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ABSTRACT
We present two dependency parsers for Persian, MaltParser and MSTParser, trained on the
Uppsala PErsian Dependency Treebank. The treebank consists of 1,000 sentences today. Its
annotation scheme is based on Stanford Typed Dependencies (STD) extended for Persian
with regard to object marking and light verb contructions. The parsers and the treebank are
developed simultanously in a bootstrapping scenario. We evaluate the parsers by experimenting
with different feature settings. Parser accuracy is also evaluated on automatically generated and
gold standard morphological features. Best parser performance is obtained when MaltParser
is trained and optimized on 18,000 tokens, achieving 68.68% labeled and 74.81% unlabeled
attachment scores, compared to 63.60% and 71.08% for labeled and unlabeled attachment
score respectively by optimizing MSTParser.

KEYWORDS: Persian dependency treebank, dependency parsing, Farsi, Persian, MaltParser,
MSTParser.

1 Introduction

Data-driven tools for syntactic parsing have been successfully developed and applied to a large
number of languages. The existing data-driven syntactic parsers are based on phrase structure,
dependency structure, or specific linguistic theories such as HPSG, LFG or CCG. Dependency-
based representations have become more widely used in the recent decade, as the approach
seems better suited than phrase structure representations for languages with free or flexible
word order (Kübler et al., 2009). Dependency parsing, in addition, has been shown to be useful
in language technology applications, such as machine translation and information extraction,
when detecting the underlying syntactic pattern of a sentence, because of their transparent
encoding of predicate-argument structure (Kübler et al., 2009).

This paper presents the adaptation and evaluation of two dependency parsers, MaltParser (Nivre
et al., 2006) and MSTParser (McDonald et al., 2005a) for Persian. The parsers are trained
on a syntactically annotated corpus developed for Persian; the Uppsala PErsian Dependency
Treebank (UPEDT) (Seraji et al., 2012).

The paper is organized as follows. Section 2 briefly describes the structure and the characteristics
of the Persian language, followed by a description of the dependency structure and the functional
annotation of the Persian dependency treebank on which the data-driven parsers are trained. A
short description of MaltParser and MSTParser ends the section. Section 3 introduces the design
of our experiments and Section 4 presents the results of the evaluation covering the results
of MaltParser and MSTParser, as well as an error analysis for the developed parsers. Finally,
Section 5 concludes the paper.
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2 Background

2.1 Persian

Persian belongs to the Indo-Iranian languages, a branch of the Indo-European family. The
writing system is based on the Arabic alphabet consisting of 28 letters and four additional
letters. Persian is written from right to left and Persian morphology is regulated by an affixal
system, see more on Persian orthography and morphology in Seraji et al. (2012).

Persian has a SOV word order and is verb final. The head word usually follows its depen-
dents. However, the syntactic relations have a mixed typology, as prepositions always precede
their nominal dependent. Sentences consist of an optional subject and object followed by a
compulsory verb, i.e., (S) (O) V. Subjects, however, can be placed anywhere in a sentence or
they may completely be omitted as Persian is a pro-drop language with an inflectional verb
system (where the verb is inflected for person and number). The use and the order of the
optional constituents are relatively arbitrary and this scrambling characteristic makes Persian
word order highly flexible. Verbs are usually compounds consisting of a preverbal element
such as a noun, adjective, preposition, or adverb combined with a bleached or light verb. Light
verbs and passive constructions may be split by other intervening elements such as subjunctives,
adjectives, future auxiliaries, and negations, that might cause crossing dependencies in syntactic
annotation.

2.2 Persian Treebank

Uppsala PErsian Dependency Treebank (UPEDT) (Seraji et al., 2012) is a dependency-based
syntactically annotated corpus consisting of 1,000 sentences and 19,232 tokens (14,397 types),
which is available in CoNLL-format. The data is taken from the open source, validated corpus
UPEC (Seraji et al., 2012) created from on-line material containing newspaper articles and
common texts with different genres and topics such as fiction, as well as technical descriptions
and texts about culture and art. The corpus is annotated with morpho-syntactic and partly
semantic features. The aim is to expand the treebank with 10,000 sentences in the near future
by using data-driven dependency parsers for bootstrapping, and manual validation of the
annotation.

In the treebank, each head and dependent relation is marked and annotated with functional
categories, indicating the grammatical function of the dependent to the head. The treebank
annotation scheme is based on Stanford Typed Dependencies (STD) which has become a de
facto standard for English today (Marneffe and Manning, 2008). The STD annotation scheme
has been applied to Persian and was extended to cover all syntactic relations that are not
covered by the original scheme developed for English. Five new labels were added to describe
various relations in light verb constructions, and the accusative marker. The added relations are
introduced below with a description. The entire annotation scheme can be found in Table 1
where the extended relations introduced for Persian are marked in italic.1

acc: accusative marker
An accusative marker is a clitic attached to the direct object of a transitive verb.

acomp-lvc: adjectival complement in light verb construction
1An alternative to introducing special relations for the nonverbal elements in light verb constructions would have

been to use the mwe relation for multi-word expression. However, because light verb constructions are so prevalent in
Persian, we chose to distinguish them from other multi-word expressions like compound prepositions and conjunctions.
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An adjectival complement in a light verb construction is a preverbal adjective combining with a
light verb to form a lexical unit.

dobj-lvc: direct object in light verb construction
A direct object in a light verb construction is a preverbal direct object combining with a light
verb to form a lexical unit.2

nsubj-lvc: nominal subject in light verb construction
A nominal subject in a light verb construction holds between a preverbal nominal subject
combining with a light verb to form a lexical unit (usually with a passive meaning).

prep-lvc: prepositional modifier in light verb construction
A prepositional modifier in a light verb construction is a preverbal prepositional phrase combin-
ing with a light verb to form a lexical unit.

In order to increase the size of the treebank, we adapt two freely available dependency parsers
that have so far been successfully used for different languages, namely MaltParser (Nivre et al.,
2006) and MSTParser (McDonald et al., 2005b), to the Persian dependency treebank.

2.3 Data-Driven Dependency Parsers

MaltParser (Nivre et al., 2006) is an open source data-driven parser generator for dependency
parsing. The parser is an implementation of inductive dependency parsing (Nivre, 2006) and can
be used to develop a parser for a new language given a dependency treebank representing the
syntactic relations of that language. The system is characterized as transition-based, allowing
the user to choose different parsing algorithms and to define optional feature models indicating
lexical features, part-of-speech features and dependency type features. The main parsing algo-
rithms available in MaltParser are Nivre’s algorithms, including the arc-eager and arc-standard
versions described in Nivre (2003) and Nivre (2004), Covington’s algorithms, containing the
projective and non-projective versions described by Covington (2001), and Stack algorithms,
including the projective and non-projective versions of the algorithm described in Nivre (2009)
and Nivre et al. (2009). The Covington and the Stack algorithms can handle non-projective
trees whereas the Nivre algorithm does not (Ballesteros and Nivre, 2010). For the optimization
of MaltParser we used MaltOptimizer (Ballesteros and Nivre, 2010) developed specifically to
optimize MaltParser for new data sets with respect to parsing algorithm and feature selection.

MSTParser (McDonald et al., 2005b,a) is also an open source system but based on the graph-
based approach to dependency parsing using global learning and exact (or nearly exact)
inference algorithms. A graph-based parser extracts the highest scoring spanning tree from a
complete graph containing all possible dependency arcs, using a scoring model that decomposes
into scores for smaller subgraphs of a tree. MSTParser implements first- and second-order
models, where subgraphs are single arcs and pairs of arcs, respectively, and provides different
algorithms for projective and non-projective trees.

MaltParser and MSTParser were the top scoring systems in the CoNLL 2006 shared task on
multilingual dependency parsing (Buchholz and Marsi, 2006) and has since been applied to a
wide range of languages.

2Note that this unit may in turn take a direct object. Hence the need to distinguish the light verb object from an
ordinary direct object.
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Category Description
acc accusative marker
acomp adjectival complement
acomp-lvc adjectival complement in light verb construction
advcl adverbial clause modifier
advmod adverbial modifier
amod adjectival modifier
appos appositional modifier
aux auxiliary
auxpass passive auxiliary
cc coordination
ccomp clausal complement
complm complementizer
conj conjunction
cop copula
dep dependent
det determiner
dobj direct object
dobj-lvc direct object in light verb construction
mark marker
mwe multi-word expression
neg negation modifier
nn noun compound modifier
npadvmod noun phrase as adverbial modifier
nsubj nominal subject
nsubj-lvc nominal subject in light verb construction
nsubjpass passive nominal subject
num numerical structure
number element of compound number
parataxis parataxis
pobj object of a preposition
poss possession modifier
predet predeterminer
prep prepositional modifier
prep-lvc prepositional modifier in light verb construction
punct punctuation
quantmod quantifier phrase modifier
rcmod relative clause modifier
rel relative
root root
tmod temporal modifier
xcomp open clause complement

Table 1: Syntactic relations in UPEDT based on Stanford Typed Dependencies including exten-
sions for Persian.
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3 Parsing Persian

We trained the two parsers by applying various algorithms and feature settings on 1,000
sentences of the Persian dependency treebank. 90% of data was used for training and validation
and 10% of the data taken from different topics for final test. To find out what impact a PoS
tagger has on the parsing results, we trained the parsers by using gold standard PoS tags taken
from UPEC, as well as automatically generated morphological features during training and test.
For the automatic morphological annotation, we used TagPer, a freely available part of speech
tagger for Persian (Seraji et al., 2012). TagPer was developed by using HunPoS (Halácsy et al.,
2007) trained on UPEC consisting of 2,698,274 tokens and has proven to give state-of-the-art
accuracy of 97.8% for PoS tagging of Persian (Seraji et al., 2012). TagPer was retrained for our
experiments in order to exclude treebank data to avoid data overlap. The results performed by
the new TagPer revealed an overall accuracy of 96.1%.3

3.1 MaltParser

In order to obtain the highest possible accuracy, given the small data set, we experimented
with different algorithms and feature settings to optimize MaltParser. For the optimization, we
used the freely available optimization tool for MaltParser, namely MaltOptimizer (Ballesteros
and Nivre, 2010). We also used the parser out of the box with its default settings. In addition,
we trained the parser with gold standard PoS tags as well as with auto generated PoS tags. In
all experiments we used 90% of the treebank data set for training and validation by applying
10-fold cross-validation.

The results are shown in Table 2. Parser optimization leads to improved labeled and unlabeled
attachment scores and label accuracy. MaltOptimizer ended up with different algorithms for
the different folds during cross validation with best results shifting between Nivre’s algorithms
and Covington’s algorithms.

We can note that using gold standard PoS features during training and test (DGG and OGG) gives
higher attachment scores compared to auto generated PoS tags (DAA and OAA) independently
of whether the parser is optimized or not. Higher results are obtained when the parser is trained
and tested on automatically genererated PoS features (DAA and OAA), a scenario realistic for
parsing new running texts, while accuracy is lowest when the parser is trained on gold-standard
features but parses texts that are automatically annotated by a PoS tagger (DGA and OGA).

3.2 MSTParser

To apply MSTParser to Persian, we used the same experiment settings and the same data
division, to keep the same criteria as we used for MaltParser. In other words, we continued
the validation phase by training MSTParser with its default settings (projective, order 1)
and optimized the parser with regards to feature order (order 1 and 2) and non-projective
structures. Thus, we combined the training strategies by running the parser in four different
experimental settings: projective-order1 (default), projective-order2, non-projective-order1,
and non-projective-order2.

The cross-validation results for MSTParser as reported in Table 3 reveal the scores between
62.35% to 65.99% for labeled attachment, and 69.52% to 72.68% for unlabeled attachment.

3The accuracy of the new TagPer is lower due to the treatment of lvc-construction, multiword expressions, as well as
the further correction of UPEC. These corrections were required for our treebank development.
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Default Optimized
Including Punct. DGG DGA DAA OGG OGA OAA

Labeled Attachment 68.46 64.80 66.17 70.39 66.14 69.37
Unlabeled Attachment 74.07 70.36 71.78 75.49 72.19 74.12

Label Accuracy 80.19 78.52 79.81 83.19 79.72 81.50

Table 2: Labeled and unlabeled attachment score, and label accuracy score including punctua-
tion of MaltParser in the model selection with different feature settings. DGG = Default with
Gold PoS tags in the training and the test set, DGA = Default with Gold PoS tags in the training
and Auto PoS tags in the test set, DAA = Default with Auto PoS tags in the training and the test
sets, OGG = Optimized with Gold PoS tags in the training and the test set, OGA = Optimized
with Gold PoS tags in the training and Auto PoS tags in the test set, and OAA = Optimized with
Auto PoS tags in the training and the test set

The optimized versions (OGG, OGA, and OAA), as could be predicted, achieved higher accuracy
compared to the default settings (DGG, DGA, and DAA). Highest results on average are achieved
by using only projective structures and feature order 2. However, the optimization scores varied
slightly between the structures projective-order 2, non-projective-order1 and non-projective-
order2 across the folds.

Like MaltParser, the gold standard PoS features (DGG and OGG) give higher attachment scores
compared to the auto generated PoS tags (DAA and OAA) independently of whether the
MSTParser is optimized or not. Lowest parser performance is obtained when the parser is
trained on gold PoS features but tested on automatically generated ones.

Default Optimized
Including Punct. DGG DGA DAA OGG OGA OAA

Labeled Attachment 65.58 62.35 63.78 65.99 62.59 64.44
Unlabeled Attachment 72.19 69.52 71.06 72.68 69.99 71.80

Label Accuracy 80.37 77.54 78.57 80.47 77.43 79.03

Table 3: Labeled and unlabeled attachment score, and label accuracy including punctuation of
MSTParser in the model selection with different feature settings (for explanation of the features
see Table2).

4 Results

For the final test, we trained the parsers on 90% of the data and tested on a separated,
previously unseen test set of 10%. We run the parsers using the feature settings based on their
best performance during the validation phase. For MaltParser, we used nivreeager algorithm
and for the MSTParser, we applied projective training and feature order 2, as these settings had
shown the best results on average during the validation phase. The results are given separately
with punctuations and without, as shown in Table 4 and Table 5.

Similar to the development experiments, MaltParser obtains highest accuracy in all experiments.
The labeled and unlabeled attachment scores reach best result with gold standard PoS tags.
However, using automatically generated PoS features during training and test gives higher
accuracy compared to when training the parsers on gold-standard PoS but using automatically
generated PoS tags on the test data.
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MALT MST
Including Punct. OGG OGA OAA OGG OGA OAA

Labeled Attachment 68.68 64.05 65.77 63.60 59.94 60.76
Unlabeled Attachment 74.81 70.93 73.39 71.08 68.09 68.91

Label Accuracy 80.64 76.91 77.50 77.73 74.96 75.78

Table 4: Labeled and unlabeled attachment score, and label accuracy score including punctua-
tion in the model assessment with different feature settings.

MALT MST
Ignoring Punct. OGG OGA OAA OGG OGA OAA

Labeled Attachment 68.57 63.54 65.33 63.54 59.20 60.31
Unlabeled Attachment 75.55 71.38 73.94 72.06 68.48 69.59

Label Accuracy 78.28 73.94 74.70 74.62 71.47 72.40

Table 5: Labeled and unlabeled attachment score, and label accuracy score ignoring punctuation
in the model assessment with different feature settings.

In order to provide a more fine-grained analysis of the parsing results for the individual
structures, Table 6 displays labeled recall and precision for the 15 most frequently occurring
dependency types. As we see, the results vary greatly for both parsers across the relation types.
For MaltParser, there is a variation for recall ranging from 46.94% for clausal complement
(ccomp) to 91.43% for determiner (det), and for precision from 51.11% for clausal complement
to 88.89% for adjectival modifier (amod). For MSTParser, recall is ranging from 34.69% for
clausal complement (ccomp) to 92.31% for object for a preposition (pobj), and precision is
varying between 36.17% for clausal complement (ccomp) to 88.89% for object for a preposition
(pobj).

MaltParser and MSTParser show similar results only for a few relations, which include possessive
(poss) and adjectival (amod) modifier, copula (cop), direct object in light verb construction
(dobj-lvc), and determiner (det). MaltParser assigns the relation determiner (det) followed by
adjectival modifier (amod) to be the candidates of having the highest scores for both recall
and precision, while MSTParser assigns object of a preposition (pobj) with the highest F-score.
Furthermore, conjunction (conj), direct object (dobj), and the clausal complement (ccomp),
are selected as the most erronous relations, although there are differences in the precision and
recall figures achieved by the parsers. MaltParser outperforms MSTParser in all cases except for
the detection and correctness of objects of a preposition (pobj), and slightly better recall for
prepositional modifiers (prep) and coordinating conjunctions (cc).

5 Conclusion

In this paper we have presented two parsers developed for Persian using existing data-driven
dependency parsers, MaltParser and MSTParser trained on the Uppsala PErsian Dependency
Treebank. The development of the parsers and the treebank has been accomplished simul-
tanously using bootstrapping. As the next step and the highest priority of our future directions
involve further annotation and development of our treebank to improve the parsing accuracy.
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MALT MST
DepRel Freq Rec Prec Rec Prec
pobj 104 89.42 86.11 92.31 88.89
prep 103 62.14 62.14 63.11 59.09
root 101 80.20 72.32 68.32 69.00
nsubj 99 61.62 55.45 51.52 50.00
poss 97 77.32 65.79 77.32 59.06
advmod 65 63.08 69.49 53.85 60.34
conj 58 50.00 54.72 36.21 44.68
dobj 56 51.79 61.70 41.07 50.00
cc 55 61.82 68.00 63.64 62.50
amod 54 88.89 88.89 83.33 78.95
cop 53 64.15 72.34 64.15 57.63
ccomp 49 46.94 51.11 34.69 36.17
dobj-lvc 43 88.37 69.09 88.37 74.51
det 35 91.43 84.21 91.43 84.21
acc 34 82.35 82.35 73.53 73.53

Table 6: Labeled recall and precision achieved by MaltParser and MSTParser for the 15 most
frequent dependency types in the test set.
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