our experimental setting, we have decided to perform the experiment by taking, in turn, each
text as a training corpus, with the remainder as a test corpus. Thus, we may also study the effect of the
text itself and its characteristics (type of text, average polysemy, etc).
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The implementation of this uncertain simulated annealing, runs the ant colony algorithm and passes the
results through to the scorer to obtain the F-score values. For the stochastic loop, for every new candidate
configuration, the ant colony algorithm is systematically run 50 times in order to guarantee a sufficient
level of statistical significance. The search was left to converge for each successive number of sentences
and then, each resulting parameter values were tested over 100 executions of the ant colony algorithm on
the test corpus in order to ascertain the quality of the parameters.

The results for each number of sentences are evaluated with relation to both classical lesk baseline and
the baseline obtained with the parameters before the estimation (BL). We used standard statistical tests to
guarantee the statistical significance of the comparisons.

8 Experiments and Results

8.1 Initial parameter for the simulated annealing estimator
Before starting the experiment, it is important to select the parameters of the simulated annealing-based
algorithm we are using. In total there are 4 parameters. kst b the number of cycles with no accepted new
configurations before the system is considered to have converged. T0 the initial temperature, and m and
n, the parameters of the cooling schedule. We are aware that the manual estimation of the parameters for
the simulated annealing algorithm contradicts the general orientation of this paper, however one of the
main reason simulated annealing was chosen is because its behaviour is well known and the parameters
can be set heuristically quite effectively. Indeed a vast body of work covers the algorithm and can be
used to guide the parameter estimation. The main idea is to use SA on algorithms with more complex
and/or not so well understood parameter models. In fact, this process could be consider as a form of
bootstrapping of sorts.

For the number of cycles before convergence, 20 is a good compromise between efficiency and optimality.
As for n and m, we wanted to have a cooling schedule with the highest possible probability for subsequent
iteration, while approaching 0 after 100 iterations. To this effect, after various experiments, we selected
the values n=−3 and m= 1.
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(b) Cooling schedule acceptance probabilities
Figure 2: Classical optimisation model versus stochastic optimisation model

However, the most important parameter is the initial temperature, as it needs to be set to a certain level
of probability of acceptance. Of course, since the probability of acceptance depends of the difference
between successive scores, the first step toward selecting the initial temperature is to measure the average
difference between successive scores. Therefore, it is necessary to run the algorithm while only sampling
parameter configuration, without making any decisions about acceptance or convergence. Thus, we ran
the algorithm this way and obtained an average F-score delta of 0.57% with a standard deviation of
0.0047.

It is described in the literature that a good value for the initial acceptance probability is 0.8. Thus, to
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find the initial temperature, we can plot the graph of acceptance probability given the initial temperature

(Figure 2a) by computing e
−0.58

Ti with various values of Ti . Given that T is in the same unit as the objective
function, the value must be situated between 0 and 1. In the present case, the value of Ti for which

e
−0.58

Ti = 0.8 is 0.27. After the parameters have been set, it is possible to directly plot the cooling schedule
in terms of the average acceptance probabilities (Figure 2b) by using Equation 6.

8.2 Analysis
For each text used as a training set, we applied the standard Shapiro-Wilks (Shapiro and Wilk, 1965)
non-normality test and the Levene’s homoscedacity test (Levene, 1960) at a α= 0.1 threshold, in order
to verify the assumptions necessary to apply parametric statistical tests. For the results for Texts 1,2,3
the distributions resulting from each sentence led a to non-significant Shapiro Wilks, thus not allowing
to reject the null hypothesis that the distributions are normal. Levene’s test was significant for all texts,
meaning that the variances are homogeneous. However for texts 4 and 5, the Shapiro-Wilks test was
significant, thus making us reject the null hypothesis that the distributions are normal.

Thus, for text 1,2 and 3 we applied a standard Anova test and found a p-value that is also significant at
the α= 0.01 level. Furthermore we carried out the Tukey pairwise test, which significant differences in
mean between most groups unless otherwise specified.

For texts 4 and 5 we applied the non-parametric rank-based Kruskal-Wallis test (?), which is similar to
ANOVA for situations where the distributions involved are not normal. For the non parametric pair-wise
test, we applied a non-parametric variant of Tukey’s test, which the null hypothesis that "The probability
of a sample from b being greater than a sample from a is superior to 0.5".

Table 3 and Figure 3a present the results for the first text as a training set in terms of value and in a
graphical box plot representation.

We can see for the first text in Table 3 and Figure 3a that with only 6 sentences, the results obtained
after the estimations are worse that with the original parameters by 4.01%. With 12 and 18 sentences,
the obtained results start to at the level of the Before (BL on the graph) baseline. For 12 there is an
improvement of 1.04% and for 18, a decrease of 0.42%. It appears that adding sentences is not necessarily
positive, given that from 12 to 18 the results quality decreased.

Then, the results for 24, 30 and 36 are notably better than the Before baseline by 1.98%, 1.98% and 1.99%
and close, yet still below to the First Sense baseline with 1.07% to 0.8%. However, after 24 sentences,
there aren’t any significant improvements by adding more sentences.

Sentences Fs(%) σFs
Not Sign. Ea Emax δφ E0 ω Lv δv

First Sense 77.59
Before 74.54 0.54 ; 1 8 0.900 20 10 90 0.900

6 70.51 0.86 ; 1 2 0.650 10 5 90 0.360
12 75.58 0.69 ; 12 8 0.101 19 24 90 0.870
18 74.12 0.81 ; 7 9 0.457 20 19 78 0.900
24 76.52 0.38 30, 36 18 45 0.922 26 10 60 0.979
30 76.52 0.41 24, 36 11 20 0.903 11 8 40 0.927
36 76.53 0.38 24, 30 17 60 0.490 20 10 92 0.359

Table 3: Results in terms of the average Fscore and its standard deviation σFs
for a given set of

parameter values. Unless specified, the pairwise Tukey HSD test is significant with α= 0.01.

As for the values of the parameters, only a few conjectures can be drawn. It appears first that the value of
some parameters (Lv) have very little effect on the quality of the results, while others (Ea, Emax , E0), have
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Figure 3: Box plots of the results for the training on Text 1 with different numbers of sentences
compared to the Lesk algorithm 3(dashed line) and the Baseline of the parameters before the
estimation.
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Sentences Fs(%) σFs
Not Sign.

Lesk 73.64
Before 74.25 0.53 ;

6 74.86 0.74 ;
12 71.74 1.02 ;
18 72.27 0.65 ;
24 71.07 0.76 ;
30 69.81 0.53 36
36 70.06 0.70 30

(a) Results for Text 2 as a training corpus

Sentences Fs(%) σFs
Not Sign.

Lesk 73.65
Before 74.54 0.57 30

6 73.15 0.64 ;
12 78.10 0.37 18
18 78.25 0.38 12
24 78.89 0.53 ;
30 74.18 0.54 BL
36 74.67 0.68 ;

(b) Results for Text 3 as a training corpus

Sentences Fs(%) σFs
Not Sign.

Lesk 72.80
Before 73.57 0.57 ;

6 72.18 0.73 ;
12 69.46 0.79 ;
18 71.75 0.74 ;
24 74.16 0.59 30
30 74.19 0.66 24
36 73.22 0.69 ;

(c) Results for Text 4 as a training corpus

Sentences Fs(%) σFs
Not Sign.

Lesk 75.85
Before 75.77 0.52 ;

6 76.60 0.37 12,24,30,36
12 78.68 0.33 24,30
18 76.86 0.69 ;
24 78.79 0.34 6,12,30
30 78.66 0.37 6,12,24,36
36 78.53 0.44 6,30

(d) Results for Text 5 as a training corpus
Table 4: Results in terms of the average Fscore and its standard deviation σFs

for the parameters
found with each number of sentences of training data.

a profound effect. We can observe that for all three number of sentences 24, 30, 36, we systematically
have: Ea < Emax , Ea ≤ E0 and finally δφ ' δv . Given that for the number of sentences 24, 30 and 36 the
distribution are almost equal, we can hypothesise that there are to some degrees equivalences between
some parameter value combinations.

We are also interested in the effect of the number of sentences by using the other texts of the corpus as
training data. Furthermore we want to evaluate the fitness of certain types of texts for the purposes of
parameter estimation for WSD. Tables 4a, 4b, 4c and 4d present the results for Texts 2,3,4,5 respectively
as training sets. We will not, for these texts do a detailed analysis of the parameter values found, but will
only look at the general trends with relation to the number of sentences and the properties of the texts.
Figures 3b,3c,3d and 3e present box plots of the resulting score distributions for each text.

It is apparent that the quality of the parameter estimation widely depends on the nature of the texts used,
as well as the quantity of data used for the training. For text 2, the results with any more than 6 sentences
are all below the Lesk baseline, which could be indicative of a few general introductory sentences followed
by very specific vocabulary. Text two is in fact an extract from the Wall Street Journal summarising a
public scandal using very specific terms.

There are other cases, such as for text 3, where over fitting occurs very rapidly as the number of sentences
increases. Such a behaviour could be explained by latter sentences of the text being domain specific and
detrimental to the generality of the training. We observe a similar behaviour with text 4 towards the
middle of the text. Text 3 is an extract from the wall street journal and is about a journalism convention,
whereas Text 4 is a Wikipedia article about computer programming.

Text 5, a literary text extracted from a book, features the most steady training material, Indeed, except
with 18 sentences, the resulting distributions from the estimated parameters are roughly equivalent as
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indicated by the non-significant differences. The results are about at the same distance above the Lesk
baseline than in Text 1 with 24 sentences and above. Such a text would be very desirable for parameter
training, as even little data is enough to obtain a very general training.

While it is not possible to make use of cross validation by taking random sentences, it may be a future
possibility to take chunks of texts containing several sentences unified thematically or semantically for
example and that have good training properties. Thus making a more formal cross-validation possible
and allow to find the best combination of sentences for the purposes of parameter estimation with more
systematic criteria.

9 Conclusions and Perspectives

We have presented and evaluated a variant of simulated annealing for uncertain cost functions. More
specifically, we have adapted the work of (Painton and Diwekar, 1995) to use standard statistical tests, as
well as integrated some elements of adaptivity inspired by (Ingber, 1996)’s Adaptive Simulated Annealing.
We performed experiments on Semeval 2007 task 7 and found that the quality of the results from a given
set of estimated parameters very much depend on the nature of the text. However, from the texts in
our corpus it appears that very general texts with a diverse yet non domain specific lexicon are the best
choice for the estimation of parameters. As exhibited for one of the texts, even very small training sets are
sufficient to obtain good results granted the text has the right properties.

For future work concerning this parameter estimation approach, we are planning some more thorough
experiments involving the other texts, as well parts of SemCor. Furthermore, there are many potential ways
to improve the parameter search algorithm, notably through the integration of more adaptive elements
from Adaptive Simulated Annealing. Furthermore, it may be beneficial to evaluate a variant where the
statistical test is integrated in the objective function as a penalty term, like (Painton and Diwekar, 1995)
propose with the standard deviation.

Furthermore, it would be very interesting to adapt our approach to perform joint optimisation of features
and parameters as done in (Daelemans et al., 2003), even though the stochastic aspect would make it a
much lengthier process in order to ensure statistically valid results.

Resources and programs

The implementations of both the parameter estimation and the Ant Colony Algorithm are both available
online as Free Software under the GNU Lesser General Public License: https://forge.imag.fr/
projects/formica/. More information is available on the WSD page of our research group: http:
//getalp.imag.fr/xwiki/bin/view/WSD/.
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