
COLING 2012

24th International Conference on
Computational Linguistics

Proceedings of the
3rd Workshop on South and Southeast

Asian Natural Language Processing
(SANLP)

Workshop chairs:
Virach Sornlertlamvanich and Abbas Malik

08 December 2012
Mumbai, India

Diamond sponsors

Tata Consultancy Services
Linguistic Data Consortium for Indian Languages (LDC-IL)

Gold Sponsors

Microsoft Research
Beijing Baidu Netcon Science Technology Co. Ltd.

Silver sponsors

IBM, India Private Limited
Crimson Interactive Pvt. Ltd.
Yahoo
Easy Transcription & Software Pvt. Ltd.

Proceedings of the 3rd Workshop on South and Southeast Asian Natural Language
Processing (SANLP)
Virach Sornlertlamvanich and Abbas Malik (eds.)
Revised preprint edition, 2012

Published by The COLING 2012 Organizing Committee
Indian Institute of Technology Bombay,
Powai,
Mumbai-400076
India
Phone: 91-22-25764729
Fax: 91-22-2572 0022
Email: pb@cse.iitb.ac.in

This volume c© 2012 The COLING 2012 Organizing Committee.
Licensed under the Creative Commons Attribution-Noncommercial-Share Alike
3.0 Nonported license.
http://creativecommons.org/licenses/by-nc-sa/3.0/
Some rights reserved.

Contributed content copyright the contributing authors.
Used with permission.

Also available online in the ACL Anthology at http://aclweb.org

ii

Introduction

Welcome to the 3rd Workshop on South and Southeast Asian Natural Language
Processing (WSSANLP - 2012), a collocated event at COLING 2012, 8 - 15 December,
2012. South Asia comprises of the countries, Afghanistan, Bangladesh, Bhutan, India,
Maldives, Nepal, Pakistan and Sri Lanka. Southeast Asia, on the other hand, consists
of Brunei, Burma, Cambodia, East Timor, Indonesia, Laos, Malaysia, Philippines,
Singapore, Thailand and Vietnam.

This area is the home to thousands of languages that belong to different language
families like Indo-Aryan, Indo-Iranian, Dravidian, Sino-Tibetan, Austro-Asiatic, Kradai,
Hmong-Mien, etc. In terms of population, South Asian and Southeast Asia represent
35 percent of the total population of the world which means as much as 2.5 billion
speakers. Some of the languages of these regions have a large number of native
speakers: Hindi (5th largest according to number of its native speakers), Bengali
(6th), Punjabi (12th), Tamil(18th), Urdu (20th), etc.

As internet and electronic devices including PCs and hand held devices including
mobile phones have spread far and wide in the region, it has become imperative
to develop language technology for these languages. It is important for economic
development as well as for social and individual progress.

A characteristic of these languages is that they are under-resourced. The words
of these languages show rich variations in morphology. Moreover they are often
heavily agglutinated and synthetic, making segmentation an important issue. The
intellectual motivation for this workshop comes from the need to explore ways of
harnessing the morphology of these languages for higher level processing. The task
of morphology, however, in South and Southeast Asian Languages is intimately linked
with segmentation for these languages.

The goal of WSSANLP is:

• Providing a platform to linguistic and NLP communities for sharing and
discussing ideas and work on South and Southeast Asian languages and
combining efforts.

• Development of useful and high quality computational resources for under
resourced South and Southeast Asian languages.

iii

We are delighted to present to you this volume of proceedings of the 3rd Workshop
on South and Southeast Asian Natural Language Processing. We have received total
39 submission in the categories of long paper, short paper and demonstration. On
the basis of our review process, we have competitively selected 9 long papers for oral
presentations, 12 short papers for poster presentations and 2 demonstrations.

We look forward to an invigorating workshop.

Virach Sornlertlamvanich (Chair WSSANLP),
National Electronics and Computer Technology Center (NECTEC), Thailand

M.G. Abbas Malik (Chair of Organizing Committee WSSANLP),
Faculty of Computing and Information Technology (North Branch),
King Abdulaziz University, Saudi Arabia

iv

Workshop Chair:
Virach Sornlertlamvanich (National Electronics and Computer Technology Center (NECTEC), Thailand

Workshop Organization Co-chair:
M. G. Abbas Malik (Faculty of Computing and Information Technology (North Branch), King Abdulaziz
University, Saudi Arabia

Invited Speaker:
Christian Boitet (GETALP - LIG, University of Grenoble, France)

Organizers:
Aasim Ali (Punjab University College of Information Technology, University of the Punjab, Pakistan)
Amitava Das (Jadavpur Univeristy, India)
Smriti Singh (Indian Institute of Technology Bombay (IITB), India)

Program Committee:
Naveed Afzal (King Abdulaziz University, Saudi Arabia)
M. Waqas Anwar (COMSATS Institute of Information Technology, Pakistan)
Sivaji Bandyopadhyay (Jadavpur University, India)
Vincent Berment (GETALP-LIG / INALCO, France)
Laurent Besacier (GETALP-LIG, Université de Grenoble, France)
Pushpak Bhattacharyya (IIT Bombay, India)
Hervé Blanchon (GETALP-LIG, Université de Grenoble, France)
Christian Boitet (GETALP-LIG, Université de Grenoble, France)
Miriam Butt (University of Konstanz, Germany)
Eric Castelli (International Research Center MICA, Vietnam)
Amitava Das (Norwegian University of Science and Technology, Norway)
Choochart Haruechaiyasak (NECTEC, Thailand)
Sarmad Hussain

(Al-Khawarizmi Institute of Computer Science, University of Engineering and Technology, Pakistan)
Aravind K. Joshi (University of Pennsylvania, USA)
Abid Khan (University of Peshawar, Pakistan)
A. Kumaran (Microsoft Research, India)
Haizhou Liv (Institute for Infocomm Research, Singapore)
M. G. Abbas Malik (King Abdulaziz University - North Jeddah Branch, Saudi Arabia)
Bali Ranaivo-Malançon (Universiti Malaysia Sarawak, Malaysia)
Hammam Riza (Agency for the Assessment and Application of Technology (BPPT), Indonesia)
Rajeev Sangal (IIIT Hyderabad, India)
L. Sobha (AU-KBC Research Centre, Chennai, India)
Virach Sornlertlamvanich (National Electronics and Computer Technology Center (NECTEC), Thailand)
Sriram Venkatapathy (Xerox Research Center Europe, France)

v

Table of Contents

Computational evidence that Hindi and Urdu share a grammar but not the lexicon
K.V.S Prasad and Shafqat Mumtaz Virk . 1

Semantic Relation Extraction from a Cultural Database
Canasai Kruengkrai, Virach Sornlertlamvanich, Watchira Buranasing
and Thatsanee Charoenporn . 15

Bengali Question Classification: Towards Developing QA System
Somnath Banerjee and Sivaji Bandyopadhyay . 25

Morphological Analyzer for Kokborok
Khumbar Debbarma, Braja Gopal Patra, Dipankar Das and Sivaji Bandyopadhyay 41

Comparing Different Criteria for Vietnamese Word Segmentation
Quy T. Nguyen, Ngan L.T. Nguyen and Yusuke Miyao . 53

A Light Weight Stemmer for Urdu Language: A Scarce Resourced Language
Sajjad Ahmad Khan, Waqas Anwar, Usama Ijaz Bajwa and Xuan Wang 69

Morpheme Segmentation for Kannada Standing on the Shoulder of Giants
Suma Bhat . 79

Manipuri Morpheme Identification
Kishorjit Nongmeikapam, Vidya Raj RK, Nirmal Y and Sivaji B . 95

Domain Based Classification of Punjabi Text Documents using Ontology and Hybrid Based
Approach

Nidhi Krail and Vishal Gupta . 109

Using English Acoustic Models for Hindi Automatic Speech Recognition
Anik Dey, Li Ying and Pascale Fung . 123

Tagger Voting for Urdu
Bushra Jawaid and Ondřej Bojar. 135

BIS Annotation Standards With Reference to Konkani Language
Dr. Madhavi Sardesai, Jyoti Pawar, Shantaram Walawalikar and Edna Vaz 145

Automatic Extraction of Compound Verbs from Bangla Corpora
Sibanshu Mukhopadhayay, Tirthankar Dasgupta, Manjira Sinha and Anupam Basu . 153

Influences of particles on Vietnamese tonal Co-articulation
Thi Lan Nguyen and Do Dat Tran . 163

Toward an amazigh language processing
Fatima Zahra Nejme, Siham Boulaknadel and Driss Aboutajdine. 173

Bidirectional Bengali Script and Meetei Mayek Transliteration of Web Based Manipuri News
Corpus

Thoudam Doren Singh . 181

vii

Rule-based Machine Translation between Indonesian and Malaysian
Raymond Hendy Susanto, Septina Dian Larasati and Francis M. Tyers 191

Building Multilingual Search Index using open source framework
Arjun Atreya, Swapnil Chaudhari, Pushpak Bhattacharyya and Ganesh Ramakrishnan 201

Automatic Searching for English-Vietnamese Documents on the Internet
Quoc Hung Ngo . 211

Error tracking in search engine development
Swapnil Chaudhari, Arjun Atreya V, Pushpak Bhattacharyya
and Ganesh Ramakrishnan . 221

An Efficient Database Design for IndoWordNet Development Using Hybrid Approach
Venkatesh Prabhu, Shilpa Desai, Hanumant Redkar, Neha Prabhugaonkar,
Apurva Nagvenkar and Ramdas Karmali . 229

IndoWordNet Application Programming Interfaces
Neha Prabhugaonkar, Apurva Nagvenkar and Ramdas Karmali . 237

viii

3rd Workshop on South and Southeast Asian
Natural Language Processing (SANLP)

Program

Saturday, December 8, 2012

WSSANLP Session I

9:30–9:50 Opening Remarks

9:50–10:50 Invited Talk by Christian Boitet

10:50–11:15 Computational evidence that Hindi and Urdu share a grammar but not the lexicon
K.V.S Prasad and Shafqat Mumtaz Virk

11:30–12:00 Tea Break

WSSANLP Session II
12:00–12:25 Semantic Relation Extraction from a Cultural Database

Canasai Kruengkrai, Virach Sornlertlamvanich, Watchira Buranasing and Thatsa-
nee Charoenporn

12:25–12:50 Bengali Question Classification: Towards Developing QA System
Somnath Banerjee and Sivaji Bandyopadhyay

12:50–13:15 Morphological Analyzer for Kokborok
Khumbar Debbarma, Braja Gopal Patra, Dipankar Das and Sivaji Bandyopadhyay

12:15–13:40 Comparing Different Criteria for Vietnamese Word Segmentation
Quy T. Nguyen, Ngan L.T. Nguyen and Yusuke Miyao

13:40–14:30 Lunch Break

ix

Saturday, December 8, 2012 (continued)

WSSANLP Session III

14:30–16:30 Posters and Demonstrations

Using English Acoustic Models for Hindi Automatic Speech Recognition
Anik Dey, Li Ying and Pascale Fung
Tagger Voting for Urdu
Bushra Jawaid and Ondřej Bojar
BIS Annotation Standards With Reference to Konkani Language
Madhavi Sardesai, Jyoti Pawar, Shantaram Walawalikar and Edna Vaz
Automatic Extraction of Compound Verbs from Bangla Corpora
Sibanshu Mukhopadhayay, Tirthankar Dasgupta, Manjira Sinha and Anupam
Basu
Influences of particles on Vietnamese tonal Co-articulation
Thi Lan Nguyen and Do Dat Tran
Toward an amazigh language processing
Fatima Zahra Nejme, Siham Boulaknadel and Driss Aboutajdine
Bidirectional Bengali Script and Meetei Mayek Transliteration of Web Based Manipuri
News Corpus
Thoudam Doren Singh
Rule-based Machine Translation between Indonesian and Malaysian
Raymond Hendy Susanto, Septina Dian Larasati and Francis M. Tyers
Building Multilingual Search Index using open source framework
Arjun Atreya, Swapnil Chaudhari, Ganesh Ramakrishnan and Pushpak Bhat-
tacharyya
Automatic Searching for English-Vietnamese Documents on the Internet
Quoc Hung Ngo
Error tracking in search engine development
Swapnil Chaudhari, Arjun Atreya, Ganesh Ramakrishnan and Pushpak Bhat-
tacharyya
An Efficient Database Design for IndoWordNet Development Using Hybrid Approach
Venkatesh Prabhu, Shilpa Desai, Hanumant Redkar, Neha Prabhugaonkar, Apurva
Nagvenkar and Ramdas Karmali
IndoWordNet Application Programming Interfaces
Neha Prabhugaonkar, Apurva Nagvenkar and Ramdas Karmali

16:30–17:00 Tea Break

WSSANLP Session IV

17:00–17:25 A Light Weight Stemmer for Urdu Language: A Scarce Resourced Language
Sajjad Ahmad Khan, Waqas Anwar, Usama Ijaz Bajwa and Xuan Wang

17:25–17:50 Morpheme Segmentation for Kannada Standing on the Shoulder of Giants
Suma Bhat

17:50–18:15 Manipuri Morpheme Identification
Kishorjit Nongmeikapam, Vidya Raj RK, Nirmal Y and Sivaji B

18:15–18:40 Domain Based Classification of Punjabi Text Documents using Ontology and Hybrid
Based Approach
Nidhi Krail, Vishal Gupta

18:40–19:00 Closing Remarks

x

Proceedings of the 3rd Workshop on South and Southeast Asian Natural Language Processing (SANLP), pages 1–14,
COLING 2012, Mumbai, December 2012.

Computational evidence that Hindi and Urdu share
a grammar but not the lexicon

K. V. S. Prasad1 and Shafqat Mumtaz Virk2

(1) Department of Computer Science, Chalmers University, Sweden
(2) Department of Computer Science and Engineering,University of Gothenburg, Sweden

and Department of Computer Science and Engineering UET, Lahore
prasad@chalmers.se, virk.shafqat@gmail.com

Abstract

Hindi and Urdu share a grammar and a basic vocabulary, but are often mutually unin-
telligible because they use different words in higher registers and sometimes even in quite
ordinary situations. We report computational translation evidence of this unusual relation-
ship (it differs from the usual pattern, that related languages share the advanced vocabulary
and differ in the basics). We took a GF resource grammar for Urdu and adapted it me-
chanically for Hindi, changing essentially only the script (Urdu is written in Perso-Arabic,
and Hindi in Devanagari) and the lexicon where needed. In evaluation, the Urdu grammar
and its Hindi twin either both correctly translated an English sentence, or failed in exactly
the same grammatical way, thus confirming computationally that Hindi andUrdu share a
grammar. But the evaluation also found that the Hindi and Urdu lexicons differed in 18%
of the basic words, in 31% of tourist phrases, and in 92% of school mathematics terms.

Keywords: Grammatical Framework, Resource Grammars, Application Grammars.

1

1 Background facts about Hindi and Urdu
Hindi is the national language of India and Urdu that of Pakistan, though neither is the
native language of a majority in its country.

‘Hindi’ is a very loose term covering widely varying dialects. In this wide sense, Hindi
has 422 million speakers according to (Census-India, 2001). This census also gives the
number of native speakers of ‘Standard Hindi’ as 258 million. Official Hindi now tends
to be Sanskritised, but Hindi has borrowed from both Sanskrit and Perso-Arabic, giving
it multiple forms, and making Standard Hindi hard to define. To complete the ‘national
language’ picture, note that Hindi is not understood in several parts of India (Agnihotri,
2007), and that it competes with English as lingua franca.

It is easier, for several reasons, to talk of standard Urdu, given as the native language of 51
million in India by (Census-India, 2001), and as that of 10 million in Pakistan by (Census-
Pakistan, 1998). Urdu has always drawn its advanced vocabulary only from Perso-Arabic,
and does not have the same form problem as Hindi. It is the official language and lingua
franca of Pakistan, a nation now of 180 million, though we note that Urdu’s domination
too is contested, indeed resented in parts of the country (Sarwat, 2006).

Hindi and Urdu ‘share the same grammar and most of the basic vocabulary of everyday
speech’ (Flagship, 2012). This common base is recognized, and known variously as ‘Hin-
dustani’ or ‘Bazaar language’ (Chand, 1944; Naim, 1999). But, ‘for attitudinal reasons, it
has not been given any status in Indian or Pakistani society’ (Kachru 2006). Hindi-Urdu
is the fourth or fifth largest language in the world (after English, Mandarin, Spanish and
perhaps Arabic), and is widely spoken by the South Asian diaspora in North America,
Europe and South Africa.

1.1 History: Hindustani, Urdu, Hindi
From the 14th century on, a language known as Hindustani developed by assimilating into
Khari Boli, a dialect of the Delhi region, some of the Perso-Arabic vocabulary of invaders.
Urdu evolved from Hindustani by further copious borrowing from Persian and some Arabic,
and is written using the Perso-Arabic alphabet. It dates from the late 18th century. Hindi,
from the late 19th century, also evolved from Hindustani, but by borrowing from Sanskrit.
It is written in a variant of the Devanagari script used for Sanskrit.

But the Hindi/Urdu has base retained its character: ‘the common spoken variety of both
Hindi and Urdu is close to Hindustani, i.e., devoid of heavy borrowings from either Sanskrit
or Perso-Arabic’ (Kachru, 2006).

1.2 One language or two?
Hindi and Urdu are ‘one language, two scripts’, according to a slogan over the newspaper
article (Joshi, 2012). The lexicons show that neither Hindi nor Urdu satisfies that slogan.
Hindustani does, by definition, but is limited to the shared part of the divergent lexicons
of Hindi and Urdu.

(Flagship, 2012) recognizes greater divergence: it says Hindi and Urdu ‘have developed
as two separate languages in terms of script, higher vocabulary, and cultural ambiance’.
Gopi Chand Narang, in his preface to (Schmidt, 2004) stresses the lexical aspect: ‘both

2

Hindi and Urdu share the same Indic base ... but at the lexical level they have borrowed so
extensively from different sources (Urdu from Arabic and Persian, and Hindi from Sanskrit)
that in actual practice and usage each has developed into an individual language’.

But lexical differences are not quite the whole story. (Naim, 1999) lists several subtle mor-
phological differences between Hindi and Urdu, and some quite marked phonological ones.
Most Hindi speakers cannot pronounce the Urdu sounds that occur in Perso-Arabic loan
words: q (unvoiced uvular plosive), x (unvoiced velar fricative), G (voiced velar fricative),
and some final consonant clusters, while Urdu speakers replace the ṇ (retroflex nasal) of
Hindi by n, and have trouble with many Hindi consonant clusters.

Naim does not think it helps learners to begin with Hindi and Urdu together. Those who
seek a command of the written language, he says, might as well learn the conventions
exclusive to Urdu from the beginning.

Thus there are many learned and differing views on whether Hindi and Urdu are one or two
languages, but nothing has been computationally proved, to the best of our knowledge. Our
work demonstrates computationally that Hindi and Urdu share a grammar, but that the
lexicons diverge hugely beyond the basic and general registers. Our as yet first experiments
already give preliminary estimates to questions like ‘How much do Hindi and Urdu differ
in the lexicons?’.

Overview Section 2 describes Grammatical Framework, the tool used in this experiment,
and Section 3 lists what we report. Section 4 describes the Hindi and Urdu resource
grammars, some differences between them, and how we cope with these differences. Section
5 presents the general and domain-specific lexicons used in this experiment. Evaluation
results are given at the ends of Sections 4 and 5. Section 6 provides context and wraps up.

This paper uses an IPA style alphabet, with the usual values and conventions. Retroflexed
sounds are written with a dot under the letter; ṭ, ḍ, and ṛ (a flap) are common to Hindi
and Urdu, while ṇ and ṣ occur in Sanskritised Hindi (though many dialects pronounce
them n and š). The palatalised spirant š and aspirated stops, shown thus: kh, are common
to Hindi and Urdu. A macron over a vowel denotes a long vowel, and ˜, nasalisation. In
Hindi and Urdu, e and o are always long, so the macron is dropped. Finally, we use ñ to
mean the nasal homorganic with the following consonant.

2 Background: Grammatical Framework (GF)
GF (Ranta, 2004) is a grammar formalisim tool based on Martin Löf’s (Martin-Löf, 1982)
type theory. It has been used to develop multilingual grammars that can be used for trans-
lation. These translations are not usually for arbitrary sentences, but for those restricted
to a specific domain, such as tourist phrases or school mathematics.

2.1 Resource and Application Grammars in GF
The sublanguages of English or Hindi, say, that deal with these specific domains are de-
scribed respectively by the (English or Hindi) application grammars Phrasebook (Caprotti
et al 2010, (Ranta et al., 2012) and MGL (Saludes and Xambó, 2010). But the English
Phrasebook and English MGL share the underlying English (similarly for Hindi). The un-
derlying English (or Hindi) syntax, morphology, predication, modification, quantification,
etc., are captured in a common general-purpose module called a resource grammar.

3

Resource grammars are therefore provided as software libraries, and there are currently
resource grammars for more than twenty five languages in the GF resource grammar library
(Ranta, 2009). Developing a resource grammar requires both GF expertise and knowledge
of the language. Application grammars require domain expertise, but are free of the general
complexities of formulating things in English or Hindi. One might say that the resource
grammar describes how to speak the language, while the application grammar describes
what there is to say in the particular application domain.

2.2 Abstract and Concrete Syntax
Every GF grammar has two levels: abstract syntax and concrete syntax. Here is an example
from Phrasebook.

1. Abstract sentence:
PQuestion (HowFarFrom (ThePlace Station)(ThePlace Airport))

2. Concrete English sentence: How far is the airport from the station?

3. Concrete Hindustani sentence: sṭešan se havāī aḍḍā kitnī dūr hæ?
(ŵçशन ų हवाई अïा eकतनी Ċर ž? , اسـٹʙشن سـɾ ʬوائΊ اڈا Ȥ�نΊ دور ɾـʬ؟)

4. Hindustani word order: station from air port how-much far is?

The abstract sentence is a tree built using functions applied to elements. These elements
are built from categories such as questions, places, and distances. The concrete syntax for
Hindi, say, defines a mapping from the abstract syntax to the textual representation in
Hindi. That is, a concrete syntax gives rules to linearize the trees of the abstract syntax.

Examples from MGL would have different abstract functions and elements. In general, the
abstract syntax specifies what categories and functions are available, thus giving language
independent semantic constructions.

Separating the tree building rules (abstract syntax) from the linearization rules (concrete
syntax) makes it possible to have multiple concrete syntaxes for one abstract. This makes
it possible to parse text in one language and output it in any of the other languages.

Compare the above tree with the resource grammar abstract tree for “How far is the airport
from the station?” to see the difference between resource and application grammars:

PhrUtt NoPConj (UttQS (UseQCl (TTAnt TPres ASimul) PPos (QuestIComp (CompIAdv
(AdvIAdv how_IAdv far_Adv))(DetCN (DetQuant DefArt NumSg) (AdvCN (UseN
airport_N)(PrepNP from_Prep (DetCN(DetQuant DefArt NumSg)(UseNstation_N))
))))))NoVoc

3 What we did: build a Hindi GF grammar, compare Hindi/Urdu
We first developed a new grammar for Hindi in the Grammatical Framework (GF) (Ranta,
2011) using an already existing Urdu resource grammar (Virk et al., 2010). This new Hindi
resource grammar is thus the first thing we report, though it is not in itself the focus of
this paper.

4

Figure 1: Hindi/Urdu Functor.

We used a functor style implementation to develop Hindi and Urdu resource grammars,
which makes it possible to share commonalities between two grammars. Figure 1 gives a
picture of this implementation style. Most of the syntactic code resides in the ‘common
code box’, and the minor syntactical differences (discussed in Section 4) are placed in each
of the ‘DiffLang box’. Each resource grammar has its own lexicon. This mechanically
proves that Hindi and Urdu share a grammar and differ almost only in the lexicons.

We evaluated our claim by (1) porting two application grammars to Hindi and Urdu: a
Phrasebook of tourist sentences (Ranta et al., 2012), and MGL, a mathematical grammar
library for school mathematics (Caprotti and Saludes, 2012), (2) randomly producing 80
abstract trees (40 from each of the Phrasebook, and MGL), (3) linearizing them to both
Hindi and Urdu, and finally checking them either for correctness, or badness (see Section
6 for results).

4 Differences between Hindi and Urdu in the Resource Grammars
We started from the script based GF resource grammar for Urdu, and adapted it for Hindi
almost entirely just by re-coding from Urdu to Hindi script. A basic test vocabulary
accompanies the resource grammars, and this was changed as needed: it turned out that
Hindi and Urdu differ up to 18% even in this basic vocabulary. Section 5 deals with the
application lexicons.

We do not give any implementation details of these resource grammars in this paper, as
the interesting bits have already been explained in (Virk et al., 2010). But we describe
below resource level differences between Hindi/Urdu, and strategies to deal with them.

4.1 Morphology
Every GF resource grammar provides a basic test lexicon of 450 words, for which the
morphology is programmed by special functions called lexical paradigms. Our Hindi mor-
phology simply takes the existing Urdu morphology and re-codes it for the Devanagari
script. Lexical differences mean that the morphologies are not identical; e.g., Hindi some-

5

times uses a simple word where Urdu has a compound word, or vice-versa. But there are
no patterns that occur in only one of the languages, so the test lexicon for Hindi works
with few problems.

We could in principle implement the subtle morphological differences noted in (Naim,
1999), but we ignored them. That these differences are minor is shown by the fact that
our informants find the resulting Hindi entirely normal.

4.2 Internal Representation: Sound or Script?
The translation of “How far is the airport from the station?” was written in IPA, repre-
senting the sound of the Hindi/Urdu. It sounds identical in the two languages, and thus
we could label it ‘Hindustani’. An obvious approach to writing grammars for Hindi/Urdu
from scratch would be to represent the languages internally by sound, so that we would
get just one grammar, one shared lexicon, and differentiated lexicons only for those words
that sound different in Hindi and Urdu. For output, we would then map the IPA to the
Hindi or Urdu script.

But we were starting from (Virk et al., 2010), which uses an internal representation based
on written Urdu. It would be a fair sized task to re-do this in terms of speech, though
the result would then be immediately re-usable for Hindi and might also help capture
similarities to other South Asian languages. We reserve this re-modelling for future work.

So, in the present work, we changed the Urdu grammar to a Hindi grammar merely by
replacing written Urdu by written Hindi. This script change was also done for the basic
lexicon, though here some words were indeed different even spoken. Our parallel grammars
therefore give no indication that Hindi and Urdu often sound identical.

One compensating advantage is that script-based representations avoid spelling problems.
Hindi-Urdu collapses several sound distinctions in Persian, Arabic and Sanskrit. A pho-
netic transcription would not show these collapsed distinctions, but the orthography does,
because Urdu faithfully retains the spelling of the original Perso-Arabic words while rep-
resenting Sanskrit words phonetically, while Hindi does the reverse. Each language is
faithful to the sources that use the same script. We see that it will not be entirely trivial
to mechanically go from a phonetic representation to a written one.

Obviously, the more the Hindi and Urdu lexicons overlap, the more the wasted effort in
the parallel method. But as we shall see, the lexicons deviate from each other quite a bit.
We have designed an augmented phonetic representation that keeps track of spelling, for
use in a remodelled grammar.

4.3 Idiomatic, Gender and Orthographic Differences
In addition to spelling, Hindi and Urdu also have orthographic differences, not often re-
marked. Indeed some apparently grammatical differences result from in fact idiomatic,
gender or orthographic differences.

For example, the lexicon might translate the verb “to add” as “joṛnā” in Hindi, and as
“jame karnā” in Urdu. The imperative sentence “add 2 to 3” would then be rendered
“do ko tīn se joṛo” in Hindi, and “do ko tīn mẽ jame karo” in Urdu. But the
choice between the post-positions “se” and “mẽ” is determined not by different grammars

6

for Hindi and Urdu, but by the post-positional idiom of the chosen verb, “joṛnā” or “jame
karnā”, as can be seen because either sentence works in either language.

A gender difference appears with “war”, rendered in Urdu as “laṛāī” (fem.). This word
works in Hindi as well, but has more a connotation of “battle”, so we chose instead
“sañgharṣ” (masc.). The shift from feminine to masculine is driven by the choice of word,
not language.

Orthographic differences next. “He will go” is “vo jāegā” in both languages; in writing,
(वह जाएगा, ,(وہ �ائȸ ʬا the final “gā” (गा, (ȸا is written as a separate word in Urdu but not
in Hindi. Similarly, “we drank tea” is “hamne cāy pī” in both languages, but in writing,
(हमī चाय पी, Ί� ʬچائ ʬم نɾ), the particle “ne” (ī, ʬن) is written as a separate word in Urdu
but not in Hindi.

These differences were handled by a small variant in the code, shown below. To generate
the future tense for Urdu, the predicate is broken into two parts: finite (fin) and infinite
(inf). The inf part stores the actual verb phrase (here “jāe”), and the fin part stores the
copula “gā” as shown below.

VPFut=>fin=(vp.s! VPTense VPFutr agr).fin; inf=(vp.s! VPTense
VPFutr agr).inf

For Hindi, these two parts are glued to each other to make them one word. This word is
then stored in the inf part of the predicate and the fin part is left blank as shown below.

VPFut=>fin=[]; inf=Prelude.glue ((vp.s! VPTense VPFutr agr).inf)
((vp.s! VPTense VPFutr agr).fin)

Similarly in the ergative “hamne cāy pī” (“we drank tea”), Urdu treats “ham” and “ne”
as separate words, while Hindi makes them one. We used for Urdu, NPErg => ppf ! Obl
++ ”ne” and for Hindi, NPErg => glue (ppf ! Obl) ”ne”.

4.4 Evaluation and Results
With external informants

As described earlier, we randomly generated 80 abstract trees (40 from each of the Phrase-
book, and MGL), linearized them to both Hindi and Urdu. These linearizations were then
given to three independent informants.

They evaluated the Hindi and Urdu translations generated by our grammars. The infor-
mants found 45 sentences to be correct in both Hindi and Urdu. The other sentences were
found understandable but failed grammatically - in exactly the same way in both Hindi
and Urdu: nothing the informants reported could be traced to a grammatical difference
between Hindi and Urdu. For this paper, the point is that all 80 sentences, the badly
translated as well as the correctly translated, offer mechanical confirmation that Hindi and
Urdu share a grammar.

We note for the record that the 35 grammatical failures give a wrong impression that the
grammar is only “45/80” correct. In fact the grammar is much better: there are only a

7

handful of distinct known constructs that need to be fixed, such as placement of negation
and question words, but these turn up repeatedly in the evaluation sentences.

A result that has not been the focus of this paper is that we greatly improved the Urdu
grammar of (Virk et al., 2010) while developing the Hindi variant. Errors remain, as noted
above.

With internal informants

The second author is a native Urdu speaker, while the first speaks Hindi, though not as a
native. With ourselves as internal informants, we could rapidly conduct several more ex-
tensive informal evaluations. We looked at 300 Phrasebook sentences, 100 MGL sentences,
and 100 sentences generated directly from the resource grammars. We can confirm that
for all of these 500 English sentences, the corresponding Urdu and Hindi translations were
understandable and in conformance with Urdu and Hindi grammar (barring the known
errors noted by the external informants).

We note particularly that randomly generated MGL sentences can be extremely involuted,
and that the Hindi and Urdu translations had the same structure in every case.

5 The Lexicons
As we noted in Section 1, Urdu has a standard form, but Hindi does not, though official
Hindi increasingly tends to a Sanskritised form. Hindustani itself counts as ‘Hindi’, and is
a neutral form, but has only basic vocabulary, a complaint already made in (Chand, 1944).
So to go beyond this, Hindi speakers have to choose between one of the higher forms.
Elementary mathematics, for example, can be done in Hindustani or in Sanskritised Hindi,
attested by the NCERT books (NCERT, 2012), or in English-ised Hindi, which can be
heard at any high school or university in the Hindi speaking regions.

We arbitrated the choice of Hindi words thus: when we had sources, such as the NCERT
mathematics books or a government phrase book, we used those. Otherwise, we used (Snell
and Weightman, 2003) and (Hindi-WordNet, 2012) to pick the most popular choices.

5.1 The general lexicon
Out of 350 entries, our Hindi and Urdu lexicons use the same word in 287 entries, a fraction
of 6/7 which can easily be changed by accepting more Urdu words as Hindi’ or by avoiding
them. We note in passing that the general lexicon is any case often tricky to translate
to Hindi-Urdu, as the cultural ambience is different from the European one where GF
started, and which the test lexicon reflects. Many words (“cousin”, “wine”, etc.) have no
satisfactory single equivalents, but these lexical items still help to check that the grammars
work.

5.2 The Phrasebook lexicon
This lexicon has 134 entries, split into 112 words and 22 greetings. For 92 of the words, the
Hindi and Urdu entries are the same; these include 42 borrowings from English for names
for currencies, (European) countries and nationalities,and words like “tram” and “bus”. So
Hindi and Urdu share 50 of 70 native words, but differ on 20, including days of the week
(except Monday, “somvār” in both Hindi and Urdu). The greetings lexicon has 22 entries,

8

most of which are hard to translate. “Good morning” etc. can be translated though they
are often just “hello” and “bye”. Greetings are clearly more culture dependent: Hindi and
Urdu differ in 17 places.
An example not in the Phrasebook drives home the point about greetings: airport an-
nouncements beginning “Passengers are requested ...” are rendered in Hindi as “yātriyõ
se nivedan hæ ...” (याeǮयƘ ų eनŤदान ž) and in Urdu as “musāfirõ se guza:riš kī jātī
hæ ...” (ʬـɾ Ί�ـا� ΊȤ زارشȸ ʬمـسافـروں سـ), which suggests that Hindi and Urdu have diverged
even in situations almost tailored for ‘Bazaar Hindustani’!

5.3 The Mathematics lexicon
Our MGL lexicon, for use with high school mathematics, has 260 entries. Hindi and Urdu
differ on 245 of these. The overlapping 15 include function words used in a technical
mathematical sense, “such that”, “where”, and so on.
As examples of the others, here are some English words with their Hindi and Urdu equiva-
lents in parentheses: perpendicular (lañb लƫब, amūd ,(عمود right-angled (samkoṇ समकोण,
qāyam zāvī ,(قائم زاوی triangle (tribhuj eǮभƲज, mašallaš ,(م�ل� hypotenuse (karṇ कणƨ ,
vitar ,(و�ر vertex (šīrṣ शीषƨ, rās .(راس
This total divergence comes about because Urdu borrows mathematical terms only from
Perso-Arabic, and Hindi, only from Sanskrit. There would be more overlap in primary
school, where Hindi uses more Hindustani words, but the divergence is already complete
by Class 6. The parallel English, Hindi and Urdu texts (NCERT, 2012), from which we
got the list above, show that the grammar of the Hindi and Urdu sentences continue to be
identical modulo lexical changes, even when the lexicons themselves diverge totally.
Since it often happens in mathematics that every Hindi content word is different from
its Urdu counterpart, the languages are mutually unintelligible. Even function words can
differ. Either “yadi” or “agar” can mean “if” in Hindi, but the Sanskrit “yadi” is often
chosen for reasons of stylistic unity with the Sanskrit vocabulary. Urdu never uses “yadi”.

5.3.1 More on Hindi mathematical terms
Our Hindi words were taken mostly from the NCERT books, which particularly in the later
classes use Sanskritised Hindi. They make good use of the regular word-building capacity
of Sanskrit. For example, “to add” is “joṛnā” in the lower classes, but “addition” becomes
“yog” in the higher classes. This allows constructs like (yogātmak, additive), which is like
(guṇātmak, multiplicative), (bhāgātmak, divisive) and so on.
One might think the NCERT books overly Sanskritised, but it is hard to find other so-
lutions, short of massive code switching between English and Hindi. NCERT books are
widely used all over India. We have no sales figures for the NCERT mathematics books
in Hindi, but there are not many widely available alternatives. If Hindi is to become a
language for mathematics, these books might be a major lexical source.

5.4 Contrast: the converging lexicons of Telugu/Kannada
Hindi and Urdu make a very unusual pair, agreeing so completely at the base and diverging
so much immediately after. Related languages usually go the other way. An example is
the pair Telugu/Kannada, two South Indian languages.

9

Telugu/Kannada do not share a base lexicon, and so are mutually unintelligible for everyday
use, unlike Hindi/Urdu.

But at higher registers, where Hindi/Urdu diverge, Telugu/Kannada converge. So where
a Hindi speaker listening to technical Urdu would understand the grammar but not the
content words, the Telugu speaker listening to technical Kannada would recognise all the
content words but not the grammar.

For mathematics, Telugu/Kannada use a Sanskrit-based lexicon essentially identical to
that of Hindi. We do not list the exact Telugu and Kannada versions, but do note that the
convergence Hindi-Telugu-Kannada would be improved by deliberate coordination. For
completeness, we mention that a smaller part of the higher vocabulary, mostly adminis-
trative terms, is shared with Urdu.

Further,Telugu/Kannada are in fact grammatically close, so a Telugu speaker who knows
no Kannada would need only a brief reminder of grammar and a basic lexicon to read
mathematics in Kannada—the mathematical terms would be familiar. A hypothetical
“Scientific Kannada for Telugu Speakers” need only be a slim volume. It is the general
reading in Kannada that would need a bigger lexicon. This parallels the situation of an
English speaking scientist trying to read French—the scientific reading is easier!

But for a Hindi-speaking scientist trying to read Urdu, it is the everyday texts that are
easier, not the scientific ones.

5.5 Summary of lexical study
Our figures suggest that everyday Hindi and Urdu share 82% of their vocabulary, but this
number drops if we move to a specific domain: for tourist phrases, to 69%, and for very
technical domains, such as mathematics, to a striking 8%.

An English speaker who knows no mathematics might hear mathematics in English as built
of nonsense words that function recognizably as nouns, adjectives, verbs and so on. This is
how mathematics in Urdu would sound to a Hindi speaking mathematician (and the other
way around), even though Hindi and Urdu share a base lexicon and the grammar.

The mathematics lexicons of Hindi, Telugu and Kannada suggest that a Sanskrit based
vocabulary makes a powerful link across India. That vocabulary also makes Urdu the odd
language out amongst Indian languages, despite its close relation to Hindi.

6 Discussion
Our results confirm that Hindi and Urdu share a grammar, but differ so much in vocabulary
(even for travel and primary school) that they are now different languages in any but the
most basic situation. With the various linguistic, cultural and political factors obtaining
in India and Pakistan, a good guess is that the languages will diverge further.

A regular Sanskrit base for Hindi technical terms would cement this divergence from Urdu,
but would give Hindi a more usual convergent relationship with other Indian languages,
differing at the everyday level but coming together at higher registers. Indeed this situation
might argue for Sanskritised Hindi as a national language, because for non-native Indian
speakers this may be easier to understand than Hindi with more Perso-Arabic words.

(Paauw, 2009) says “Indonesia, virtually alone among post-colonial nations, has been suc-

10

cessful at promoting an indigenous language as its national language.” Pakistan may have
similarly solved its national language problem, with a parallel situation of Urdu being the
native language of a minority. A difference is that Urdu already has rich lexical and word-
building resources, whereas Bahasa Indonesia did not. So the Istilah committee has over
the decades standardised hundreds of thousands of terms. India does not need that many
new terms, since it too has a rich shared lexical resource in Sanskrit, one that moreover has
tremendous word-building capacity. But a standardising committee may help, since often
the same Sanskrit word is used in different ways in different Indian languages. A standard
pan-Indian lexicon for technical terms would allow for ease of translation, and might spur
the usabilty of all Indian languages for science and technology.

Future Work

We hope to develop our Phrasebook and MGL tools, aiming for practical use. We also need
to fix the remaining errors in our grammars, to do with continuous tenses, word order for
some questions and negations, and the translation of English articles. Fixing these might
be non-trivial. We have stated two other goals, to rebuild our resource grammars on a
phonetic basis, and to do a progressive mathematics lexicon. We have started work on this
last, which we believe will show an increasing divergence between Hindi and Urdu as we
go to higher classes. The NCERT books are available in both Hindi and Urdu, so we have
a ready made source for the lexicons.

Currently, popular articles and TV programs that need advanced vocabulary (e.g., music
competitions or political debates) in Hindi take the terms needed from English, Urdu and
Sanskrit sources, though these elements sit uncomfortably together, at least as of now.
More examples are worth studying.

Acknowledgements

We thank our informants Anurag Negi, Vinay Jethava, and Azam Sheikh Muhammad for
their painstaking comments.

Our paper originally used French and English as an example of the usual relationship:
shared technical vocabulary but differing everyday words. We thank one of our anonymous
referees for pointing out that we should rather take a pair closer to home - they suggested
Malay-Indonesian (Paauw, 2009), but we chose Telugu-Kannada both because the first
author speaks these and because we can link them to Hindi via Sanskrit.

11

References
Agnihotri, R. K. (2007). Hindi: An Essential Grammar. London/New York: Routledge.

Caprotti, O. and Saludes, J. (2012). The gf mathematical grammar library. In Conference
on Intelligent Computer Mathematics /OpenMath Workshop.

Census-India (2001). Abstract of Speakers’ Strength of Languages and Mother Tongues.
Government of India. http://www.censusindia.gov.in/Census_Data_2001/Census_
Data_Online/Language/Statement1.htm.

Census-Pakistan (1998). Population by Mother Tongue. http://www.census.gov.pk/
MotherTongue.htm.

Chand, T. (1944). The problem of Hindustani. Allahabad: Indian Periodicals. www.
columbia.edu/itc/mealac/pritchett/00fwp/sitemap.html.

Flagship (2012). Undergraduate program and resource center for Hindi-Urdu
at the University of Texas at Austin. http://hindiurduflagship.org/about/
two-languages-or-one/.

Hindi-WordNet (2012). Hindi Wordnet. 2012. Universal Word – Hindi Lexicon. http:
//www.cfilt.iitb.ac.in.

Joshi, M. M. (2012). Save Urdu from narrow minded politics. Bombay: The Times of
India, 19 Jan 2012.

Kachru, Y. (2006). Hindi (London Oriental and African Language Library). Philadelphia:
John Benjamins Publ. Co.

Martin-Löf, P. (1982). Constructive mathematics and computer programming. In Cohen,
Los, Pfeiffer, and Podewski, editors, Logic, Methodology and Philosophy of Science VI,
pages 153–175. North-Holland, Amsterdam.

Naim, C. (1999). Introductory Urdu, 2 volumes. Revised 3rd edition. Chicago: University
of Chicago.

NCERT (2012). Mathematics textbooks (English and Hindi). New Delhi: National Council
for Educational Research and Training.

Paauw, S. (2009). One land, one nation, one language: An analysis of Indonesia’s national
language policy. University of Rochester Working Papers in the Language Sciences, 5(1):2–
16.

Ranta, A. (2004). Grammatical Framework: A Type-Theoretical Grammar Formalism.
Journal of Functional Programming, 14(2):145–189.

Ranta, A. (2009). The GF Resource Grammar Library. Linguistics in Language Technol-
ogy, 2. http://elanguage.net/journals/index.php/lilt/article/viewFile/214/
158.

Ranta, A. (2011). Grammatical Framework: Programming with Multilingual Grammars.
CSLI Publications, Stanford. ISBN-10: 1-57586-626-9 (Paper), 1-57586-627-7 (Cloth).

12

Ranta, A., Détrez, G., and Enache, R. (2012). Controlled language for everyday use:
the molto phrasebook. In CNL 2012: Controlled Natural Language, volume 7175 of
LNCS/LNAI.

Saludes, J. and Xambó, S. (2010). MOLTO Mathematical Grammar Library. http:
//www.molto-project.eu/node/1246.

Sarwat, R. (2006). Language Hybridization in Pakistan (PhD thesis). Islamabad: National
University of Modern Languages.

Schmidt, R. L. (2004). Urdu: An Essential Grammar. London/ New York: Routledge.

Snell, R. and Weightman, S. (2003). Teach Yourself Hindi. London: Hodder Education
Group.

Virk, S. M., Humayoun, M., and Ranta, A. (2010). An open source Urdu resource gram-
mar. In Proceedings of the Eighth Workshop on Asian Language Resouces, pages 153–160,
Beijing, China. Coling 2010 Organizing Committee.

13

Proceedings of the 3rd Workshop on South and Southeast Asian Natural Language Processing (SANLP), pages 15–24,
COLING 2012, Mumbai, December 2012.

Semantic Relation Extraction from a Cultural Database

Canasai KRUENGKRAI V irach SORNLERTLAMV ANICH
Watchira BURANASING Thatsanee CHAROENPORN

National Electronics and Computer Technology Center
Thailand Science Park, Klong Luang, Pathumthani 12120, Thailand

{canasai.kru,virach.sor,watchira.bur,thatsanee.cha}@nectec.or.th

ABSTRACT
Semantic relation extraction aims to extract relation instances from natural language texts. In
this paper, we propose a semantic relation extraction approach based on simple relation templates
that determine relation types and their arguments. We attempt to reduce semantic drift of the
arguments by using named entity models as semantic constraints. Experimental results indicate
that our approach is very promising. We successfully apply our approach to a cultural database and
discover more than 18,000 relation instances with expected high accuracy.

KEYWORDS: semantic relation extraction, cultural database.

15

1 Introduction
In this paper, we are interested in extracting certain basic facts from a cultural database derived
from the Thai Cultural Information Center website1. The size of this cultural database has grad-
ually increased to around 80,000 records (from November 2010 to October 2012). Each record
contains a number of fields describing a specific cultural object. Figure 1 shows an excerpt of the
front-end web page of the record no. 35860, which is about the Mid-River Pagoda. The content
includes four main components: (1) cover image and thumbnails, (2) title, (3) description and (4)
domain. We need to extract facts (hereafter referred to as relation instances) from the description.
One can view relation instances as formal meaning representations of corresponding texts. These
relation instances are useful for question answering and other applications. Using this record as an
example, we could extract a relation instance ISLOCATEDAT(เจดียก์ลางนำา้, ตำำบลปำกนำ้ำ) from the first
text segment:

เจดียก์ลางนำา้ตั้งอยูท่ี่ตำาบลปากนำ้า
(The Mid-River Pagoda is located at Tambon Paknam)

Recent research in semantic relation extraction has shown the possibility to automatically find
such relation instances. Some approaches rely on high-quality syntactic parsers. For example,
DIRT (Lin and Pantel, 2001) and USP (Poon and Domingos, 2009) discover relation instances
based on the outputs from dependency parsers. Such parsers and annotated training corpora are
difficult to obtain in non-English languages. Pattern-based approaches (Agichtein and Gravano,
2000; Pantel and Pennacchiotti, 2006; Banko et al., 2007) seem to be more practical for languages
with limited NLP resources. For example, TEXTRUNNER (Banko et al., 2007) can efficiently ex-
tract relation instances from a large-scale Web corpus with minimal supervision. It only requires
a lightweight noun phrase chunker to identify relation arguments. More advanced approaches like
SNE (Kok and Domingos, 2008), RESOLVER (Yates and Etzioni, 2009) and SHERLOCK (Schoen-
mackers et al., 2010) exploit the outputs of TEXTRUNNER for learning.

Our cultural database allows us to make two assumptions:

(A1) Each record belongs to only one main cultural domain.
(A2) Each record has only one subject of relations.

The assumption (A1) seems to hold for most of records. We adopt the assumption (A2) from (Hoff-
mann et al., 2010) that try to extract infobox-like relations from Wikipedia. Also, the assumption
(A2) seems to hold for our data since the description provides the details about one cultural object
whose name is expressed in the record title.

Based on the above two assumptions, we propose our strategy to semi-automatically extract relation
instances from the cultural database. We focus on unary relation extraction similar to (Hoffmann
et al., 2010; Chen et al., 2011). We assume that the subject of the relation is the record title.2

Each relation remains only one argument to be extracted. We describe our relation templates (Sec-
tion 2.1) and how to effectively find relation texts in a large database (Section 2.2). We use named
entities to reduce semantic drift of the target arguments (Section 2.3). We examine the effect of the
distances between the relation surfaces and the target arguments (Section 3.1) and provide prelim-
inary results of our experiments (Section 3.2). The results indicate that our strategy of semantic
relation extraction is very promising for real-world applications.

1 http://m-culture.in.th/
2 In Figure 1, although the surface words of the Mid-River Pagoda are slightly different (“พระเจดยี์กลางนำ้า” vs. “เจดียก์ลางนำ้า”),

they convey the same meaning and this assumption still holds.

16

 พระเจดยี์กลางนำา้
รายละเอียด
 เจดีย์กลางนำ้าตั้งอยู่ที่ตำาบลปากนำ้า อำาเภอเมืองระยอง จังหวัดระยอง
 มีลักษณะเปน็เจดีย์ทรงระฆังฐานกลม กว้าง 4 เมตร สูง 10 เมตร
 มีกำาแพงรอบฐานเจดีย์สองชั้น ตั้งอยู่บนเกาะกลางแม่นำ้าระยอง
 ท่ามกลางปา่ชายเลนทีย่าวเหยียด มีนำ้าล้อมรอบ เนื้อที่ประมาณ 52 ไร่
 เทศบาลนครระยองได้สร้างสะพานเชื่อมพระเจดีย์กับฝัง่
 เจดียกลางนำ้าเปน็สถานที่ประกอบประเพณที้องถิ่นของชาวระยองมาแต่
 โบราณคือ ประเพณีทอดกฐินและหม่ผา้องค์เจดีย์ ในกลางเดือน 12
 ของทุกป ีผู้สร้างเจดีย์ คือ เจ้าเมืองระยอง ในสมัยรัชกาลที่ 4 สันนิษฐาน
 ว่าสร้างในช่วง พ.ศ.2403 - 2404 ...
หมวดหมู่
 โบราณสถาน, แหล่งท่องเทีย่ว

21
3

4

Figure 1: An excerpt of the front-end web page of the record about the Mid-River Pagoda.

Domain Relation Surface Argument
Cultural attraction ISLOCATEDAT ตัง้อยู่ที่ LOC

ISBUILTIN สร้าง(ขึ้น)*ใน
สร้าง(ขึ้น)*เมื่อ
ตัง้(ขึ้น)*เมื่อ

DATE

ISBUILTBY สร้าง(ขึ้น)*โดย
ตัง้(ขึ้น)*โดย

PER, ORG

HASOLDNAME เดิมชื่อ
ชื่อเดิม

LOC, ORG

Cultural person MARRIEDWITH สมรสกับ PER
HASFATHERNAME บิดาชื่อ PER
HASMOTHERNAME มารดาชื่อ PER
HASOLDNAME เดิมชื่อ

ชื่อเดิม
PER

HASBIRTHDATE เกิด(เมื่อ)* DATE
BECOMEMONKIN อปุสมบทเมื่อ DATE

Cultural artifact ISMADEBY ผลิต(ขึ้น)*โดย
ทำำ(ขึ้น)*โดย
ผลงำนโดย

PER, ORG

ISSOLDAT จำำหน่ำยที่ LOC, ORG

Table 1: Our relation templates.

2 Approach

2.1 Designing relation templates
Table 1 shows our relation templates. There are five main cultural domains in the database, and each
main cultural domain has several sub-domains. In our work, we focus on three cultural domains,
including attraction, person and artifact, as shown in the first column. Based on these cultural
domains, we expect that the subject of relations in each record (i.e., the record title) should be
a place, a human or a man-made object, respectively. As a consequence, we can design a set of
relations that correspond to the subject. For example, if the subject is a place, we may need to
know where it is, when it was built and who built it. We can formally write these expressions
by ISLOCATEDAT, ISBUILTIN and ISBUILTBY. The second column shows our relations that are
associated with the subject domains. The third column shows relation surfaces used for searching

17

relation texts in which arguments may co-occur. The word in parentheses with an asterisk indicates
that it may or may not appear in the surface.

The answers to where, when and who questions are typically short and expressed in the form of
noun phrases. Using noun phrases as relation arguments can lead to high recall but low precision.
For example, the noun phrase occurring after the relation ISBUILTIN could be a place (is built in the
area of . . .) or an expression of time (is built in the year of . . .). In our case, we expect the answer
to be the expression of time, and hence returning the place is irrelevant. This issue can be thought
of as semantic drift. Here, we attempt to reduce semantic drift of the target arguments by using
named entities as semantic constraints. The forth column shows named entity types3 associated
with the subject domains and their relations.

2.2 Searching relation texts
Searching text segments containing a given relation surface (e.g., “สรา้งโดย” (is built by)) in a large
database is not a trivial task. Here, we use Apache Solr4 for indexing and searching the database.
Apache Solr works well with English and also has extensions for handling non-English languages.
To process Thai text, one just enables ThaiWordFilterFactory module in schema.xml. This module
invokes the Java BreakIterator and specifies the locale to Thai (TH). The Java BreakIterator uses a
simple dictionary-based method, which does not tolerate word boundary ambiguities and unknown
words. For example, the words “สรา้ง” and “กอ่สร้าง” occur in the Java’s system dictionary. Both
convey the same meaning (to build). We can see that the first word is a part of the second word.
However, these two words are indexed differently. This means if our query is “สรา้ง”, we cannot
retrieve the records containing “กอ่สร้าง”. In other words, the dictionary-based search returns results
with high precision but low recall.

In our work, we process Thai text in lower units called character clusters. A character cluster func-
tions as an inseparable unit which is larger than (or equal to) a character and smaller than (or equal
to) a word. Once the character cluster is produced, it cannot be further divided into smaller units.
For example, we can divide the word “กอ่สร้าง” into 5 character clusters like “ก-่อ-ส-ร้า-ง”. As a result,
if our query is “สรา้ง”, we can retrieve the records containing “กอ่สร้าง”. We refer to (Theeramunkong
et al., 2000) for more details about character cluster based indexing. In our work, we implement
our own ThaiWordTokinizeFactory module and plug it into Apache Solr by replacing the default
WhitespaceTokenizerFactory. Our character cluster generator class is based on the spelling rules
described in (Kruengkrai et al., 2009).

In Thai, sentence boundary markers (e.g., a full stop) are not explicitly written. The white spaces
placing among text segments can function as word, phrase, clause or sentence boundaries (see the
“รายละเอยีด” section in Figure 1 for example). To obtain a relation text, which is not too short (one
text segment) or too long (a whole paragraph), we proceed as follows. After finding the position
of the target relation surface, we look up at most ± 4 text segments to generate relation texts. This
length should be enough for morphological analyzer and named entity recognizer.

2.3 Learning named entities
We control semantic drift of the target arguments using named entities. We build our named entity
(NE) recognizer from an annotated corpus developed by (Theeramunkong et al., 2010). The origi-

3 We use four main named entity types: PER = persons, ORG = organizations, LOC = locations, DATE = dates (expres-
sions of time).

4http://lucene.apache.org/solr/

18

(I): word 1,2 grams + label bigrams (III): (II) + POS 3 grams
〈wj〉, j ∈ [−2, 2] × y0 〈pj , pj+1, pj+2〉, j ∈ [−2, 0] × y0
〈wj , wj+1〉, j ∈ [−2, 1] × y0
〈y−1, y0〉
(II): (I) + POS 1,2 grams (IV): (III) + k-char prefixes/suffixes
〈pj〉, j ∈ [−2, 2] × y0 〈Pk(w0)〉, k ∈ [2, 3] × y0
〈pj , pj+1〉, j ∈ [−2, 1] × y0 〈Sk(w0)〉, k ∈ [2, 3] × y0

〈Pk(w0), Sk(w0)〉, k ∈ [2, 3] × y0

Table 2: Our NE features.

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��

��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�

��

��

�
�
�
�

 60%

 65%

 70%

 75%

 80%

 85%

 90%

 95%

DATLOCORGPER

F1

(I)
(II)
(III)
(IV)

Figure 2: F1 results for our NE models.

nal contents are from several news websites. The corpus consists of 7 NE types. We focus on 4 NE
types according to our relation templates in Table 1. Once we obtained the NE corpus, we checked
it and found several issues as follows:

1. Each NE tag contains nested NE tags. For example, the person name tag contains the fore-
name and surename tags.

2. The corpus does not provide gold word boundaries and POS tags.
3. Each NE type is annotated separately.

For the first issue, we ignored the nested NE tags and trained our model with top NE tags (PER,
ORG, LOC, DATE). For the second issue, we used a state-of-the-art Thai morphological ana-
lyzer (Kruengkrai et al., 2009) to obtain word boundaries and POS tags. In this work, we trained
the morphological analyzer using ORCHID corpus (Sornlertlamvanich et al., 1997) and TCL’s lex-
icon5 (Charoenporn et al., 2004). We then converted the corpus format into the IOB tagging style
for NE tags. Thus, the final form of our corpus contains three columns (word, POS tag, NE tag),
where the first two columns are automatically generated and of course contain a number of errors.
For the third issue, we trained the model separately for each NE type. We obtained 33231, 20398,
8585, 2783 samples for PER, ORG, LOC, DATE, respectively.

To ensure that our NE models work properly, we split samples into 90%/10% training/test sets
and conducted some experiments. We trained our NE models using k-best MIRA (Margin Infused
Relaxed Algorithm) (Crammer et al., 2005). We set k = 5 and the number of training iterations to

5http://www.tcllab.org/tcllex/

19

Distance
Relation Argument 0 1 2 3 4 5

Cultural attraction
ISLOCATEDAT LOC 356 574 591 624 678 757
ISBUILTIN DATE 3825 11487 11538 11573 11633 11667
ISBUILTBY PER, ORG 131 202 218 234 249 257
HASOLDNAME LOC, ORG 0 9 21 26 27 29

Cultural person
MARRIEDWITH PER 132 177 177 177 177 177
HASFATHERNAME PER 120 372 372 373 373 373
HASMOTHERNAME PER 97 383 383 383 383 383
HASOLDNAME PER 51 259 273 277 277 283
HASBIRTHDATE DATE 4122 4745 4801 4947 4966 5075
BECOMEMONKIN DATE 346 435 435 436 436 436

Cultural artifact
ISMADEBY PER, ORG 62 107 109 125 129 130
ISSOLDAT LOC, ORG 31 31 56 59 62 64

Table 3: Numbers of relation instances when the distances are varied.

10. We denote the word by w, the k-character prefix and suffix of the word by Pk(w) and Sk(w),
the POS tag by p and the NE tag by y. Table 2 summarizes all feature combinations used in our
experiments. Our baseline features (I) include word unigrams/bigrams and NE tag bigrams. Since
we obtained the word boundaries and POS tags automatically, we introduced them gradually to our
features (II, III, IV) to observe their effects.

Figure 2 shows F1 results for our NE models. We used the conlleval script6 for evaluation.
We observe that PER is easy to identify, while ORG is difficult. Prefix/suffix features dramatically
improve performance on ORG. Using all features (IV) gives best performance on PER (93.24%),
ORG (68.75%) and LOC (83.78%), while slightly drops performance on DATE (85.06%). Thus,
our final NE models used in relation extraction are based on all features (IV). Although these results
are from the news domain, we could expect similar performance when applying the NE models to
our cultural domains.

2.4 Summary

We summarize our strategy as follows. After selecting the subject domain, we send its relation
surfaces (shown in the 3rd column of Table 1) to Apache Solr. We then trim the resulting record
descriptions to obtain the relation texts (described in Section 2.2). Next, we perform word seg-
mentation and POS tagging simultaneously using our morphological analyzer and feed the results
into our NE models (described in Section 2.3). We invoke the appropriate NE model based on our
relation templates (described in Section 2.1). Finally, our system produces outputs in the form of
RELATION(a, b), where a is a record title, and b is an argument specified by its NE type in the
templates.

6 Available at http://www.cnts.ua.ac.be/conll2000/chunking/conlleval.txt.

20

Relation Argument # Samples # Correct # Incorrect Accuracy
Cultural attraction

ISLOCATEDAT LOC 50 49 1 98%
ISBUILTIN DATE 50 48 2 96%
ISBUILTBY PER, ORG 50 48 2 96%
HASOLDNAME LOC, ORG 27 23 4 85%

Cultural person
MARRIEDWITH PER 50 49 1 98%
HASFATHERNAME PER 50 48 2 96%
HASMOTHERNAME PER 50 49 1 98%
HASOLDNAME PER 50 47 3 94%
HASBIRTHDATE DATE 50 48 2 96%
BECOMEMONKIN DATE 50 50 0 100%

Cultural artifact
ISMADEBY PER, ORG 50 44 6 88%
ISSOLDAT LOC, ORG 50 49 1 98%

Table 4: Performance of our relation extraction.

3 Experiments

3.1 Effect of the distances between relation surfaces and arguments
In this section, we examine the number of extracted instances for each relation (without considering
its accuracy). Our assumption is that the target argument tends to be relevant if it is adjacent (or
close) to the relation surface. The relevance weakens with the distance. In our first example,
the target argument “ตำำบลปำกนำ้ำ” (Tambon Paknam, a subdistrict name) is adjacent (distance = 0)
to the relation surface “ตัง้อยูท่ี”่ (is located at). This target argument is relevant. Suppose there
are intervening words7 between them. The relevance tends to decrease. However, if we only select
adjacent named entities to be the target arguments, the coverage may be limited. In our experiments,
we varied the distances from 0 to 5 intervening words for observation.

Table 3 shows the numbers of relation instances when the distances are varied. For all relations,
we observe that the numbers of relation instances do not significantly change after one word dis-
tance8. For example, we cannot extract more relation instances for MARRIEDWITH + PER, even
we increased the distance. This indicates that using named entities helps to bound the number of
possible arguments.

3.2 Preliminary results
To inspect the quality of relation instances extracted by our strategy, we randomly selected at most
50 instances of each relation for evaluation. Our evaluation procedure is as follows. Based on
the assumptions (A1) and (A2), we expect that the subject (record title) of an instance should be
relevant to its domain. We ignored instances whose subject is irrelevant. For example, the subject
of the record no. 8026 is a person, but the volunteer assigned it to the cultural artifact domain.
Note that this case rarely occurs, but exists. Next, a relation instance is considered to be correctly

7The intervening words include whitespace and punctuation tokens.
8This single word tends to be a whitespace token.

21

Record no. Relation instance
Cultural attraction

38481 ISLOCATEDAT(วัดโพธิศ์รี, บ้านโพธิ์ศรี ต.อนิทร์บุร)ี
114585 ISBUILTIN(วัดเขาวงกฏ, ประมาณป ีพ.ศ.2471-2573)

114333 ISBUILTBY(วัดปิตลุาธิราชรังสฤษฎิ์, กรมหลวงรักษ์รณเรศธ์)
61446 HASOLDNAME(วัดหนองกนัเกรา, วัดหนองตะเกรา)

Cultural person

14125 MARRIEDWITH(นายเนาวรตัน์ พงษ์ไพบูลย์, นางประคองกูล อศิรางกรู ณ อยุธยา)
32530 HASFATHERNAME(พระครูประยุตนวการ, นายเหยม เดชมาก)

45389 HASMOTHERNAME(หลวงพ่อลั้ง สุทสฺสโน, นางพริ้ง แก้วแดง)
144574 HASOLDNAME(พระครูมงคลวรวัฒน์, สวสัดิ์ บพุศิริ)
145771 HASBIRTHDATE(อาจารยธ์นิสร์ ศรกีลิน่ดี, วันจันทรท์ี่ 23 มกราคม 2494)

123678 BECOMEMONKIN(พระครูพิจิตรสทิธิคุณ, วันที่ ๑๖ เมษายน พ.ศ. ๒๕๒๘)

Cultural artifact

160974 ISMADEBY(หนังสือประวัติคลองดำำเนินสะดวก, พระครูสิริวรรณวิวัฒน์)
94286 ISSOLDAT(ขา้วเกรยีบปากหม้อ, ตลาดเทศบาลพรานกระต่าย)

Table 5: Relation instances produced by our system.

extracted if its argument exactly matches the fact. For example, if our system only extracts the first
name while the fact is the whole name, then we consider this instance to be incorrect. Finally, we
set the maximum distance between the relation surface and its argument to 5. Table 4 shows the
performance of our relation extraction. The overall results are surprisingly good, except those of
HASOLDNAME and ISMADEBY. Table 5 shows some samples of relation instances produced by
our system.

4 Related work
Named entity recognition has been applied to relation extraction. Hasegawa et al. (2004) propose
an approach that discovers relations between two named entity types. Their approach clusters pairs
of named entities using the similarity of context words intervening between them and assigns labels
using frequent context words. In the Thai writing style, sentence boundary markers are absent, and
subjects are often omitted. These two issues make it difficult to obtain two named entities in the
same sentence. Our approach only considers one named entity and its preceding context words and
uses simple templates to determine relation types.

Relation extraction can be simplified by focusing on unary relations. Hoffmann et al. (2010)
present LUCHS, a self-supervised system that learns a large number of relation-specific extrac-
tors. Each extractor is trained according to an attribute of Wikipedia’s infoboxes. Training data are
created by matching attribute values with corresponding sentences. Their approach requires an ar-
ticle classifier to reduce the number of extractors to be invoked for prediction. The overall strategy
fits well with Wikipedia data. Unfortunately, resources like infoboxes are not available in our data.
Chen et al. (2011) propose an approach that learns relation types by using declarative constraints.
The constraints capture regularities of relation expressions at various levels of linguistic structure,

22

including lexical, syntactic, and discourse levels. To learn a model, their approach requires a
constituent-parsed corpus, which is generated automatically using the Stanford parser (de Marn-
effe and Manning, 2008). Such a high-quality parser is difficult to obtain in languages with limited
NLP corpora and tools like Thai.

5 Conclusion
We successfully applied our approach to a cultural database and could discover more than 18,000
relation instances with expected high accuracy. The outputs of our relation extraction can be useful
for other applications such as question answering or suggesting related topics based on semantic
relations.

In future work, we plan to extract more relations, especially in the cultural artifact domain. We are
interested in some relations like ISMADEOF which requires the NE type like materials. However,
this NE type is not available in the current NE corpus. We will explore other techniques to constrain
the noun phrases to prevent the semantic drift problem.

References
Agichtein, E. and Gravano, L. (2000). Snowball: Extracting relations from large plain-text collec-
tions. In In Proceedings of ICDL, pages 85–94.

Banko, M., Cafarella, M. J., Soderl, S., Broadhead, M., and Etzioni, O. (2007). Open information
extraction from the web. In Proceedings of IJCAI, pages 2670–2676.

Charoenporn, T., Kruengkrai, C., Sornlertlamvanich, V., and Isahara, H. (2004). Acquiring se-
mantic information in the tcl’s computational lexicon. In Proceedings of the Fourth Workshop on
Asia Language Resources.

Chen, H., Benson, E., Naseem, T., and Barzilay, R. (2011). In-domain relation discovery with
meta-constraints via posterior regularization. In Proceedings of ACL-HLT, pages 530–540.

Crammer, K., McDonald, R., and Pereira, F. (2005). Scalable large-margin online learning for
structured classification. In Proceedings of NIPS Workshop on Learning With Structured Outputs.

de Marneffe, M.-C. and Manning, C. D. (2008). The stanford typed dependencies representa-
tion. In Proceedings of the workshop on Cross-Framework and Cross-Domain Parser Evaluation,
pages 1–8.

Hasegawa, T., Sekine, S., and Grishman, R. (2004). Discovering relations among named entities
from large corpora. In Proceedings of ACL.

Hoffmann, R., Zhang, C., and Weld, D. S. (2010). Learning 5000 relational extractors. In In ACL.

Kok, S. and Domingos, P. (2008). Extracting semantic networks from text via relational clustering.
In Proceedings of ECML-PKDD, pages 624–639.

Kruengkrai, C., Uchimoto, K., Kazama, J., Torisawa, K., Isahara, H., and Jaruskulchai, C. (2009).
A word and character-cluster hybrid model for thai word segmentation. In Proceedings of In-
terBEST: Thai Word Segmentation Workshop.

Lin, D. and Pantel, P. (2001). Dirt-discovery of inference rules from text. In Proceedings of KDD,
pages 323–328.

23

Pantel, P. and Pennacchiotti, M. (2006). Espresso: leveraging generic patterns for automatically
harvesting semantic relations. In Proceedings of ACL, pages 113–120.

Poon, H. and Domingos, P. (2009). Unsupervised semantic parsing. In Proceedings of EMNLP,
pages 1–10.

Schoenmackers, S., Etzioni, O., Weld, D. S., and Davis, J. (2010). Learning first-order horn
clauses from web text. In Proceedings of EMNLP, pages 1088–1098.

Sornlertlamvanich, V., Charoenporn, T., and Isahara, H. (1997). ORCHID: Thai Part-Of-Speech
Tagged Corpus. Technical Report TR-NECTEC-1997-001, NECTEC.

Theeramunkong, T., Boriboon, M., Haruechaiyasak, C., Kittiphattanabawon, N., Kosawat, K.,
Onsuwan, C., Siriwat, I., Suwanapong, T., and Tongtep, N. (2010). Thai-nest: A framework for
thai named entity tagging specification and tools. In Proceedings of CILC.

Theeramunkong, T., Sornlertlamvanich, V., Tanhermhong, T., and Chinnan, W. (2000). Character
cluster based thai information retrieval. In Proceedings of IRAL, pages 75–80.

Yates, A. and Etzioni, O. (2009). Unsupervised methods for determining object and relation
synonyms on the web. Journal of Artificial Intelligence Research.

24

Proceedings of the 3rd Workshop on South and Southeast Asian Natural Language Processing (SANLP), pages 25–40,
COLING 2012, Mumbai, December 2012.

Bengali Question Classification: Towards Developing QA
System

Somnath Banerjee Sivaji Bandyopadhyay

Department of Computer Science and Engineering
Jadavpur University, India

s.banerjee1980@gmail.com, sivaji_cse_ju@yahoo.com

ABSTRACT

This paper demonstrates the question classification step towards building a question answering

system in Bengali. Bengali is an eastern Indo-Aryan language with about 230 million total

speakers and one of the most spoken languages in the world. An important first step in

developing a question answering system is to classify natural language question properly. In this

work, we have studied suitable lexical, syntactic and semantic features to classify the Bengali

question. As Bengali question classification is at early stage of development, so for simplicity we

have proposed single-layer taxonomy which consists of only nine course-grained classes. We

have also studied and categorized the interrogatives in Bengali language. The proposed

automated classification work is based on various machine learning techniques. The baseline

system based on Naïve Bayes classifier has achieved 80.65% accuracy. We have achieved up to

87.63% accuracy using decision tree classifier.

KEYWORDS : Bengali Question Classification, Question Classification, Machine Learning.

25

1 Introduction

Because of the high level of information overload on the Internet, research into question

answering is becoming increasingly important. Question answering systems focus on how to

respond to users’ queries with exact answers. In recent years, many international question

answering contests have been held at conferences and workshops, such as Text REtrieval

Conference (TREC), Cross Language Evaluation Forum (CLEF) and NII Test Collection for IR

Systems (NTCIR). Although Bengali is the sixth most spoken languages in the world, no QA

contest in Bengali has been conducted so far.

Bengali (Bengali: ����� (Bangla)) is an eastern Indo-Aryan language. It is native to the region of

eastern South Asia known as Bengal, which comprises present day Bangladesh, the Indian state

of West Bengal, and parts of the Indian states of Tripura and Assam. Besides this region, there

are also significant Bengali-speaking communities in: the Middle East (namely, UAE, Saudi

Arabia, Bahrain, and Kuwait), Europe, North America, South-East Asia and Pakistan. It is

written using the Bengali script. With about 193 million native and about 230 million total

speakers, Bengali is one of the most spoken languages (ranked sixth
1
) in the world. The National

song and the National anthem of India, and the National anthem of Bangladesh were composed in

Bengali.

Along with other Eastern Indo-Aryan languages, Bengali evolved from the Magadhi Prakrit and

Sanskrit languages. It is now the primary language spoken in Bangladesh and is the second most

commonly spoken language in India. All the Indo-Aryan languages including Bengali, Hindi,

Marathi, Gujrati are called the daughters of Sanskrit.

Question Classification (QC) is an important component of Question Answering System (QAS).

The task of a question classifier is to assign one or more class labels, depending on classification

strategy, to a given question written in natural language. For example for the question “What

London street is the home of British journalism?”, the task of question classification is to assign

label “Location” to this question, since the answer to this question is a named entity of type

“Location”. Since we predict the type of the answer, question classification is also referred as

answer type prediction. The set of predefined categories which are considered as question classes

usually called question taxonomy or answer type taxonomy. Question classification has a key

role in automated QA systems. Although different types of QA systems have different

architectures, most of them follow a framework in which question classification plays an

important role (Voorhees, 2001). Furthermore, it has been shown that the performance of

question classification has significant influence on the overall performance of a QA system

(Ittycheriah et. al., 2001; Hovy et. al., 2001; Moldovan et. al., 2003).

Basically there are two main motivations for question classification: locating the answer and

choosing the search strategy. Knowing the question class not only reduces the search space need

to find the answer, it can also find the true answer in a given set of candidate answers. For

example, knowing that the class of the question “who was the president of U.S. in 1934?” is of

type “human”, the answering system should only consider the name entities in candidate passages

which is of type “human” and does not need to test all phrases within a passage to see whether it

can be an answer or not.

1 http://en.wikipedia.org/wiki/Bengali_language

26

On the other hand, question class can also be used to choose the search strategy when the

question is reformed to a query over information retrieval (IR) engine. For example, consider the

question “What is a pyrotechnic display?”. Identifying that the question class is “definition”, the

searching template for locating the answer can be for example “pyrotechnic display is a ...” or

“pyrotechnic displays are ...”, which are much better than simply searching by question words.

The remaining part of the paper is organized as follows- section 2 describes different approaches

being used in question classification. Section 3 describes available language resources for

Bengali language. Section 4 describes the various interrogatives present in Bengali questions.

Section 5 describes taxonomies for question types. Section 6 explains the various features used in

our work. Section 7 describes the classifiers used in the present work. Section 8 details the

experiments conducted on our work and outlines the results. The last section concludes this work

and its future work.

2 Related Work

 A lot of researches on factoid question classification, question taxonomies, question features and

question classifiers have been published continuously until now. Question classification in TREC

QA has been intensively studied during the past decade. There are basically two different

approaches used to classify questions- one is rule based and another is machine learning based.

However, a number of researchers have also used some hybrid approaches which combine rule-

based and machine learning based approaches (Huang et. al., 2008; Roy et. al., 2010; Silva et. al.,

2011).

Rule based approaches used some manually handcrafted grammar rules to analyze the question to

determine the answer type (Hull, 1999; Prager et. al., 1999). Though handcrafted rules have been

used successfully for question classification, these approaches however, suffer from the need to

define too many rules to determine specific types (Li et. al., 2004). Furthermore, while rule-based

approaches may perform well on a particular dataset, they may have quite a poor performance on

a new dataset and consequently it is difficult to scale them (Li et. al., 2004). So it is difficult to

make a manual classifier with a limited amount of rules.

On the other hand, machine learning-based approaches perform the question classification by

extracting some features from questions, train a classifier and predicting the question class using

the trained classifier. Many successful learning-based classification approaches have been

proposed. Many researchers have employed machine learning methods (e.g., maximum entropy

and support vector machine) by using different features, such as syntactic features (Zhang et. al.,

2003; Nguyen et. al., 2008) and semantic features (Moschitti et. al., 2007). However, these

methods mainly focused on English factoid questions and confined themselves to classify a

question into two or a few predefined categories (e.g., "what","how", "why", "when", "where"

and so on).

There are also some notable studies that have used both rule-based and machine learning based

approaches together. The most successful study (Silva et. al., 2011) that works on question

classification, first match the questions with some pre-defined rules and then use the matched

rules as features in the machine learning-based classifier. The same approach is used in the work

by (Huang et. al., 2008). Machine learning-based and hybrid methods are the most successful

approaches on question classification and most of the recent works are based on these

approaches.

27

But in Bengali there is no such Question-Answering system available and this motivates us to

classify questions for developing Bengali question-answering system in which user will pose a

question in Bengali and also get answer in Bengali.

3 Overview of Language Resource

Compared to the question answering systems in English, because of the specificity on writing and

grammar; and the lack of basic language processing resources Bengali question answering system

is in development stage. Also, the availability of the experimentation corpus is very rare in the

web.

Our classification work in Bengali uses Bengali Shallow Parser which is developed as part of the

IL-ILMT Consortium
2

. The shallow parser gives the analysis of a sentence in terms of

morphological analysis, POS tagging, Chunking, etc. Apart from the final output, intermediate

output of individual modules is also available. All outputs are in Shakti Standard Format (SSF)
3
.

4 Interrogatives in Bengali

People could determine the question type by the interrogative present in the question, such as the

word 'why' in ‘Why are you late?' describes that someone asks the reason. But not all questions

type can be determined only by the interrogative. Bengali interrogatives not only describe

important information about expected answer but also indicate the Number representations, i.e.-

singular or plural.

Unlike English language there are many interrogatives present in the Bengali language. We have

been classified it in three categories-

a) Simple Interrogative(SI) or Unit Interrogative(UI)

b) Dual Interrogative(DI)

c) Compound/Composite Interrogative(CI)

4.1 Simple Interrogatives or Unit Interrogatives

It is made up of a single interrogative word which can be considered an Interrogative unit.

Further, a SI can be classified into two cases according to answer indication Number

Representation. A SI can be indicating a Singular Answer (SA), Plural Answer (PA). If it

indicates a SA then it is considered Singular Simple Interrogative (SSI) or Singular Unit

Interrogative (SUI), otherwise it indicates a PA and it is considered Plural Single Interrogative

(PSI). Sometimes SI indicates both (SA and PA) and sometimes it plays a neutral role. So, SI

also can be considered as BSI (both) and NSI (neutral). Therefore, we have found four sub-

categories of SI, i.e., SSI, PSI, BSI and NSI.

For example, SI/UI: ��(‘ke’), ���� (‘kara’), ���	� (‘kader’), ��
��� (‘kahake’).

SSI/SUI: �� (‘ke’), ��
��� (‘kahake’) ;

PSI/PUI: ����(‘kara’), ���	�(‘kader’).

2 http:// ltrc.iiit.ac.in/analyzer/bengali/
3 http:// ltrc.iiit.ac.in/mtpil2012/Data/ssf-guide.pdf

28

BSI: ���� (‘kon’), �(‘koto’), ����(‘koiti’);

NSI:������(‘kivabe’),��� (keno).

4.2 Dual Interrogatives

Each dual interrogative (DI) is made up of using an SI/UI twice. But, all the SI/UI cannot be used

to make DI. All the SSI/SUI can be used twice in a question to make DI.

For example,

DI: ‘�� ��’ (‘ke ke’); using SSI �� (‘ke’)

DI: ‘��� ���’ (‘kar kar’); using SSI ��� (‘kar’)

DI: ‘�� ��’ (‘ki ki’); using SSI �� (‘ki’)

Although a DI is consisting of one SSI twice, but each DI indicates Plural Answer (PA) only. So,

��(‘ke’)indicates SA , but ‘�� ��’ (‘ke ke’) indicates PA. This implies that all DIs are implicitly

PA.

4.3 Compound / Composite Interrogatives

Each compound interrogative (CI) is made up of using multiple Simple Interrogatives. As the CI

is formed for getting multiple answers, so it is difficult to categorize it into SA or PA. Also, for

this sort of questions simplification is needed. We have found only six CIs from corpus.

CI = { �� ���, ���� ���, �� ���, ��� ���, �� ���, �� ���� }

Bengali Interrogatives are shown in Table-1.

Sl.

No
Interrogative

(Bengali)

Category Number

Representation

1
�� (ke)

SSI Singular

2
���� (kake)

SSI Singular

3
��
��� (kahake) SSI Singular

4
�� �� (ke ke) PDI Plural

5
���� (kara) PSI Plural

6
��� (kar) SSI Singular

7
��� ��� (kar kar) DI Plural

29

8
���	� (kader) PSI Plural

9
���� (kon) BSI Singular/Plural

10
���� ���� (kon kon) DI Plural

11
�� (ki) NSI Neutral

12
�� �� (ki ki) DI Plural

13
� (koto) BSI Singular/Plural

14
���� (koiti) BSI Singular/Plural

15
��� (kokhon) NSI Neutral

16
���#�� (kothai) NSI Singular

17
��� (kobe) NSI Neutral

18
��� (keno) NSI Neutral

19
������ (kivabe) NSI Neutral

20
��&� (kemon) NSI Neutral

21 �� ��� (ke kobe) CI Singular

22 ���� ��� (kara kobe) CI Plural

23 �� ��� (ke kokhon) CI Singular

24 �� ��� (ke kar) CI Singular

25 ��� ��� (kobe kar) CI Singular

26 �� ���� (ke kon) CI Singular

Table 1-Bengali Interrogatives

30

5 Question Type Taxonomies

The set of question categories (classes) are referred as question taxonomies or question ontology.

Though different question taxonomies have been proposed in different works, but most of the

recent learning-based and hybrid approaches are based on two layer taxonomy proposed by Li

and Roth (Li et. al., 2002). This taxonomy consists of six course-grained classes and fifty fine-

grained classes. The taxonomy proposed by Hermjakob (Hermjakob et al., 2002) consists of 180

classes which is the broadest question taxonomy proposed until now.

 As Bengali question classification is at early stage of development, so for simplicity we used

single-layer taxonomy for Bengali question type which consists of only eight course-grained

classes and no fine-grained classes. Also, we do not consider two more classes namely list and

yes-no-explain which have been introduced by Metzler and Croft (Metzler et. al., 2005). Table-2

lists this taxonomy.

Type Description

PER Person name i.e., name of human beings

ORG Organization e.g., office, company etc.

LOC Location related questions e.g., country , district, place etc.

TEM Temporal e.g., date, time, year i.e., time related

NUM Numerical e.g., statistical related questions

METH Method e.g., procedure related questions

REA Reason e.g., why related questions

DEF Definition related questions

MISC Miscellaneous ; river, mountain, hormone, bird, metal etc.

Table 2- Bengali Question Taxonomies

6 Features

In the task of question classification, there is always an important problem to decide the optimal

set of features to train the classifiers. Different studies extracted various features with different

approaches and the features in question classification task can be categorized into 3 different

types: lexical, syntactical and semantic features (Loni, 2011). We also used three types of

features used for question classification.

Loni and others (Loni et. al., 2011) also represented a question in question classification task

similar to document representation in vector space model, i.e., a question is a vector which is

described by the words inside it.

31

Therefore a question Q can be represented as:

 Q= (W1, W2, … , WN)

 Where,

 WI = frequency of term I in question Q;

 N = total number of Term

Due to sparseness of feature vector only non-zero valued features are kept in feature vector.

Therefore the size of samples is quite small despite the huge size of feature space. All lexical,

syntactical and semantic features can be added to feature space and expand the above feature

vector. The next subsections describe the features used for Bengali question classification.

6.1 Lexical Features

Lexical features of a question are generally extracted based on the context words of the question,

i.e., the words which appear in a question. We have used five lexical features as below-

wh-word, wh-word position and wh-type: Question’s wh-word or interrogative is one of the

important lexical features and Huang (Huang et. al., 2008; Huang et. al., 2009) has shown that

considering question wh-words as a feature can improve the performance of classification for

English. As the free-word-order” nature of the Bengali language, the position of the wh-word has

also been considered as another lexical feature. We considered the value of this feature according

to the position {first, middle, last} in given question. We have also considered the interrogative

type (WH-type) as another lexical feature.

Question length: (Blunsom et. al., 2006) introduced question’s length as an important lexical

feature which is simply the number of words in a question. We also considered this feature for

Bengali classification.

End marker: End marker plays an important role in Bengali question classification that is either

“?” or “|” in Bengali. If the end marker is “|”, then it has been observed from the experimental

corpus that the given question is definition question.

Word shape: Word shapes refer to apparent properties of single words. (Huang et. al., 2008)

introduced five categories for word shapes: all digits, lower case, upper case, mixed and other.

Word shapes alone is not a good feature set for question classification, but when they combined

with other kind of features they usually improve the accuracy of classification(Huang et. al.,

2008; Loni et. al., 2011). Capitalization feature is not present in Bengali; so we have considered

the other three categories i.e., all digit, mixed and other.

Example: ��(ke) �()*(goura) +�,�(protistha) ����(Karen) ?

Lexical features: wh-word: �� ; wh-word position: first ; wh-type: SSI; question length: 5; end-

marker: ?

6.2 Syntactical Features

Different works extracted several syntactical features with different approaches. The most

common syntactical features are Part of Speech (POS) tags and head words (Loni et. al., 2011).

32

POS tags: This indicate the part-of-speech tag of each word in a question such as NN (Noun),

NP (Noun Phrase), VP (Verb Phrase), JJ (adjective), and etc.

We have added all POS tags of question in feature vector. Similar approach has been successfully

used for English (Li and Roth, 2004; Blunsom et. al., 2006). This feature space sometimes

referred as bag-of-pos tags. (Loni et. al., 2011) introduced a feature namely tagged unigram
which is simply the unigrams augmented with pos tags. Considering the tagged unigrams instead

of normal unigrams can help the classifier to distinguish a word with different tags as two

different features (Loni et. al., 2011).

Head words: A head word is usually defined as the most informative word in a question or a

word that specifies the object that question seeks (Huang et. al., 2008). Correctly identified

headword can significantly improve the classification accuracy since it is the most informative

word in the question. For example for the question “What is the oldest city in Canada?” the

headword is “city”. The word “city” in this question can highly contribute the classifier to

classify this question as “LOC:city”.

Extracting question’s headword is quite a challenging problem and there is no research has been

conducted so far for Bengali. But, we have considered three cases based on the position of

question-word or interrogative in the question-

Case I: if question-word appears at beginning, then the first NP chunk after the question-word

will be considered as head-word. For example-

 ��(ke) �()*(goura) +�,�(protistha) ����(Karen) ?

 WQ NNP NN VM SYM

So, in the above example �()*(goura) is the head-word.

Case II: if the position of the question-word is in between of the question, then the immediate

NP-chunk before the question-word will be considered as head-word. For example-

�()*(goura) ���#��(kothai) -��.
(obosthita) ?

 NNP WQ JJ SYM

So, in the above example �()*(goura) is the head-word.

Case III: if question-word appears at last i.e., just before end marker, then the immediate NP-

chunk before the question-word will be considered as head-word. For example-

������	�/(bangladeshe) -#0�1�(arthoniti) ���2(kolege) ����(koiti) ?

 NNP (NN NN NN) WQ SYM

So, in the above example ������	�/(bangladeshe) -#0�1�(arthoniti) ���2(kolege) is the head-

word

Now, if we consider the following example-

��(ke) �()*(goura) +�,�(protistha) ����(Karen) ?

Then, the syntactic features will be: [{WQ, 1}, {NNP, 1}, {NN, 1}, {VM, 1}]

33

6.3 Semantic Features

Semantic features can be extracted based on the semantic meaning of the words in a question. We

have used related word and named entities as semantic features.

Related word: In the absence of Bengali WordNet a Bengali to Bengali dictionary
4
 has been used

to retrieve the related words. We have manually prepared three related word categories by

analyzing the training data. The lists are as below-

date :{ 23�	�, 23����, �	�, 	/�, 45�, 67�
, &�6, �8�… etc}

food :{ �����, &�8, ��	:, &���, ;�, <�=, �&�>, ?�	…etc}

human_authority :{��প�, ��2�, +C��&D1, ��E��প�, &
�প��E���, �E���&:��, �2�����, 6=���, 6F��,
&
�C:G...etc}

If a question word belongs to any category, then its category name will be added in the future

vector.

 ��(ke) �()�*�(gourer) ?�C1�(swadhin) ��প�(narapoti)[human-authority] �8���(chilen) ?

For the above example the semantic feature can be added to the feature vector as: [{human-

authority, 1}]

Named entities: Some studies (Li and Roth, 2004; Blunsom et. al., 2006) successfully used

named entities as semantic feature. To identify the Bengali named entities in question text a

Hidden Markov Model Based Named Entity Recognizer (NER) System (Ekbal et. al., 2007) has

been used as Bengali NER system.

��(ke) �()*(goura)[Location] +�,�(protistha) ����(karen) ?

For the above example the semantic feature can be added to the feature vector as: [{Location, 1}]

7 Classification Module

Though many supervised learning approaches have been proposed for question classification (Li

et. al., 2002; Blunsom et. al., 2006; Huang et. al., 2008), but these approaches mainly differ in the

classifier they use and the features they extract (Loni, 2011). We assume that a Bengali question

is unambiguous, i.e., a question has only one class. So, we assign one label to a given question

and can be described as follows-

 C = {c1, c2, c3, c4, c5, c6, c7, c8};

Where, C is the set of possible classes

 Q = {Q1, Q2, Q3… QN-1, QN};

Where, Q is the set of N given questions

The task of our question classifier is to assign the most likely class Ck to a question Qm . Recent

studies (Zhang et. al., 2003; Huang et. al., 2008; Silva et. al., 2011) also consider one label for

one question.

4 http://dsal.uchicago.edu/dictionaries/biswas-bangala/

34

We have used Naive Bayes (NB), Kernel Naïve Bayes (KNB), Decision Tree (DT) and Rule

Induction (RI) and DT has been performed the best among them.

7.1 Naïve Bayes (NB)

Naïve Bayes (NB) classifier is a simple probabilistic classifier based on applying Bayes' theorem

with strong (naive) independence assumptions, i.e. assumes that the presence (or absence) of a

particular feature of a class is unrelated to the presence (or absence) of any other feature, given

the class variable.

Using the simplest assumption of a constant prior distribution, Bayes theorem leads to a

straightforward relationship between conditional probabilities. Given a class label C with m

classes, c1, c2, ..., cm, and an attribute vector x of all other attributes, the conditional probability

of class label ci can be expressed as follows:

(|) ()

(|)
()

i i
i

P x C c P C c
P C c x

P x

= =
= =

Where P(C=ci) is the probability of class label ci and can be estimated from the data directly. The

probability of a particular unknown sample, P(x), does not have to be calculated because it does

not depend on the class label and the class with highest probability can be determined without its

knowledge.

 7.2 Kernel Naïve Bayes (KNB)

Kernel Naïve Bayes classifier is modified version of NB classifier that uses estimated kernel

density. Conditional probability P(x | C = ci) can be written as a kernel density estimate for class

ci

(|) ()i iP x C c f x= = And

1

() (,)
n

i i t

t

f x K x x
=

=∑ ;

Where, xt are training points and Ki(x,xt) is a kernel function.

7.3 Rule Induction

Rule Induction (RI) learns a pruned set of rules with respect to the information gain. It works

similar to the propositional rule learner named Repeated Incremental Pruning to Produce Error

Reduction (RIPPER, Cohen 1995). Starting with the less prevalent classes, the algorithm

iteratively grows and prunes rules until there are no positive examples left or the error rate is

greater than 50%.

In the growing phase, for each rule greedily conditions are added to the rule until the rule is

perfect (i.e. 100% accurate). The procedure tries every possible value of each attribute and selects

the condition with highest information gain.

In the prune phase, for each rule any final sequences of the antecedents is pruned with the

pruning metric p/(p+n).

35

7.4 Decision Tree

Decision trees are powerful classification methods which often can also easily be understood. In

order to classify an example, the tree is traversed bottom-down. Every node in a decision tree is

labelled with an attribute. The example's value for this attribute determines which of the out

coming edges is taken. For nominal attributes, we have one outgoing edge per possible attribute

value, and for numerical attributes the outgoing edges are labelled with disjoint ranges. This

decision tree learner works similar to Quinlan's C4.5 or CART.

8 Experimentations and Results

8.1 Corpus

Though Bengali is one of the most spoken languages in the world, but there is no standard

questions data available. So, we had to collected questions data from the web and we had selected

the questions of different domains e.g., education, geography, history, science etc. available in

BCSTAT.COM
5
. 1100 questions have been selected and processed to extract the features.

Bengali shallow parser has been used to obtain the part of speech (POS). Two high qualified

human annotators have been labelled the questions with an agreement score of 95.93%. We have

used 770 questions (70%) for training and rest 330 questions (30%) to test the classification

models.

8.2 Experiments

We have used four models i.e., Naive Bayes (NB), Kernel Naïve Bayes (KNB), Decision Tree

(DT) and Rule Induction (RI) and used well known widely used Rapid Miner
6
 Tool for

experimentation. Performance of any classifier needs to be tested with some metric to assess the

results. In our study, classification accuracy has been used to evaluate the results of the

experiments.

Accuracy and error are widely used metrics to determine class discrimination ability of

classifiers, and calculated using the following equation-

Where, TP = true positive samples; TN = true negative samples

 P = positive samples; N = negative samples

It is a primary metric in evaluating classifier performances and it is defined as the percentage of

test samples that are correctly classified by the algorithm.

Initially we have been only considering the lexical features of the questions. Naïve Bayes (NB)

has been used as Baseline system for our experiment with classification accuracy of 80.65%. It

has been found from the experiments that performance of baseline system drastically fall on ORG

class (Precision-14.41%, Recall-41.18%) and MTHD class (Precision-34.62%, Recall-75.27%).

5 http://www.bcstest.com
6 http://www/rapid-i.com

(%)
TP TN

accuracy
P N

+
=

+

(%) 100error accuracy= −

36

Though, KNB classifier increased the accuracy but failed to produce better performance on ORG

and MTHD classes. Rule Induction classifier not only increased the accuracy (83.31%) but also

performed well on ORG and MTHD classes. Decision Tree has been performed the best among

all classifiers (accuracy 84.19%) and has been exceptionally performed well on ORG, MTHD

and others classes. The detail results have been shown on Table-3.

Table 3- Classifiers Performance

Next we have used lexical and semantic features together and applied NB, KNB, RI and DT

classifiers respectively. It has been noted from experimental results that inclusion of semantic

features improves the performance of all the said classifiers. The experiment results have been

illustrated in table-4.

Table 4- Classifiers Performance

Finally, we have used lexical, syntactical and semantic features altogether and applied the four

classifiers. Use of semantic features improves the performance of K-NB, NB classifiers on

handling ORG and MTHD classes.

After inclusion of three features, NB classifier has been outperformed DT classifier handling

NUM classes and RI classifier has been outperformed DT classifier handling TEMP classes. But

overall DT classifier (accuracy 87.63%) has been performed well on classifying Bengali

Questions. The detail results have been shown on Table-5.

Features Classifier Accuracy Error

Lexical

 NB (Baseline) 80.65% 19.35%

 KNB 81.09% 18.91%

 RI 83.31% 16.69%

 DT 84.19% 15.81%

Features Classifier Accuracy Error

Lexical

+

Syntactical

NB 81.34% 18.66%

KNB 82.37% 17.63%

RI 84.23% 15.77%

DT 85.69% 14.31%

37

Table 5- Classifiers Performance

Conclusion and perspectives

This paper presents our research work on automatic question classification through machine

learning approaches. The main contributions of this paper are as follows-

• We have studied the interrogatives and categorized them into three categories. We have also

extracted the probable number representation i.e., singular or plural for each Bengali

interrogative. 26 interrogatives have been identified from the experimented corpus.

• The baseline system based on Naïve Bayes classifier (using only lexical features) has achieved

80.65% accuracy. We have investigated the lexical, syntactic and semantic features for

Bengali questions and the identified features performed well (achieved accuracy up to

87.63%) on Bengali Questions.

• We have experimented on four machine learning classifiers and shown that overall Decision

Tree outperforms NB, KNB, RI methods for Bengali question classification.

The main future direction of our research is to exploit other lexical, semantic and syntactic

features for Bengali question classification. In future an investigation can be performed on

including new interrogatives using a large corpus. It may increase the count of Bengali

interrogatives, particularly DI and CI. It is also worth investigating other types of machine

learning algorithms. In the current work, we have prepared only three related word categories.

So, the model performance can be improved in future by identifying new suitable categories.

Features Classifier Accuracy Error

Lexical

+

Syntactical

+

Semantic

NB 81.89% 18.11%

KNB 83.21% 16.79%

RI 85.57% 14.43%

DT 87.63% 12.37%

38

References

Voorhees, E. M.(2001). Overview of the trec 2001 question answering track. In Proceedings of

the Tenth Text REtrieval Conference (TREC), pages 42–51.

Ittycheriah A., Franz, M., Zhu, W. J., Ratnaparkhi, A. and Mammone, R. J. (2001).IBM’s

statistical question answering system. In Proceedings of the 9th TREC, NIST.

Hovy, E., Gerber, L., Hermjakob, U., Lin, C. and Ravichandran, D. (2001). Toward semantics-

based answer pinpointing .

Moldovan, D., Pa¸sca, M., Harabagiu, S. and Surdeanu, M. (2003). Performance issues and error

analysis in an open-domain question answering system.ACM Trans. Inf. Syst., 21:133–154.

Huang, Z., Thint, M. and Qin. Z. (2008). Question classification using head words and their

hypernyms. In Proceedings of EMNLP, pages 927–936.

Ray, S. K., Singh, S. and B. P. Joshi. (2010). A semantic approach for question classification

using wordnet and wikipedia. Pattern Recogn. Lett.,31:1935–1943.

 Silva, J., Coheur, L., Mendes, A. and Wichert, A. (2011). From symbolic to sub-symbolic

information in question classification. Artifcial Intelligence Review, 35(2):137–154.

 Hull, D. A. (1999). Xerox TREC-8 question answering track report. In Voorhees and Harman.

Prager, J., Radev, D., Brown, E. and Coden, A. (1999). The use of predictive annotation for

question answering in trec8. In NIST Special Publication 500-246:TREC8, pages 399–411.NIST.

Li, X. and Roth, D. (2004). Learning question classifiers: The role of semantic information. In

Proc. International Conference on Computational Linguistics (COLING), pages 556–562.

Zhang,D. and Lee,W.S. (2003). Question classification using support vector machines In SIGIR.

Nguyen, T., Nguyen, L., Shimazu, A. (2008). Using semi-supervised learning for question

classification. Journal of Natural Language Processing, 15(1):3–21.

Moschitti, A., Quarteroni, S., Basili, R. and Manandhar, S. (2007). Exploiting syntactic and

shallow semantic kernels for question/answer classification. In ACL, pages 776–783.

Li, X., and Roth, D. (2002). Learning question classifiers. In Proceedings of the 19th

international conference on Computational linguistics, COLING ’02, pages 1–7. Association for

Computational Linguistics.

 Hermjakob,U., Hovy, E. and Lin, C. (2002). Automated question answering in webclopedia - a

demonstration. In Proceedings of ACL-02.

Metzler, D. and Croft, W. B. (2005). Analysis of statistical question classification for fact-based

questions. Inf. Retr., 8:481–504.

 Loni, B., Tulder,G., Wiggers, P., Loog, M. And Tax, D. (2011).Question classification with

weighted combination of lexical, syntactical and semantic features. In Proceedings of the 15th

international conference of Text,Dialog and Speech.

Huang, Z., Thint, M. and Celikyilmaz, A. (2009). Investigation of question classifier in question

answering. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language

Processing, (EMNLP ’09), pages 543–550.

39

Blunsom, P., Kocik, K. and Curran, J. R. (2006). Question classification with log-linear models.

In Proceedings of the 29th annual international ACM SIGIR conference on Research and

development in information retrieval, SIGIR ’06, pages 615–616, NY, USA, ACM.

Loni, B. (2011). A Survey of State-of-the-Art Methods on Question Classification, Literature

Survey, Published on TU Delft Repository.

Ekbal, A. and Bandyopadhyay, S. (2007). A Hidden Markov Model Based Named Entity

Recognition System: Bengali and Hindi as Case Studies. PReMI 2007: 545-552.

40

Proceedings of the 3rd Workshop on South and Southeast Asian Natural Language Processing (SANLP), pages 41–52,
COLING 2012, Mumbai, December 2012.

Morphological Analyzer for Kokborok

Khumbar Debbarma
1
 Braja Gopal Patra

2
 Dipankar Das

3
 Sivaji Bandyopadhyay

2

(1) TRIPURA INSTITUTE OF TECHNOLOGY, Agartala, India
(2) JADAVPUR UNIVERSITY, Kolkata, India

(3) NATIONAL INSTITUTE_OF TECHNOLOGY, Meghalaya, India

khum_10jan@yahoo.co.in, brajagopal.cse@gmail.com,

dipankar.dipnil2005@gmail.com,sivaji_cse_ju@yahoo.com

ABSTRACT

Morphological analysis is concerned with retrieving the syntactic and morphological properties

or the meaning of a morphologically complex word. Morphological analysis retrieves the

grammatical features and properties of an inflected word. However, this paper introduces the

design and implementation of a Morphological Analyzer for Kokborok, a resource constrained

and less computerized Indian language. A database driven affix stripping algorithm has been used

to design the Morphological Analyzer. It analyzes the Kokborok word forms and produces

several grammatical information associated with the words. The Morphological Analyzer for

Kokborok has been tested on 56732 Kokborok words; thereby an accuracy of 80% has been

obtained on a manual check.

KEYWORDS : Morphology Analyzer, Kokborok, Dictionary, Stemmer, Prefix, Suffix.

41

1 Introduction

Kokborok is the native language of Tripura and is also spoken in the neighboring states like

Assam, Manipur, Mizoram as well as the countries like Bangladesh, Myanmar etc., comprising of

more than 2.5 millions
1
 of people. Kokborok belongs to the Tibeto-Burman (TB) language falling

under the Sino language family of East Asia and South East Asia
2
. Kokborok shares the genetic

features of TB languages that include phonemic tone, widespread stem homophony, subject-

object-verb (SOV) word order, agglutinative verb morphology, verb derivational suffixes

originating from the semantic bleaching of verbs, duplication or elaboration. Kokborok is written

in the script similar to Roman script.

In general, morphological analysis is the first step to analyze the source language whereas

morphology is the field of linguistics that studies the structure of words. The Morphological

Analyzer takes one word at a time and produces its structure, syntactic and morphological

properties or sometimes the meaning of a morphologically complex word (Dhanalakshmi et al.,

2009). The morphological structure of an agglutinative language is unique and capturing its

complexity using machines and generate in presentable format is a challenging job. Various

approaches are used for building morphological analyzers such as Brute force method, root

driven approach, affix stripping etc. (Rajeev et al., 2007; Parakh and Rajesha, 2011).

However, a morphological analyzer is an essential and basic tool for building any language

processing application for a natural language e.g., Machine Translation system. Morphological

Analyzers are essential technologies for most text analysis applications like Information Retrieval

(IR) and Summarization etc. The most obvious applications are found in the areas of

lexicography and computational linguistics.

For example, with respect to the word "dogs", we can say that the "dog" is the root form, and„s‟

is the affix. Here the affix gives the number information of the root word. Thus, morphological

analysis is found to be centered on the analysis and generation of the word forms. It deals with

the internal structure of the words and how those words can be formed. Morphology also plays an

important role in applications such as spell checking, electronic dictionary interfacing and

information retrieving systems, where it is important that words that are only morphological

variants of each other are identified and treated similarly. In natural language processing (NLP)

and especially in machine translation (MT) systems, we need to identify words in texts in order to

determine their syntactic and semantic properties (Parakh and Rajesha, 2011). Morphological

study helps us by providing rules for analyzing the structure and formation of the words.

Several Morphological Analyzers have been developed in different languages using both rule

based and statistical methods. Moreover, different approaches to Morphanalyzer for English have

already been developed such as in (Minnen et al., 2001). On the other hand, many Morphological

Analyzers for Indian Languages have also been developed such as in Hindi (Goyal and Lehal,

2008), Bengali (Das and Bandyopadhyay, 2010), Malayalam (Rajeev et al., 2007), Manipuri

(Choudhury et al., 2004; Singh and Bandyopadhyay, 2005) and for four of the languages, viz.,

Assamese, Bengali, Bodo and Oriya (Parakh and Rajesha, 2011). Manipuri is quite similar to

Kokborok as it falls under Sino language family and an accuracy of 75% was achieved in

(Choudhury et al., 2004). To the best of our knowledge, no previous work has been done on

1 http://tripura.nic.in/
2 http://en.wikipedia.org/wiki/Kokborok

42

developing Morphological Analyzer for Kokborok language, though a stemmer has been

developed for Kokborok language (Patra et al., 2011) and its reported average accuracy is 82.9%.

This paper focuses on designing of a database driven affix stripping based Morphological

Analyzer in Kokborok. In general, the Kokborok words have complex agglutinative structures. In

the present work, a Kokborok morphological analyzer has been developed to analyze the input

Kokborok sentence and for each surface level word to produce the root word(s) and associated

information like lexical category of the roots, the prefix and/or the suffix using three dictionaries

namely root, prefix and suffix. The morphological analyzer uses the Kokborok root words and

their associated information, e.g., part of speech information, category of the verbal bound root

(action/ dynamic, static) from the Kokborok to English bilingual root dictionary.

The rest of the paper is organized in the following manner. Section 2 provides details of

Kokborok word morphology whereas Section 3 provides an elaborative description of the

Morphological Analyzer. Next, Section 4 describes the implementation of Morphological

Analyzer while Section 5 presents the results and analysis. Finally, conclusions and future

directions have been presented.

2 Kokborok Word Morphology

Kokborok language is highly agglutinative and rich in morphology. The verb morphology is

more complex compared to noun morphology. Kokborok words can be easily formed by

affixations.

2.1 Verb Morphology

Most verbs have a monosyllabic root, and the main method for processing verb phrases is to add

suffixes to the root. Kokborok verbs always occur in bound form to which multiple affixes are

added to give the tense, manner of action. The suffixes can be classified in three layers at least

(Jacquesson, 2008):

 The immediate layer, just after the root, concerns for instance locative markers: the action

may reach far away, or go from up to down etc.

 The medium layer after the locative information concerns actancy: this is the kingdom of

factitive, passives, reciprocals etc.

 The outer layer is the so called Tense Aspect Modality (TAM) area, where indications of

Tense, Aspect and Mode are given.

2.1.1 Inflectional Morphology

Inflectional morphology derives words from another word from acquiring certain grammatical

features but maintaining the same part of speech or category. There are a number of inflectional

suffixes indicating tense of the verb of a sentence. Inflectional morphology is more productive

than derivational morphology. First, inflectional morphology is paradigmatic, i.e., every

Kokborok verb exhibits a paradigm with each inflectional marker as illustrated in the Table 1.

43

Inflectional affix Inflection type Verb English meaning

O Aorist Chaho eats

Anǝ Future Chahanǝ Will eat

Na Verbal noun Chahna eat

TABLE 1 – Inflectional Paradigm of Verb Chah.

2.1.2 Derivational Morphology

The derivational morphology can be divided into three different levels viz., first level derivation,

second level derivation and third level derivation as given in Tables 2, 3 and 4. There are non-

category changing derivational suffixes and category changing derivational suffixes.

Suffix Meaning Use and Meaning

-sa- Upwards <Up> Look up

-khlai- Downwards<Dw> Look down

-laŋ- Away from speaker<Lat> take away

-gra- First in order<Pri> Go first

TABLE 2 – First Level Derivation.

Suffix Meaning Use and Meaning

-sa- Upwards <Up> Look up

-khlai- Downwards<Dw> Look down

-laŋ- Away from speaker<Lat> take away

TABLE 3 – Second Level Derivation.

Suffix Meaning/ feature Use and meaning

-o- Aorist<Aor> Go

-anǝ- Near future<Ftp> Will go(may be next year)

-nai- Future<Fut> Will go (on the verge of going)

-kha- Past<Pf> Went

-li-ja Negative <Pf>Neg Did not go

-kho- Still<Pf> Still

-ja- Negative Not go

-glak- Negative Will not be going

TABLE 4 – Third Level Derivation.

2.2 Noun Morphology

Monosyllabic nouns are relatively rare in Kokborok where bisyllabic formations are dominant.

This is due to the widespread process of compounding, either true compounding when two

lexical roots form a new word.

44

2.2.1 Inflectional Morphology

The sole nominal inflectional category is case marking. The category is highly productive, both

formally and semantically. The following Table 5 shows the paradigmatic nature of case

marking.

Inflectional Affix Type Surface Words

-ni Genitive & ablative Nokni,musukni „from house,cows‟

-no Accusative & dative Chwngno ,bono „us,to him‟

-o Locative e& illative Or-o ,bisiŋ-o ‘here, inside’

TABLE 5 – Nature of Case Marking.

2.2.2 Derivational Morphology

Derivational morphology is not productive in that there are apparently arbitrary restrictions on

which suffixes may occur with the different categories of nouns. There are no categories of

gender and number in Kokborok. No accord of any kind on this respect. Gender is marked as

number only when needed not when items have to be feminine or masculine, singular and plural.

 Gender: the male role is marked by suffix –la in tokla (cock). It is unlikely that joŋgla

(frog) can be explained by this suffix. The suffix –jǝk denotes the feminine gender as in

sajǝk (daughter).

 Size: However the suffixes –ma and –sa forms an antonymic couple specialized in big and

small.since –sa also means offspring or young as in toksa(chicken), tǝima(river),

tǝisa(stream).

 Number: plural is in –rok and mostly for animates and also used in pronouns. For example

cherai (child), cherairok (children).

3 The Morphological Analyzer

The proposed architecture of Morphological Analyzer is shown in Figure 1. The Morphological

Analyzer is composed mainly of three modules: Tokenizer, Stemmer and Morphological

Analyzer.

 Tokenizer: This module breaks the Kokborok sentence in to its constituent words or tokens

for analysis.

 Stemmer: it strips the word in to root and affixes.

 Morphological analyzer: it analyzes various types of word structures and combines the

features associated with the affixes and tags the word.

3.1 Dictionary Development

3.1.1 Affix Dictionary

Altogether 91 affixes are there out of which 76 are suffixes and 19 are prefixes. The various

affixes are associated with words belonging to different part of speech to give resultant words

with a particular meaning. The statistics of affixes are given in Tables 6 and Table 7.

45

Tokenizer Stemmer

Morphological

Analyzer(Tagging

& feature

combination)

Affix Dictionary
Root Dictionary

Input Sentence

Analyzed

Text

Stemming

rules

FIGURE 1 –Architecture of Morphological Analyzer for Kokborok

Type No. of prefix No. of suffix

Derivational 9 15

Inflectional 10 61

TABLE 6 – Statistics of Prefix types.

Lcat No. of prefix No. of Suffix

Noun 13 10

Verb 6 44

Adjective 0 22

TABLE 7 – Statistics of Suffix types.

Table 8 shows the affix dictionary entries where lcat, pers and emph are the features associated

with each affix.

Kokborok_prefix Icat pers Emph

Masema Verb 2 Emph

TABLE 8 – Affix Dictionary Entries.

3.1.2 Root Dictionary

Altogether 2000 Kokborok root words have been collected, digitized and stored along with the

associated information in root dictionary and the dictionary stores attribute of each Kokborok

root words such as the part of speech (POS) and its English meaning. Root Dictionary has been

developed by stemming the corpus collected from the Bible and the story books and the stemmed

data are checked manually. Then we have assigned the POS and the English meaning manually.

46

The stemming algorithm used for the development of root dictionary is given below and Table 9

shows the root dictionary entries.

Kokborok POS English

Achuk Verb Sit

TABLE 9 – Root Dictionary Entries.

3.2 Stemming algorithm for generating Root Words

The algorithm is designed to remove both multiple suffixes as well as prefixes from the inflected

words. It has been observed that the boundary of root words in Kokborok change after addition of

suffixes (Patra et al., 2012). Thus we have added some rules in the algorithm as boundary

changes after addition of suffixes. The algorithm is given below.

3.2.1 Prefix Stripping Algorithm

1. repeat the step 2 until all the prefixes are removed

2. read the prefix,

if matched then store it in array and decrease the length of string

else read another prefix.

3. If length of string >2 then go for suffix stripping, else exit

3.2.2 Suffix Stripping Algorithm

1. repeat the step 2 until all the suffixes are removed

2. read the largest suffix,

if matched then check for rules.

then store it in array and decrease the length of string

else read another suffix.

3. exit.

We have achieved an accuracy of 85.5% by maximum suffix striping algorithm, where we striped

maximum suffix first. There is no case of under stemming seen as we striped largest suffix

first. The overall statistics of accuracies on major categories like verb, noun, adjective

and adverbs are given in Table 10. In this case out of the total error, there are 69.3%

mis-stemming and 30.7% over-stemming. For example,
Over- stemming: sumano(input)suma+no(output)

Desired output: suman+o

Mis-stemming: tongo(input)= tonk +o (output)
Desired output: tong+o

Categories Accuracy

Noun 72%

Verb 79%

Adjective 87%

Adverbs 96%

Table 11 – Results of Morphological Analyzer.

47

We have observed more number of errors in case of proper nouns or nouns, because the

occurrence of proper nouns or nouns is more in the sentences. Some words have

alphabet pairs similar to the affixes leading to over stemming for example:

Mis-stemming: Kothmano Kothman+o (after stemming which is incorrect)

Desired output: Kothma+no

In case of verbs, error occurs due to the order of stemming of word for example

Mis-stemming: Malwi ma+lwi(error if prefix stemmed first)

Desired output: Mal+wi(correct)

There are less number of errors in Adjectives and those are due to presence of alphabets

similar to affix in the word. For example bw+rwichwk (error since bw is in prefix list),

but “bwrwichwk” is a single words. Numbers of errors in case of adverbs are negligible.

4 Implementation Details

The Morphological Analyzer has been used in the present work for identification of word class

features and sentence type. Broadly, there are five types of words that can be handled by this

Morphological Analyzer.

Free words are formed without any affixation or compounding. E.g. Borok (people). Words with

multiple prefixes and suffixes, such word occurs in the pattern given below. Where P, RW, S

stands for prefix, root word and suffix respectively.

P + RW For e.g., bupha (my father)

RW+S For e.g., Khumbarno (to Khumbar)

P+RW+S. For e.g. Bukumuini (His/Her Brother In Law‟s)

P+RW+S+S… For e.g., Ma(P)+thang (to go)+lai(S)+nai(S)Mathanglainai(need to go)

RW+RW… For e.g., Khwn (Flower)+Lwng(Garden)Khwmlwng(Flowergarden)

RW+S+RW+S. For e.g., Hui(RW)(to hide)+jak(S)+hui(RW)+jak(S)+wi(S) Hujakhujakwi

(Without Being Seen)

Compound words are formed by compounding among various words belonging to different part

of speech. The various pattern of compounding is given below.

Noun + Noun

Noun + Adjective

Pronoun + Noun + Noun

4.1 Algorithm for implementing the Morphological Analyzer

1. Give input Kokborok sentences to the tokenizer module.

2. Tokenize each sentence to words

3. Repeat from step 4 to 7 until each word is analysed

4. Check if the word is in dictionary

5. If match not found stem the word in to root and affixes

6. Check for the pattern given above with the help of root and affix dictionary. If match is

found apply rules, combine grammatical features and tag the word. If not found then

send the word to complex word handler.

48

7. Complex word handler will stem the word with the help of root dictionary. If match

found then will tag accordingly, otherwise tag it a unknown words.

8. Exit.

The flow chart of the Morphological Analyzer is shown in Figure. 2.

5 Evaluation

In the segmentation of words, we tested two methods: (i) First affix isolation, then detection of

root and (ii) First detection of root, then isolation of affixes. In the former case there is overhead

due to repeated access to the root dictionary. On the other hand, the later approach needs a single

pass in the root dictionary. The first approach handles the orthographic complexity well and the

second strategy is much faster in comparison with the former. The Morphological Analyzer has

been tested using the corpus. The unanalysed words have been tagged by the analyzer as

unknown (unk) and after manual check it has been found out that maximum number of unknown

words belong to proper noun, thus later on it was tagged as NNP. The Morph Analyzer was

tested again and it has seen that it is giving a better result. Errors have been calculated on the

basis of words wrongly tagged, unanalyzed words and words tagged as unk out of total input

words. Correctness of Kokborok Morphological Analyzer is shown in Table 11. There are some

unknown words which could not be analyzed based on rules available and due to unavailability

of root word dictionary, are effectively reducing the performance of Morphology Analyzer. The

words in Kokborok can be easily formed by affixations and compounding, so the number of

unknown words are relatively large. The accuracy of the Morphanalyzer can be further improved

by introducing more numbers of linguistic rules and adding more root words to the dictionary.

Break in to words

Input Sentence

Check in dictionary for

a match

Stem the word in to root

and affixes(multiple)

Match ?

Check the root and

affixes(prefix/suffix)

Match ?

Combine features applying

rules

Last word?

Yes

No

Analyzed

text

Yes

Take next word

Check for

Compound word

Match ?

No

Yes

NO

tag

Yes

NO

FIGURE 2 – Flowchart of Kokborok Morphological Analyzer.

49

 Based on unanalyzed words

tagged as UNK

After UNK words tagged as

NNP

Total input words 56732 56732

Analyzed words 42549 45386

Unanalyzed words 14183 11346

%age of analysed words 75% 80%

%age of errors 25% 20%

TABLE 11 – Results of Morphological Analyzer.

Conclusion and Future Work

In the present work, the development of a Kokborok Morphological Analyzer has been described.

The analyzer uses three dictionaries of morphemes viz., root, prefix and suffix. The root

dictionary stores the related information of the corresponding roots. The stemmer performs with

an accuracy of 85.5% considering the inflectional and derivational suffixes. The Analyzer can

classify the word classes and sentence types based on the affix information. In Kokborok, word

category is not so distinct except Noun. The verbs are under bound category. The verb

morphology is more complex than that of noun. The distinction between the noun class and verb

classes is relatively clear; the distinction between nouns and adjectives is often vague. Thus, the

assumption made for word categories depend upon the root category and affix information.

Currently, we use a sequential search of a stem from the root dictionary because of its smaller

size. Further a part of root may also be a prefix which leads to wrong tagging. In the stripping of

the morphemes the various morphemes pattern combinations are tested. The morphology driven

Kokborok POS tagging is very much dependent on the morphological analysis and lexical rules

of each category.

The Natural Language Processing tools need more text corpus with better transfer rules and

techniques to achieve quality output. The performance of the various Kokborok NLP tools that

have been developed in the present work need to be improved by experimenting with various

machine learning approaches with more training data. Future works include the developments of

automatic Morphological Analyzer using some machine learning algorithms. The exploration and

identification of additional linguistics factors that can be incorporated into the Morphological

Analyzer to improve the performance is an important future task.

References

Choudhury, S., Singh, L., Borgohain, S. and Das, P. (2004). Morphological analyzer for

Manipuri: Design and Implementation. Applied Computing, 123-129.

Das, A. and Bandyopadhyay, S. (2010). Morphological Stemming Cluster Identification for

Bangla. Knowledge Sharing Event-1: Task, 3.

Debbarma, Binoy and Debbarma, Bijesh (2001). Kokborok Terminology P-I, II, III, English-

Kokborok-Bengali. Language Wing, Education Dept., TTAADC, Khumulwng, Tripura.

Debbarma, K., Patra, B. G., Debbarma, S., Kumari, L. and Purkayastha, B. S. (2012).

Morphological analysis of Kokborok for universal networking language dictionary. In

50

Proceedings of 1st International Conference on Recent Advances in Information Technology

(RAIT), pages 474-477. IEEE.

Dhanalakshmi, V., Kumar, M. A., Rekha, R. U., Kumar, C. A., Soman, K. P. and Rajendran, S.

(2009). Morphological Analyzer for Agglutinative Languages Using Machine Learning

Approaches. In Proceedings of International Conference on Advances in Recent Technologies

in Communication and Computing (ARTCom'09), pages 433-435. IEEE.

Goyal, V. and Lehal, G. S. (2008). Hindi Morphological Analyzer and Generator.

In Proceedings of First International Conference on Emerging Trends in Engineering and

Technology (ICETET'08). pages 1156-1159. IEEE.

Jacquesson, F. (2008). A Kokborok Grammar. Published by Kokborok tei Hukumu Mission.

Minnen, G., Carroll, J. and Pearce, D. (2001). Applied morphological processing of

English. Natural Language Engineering, 7(3), 207-223.

Parakh, M. and Rajesha, N. (2011). Developing Morphological Analyzers for Four Indian

Languages Using A Rule Based Affix Stripping Approach. In Proceedings of Linguistic Data

Consortium for Indian Languages, CIIL, Mysore.

Patra, B. G., Debbarma, K., Debabarma, S., Das, D., Das, A. and Bandyopadhyay, S. (2012). A

light Weight Stemmer for Kokborok. In Proceedings of the 24th Conference on Computational

Linguistics and Speech Processing (ROCLING 2012), pages 318-325, Yuan Ze University,

Chung-Li, Taiwan.

Rajeev, R. R., Rajendran, N. and Sherly, E. (2007). A Suffix Stripping Based Morph Analyzer

for Malayalam Language. Morph Analyzer Science Congress.

Singh, T. D. and Bandyopadhyay, S. (2005). Manipuri morphological analyzer. In Proceedings

of the Platinum Jubilee International Conference of LSI. University of Hyderabad, India.

51

Proceedings of the 3rd Workshop on South and Southeast Asian Natural Language Processing (SANLP), pages 53–68,
COLING 2012, Mumbai, December 2012.

Comparing Different Criteria for Vietnamese Word
Segmentation

Quy T. Nguyen1 Ngan L.T. Nguyen2 Y usuke Miyao2

(1) University of Informatics, Hochiminh city, Vietnam
(2) National Institute of Informatics, Chiyoda-ku, Tokyo, Japan

quynt@uit.edu.vn, ngan@nii.ac.jp, yusuke@nii.ac.jp

Abstract
Syntactically annotated corpora have become important resources for natural language
processing due in part to the success of corpus-based methods. Since words are often
considered as primitive units of language structures, the annotation of word segmentation
forms the basis of these corpora. This is also an issue for the Vietnamese Treebank
(VTB), which is the first and only publicly available syntactically annotated corpus for the
Vietnamese language. Although word segmentation is straight-forward for space-delimited
languages like English, this is not the case for languages like Vietnamese for which a
standard criterion for word segmentation does not exist. This work explores the challenges
of Vietnamese word segmentation through the detection and correction of inconsistency for
VTB. Then, by combining and splitting the inconsistent annotations that were detected,
we are able to observe the influence of different word segmentation criteria on automatic
word segmentation, and the applications of word segmentation, including text classification
and English-Vietnamese statistical machine translation. The analysis and experimental
results showed that our methods improved the quality of VTB, which positively affected
the performance of its applications.

Title and Abstract in another language, L2 (optional, and on same page)

So sánh các tiêu chí tách từ khác nhau thông qua
ứng dụng
Trong bài báo này, chúng tôi khảo sát những nhãn ranh giới từ được đánh dấu
trong ngữ liệu cây cú pháp tiếng Việt gọi tắt là VTB. Từ việc khảo sát những trường hợp
bị gán nhãn không nhất quán, chúng tôi xác định một số trường hợp khó khăn của bài
toán tách từ. Dựa trên những trường hợp này, chúng tôi xây dựng và khảo sát một số tiêu
chí tách từ khác nhau. Cụ thể, chúng tôi đã đánh giá các các tiêu chí này thông qua bộ
tách từ tự động, và hai ứng dụng: dịch tự động Anh-Việt theo phương pháp thống kê và
phân loại văn bản tiếng Việt. Kết quả thí nghiệm cho thấy: (1) các tiêu chí tách từ khác
nhau có ảnh hưởng đến độ chính xác của ứng dụng, (2) việc nâng cao chất lượng cho VTB
là cần thiết để xây dựng ứng dụng có chất lượng cao.

Keywords: treebank, inconsistency detection, word segmentation, Vietnamese.

Keywords in L2: ngữ liệu gán nhãn cú pháp, phát hiện nhãn không nhất quán, tách từ,
tiếng Việt.

53

1 Introduction
Treebanks, which are corpora annotated with syntactic structures, have become more and
more important for language processing. In order to strengthen the automatic processing
of the Vietnamese language, the Vietnamese Treebank has been built as a part of the
national project, “Vietnamese language and speech processing (VLSP)” (Nguyen et al.,
2009c). However, in our preliminary experiment with VTB, when we trained the Berkeley
parser (Petrov et al., 2006) and evaluated it by using the corpus, the parser achieved only
65.8% in F-score. This score is far lower than the state-of-the-art performance reported for
the Berkeley parser on the English Penn Treebank, which reported 90.3% in F-score (Petrov
et al., 2006). There are two possible reasons to explain this outcome. One reason for this
outcome is the difficulty of parsing Vietnamese, which requires new parsing techniques. The
second reason is the quality of VTB, including the quality of the annotation scheme, the
annotation guidelines, and the annotation process.
The Vietnamese Treebank (VTB) contains 10.433 sentences (274.266 tokens) annotated
with three layers: word segmentation, POS tagging, and bracketing. This paper focuses
on the word segmentation, since words are the most basic unit of a treebank1 (Di Sciullo
and Edwin, 1987), and defining words is the first step (Xia, 2000b,a; Sornlertlamvanich
et al., 1997, 1999). For languages like English, defining words is almost trivial, because the
blank spaces denote word delimiters. However, for an isolating language like Vietnamese,
for which blank spaces play a role of syllable delimiters, defining words is not a trivial
problem. For example, the sentence “Học sinh học sinh học (students learn biology)2” is
composed of three words “học sinh (student)”, “học (learn),” and “sinh học (biology)”.
Word segmentation is expected to break down the sentence at the boundaries of these
words, instead of splitting “học sinh (student)” and “sinh học (biology).” Note that the
terminology word segmentation also refers to the task of extracting “words” statistically
without concerning a gold-standard for segmentation, as in (Seng et al., 2009; Ha, 2003; Le
et al., 2010). In such a context, the extracted “words” are more appropriate for building a
dictionary, rather than for corpus-based language processing, which are outside of the scope
of this paper. Because of the discussed characteristics of the language, there are challenges
in establishing a gold standard for Vietnamese word segmentation.
The difficulties in Vietnamese word segmentation have been recognized by many researchers
(Ha, 2003; Nguyen et al., 2004, 2006; Le et al., 2010). Although most people agree that the
Vietnamese language has two types of words: single and compound, there is little consensus
as to the methodology for segmenting a sentence into words. The disagreement occurs
not only because of the different functions of blank spaces (as mentioned above), but also
because Vietnamese is not an inflectional language, as is the case for English or Japanese,
for which morphological forms can provide useful clues for word segmentation . While
similar problems also occur with Chinese word segmentation (Xia, 2000b), Vietnamese
word segmentation may be more difficult, because the modern Vietnamese writing system
is based on Latin characters, which represent the pronunciation, but not the meaning
of words. All these characteristics make it difficult to perform word segmentation for
Vietnamese, both manually and automatically, and have thus resulted in different criteria
for word segmenation. However, so far there have been few studies on the challenges in
word segmentation, and the comparison of different word segmentation criteria.

1In this paper, the terminology word is used with the meaning the most basic unit of a treebank.
2The English translation for a Vietnamese example text is given in parentheses following the text.

54

In this paper, a brief introduction of the Vietnamese Treebank (VTB) and its annotation
scheme are provided in Section 2. Then, we described our methods for the detection and
correction of the problematic annotations in the VTB corpus (Section 4.2). We classified the
problematic annotations into several patterns of inconsistency, part of which were manually
fixed to improve the quality of the corpus. The rest, which can be considered as the most
difficult and controversial instances of word segmentation, were used to create different
versions of the VTB corpus representing different word segmentation criteria. Finally,
we evaluated these criteria in automatic word segmentation, and its application in text
classification and English-Vietnamese statistical machine translation in Section 4.
This study is not only beneficial for the development of computational processing technologies
for Vietnamese, a language spoken by over 90 million people, but also for similar languages
such as Thai, Laos, and so on. This study also promotes the computational linguistic
studies on how to transfer methods developed for a popular language, like English, to a
language that has not yet intensively studied.

2 Word segmentation in VTB
Word segmentation in VTB aims at establishing a standard for word segmentation in a
context of multi-level language processing. VTB specifies 12 types of units that should be
identified as words (Table 1) (Nguyen et al., 2009b), which can be divided up into three
groups: single, compound, and special “words.” Single words contain only one token. The
terminology tokens refers to text spans that are separated from each other by blank spaces.
Compound words have two or more tokens, and are divided into four types: compound words
composed by semantic coordination (semantic-coordinated compound), compound words
composed by semantic subordination (semantic-subordinated compound), compound words
with an affix, and reduplicated words. Special “words” include idioms, locutions, proper
names, date times, numbers, symbols, sentence marks, foreign words, or abbreviations. The
segmentation of these types of words forms a basis for the POS tagging, with 18 different
POS tags, as shown in Table 2 (Nguyen et al., 2009d).
Each unit in Table 1 goes with several example words; English translations are given in
parentheses. Furthermore, we added a translation for each token, where possible, so that
readers who are unfamiliar with Vietnamese can have an intuitive idea as to how the
compound words are formed. The subscript of a token translation is the index of that
token in the compound word. However, for some tokens, we could not find any appropriate
English translation, so we gave it an empty translation marked with an asterisk. Note that
a Vietnamese word or a token in context can have other meanings in addition to the given
translations.
A classifier noun, denoted by the part-of-speech Nc in Table 2, is a special type of word
in Vietnamese. One of the functions of classifier nouns is to express the definiteness. For
example, the common noun “bàn” generally means tables in general, while “cái bàn” means
a specific table, similar to “the table” in English.

3 Inconsistency detection for word segmentation annotation of
VTB

In this section, we analyzed the VTB corpus to determine whether the difficulties in
Vietnamese word segmentation affected the quality of VTB annotations. The analysis
revealed several types of inconsistent annotations, which are also problematic cases for

55

Type Example
Simple word ba (father), cá (fish)
Semantic-coordinated compound quần áo / trousers1 shirt2 (clothes)
Semantic-subordinated compound xe đạp / vehicle1 pedal2 (bicycle)
Compound word with affix bất lương / not1 honest2 (dishonest)
Reduplicated word long lanh / *1 *2 (glistening)
Idiom có thực mới vực được đạo

(a hungry belly has no ears)
Locution nói tóm lại (in short)
Proper name Việt Nam (Vietnam)
Date time, number, symbol 30-4-1975 (April 30, 1975),

15% (fifteen percent)
Sentence marks . , !
Foreign word internet, chat
Abbreviation WTO

Table 1: Word types in VTB word segmentation guidelines
Label Name Example

1 N Noun tiếng (syllable), nhân dân (people), chim
muông (birds)

2 Np Proper noun Việt Nam, Nguyễn Du
3 Nc Classifier noun con, cái, bức
4 Nu Unit noun mét (meter), nhúm (pinch), đồng (VND)
5 V Verb ngủ (sleep), ngồi (sit), suy nghĩ (think)
6 A Adjective tốt (good), đẹp (beautiful), cao (high)
7 P Pronoun tôi (I), hắn (he), nó (it)
8 L Determiner mỗi (every), những, mấy
9 M Number một (one), vài (a few), rưỡi (half)
10 R Adverb đã, sẽ, đang
11 E Preposition trên (on), dưới (under), trong (in)
12 C Conjunction và (and), tuy nhiên (however)
13 I Exclamation ôi, chao, a ha
14 T Particle ạ, ấy, chăng
15 B Foreign word internet, email, video, chat
16 Y Abbreviation APEC, WTO, HIV
17 S Affix bất, vô, đa

Table 2: VTB part-of-speech tag set

Vietnamese word segmentation. Our analysis is based on two types of inconsistencies:
variation and structural inconsistency, which are defined below.

Variation inconsistency: is a sequence of tokens, which has more than one way of segmenta-
tion in the corpus. For example, “con gái/girl” can remain as one word, or be segmented
into two words, “con” and “gái”. A variation can be an annotation inconsistency, or an
ambiguity in Vietnamese. While ambiguity cases reflect the difficulty of the language,
annotation inconsistencies are usually caused by the confusion in the decision of annotators,

56

which should be eliminated in annotation. We use the term variation instance to refer to a
single occurrence of a variation.

Structural inconsistency: happens when different sequences have similar structures, thus
should be split in the same way, but are segmented in different ways in the corpus. For
example, “con gái/girl” and “con trai/boy” have similar structures: a combination of a
classifier noun and a common noun Nc + N, so when “con gái/girl” is split, and “con
trai/boy” is not, it is considered as a structural inconsistency of Nc. It is likely that
structural inconsistency at the word segmentation level complicates the higher levels of
processing, including POS tagging and bracketing.

3.1 Variation inconsistency detection
3.1.1 Detection method

N-gram Number of variations Number of variation instances
2-gram 157 2686 (92.9%)
3-gram 31 177 (6.1%)
4-gram 7 28 (1.0%)
Total 195 2891 (100.0%)

Table 3: Statistics of N-gram variations

POS sequences Count Examples
N-N 83 vụ việc/ *1 job2 (event),

quê nhà/ native place1 house2 (hometown)
V-N 33 nói chuyện/ say1 story2 (say),

cho phép/ give1 permission2 (permit)
V-V 25 ra vào/ go out1 go in2 (go in and out)
N-A 22 đường mòn/ path1 worn2 (trail),

năm xưa/ year1 old2 (long ago)
N-V 20 nhà ở/ house1 live2 (house),

câu hỏi/ sentence1 question2 (question)
Nc-N 16 niềm tin/ *1 believe2 (belief),

bà mẹ/ Mrs.1 mother2 (the mother)
A-A 13 đen trắng/ black1 white2 (black and white),

đúng mức/ suitable1 level2 (moderate)
V-R 11 trở lại/ go1 back2 (return)
N-P 9 trước đây/ before1 now2 (previous)
A-N 8 cao tầng/ high1 storey2 (multi-storey)

Table 4: Top 10 POS sequences of 2-gram variation inconsistencies
The detection method for variation inconsistency is based on N-gram sequences and the
phrase structures in the VTB, following the definition for variation inconsistency, above. In
detail, we counted N-gram sequences of different lengths in VTB that have two or more
ways of word segmentation, satisfying one of the following two conditions:

• N tokens are all in the same phrase, and all have the same depth in phrase. For

57

POS pattern Count
N- 148
V- 79
A- 27
Nc- 21
R- 17
E- 12
S- 11
C- 10
M- 10
P- 7
Np- 3
Nu- 2
L- 1
T- 1
Total 349

Table 5: Counts of POS sequences of 2-gram variation inconsistencies grouped by the first
POS

POS pattern Count
-N 166
-V 53
-A 45
-P 40
-R 16
-M 9
-Np 8
-C 4
-X 2
-T 2
-Nc 1
-S 1
-Nu 1
-Nb 1
Total 349

Table 6: Counts of POS sequences of 2-gram variation inconsistencies grouped by the second
POS

example, the 3-gram “nhà tình nghĩa (house of gratitude)” in this structure “(NP
(Nc-H căn) (N nhà) (A tình nghĩa)),” OR

• N tokens are all in the same phrase, and some token can appear in an embedded
phrase which contains only one word. For example, “nhà tình nghĩa” in this structure
“(NP (Nc-H căn) (N nhà) (ADJP (A tình nghĩa))),” where the ADJP contains only
one word.

58

3.1.2 Evaluation and results

Table 3 shows the overall statistics of the variation inconsistency detected by method
described above. Most of the difficult cases of word segmentation occur in two-token
variations, occupying the majority of variations (92.9%). This ratio of 2-gram variations
is much higher than the average ratio of two-token words in Vietnamese, as reported in
(Nguyen et al., 2009a), which is 80%. Variations that have lengths of three and four tokens
occupy 6.1% and 1.0%, respectively.

We estimated the precision of our method by randomly selecting 130 2-gram variation
instances, extracted from the method described above, and manually checked whether the
inconsistencies are true. We found that 129 cases occupying 99.2% of all extracted 2-grams
are true inconsistencies. Only one instance of inconsistency was an ambiguous sequence
giá cả, which is one word when it means price, and two words giá/price cả/all in đều có
giá cả/all have (their own) price. The precision of our method is high, so we can use the
extracted variations to provide insights on the word segmentation problem.

3.1.3 Analysis of 2-gram variations

We further analyzed the 2-gram variations to understand what types of 2-grams were most
confusing for annotators. The analysis results showed that compound nouns, compound
verbs, and compound adjectives are the top difficult cases of word segmentation.

We classified the 2-gram variations according to their POS sequences in case the tokens
in the 2-gram are split. There are a total of 54 patterns of POS sequences. The top 10
confusing patterns, their counts of 2-gram variations, and examples are depicted in Table 4.
Table 5 and Table 6 show the POS patterns that are a specific POS tag appearing at the
beginning or ending of the sequence.

Investigating the inconsistent 2-grams extracted, we found that most of them are compound
words according to the VTB guidelines (Section 2). One of the reasons why the compound
words are sometimes split, is because the tokens in those compound words have their own
meanings, which seem to contribute to the overall meaning of the compounds. This can be
seen through the examples provided in Table 4, where the meanings of tokens are given
with a subscript. This scenario has proven to be problematic for the annotators of VTB.

Furthermore, by observing the POS patterns in Table 5 and Table 6, we can see the potential
for structural inconsistency, particularly for closed-set POS tags. Among them, classifier
nouns (Nc) and affixes (S) are two typical cases of structural inconsistency, which will be
used in several settings for our experiments. The same affix or classifier noun can modify
different nouns, so when they are sometimes split, and combined in the variations, we
can conclude that classifier nouns and affixes involve in structural inconsistencies. In the
following section, we present our detection method for structural inconsistency for classifier
nouns and affixes.

59

3.2 Structural inconsistency detection for classifier nouns and af-
fixes

3.2.1 Detection method

We collected all affixes and classifier nouns in the VTB corpus, and then extracted 2-grams
containing these affixes or classifier nouns, which they are also structural inconsistencies.
For example, since “con” is tagged as a classifier noun in VTB, we extracted all 2-grams of
“con” including both “con gái/girl” and “con trai/boy”.

Even though the sequence, “con trai” is always split into two words throughout the corpus,
it can still be an inconsistency, if we consider similar structures such as “con gái”. In other
words, by this method, we extract sequences that may be consistent at the surface level,
but are not consistent, if we consider the higher analysis levels, such as POS tagging.

According to the VTB POS-tagging annotation guidelines (Nguyen et al., 2009d), classifier
nouns should be separated from the words they modify. However, in practice, when a
classifier noun can be standalone as a meaningful single word, it may be difficult for
annotators to decide whether to split, or to combine it with the noun it modifies to form
a semantic-subordinated compound. For example a classifier noun, e.g., “con” in “con
trai (boy)”, or “con gái (girl)”, can also be a simple word, which means “I (first person
pronoun used by a child when talking to his/her parents)”, or part of a complex noun “con
cái (children)”. Therefore, in our experiments, we want to evaluate the “splitting” and
“combining” of these cases, in order to see whether the solution is successful for applications
of the corpus.

Type Number of combinations Number of instances
Affix 345 1289
Nc 2715 10445

Table 7: Statistics of targeted structural inconsistency

3.3 Correction of inconsistency in annotations of special charac-
ters

By examining the variations extracted by the variation inconsistency detection, we found
that there are cases when a special character like a percentage (%) in “30%”, is split or
combined with “30”. Such inconsistent annotations are manually fixed based on their textual
context.

By checking structural inconsistencies of these special characters, including percentages
(%), hyphens (-), and other symbols, we found quite a significant number of inconsistent
annotations. For example, the character, %, in “30%” is split, but is combined with a
number in “50 %”, which is considered to be a structural inconsistency. Note that it can
be argued that splitting “N%” into two words or combined in one word is dependent on
the blank space in-between N and “%”. Higher-levels of annotation such as POS tagging is
significant, because we may need one or two different POS tags for the different methods of
annotation. Therefore, we think that it is better to carefully preprocess text and segment
these special characters in a consistent way.

To improve the quality of the VTB corpus, we extracted the problematic sequences using

60

patterns of the special characters, and manually fixed this type of inconsistency. Automatic
modification is difficult, since we must check the semantics of the special characters in their
contexts. For example, hyphens in date expressions like “5-4-1975”, which refers to the
date, "the fifth of April, 1975," are combined with the numbers. However, when the hyphen
indicates “(from) to” or “around ... or”, as in “2-3 giờ sáng” meaning “around 2 or 3 o’clock
in the morning”, we decided to separate it from the surrounding numbers. As a result, we
have fixed 685 inconsistent annotations of 21 special characters in VTB.

4 Comparing different word segmentation criteria

Figure 1: Experimental diagram showing how different word segmentation criteria are
encoded in our experiments.

The variation inconsistency and structural inconsistency found in Section 3 can also be seen
as representatives of different word segmentation criteria for Vietnamese. We organized the
inconsistency detected in seven configurations of the original VTB corpus. Then, by using
these data sets, we could observe the influence of the different word segmentation criteria
on three tasks: automatic word segmentation, text classification, and English-Vietnamese
statistical machine translation.

61

4.1 Data preparation for experiments on word segmentation cri-
teria

Seven data sets corresponding to different segmentation criteria are organized as follows.

• ORG : The original VTB corpus.

• BASE : The original VTB corpus + Manual modification of special characters done
in Section 3.3.

• VAR_SPLIT : BASE + split all variations detected in Section 3.1.

• VAR_COMB : BASE + combine all variations detected in Section 3.1.

• VAR_FREQ : BASE + select the segmentation with higher frequency among all
variations detected in Section 3.1.

• STRUCT_NC : BASE + combine all classifier nouns detected in Section 3.2 with the
words they modify.

• STRUCT_AFFIX : BASE + combine all suffixes detected in Section 3.2 with the
words they modify.

These data sets are used in our experiments as illustrated in Figure 1. The names of the
data sets are also used to label our experimental configurations.

4.2 Experimental settings
In this section, we briefly describe the task settings and the methods used for word
segmentation (WS), text classification (TC), and English-Vietnamese statistical machine
translation (SMT).

4.2.1 Word segmentation (WS)

We used YamCha (Kudo and Matsumoto, 2003), a multi-purpose chunking tool, to train
our word segmentation models. The core of YamCha is the Support Vector Machine (SVM)
machine learning method, which has been proven to be effective for NLP tasks. For the
Vietnamese word segmentation problem, each token is labeled with standard B, I, or O
labels, corresponding to the beginning, inside, and outside positions, respectively. The label
of each token is determined based on the lexical features of two preceding words, and the
two following words of that token. Since the Vietnamese language is not inflectional, we
cannot utilize inflection features for word segmentation.

Each of the seven data sets is split into two subsets for training and testing our WS models.
The training set contains 8443 sentences, and the test set contains 2000 sentences.

4.2.2 Text classification (TC)

Text classification is defined as a task of determining the most suitable topic from the
predefined topics, for an input document. We implemented a text classification system

62

similar to the system presented in (Nguyen et al., 2012). The difference is that we performed
the task at the document level, instead of at the sentence level.

The processing of the system is summarized as follows. An input document is preprocessed
with word segmentation and stop-word removals. Then, the document is represented in the
form of a vector of weighted words appearing in the document. The weight is calculated
using standard tf-idf product. An SVM-based classifier predicts the most probable topic
for the vector, which also is the topic for the input document. In our experiment, for
comparison of different word segmentation criteria in topic classification, we only vary the
word segmentation model used for this task, while fixing other configurations.

News articles of five topics: music, stock, entertainment, education, and fashion are used.
The sizes of the training and test data sets are summarized in Table 8.

Topic Training (documents) Test (documents)
Music 900 813
Stock 382 320
Entertainment 825 707
Education 821 707
Fashion 412 302
Total 3340 2849

Table 8: Data used in the text classification experiment

4.2.3 Statistical machine translation (SMT)

A phrase-based SMT system for English-Vietnamese translation was implemented. In
this system, we used SRILM (Stolcke, 2002) to build the language model, GIZA++ (Och
and Ney, 2003) to train the word-aligned model, and Moses (Holmqvist et al., 2007) to
train the phrase-based statistical translation model. Translation results are evaluated
using the word-based BLEU score (Papineni et al., 2002). Both training and test data are
word-segmented using the word segmentation models achieved. For the experiment, we
used the VCL_EVC bilingual corpus (Dinh and Hoang, 2005), 18000 pairs of sentences for
training, and 1000 pairs for testing.

4.3 Experimental results and analysis

Recall Precision F-score
ORG 95.89 95.44 95.66
BASE 96.00 95.60 95.80
VAR_COMB 96.05 95.69 95.87
VAR_SPLIT 96.53 96.27 96.40
VAR_FREQ 96.20 95.85 96.02
STRUCT_NC 95.08 94.79 94.93
STRUCT_AFFIX 96.03 95.59 95.81

Table 9: Evaluation results of automatic word segmentation with different WS criteria
Evaluation of word segmentation models trained on different versions of the VTB are
given in Table 9. The experimental results with text classification and English-Vietnamese

63

Recall Precision F-score
ORG 98.20 97.90 98.05
BASE 98.63 98.79 98.71
VAR_COMB 98.45 98.63 98.54
VAR_SPLIT 98.60 98.72 98.66
VAR_FREQ 98.68 98.65 98.67
STRUCT_NC 98.34 98.35 98.34
STRUCT_AFFIX 98.61 98.67 98.64

Table 10: Evaluation results of text classification with different word segmentation methods
BLEU

ORG 36.36
BASE 36.44
VAR_COMB 36.03
VAR_SPLIT 36.91
VAR_FREQ 36.75
STRUCT_NC 35.41
STRUCT_AFFIX 36.36

Table 11: Evaluation results of SMT with different word segmentation methods

statistical machine translation are shown in Table 10 and Table 11, respectively. There are
two important conclusions that can be drawn from these tables: (1) The quality of the
treebank strongly affects the applications, since our BASE model and most of the other
enhanced models improved the performance of TC and SMT systems; (2) “Splitting” seems
to be a good solution for word segmentation of controversial cases, including the split of
variations, affixes, and classifier nouns.

According to the result in Table 9, the VAR_SPLIT criterion gives the highest WS
performance. With the exception of STRUCT_NC, all of the modifications to the original
VTB corpus increase the performance of WS. However, the word segmentation criterion
with higher performance is not necessarily a better criterion, but a criterion should also be
judged through applications of word segmentation. In both SMT and TC experiments, the
BASE model, which is based on the manually-modified inconsistency of special characters,
achieved better results than the ORG model. In particular, in the TC experiment, the
BASE model achieved 0.66 point higher than ORG, which is a significant improvement.
The results support the conclusion that the quality of the word-segmentation corpus is very
important for building NLP applications.

The SMT results show that three out of six augmented models, VAR_SPLIT, VAR_FREQ
and BASE, performed better than the ORG configuration. Among them, the best-performing
model, VAR_SPLIT achieved 36.91 BLEU score, which is 0.55 higher than ORG. In TC
results, all six augmented models achieved higher results than ORG. In general, the
augmented models performed better than the ORG. Additionally, because our automatic
methods for inconsistency detection could not cover all of the types of inconsistencies in
word segmentation annotation, further improvement of corpus quality is demanded.

Comparing the results of STRUCT_AFFIX and STRUCT_NC with BASE in WS, TC,
and SMT, we can observe that combining affixes with their head nouns resulted in slightly

64

better results for WS and TC, and did not change the performance of SMT. However, the
combination of classifier nouns with their head nouns had negative effects on WS and SMT.

Another part of the scope of our experiment is to compare two solutions for controversial
cases of word segmentation, splitting and combining. Splitting and combining variations are
reflected by VAR_COMB and VAR_SPLIT, while STRUCT_AFFIX and STRUCT_NC
represent the combination of affixes or classifier nouns with the words that they modify.
STRUCT_AFFIX and STRUCT_NC are contrasted with BASE where affixes and classifier
nouns remain untouched. Comparing VAR_COMB and VAR_SPLIT in both the TC
experiment and SMT experiment, we see that the VAR_SPLIT results are better in both
cases. Since the ratio of combined variations in the ORG corpus is 60.9%, it can be observed
that splitting seems to be better than combining for WS, TC and SMT.

5 Conclusion
In this paper, we have provided a quantitative analysis of the difficulties in word segmenta-
tion, through the detection of problematic cases in the Vietnamese Treebank. Based on
the analysis, we automatically created data that represent the different word segmentation
criteria, and evaluated the criteria indirectly through their applications.

Our experimental results showed that manual modification, done for annotation of spe-
cial characters, and most other word segmentation criteria, significantly improved the
performances of automatic word segmentation, text classification and statistical machine
translation, in comparison with the use of the original VTB corpus. Since the VTB corpus
is the first effort in building a treebank for Vietnamese, and is the only corpus that is
publicly available for NLP research, this study contributes to further improvement of the
corpus quality, which is essential for building efficient NLP systems in future.

References
Di Sciullo, A. M. and Edwin, W. (1987). On the definition of word. The MIT Press.

Dinh, D. and Hoang, K. (2005). Building an annotated english-vietnamese parallel corpus
for training vietnamese-related nlps. Mon-Khmer Studies: A Journal of Southeast, Asian
Languages and Cultures, 35:21–36.

Dinh, Q. T., Le, H. P., Nguyen, T. M. H., Nguyen, C. T., Rossignol, M., and Vu, X. L.
(2008). Word segmentation of vietnamese texts: a comparison of approaches. In Nicoletta
Calzolari (Conference Chair), Khalid Choukri, B. M. J. M. J. O. S. P. D. T., editor,
Proceedings of the Sixth International Conference on Language Resources and Evaluation
(LREC’08), Marrakech, Morocco. European Language Resources Association (ELRA).
http://www.lrec-conf.org/proceedings/lrec2008/.

Ha, L. A. (2003). A method for word segmentation in vietnamese. In Proceedings of
Proceedings of Corpus Linguistics, pages –, Lancaster, UK.

Hoang, C. D. V., Dinh, D., Nguyen, L. N., and Ngo, Q. H. (2007). A comparative study
on vietnamese text classification methods. In IEEE International Conference: Research,
Innovation and Vision for the Future, pages 267 – 273.

Holmqvist, M., Stymne, S., and Ahrenberg, L. (2007). Getting to know moses: initial
experiments on german–english factored translation. In Proceedings of the Second Work-

65

shop on Statistical Machine Translation, StatMT ’07, pages 181–184. Association for
Computational Linguistics.

Kudo, T. and Matsumoto, Y. (2003). Fast methods for kernel-based text analysis. In
Proceedings of the 41st Annual Meeting on Association for Computational Linguistics -
Volume 1, ACL ’03, pages 24–31, Stroudsburg, PA, USA. Association for Computational
Linguistics.

Le, H. P., Nguyen, T. M. H., Roussanaly, A., and Vinh, H. T. (2008). Language and
automata theory and applications. chapter A Hybrid Approach to Word Segmentation of
Vietnamese Texts, pages 240–249. Springer-Verlag, Berlin, Heidelberg.

Le, T. H., Le, A. V., and Le, T. K. (2010). An unsupervised learning and statistical
approach for vietnamese word recognition and segmentation. In Proceedings of the Sec-
ond international conference on Intelligent information and database systems: Part II,
ACIIDS’10, pages 195–204, Berlin, Heidelberg. Springer-Verlag.

Nguyen, C. T., Nguyen, T. K., Phan, X. H., Nguyen, L. M., and Ha, Q. T. (2006).
Vietnamese word segmentation with crfs and svms: An investigation. In Proceedings of
the 20th Pacific Asia Conference on Language, Information, and Computation (PACLIC).

Nguyen, D. (2009). Using search engine to construct a scalable corpus for vietnamese lexical
development for word segmentation. In Proceedings of the 7th Workshop on Asian Language
Resources, ALR7, pages 171–178, Stroudsburg, PA, USA. Association for Computational
Linguistics.

Nguyen, G. S., Gao, X., and Andreae, P. (2009a). Vietnamese document representation
and classification. In Proceedings of the 22nd Australasian Joint Conference on Advances
in Artificial Intelligence, AI ’09, pages 577–586, Berlin, Heidelberg. Springer-Verlag.

Nguyen, P. T., Vu, X. L., and Nguyen, T. M. H. (2009b). Vtb word segmentation guidelines
(vlsp project, report sp 8.2).

Nguyen, P. T., Vu, X. L., Nguyen, T. M. H., Dao, M. T., Dao, T. M. N., and Le, K. N.
(2009c). Vtb bracketing guidelines (vlsp project, report sp 7.3).

Nguyen, P. T., Vu, X. L., Nguyen, T. M. H., Nguyen, V. H., and Le, H. P. (2009d).
Building a large syntactically-annotated corpus of vietnamese. In Proceedings of the Third
Linguistic Annotation Workshop, ACL-IJCNLP ’09, pages 182–185, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Nguyen, Q., Nguyen, A., and Dinh, D. (2012). An approach to word sense disambiguation
in english-vietnamese-english statistical machine translation. In The 9th IEEE - RIVF
International Conference and Communication Technologies, pages 125–129.

Nguyen, T. B., Nguyen, T. M. H., Romary, L., and Vu, X. L. (2004). Lexical descriptions
for Vietnamese language processing. In The 1st International Joint Conference on Natural
Language Processing - IJCNLP’04 / Workshop on Asian Language Resources, page 8 p,
Sanya, Hainan Island, China. none. Colloque avec actes et comité de lecture. internationale.
A04-R-031 || nguyen04b A04-R-031 || nguyen04b.

66

Nguyen, T. M. H., Hoang, T. H. L., and Vu, X. L. (2009e). Vtb part-of-speech tagging
guidelines (vlsp project, report sp 7.3).

Och, F. J. and Ney, H. (2003). A systematic comparison of various statistical alignment
models. Comput. Linguist., 29(1):19–51.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting on Association
for Computational Linguistics, ACL ’02, pages 311–318, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Petrov, S., Barrett, L., Thibaux, R., and Klein, D. (2006). Learning accurate, compact,
and interpretable tree annotation. In Proceedings of the 21st International Conference
on Computational Linguistics and the 44th annual meeting of the Association for Com-
putational Linguistics, ACL-44, pages 433–440, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Seng, S., Besacier, L., Bigi, B., and Castelli, E. (2009). Multiple text segmentation for
statistical language modeling. In 10th International Conference on Speech Science and
Speech Technology (InterSpeech 2009), pages 2663–2666.

Sornlertlamvanich, V., Charoenporn, T., and Isahara, H. (1997). Orchid: Thai part-
of-speech tagged corpus. technical report orchid tr-nectec-1997-001. Technical report,
National Electronics and Computer Technology Center.

Sornlertlamvanich, V., Takahashi, N., and Isahara, H. (1999). Building a thai part-
of-speech tagged corpus (orchid). The Journal of the Acoustical Society of Japan (E),
20(3):189–140.

Stolcke, A. (2002). Srilm - an extensible language modeling toolkit. pages 901–904.

Tran, T. O., Le, A. C., and Ha, Q. T. (2010). Improving vietnamese word segmentation
and pos tagging using mem with various kinds of resources. Information and Media
Technologies, 5(2):890–909.

Xia, F. (2000a). The part-of-speech tagging guidelines for the penn chinese treebank (3.0).

Xia, F. (2000b). The segmentation guidelines for the penn chinese treebank (3.0).

Xue, N., Xia, F., Huang, S., and Kroch, A. (2000). The bracketing guidelines for the penn
chinese treebank (3.0).

67

Proceedings of the 3rd Workshop on South and Southeast Asian Natural Language Processing (SANLP), pages 69–78,
COLING 2012, Mumbai, December 2012.

A Light Weight Stemmer for Urdu Language: A Scarce
Resourced Language

Sajjad Ahmad Khan1, Waqas Anwar1, Usama Ijaz Bajwa1, Xuan Wang2

(1) COMSATS Institute of Information Technology, Abbottabad, Pakistan
(2) Harbin Institute of Technology, Shenzhen Graduate School, P.R.China

Sajjad_ak78@yahoo.com,waqas@ciit.net.pk,usama@ciit.net.pk,

wangxuan@insun.hit.edu.cn

ABSTRACT

Stemming is a procedure that conflates morphologically related terms into a single term without

doing complete morphological analysis. Urdu language raises several challenges to Natural

Language Processing (NLP) largely due to its rich morphology. The core tool of information

retrieval (IR) is a Stemmer which reduces a word to its stem form. Due to the diverse nature of

Urdu, developing its stemmer for an IR system is a challenging task. This paper presents a light

weight stemmer for Urdu text, which uses rule based approach. Exceptional lists are developed to

enhance the accuracy of the stemmer. The result of the stemmer is quite enough and can be

effective in IR system.

KEYWORDS : Information Retrieval, Light weight stemmer, Exceptional Lists, Suffix and prefix

list

1 Introduction

Urdu is an Indo-Aryan language. It is the national language of Pakistan and is one of the twenty-

three official languages of India. It is written in Perso-Arabic script. The Urdu vocabulary

consists of several languages including Arabic, English, Turkish, Sanskrit and Farsi (Persian) etc.

Urdu’s script is right-to-left and form of a word’s character is context sensitive, means the form

of a character varies in a word because of the position of that character in the word (start, end,

medial, independent).

According to (Al-Khuli, M. 1991), Morphology deals with the internal structure of words.

Hundreds thousands of words are contained in every human language and constantly fresh words

are incorporated. These words are formed from a group of smaller components. In morphology,

its main building blocks are morphemes. Morpheme is the smallest component in a language

having some meaning1. There are two types of morphemes i.e. free and bound morphemes.

Morphemes which exists freely (alone) are called free morphemes whereas bound morphemes are

made as a result of combination with another morpheme. The affixes are bound morphemes.

Those morphemes that produce the grammatical formation of a word are called Inflectional

morphemes2. Deriving new words from the existing ones is called derivational morphemes. In

derivation, a different part-of-speech class is created by adding a bound morph to a stem.

In Urdu language, morphological processing becomes particularly important for IR. IR system is

used to ensure easy access to stored information. Inside IR, the information data which is stored

and receives search calls usually corresponds to the lists of identifiers recognized as key terms,

keywords. One of the attempts to make the search engines more efficient in IR is the use of

1 http://www.ielanguages.com/linguist.html
2 http://introling.ynada.com/session-6-types-of-morphemes

69

stemmer. Stem is the base or root form of a word. Stemmer is an algorithm that reduces the word

to their stem/root form e.g. jumping, jumped and jumps to the stem “jump”. Similarly the Urdu

stemmer should stem the words تدنصیثی (unlucky), نصیة دار (lucky), تدنصیة (luckless) to Urdu

stem word نصیة (luck).

The stemmer is also applicable to other natural language processing applications needing

morphological analysis for example spell checkers, word frequency count studies, word parsing

etc. The rest of the paper organization is as follows: In section 2, different stemming approaches

and rule based stemming algorithms are discussed, in section 3, Orthographic features of Urdu is

discussed, in section 4, the Urdu morphology is discussed, section 5 discusses light weight

stemmer, section 6 discusses the Proposed Urdu Stemmer and finally the evaluation of the

stemmer is discussed in section 7.

2 Stemming approaches and algorithms

There are four kinds of stemming approaches (Frakes, et al.1992): table lookup, affix removal,

successor variety and n-grams. Table lookup method is also known as brute force method, where

every word and its respective stem are stored in table. The stemmer finds the stem of the input

word in the respective stem table. This process is very fast, but it has a disadvantage i.e. large

memory space required for words and their stems and the difficulties in creating such tables. The

affix removal stemmer eliminates affixes from words leaving a stem. The successor variety

stemmer is based on the determination of morpheme borders, i.e., it needs information from

linguistics, and is more complex than affix removal stemmer. The N-grams stemmer is based on

the detection of bigrams and trigrams.

The study (J.B. Lovins, 1968) discussed the first English stemmer and used about 260 rules for

stemming the English language. The study, suggested a stemmer consisting of two-phases. The

first stage removes the maximum possible match from the suffix list sorted on the base of word

lengths. The spelling exceptions are covered in the second stage.

The Porter stemmer (M.F. Porter, 1980) developed the stemmer on the truncation of suffixes, by

means of list of suffixes and some restrictions/conditions are placed to recognize the suffix to be

detached and generating a valid stem. Porter Stemmer performs stemming process in five steps.

The Inflectional suffixes are handled in the first step, derivational suffixes are handled through

the next three steps and the final step is the recoding step. Porter simplified the Lovin’s rules upto

60 rules.

Different stemmers have also been developed for Arabic language. The study (S. Khoja, et al.

1999) explains an Arabic stemmer called a superior root-based stemmer. This stemming

algorithm truncates prefixes, suffixes and infixes and then uses patterns for matching to pull out

the roots. The study (Thabet, N. 2004) described a stemmer, which performs on classical Arabic

in Quran to produce stem. For each Surah, this stemmer generates list of words. These words are

checked in stop word list, if they don’t exist in this list then corresponding prefixes and suffixes

are removed from these words.

The study (E.T. Al-Shammari, et al. 2008) proposed the Educated Text Stemmer (ETS). It is a

simple, dictionary free and efficient stemmer that decreases stemming errors and needs lesser

storage and time.
Bon was the first stemmer developed for Persian language (M. Tashakori, et al. 2002). Bon is an

iterative longest matching stemmer. The iterative longest matching stemmer truncates the longest

possible morpheme from a word according to a set of rules. This procedure is repeated until no

more characters can be eliminated. The study (Mokhtaripour, et al. 2006) proposed a Persian

70

stemmer that works without dictionary. This stemmer first removes the verb and noun suffixes

from a word. After that it starts truncation of prefixes from that word.

Till date only one stemmer i.e. Assas-band, has been developed for Urdu language (Q. Akram, et

al. 2009). This stemmer extracts the stem/root word of only Urdu words and not of borrowed

words i.e. words from Arabic, Persian and English used in Urdu. This algorithm removes the

prefix and suffix from a word and returns the stem word.

3 Orthographic features of Urdu

According to (Malik, M. G. Abbas, et al. 2008), Urdu alphabet consists of 35 simple consonants,

15 aspired consonants, 10 vowels, 15 diacritical marks, 10 digits and other symbols

3.1 Consonants

Consonants are divided into two groups i.e. Aspirated consonants and non aspirated consonants.

There are 15 aspirated consonants in Urdu language. These consonants are shown by a grouping

of a simple consonant to be aspirated. A special letter called Heh Doachashmee (ھ) is used to

mark the aspiration. Aspired Consonants are نھ , مھ , ڑھ, رھ , گھ , کھ , ڈھ , دھ ,چھ ,جھ ,ٹھ , تھ , پھ ,تھ ,

 Urdu language consists of 35 non aspirated consonant signs that represent 27 consonant. لھ

sounds. Various scripts are employed to show the similar sound in Urdu, For example: Sad (ص),

Seen (س) and Seh (ث) represent the sound [s].

3.2 Vowels

Urdu has ten vowels. Seven of them contain nasalized forms. Out of these seven, four long

vowels are represented by Alef Madda (آ), Alef (ا), Choti Yeh (ی) and Vav (و) and three short

vowels are represented by Arabic Kasra (Zer), Arabic Fatha (Zabar) and Arabic Damma (Pesh).

In Urdu language, the Vowel demonstration is context sensitive. For example, the Urdu Choti

Yeh (ی) and Vav (و) can also be used as a consonant (Malik, M. G. Abbas, et al. 2008).

3.3 Diacritical marks

The diacritical marks are those marks that are added to a letter to change the pronunciation of a

word or to differentiate among similar words. It is also called as accent mark or diacritic.3

There are 15 diacritical accent marks in Urdu (Malik, M. G. Abbas, et al. 2008). Diacritical

marks (Zabar, Zer, Pesh, Ulta Pesh, Do-Zabar, Do-Zer, Do-Pesh etc) represent vowel sounds.

These are placed above or below of an Urdu word. The diacritical marks are very rarely used by

people in writing Urdu. When the diacritic of a character in a word is changed then it could

entirely change its meaning. For example the word (تیل) has two meanings i.e. a “creeping plant”

as well as it means “bull”. To remove the doubt between these two words, there should be Zabar

after Beh (ب) for deducing the meaning as “bull”.

3 http://www.the-comma.com/diacritics.php

71

4 Urdu morphological structure

Urdu verbs, nouns and adjectives are discussed in the following sections as in (Sabzwari, S,

2002):

4.1 Urdu verb

Verb (فعل) corresponds to occurrence or performing of something. That verb which does not take

object is called intransitive verb (When a verb needs a direct object then it is called .(فعل لازم

transitive verb and we can called it (فعل متعدی) in Urdu. A root form is that morpheme of Urdu

verb which is not changed among different morphological forms and it is also called base form.

When a suffix (نا) is removed from the verb’s lexicon form (infinitive form) then the left over part

of an infinitive form will be a root, which is also called in Urdu. Causative Stem Form of (مادہ)

verb can be achieved through adding of suffixes to root form. The Causative verb forms

/transitivitized verb forms can be obtained through the roots of lower valency verb by adding

Urdu suffixes: –aa (ا), –waa (وا) to the root form of verb. The causative verb types are known as

stem forms. The infinitive (مصدر) is that kind of verb which has the suffix “نا”. This form of the

verbs also can be used in place of noun. Usually this form of the verb has a masculine suffix “نا”.

For feminine infinitive form the suffix “نے” and the suffix “نی” for oblique infinitive form are

used. The repetitive form (استمراری) also known as imperfect or habitual form that is produced by

appending suffixes to the root as: تیں ,تی ,تے ,تا.

4.2 Urdu noun

A word which is the name of anything is called Noun, i.e. person’s name, a place, an animal,
thing, a concept, time, a situation etc.
Initially nouns are classified into proper and common nouns. Proper noun (اسن هعرفہ) is the name of
particular person, thing or place, e.g. Hafsa, Del Laptop , Karachi etc. The Common noun (اسن
 is the common name for any person, thing or place e.g. woman, pen, village, etc. The (نکرہ
Common nouns are further divided into state, spatial, group, instrumental and temporal nouns.
There are four fundamental properties related with Urdu nouns i.e. Gender, Number, Form and
Case. The masculine and feminine gender is accepted by the Urdu’s Nouns. For inanimate nouns,
to get its gender categorization in Urdu, there is no common rule. Generally powerful, huge,
dominant, heavy and larger items are masculine, whereas lighter, weak and smaller are feminine.
Generally, masculine are shown through bigger nouns whereas feminine are shown ,(اسن هکبر)
through smaller nouns The Urdu nouns have two possibilities for number. One is .(اسن هصغر)
called singular and second is called plural. In Normal form, when Urdu noun is listed in dictionary
is called nominative form. When Nouns are followed by a postposition then it can be viewed in
oblique form. Those Urdu nouns which belong to human being and sometimes other animate
nouns contain a different form used to call/ address person, this type is called vocative.

4.3 Urdu adjective

An adjective express the status or action, quality that a noun refers to e.g. نیک آدمی(Pious man) ,

(Fresh banana) Descriptive Adjective is the most common and significant type of. تازہ کیلا

adjective. It express attributes of the noun they qualify in terms of its color, size, dimensions,

shape, sound, shade, personal trait, time, and quality. When the descriptive adjectives directly

lead a nominal head as modifiers, in that case they are called attributive adjectives e.g. (Cruel

king) سفید گیند ظالم تادشاہ, (White ball).

72

The Possessive adjectives are used to show the ownership and the ownership relation is

understand in two ways; whether, in noun phrases, adjectives lead the head noun as modifiers or

they may be lead by a proper form of the genitive postposition (کا،کے،کی) e.g. حفصہ کا نیلا دوپٹہ

(Hafsa’s blue veil).

5 Light weight stemmer

Light weight stemming is to find the representative indexing form of a word by the application of

truncation of affixes (Imed Al-Sughaiyer, et al. 2004). The core objective of light weight

stemmer is to preserve the word meaning intact and so increases the retrieval performance of an

IR system.

In this paper, a light stemmer for Urdu text is proposed. Various lists are developed that help in

finding a stem of an Urdu word. This stemmer is rule based and works by truncating all possible

affixes from a word. The problem in this light weight stemming is that in some cases there is

ambiguity e.g. a particular string of letters may or may not play a function of affix. A method is

introduced for detecting such type of ambiguity that finds if a specific sequence in an affix is part

of the original word. For this purpose Global Prefix Exceptional and Global Suffix Exceptional

Lists are developed which are discussed in the coming sections.

6 Proposed Urdu Stemmer

During morphological analysis of Urdu text, it is noticed that there could be upto sixty different

forms of a single verb (Rizvi, S, et al. 2005). Therefore reducing these forms to their stem forms

is very important during IR tasks. Affixes perform an important role in making inflection and

derivation of words. When these affixes are removed from a word, it gives a stem word. We have

developed different lists for our stemmer. The details of these lists are given below.

6.1 Stop word list

Stop words are those words that occur frequently. For English stemmers, a stop word list is

already maintained, similarly, it is necessary for Urdu stemmer, that there must be a stop word

list. Therefore, to accomplish this task, various Urdu books and literature were studied and finally

150 stop words are generated for Urdu. Some of the stop words in Urdu are نے،کا،کے،سے،میں.

6.2 Prefix list

Prefix is that morpheme which is attached to the start of a word. The prefix may consist of only a

single character, two or more than two characters and sometimes a complete word. After

consulting many grammar books 180 prefixes were collected. A sample of these prefixes

are تد،زتر،تا،خار.

6.3 Suffix list

The suffix is that morpheme that is added to the end of a word. The suffix may consist of a

character, more than a single character or a complete word. A list of suffixes, consisting of 750

suffixes for Urdu text is collected after consulting relevant literature. Samples of such suffixes

are ات،تاش،تندی،پسند،خانہ.

73

6.4 Global prefix exceptional list

There are some words that contain a prefix, in fact it is not a prefix but it is the part of that word

e.g. in the word “نایاب”, this word contain a prefix “نا” , if it is removed then it produces a word

 which is incorrect from stemming point of view. Therefore, such type of words must need ,”یاب“

to be identified in advance and to be treated as an exceptional case. For our stemmer an

exceptional list for prefixes (about 13000) is created called Global Prefix Exceptional List

(GPEL). Samples of such type of words are اعتماد،اتفاق،ازل،درج .

6.5 Global suffix exceptional list

In some cases, when a suffixe is removed from a word and actually that suffix was the part of a

stem word that should not be detached. An erroneous result will be produced due to irrelevant

truncation of suffix e.g. in the word “نانا”, when the suffix “نا” is removed then it produces stem

 .which is incorrect. Therefore such type of words should be treated as an exceptional case ,”نا“

Samples of such type of words are فوت،دستیاب،لیاقت،مرد. For our stemmer an exceptional list for

suffix (of length about 16000) is created.

6.6 Characters add-list (normalization of stem)

When affix stripping algorithm is applied on Urdu words, then some time we get an incomplete

word, e.g. after stripping affixes from a word “خوتصورتی” (Beautifulness), we get stem “صور”,

which is incorrect stem. Therefore, this word should be added with the character “ت” to form

correct stem form i.e. “صورت” (appearance). For this reason five types of list are maintained for

five characters; (ا،ہ،ت،ی،ن).

6.7 Stem dictionary

To check the accuracy of any stemmer, there should be a stem word dictionary. After studying

relevant literature, it is noted that there is no stem dictionary available for Urdu text. Therefore,

we developed a stem dictionary for Urdu words having 3500 words.

6.8 Proposed algorithm of Urdu stemmer

The longest-match theory regarding affix removal states that when more than one affixes result as

a match, the one which is longest should be removed. This method is applied by first sorting the

affixes in any class in order of decreasing length. In case of suffix removal, if -ional is removed

when there is another match -ational, then more work has to be done to eliminate -at, that is, for

another order-class. To avoid this extra order-class, -ational should precede -ional in the

prefix/suffix exception list.

An algorithm based on the principle of longest-match uses only one order-class. The entire

feasible combinations of affixes are compiled and then ordered based on their length, so the

longest word comes first. When a match is not found on longer suffixes / prefixes, shorter ones

are scanned.

74

A- INPUT Word for stemming

Initially Word = (Prefix)-stem-(Suffix)

B- Search in Stop word list

IF Word exists in Stop word list

 Return to step A (for next word)

ELSE go to step C

C- Search in Global Prefix Exceptional List (GPEL)

IF Word exists in GPEL

 THEN go to step E

ELSE go to step D

D- OPEN Urdu prefixes file

READ prefix one by one from the file until EOF is

reached

IF there is a match

 THEN remove prefix from word

 So Word = stem-(Suffix)

E- Search in Global Suffix Exceptional List

(GSEL)

IF Word exist in GSEL

 THEN output Word = stem

 go to step H

ELSE go to step F

F- OPEN Urdu suffixes file

READ suffix one by one from the file Until EOF

reached

IF there is a match

 THEN remove suffix from word

 So Word = stem

 go to step G

ELSE go to step H

G- Search in Characters-Add List (CAL) file

IF Word exists in CAL file

 THEN Add the respective

 character to the word

 So Word = stem (normalized)

ELSE

 Word=stem

H- End

The proposed stemmer extracts the stem by removing the prefixes and suffixes having maximum

length from a word. Thus for this purpose, the prefix and suffix lists are sorted in descending

order before any prior operation.

To understand the proposed algorithm, please refer to Figure 1. Our proposed algorithm first

checks the entered word that whether it is a stop word? If so then no processing will be done on

that word and next word will be entered. When a word is not a stop word then the word is

checked in global prefix exceptional list, if it exists then it means that the word has prefix(s) but

should not be removed from the word because they are the part of stem. On the other hand if it

does not exist in global prefix exceptional list then it means it has some prefix (s), thus prefix

rules are applied to remove the maximum prefix from the word.

75

The word is now checked in global suffix exceptional list, if it exists then it is marked as the

stem. But if it does not exist in the list then it means this word has some suffix (s). Therefore

suffix rules are applied to remove the maximum suffix from the word.

To normalize the word form, the word is checked in five different lists maintained for (ا،ہ،ت،ی،ن)

characters i.e. Characters-Add list. When a word is found in any of the five lists then respective

character is added to produce a normal word form. Thus marks this resultant word as the stem.

7 Evaluation

We evaluated the proposed Urdu stemmer on three corpora4 i.e. corpus-1 (9200 words), corpus-2

(27000 words) and corpus-3 (30000 words). These corpora include data in the form of verbs,

nouns, adjectives, punctuations, numbers, special symbols etc. When the corpus-1 is fed to the

stemmer, then in pre-processing step, the stemmer removed all stop words, numbers and

punctuation marks. Thus after pre-processing steps, there were 4268 words left. Stemming is

performed on 4268 words that produce 39.4% precision, 71.1% recall and 50.70% F1-Measure.

The low accuracy obtained is due to the occurrence of various issues in stemming Urdu words

e.g. Compounding, Tokenization, Transliteration and Infixation. It is very difficult to classify the

compound words as a single or multiple words e.g. مرہم پٹی (bandaging), خط وکتاتت

(correspondence). Some times the reduplication also produces ambiguity; whether it is treated as

single or double word e.g. جگہ جگہ،آہستہ آہستہ،ساتھ ساتھ(together, slowly, at every place)

English language generally uses white spaces or punctuation marks for the identification of word

boundaries. Although in Urdu, space character is not present but with increasing usage of

computer, it is now being used, for generating right shaping and to break up words. Tokenization

process should be error free, hence producing correct tokens before applying an Urdu stemmer. It

4 http://www.crulp.org/software/ling_resources/UrduNepaliEnglishParallelCorpus.htm

Figure 1: Flow chart of Proposed Urdu Stemmer

76

is also observed that these corpora include Urdu transliteration of English words e.g. فیولیز

(families), پروگراهنگ (programming). There is no prefix and suffix morpheme available in our

developed lists for such type of words. We cannot get stem word of an Urdu word by only

stripping off prefixes and (or) suffixes e.g. .(knowledge) علوم , (mosques) هساجد , (nations) اقوام

These words contain infixes and large amount of such type of words are present in Urdu. Thus

light weight stemmer cannot handle words having infixes. Due to insufficient words in Character

Add lists, it leads to error in stemming. Proper nouns and abbreviations also contribute in the

error of stemming e.g. اے-ایس-یو (USA), لندى (London).

The same stemmer is applied on corpus-2 that produced 18378 words after pre-processing. It

gives 49% precision, 78.6% recall and 60.36% F1-Measure. When corpuse-3 is fed to the

stemmer it produces 19351 words after pre-processing. Our light weight stemmer produced

precision 73.55%, recall 90.53% and 81.16% F1-Measure. The summary of the three corpora and

evaluation of the stemmer after applying stemmer is given in table 1.

Characteristics
Corpus

(1)

Corpus

(2)

Corpus

(3)

Words after

Pre-processing 4268 18378 19351

Already stemmed Words 2233 10674 12428

Words to be Stemmed 2035 7704 6923

Correct Stemmed Words 802 3775 5092

Results

Precision 39.4% 49% 73.55%

Recall 71.1% 78.6% 90.53%

F1-Measure 50.70% 60.36% 81.16%

Table-1: Description of corpora after pre-processing and evaluation of stemmer

Conclusion

Morphologically Urdu is a complex language. There exist a number of variants in this language

for a single word. Urdu language is rich in both inflectional and derivational morphologies.

In this paper, a light weight stemmer for Urdu text is proposed. The proposed stemmer handles

inflectional morphology. This stemmer removes prefixes and suffixes from a word to get stem

word but before removing the affixes, the stemmer checks the exceptional cases. The stemmer

gives 73.55% precision, 90.53% recall and 81.16% F1-Measure and it was also compared with

Assas-band, the only available Urdu stemmer.

Generally stemmer increases recall at the cost of decreased precision. Our study proves that

maximum matching affix approach is more suitable for developing the stemmer for Urdu

language. Other regional languages of Pakistan (Punjabi, Pashtu, Sindi, and Kashmiri etc) are

similar to Urdu in morphology. It would be interesting to observe whether similar techniques can

be used to develop stemmers for these languages.

References

Al-Khuli, M. (1991). A dictionary of theoretical linguistics: English-Arabic with an Arabic-

English glossary. Published by Library of Lebanon.

77

E.T. Al-Shammari, Jessica Lin, (2008). Towards an error-free Arabic stemming. 17th Conference

on Information and Knowledge Management, iNEWS’08, pages 1–6,Napa Valley, California,

USA.

Frakes, R.Baeza-Yates, (1992). Information Retrieval: Data Structures and Algorithms. New

Jersey, Prentice Hall PTR.

Imed Al-Sughaiyer, Ibrahim Al-Kharashi. (2004). Arabic morphological analysis techniques: a

comprehensive survey. Journal of the American Society for Information Science and Technology,

55(3):189 – 213.

J.B. Lovins, (1968). Development of a stemming algorithm. Mechanical Translation and

Computational Linguistics, 11(1 and 2):22–31.

Malik, M. G. Abbas,B.C. Bhattcharyya, P. (2008). Hindi Urdu machine transliteration using

finite-state transducers. proceedings of COLING 2008, pages 537–544, Manchester, UK.

M.F. Porter. (1980). An algorithm for suffix stripping. Program, 14(3): 130–137.

Mokhtaripour and S. Jahanpour, (2006). Introduction to a new Farsi stemmer. CIKM Proceedings

of the 15th ACM international conference on Information and knowledge management, pages

826-827,Arlington, Virginia, USA.

M. Tashakori, M. Meybodi & F. Oroumchian, (2002). Bon: first Persian stemmer. Lecture Notes

on Information and Communication Technology, pages 487-494.

Q. Akram, A. Naseer and S. Hussain, (2009). Assas-band, an affix- exception-list based Urdu

stemmer”, Proceedings of the 7th Workshop on Asian Language Resources, pages 40–47,

Singapore.

Rizvi, S. & Hussain, M. (2005), “Analysis, Design and implementation of Urdu morphological

analyzer. Engineering Sciences and Technology, SCONEST, pages 1-7.

Sabzwari, S. (2002). Urdu Quwaid. Sang-e-Meel Publication.

S. Khoja and R. Garside. (1999). Stemming Arabic Text, Lancaster, UK, Computing Department,

Lancaster University.

Thabet, N. (2004). Stemming the Qur’an. In the Proceedings of the Workshop on Computational

Approaches to Arabic Script-based Languages, pages 85-88.

78

Proceedings of the 3rd Workshop on South and Southeast Asian Natural Language Processing (SANLP), pages 79–94,
COLING 2012, Mumbai, December 2012.

Morpheme Segmentation for Kannada Standing on the
Shoulder of Giants

Suma Bhat
Beckman Institute, University of Illinois, Urbana-Champaign, IL 61801, USA

spbhat2@illinois.edu

ABSTRACT
This paper studies the applicability of a set of state-of-the-art unsupervised morphological
segmentation algorithms for the problem of morpheme boundary detection in Kannada, a
resource-poor language with highly inflectional and agglutinative morphology. The choice of
the algorithms for the experiment is based in part on their performance with highly inflected
languages such as Finnish and Bengali (complex morphology similar to that of Kannada). When
trained on a corpus of about 990K words, the best performing algorithm had an F-measure
of 73% on a test set. The performance was better on a set of inflected nouns than on a set of
inflected verbs. Key advantages of the algorithms conducive to efficient morphological analysis
of Kannada were identified. An important by-product of this study is an empirical analysis of
some aspects of vocabulary growth in Kannada based on the word frequency distribution of the
words in the reference corpus.

KEYWORDS: Unsupervised morphological segmentation, Kannada language.

79

1 Introduction

With the ongoing quest for developing language processing techniques and tools for under-
resourced languages there is an emerging need to study various aspects of these languages.
Kannada, with nearly 70 million speakers is one of the 40 most spoken languages in the world.
It is one of the scheduled languages of India and the official and administrative language of
the state of Karnataka in South India. Its rich literary heritage has endowed the language
with an immense written resource and efforts are currently underway to bring them to web
scales. However, available computational tools for Kannada are only in their incipient stages.
Simultaneously, there is an ever increasing number of internet users who are creating online
materials in Kannada. As more information becomes available it becomes imperative to develop
language processing tools that help us organize, search and understand information in Kannada.
One such task is that of information retrieval and the time is ripe for developing efficient
information retrieval algorithms for Kannada.

The role of stemming to improve retrieval effectiveness, particularly for highly inflected lan-
guages and monolingual retrieval has been well documented in (Larkey and Connell, 2003).
Consequently, with the goal of developing a suitable stemmer for Kannada, the focus of this
study is an exploration of the suitability of current state-of-the-art unsupervised morphological
analyzers (studied for English and Finnish) for the task of morphological segmentation of words
and eventual stemming in Kannada. In this sense, we see Kannada as a dwarf sitting on the
shoulder of giants such as English and Finnish.

More specifically, we study the usefulness of a set of unsupervised learning of morphology
(ULM) approaches towards addressing the problem of morpheme boundary analysis for Kannada.
Our empirical study uses two corpora in Kannada and we compare the performance of the
approaches with respect to addressing some of the challenges of Kannada morphology. A
by-product of this study is an analysis of the word frequency distributions for the purpose
of creating stop words in Kannada as also to quantify the productive processes of Kannada
morphology. In this study, we restrict ourselves to studying morpheme segmentation noting the
fact that eventual stemming is not a distant goal once we have reasonably segmented a word
into its constituent morphemes.

The rest of this paper is organized as follows. In Section 2 we present a description in brief of the
morphological analyzers for Kannada proposed thus far. Section 3 deals with an overview of the
unsupervised methods we consider in this study and the challenges in Kannada morphological
analysis. A description of our experiment is found in Section 4 with its subsections describing
the corpora used, the evaluation methods and the results. Section 5 deals with the discussion
of the results and error-analyses of the experiment. In Section 6 we analyze some aspects of
Kannada with reference to its word frequency distribution. We conclude the paper with our
conclusion and remarks in Section 7.

2 Related Prior Work

There is some amount of work done on morphological analysis in Kannada. Vikram and Urs
(Vikram and Urs, 2007) present their prototypical morphological analyzer for Kannada based
on finite state machines. There is a mention of its ability to handle 500 distinct noun and verb
stems of Kannada.

Antony et al (Antony et al., 2010) outline the development of a paradigm-based morphological
analyzer for Kannada verbs with the ability to handle compound verb morphology achieves a

80

very competitive accuracy of 96.25% for Kannada verbs.

In (Ramasamy et al., 2011), Ramasamy et al. describe their implementation of a morphological
analyzer and generator for Kannada. It is a rule-based finite state transducer with relevant
morphological feature information of Kannada words and well defined morphophonemic
(sandhi) rules governing word generation.

The morphological analyzer for Kannada described by Shambhavi et al. (Shastri, 2011) is a
rule based approach which stores the possible paradigms for the roots available in a lexicon in
a computationally efficient trie data structure. A given word is analyzed by matching it with the
corresponding paradigm. It also performs a morphophonemic analysis of a word that does not
reside in the lexicon by proceeding with suffix stripping and lexicon look-up iteratively. The
developed system has the capability to can handle up to 3700 root words and around 88000
inflected forms.

Murthy (Murthy, 1999) describes a finite-state network based morphological analysis and
generation system, MORPH, for Kannada. In essence, the system segregates the procedural
and declarative processing between its two components, the network component - which has
the capability of handing the analysis, and the process component - which has the capability
of handing the morphophonemic decisions. The analysis proceeds in a series of affix stripping
steps, from the input word to the root which is then checked against its stored lexicon. The
performance of the system is reported to be 60 to 70% on general texts.

However, as of this study, the few attempts towards morphological analysis available in the
literature have only marginal details about the studies, broad mentions about performance and
no form of discussion or error-analysis via insights gained for word classes or methods that
worked (or those that did not work) is available. What is clear from available literature is that
all the above methods have pursued a rule-based and completely supervised approach. There
have been no studies to understand the capabilities/limitations of an unsupervised approach to
morphological segmentation in Kannada nor are other corpus-based analyses about Kannada
available.

Consequently, this study is an attempt to fill the lacuna and has the following two goals - first,
we explore the applicability of state-of-the-art models for unsupervised learning of morphology
in Kannada. Here our focus is not only to analyze the performance in general but also to
study their behavior handling the morphological complexities in Kannada as pointers in the
direction of leveraging their results. Second, we perform an empirical analysis of one of the
largest publicly available corpora in Kannada. To the extent of our knowledge, this is the first
study exploring unsupervised techniques for Kannada and consequently, we expect it to drive
future efforts towards developing further tools/algorithms that address the broader problem of
stemming in Kannada.

3 Methods for Unsupervised Morphological Analysis

Being the most researched language in the natural language processing community, several
unsupervised morphological analysis techniques have been implemented and studied for English.
In the recent years, however, with the inclusion of other highly inflected European languages
such as Finnish in the language processing to-do list, unsupervised methods are expanding to
analyze morphologies more complex than that of English. For the purpose of our experiment,
we focus our attention on three main approaches where the choice is based in part owing to
their success with highly inflected languages such as Finnish and Bengali(complex morphology)

81

and popularity in available literature. The methods that we will consider for our study are:

1. Goldsmith’s method of unsupervised learning of morphology (Goldsmith, 2001),

2. Morfessor Categories-MAP (Creutz and Lagus, 2007), and,

3. High-Performance, Language-Independent Morphological Segmentation (Dasgupta and
Ng, 2006, 2007).

3.1 Linguistica

Goldsmith’s method of unsupervised learning of morphology (popularly known by the name of
the tool, Linguistica1 that implements this technique) is centered around the idea of minimum
description length (MDL). Very broadly, MDL of the data is a combination of the length of
morphology (in information theoretic terms) and length of compressed data (or compressed
length of the corpus, given by probabilities derived from morphology). The learning heuristic
then proceeds in steps of discovering basic candidate suffixes of the language using weighted
mutual information, using these to find a set of suffixes, then using MDL to correct errors
generated by heuristics. It starts with a corpus of unannotated text and produces a set of
signatures, a signature being a pattern of affixes (prefixes or suffixes) that a stem takes
(Goldsmith, 2001). An example suffix signature in English could be NULL.ed.ing.s, which
combines with the stem mark to create the words mark, marked, marking and marks. In
addition to this, the algorithm gives a list of stems, prefixes and suffixes with corresponding
frequency information. This method will henceforth be referred to as Linguistica.

3.2 Morfessor Categories-MAP

Morfessor is an unsupervised method for the segmenting words into morpheme-like units. The
idea behind the Morfessor model is, like Linguistica, to discover as compact a description of
the data as possible. Substrings occurring frequently enough in several different word forms
are proposed as morphs and the words are then represented as a concatenation of morphs. An
optimal balance is sought between compactness of the morph lexicon versus the compactness
of the representation of the corpus. For our study we use the most general of the currently
available morfessor implementations of the generative probabilistic models designed for highly
inflecting and compounding languages (Creutz and Lagus, 2007).

In Morfessor Categories, the segmentation of the corpus is modeled using a Hidden Markov
Model (HMM) with transition probabilities between categories and emission probabilities of
morphs from categories. Three categories are used: prefix, stem, and suffix and an additional
non-morpheme (or noise) category. Some distributional properties of the morphs in a proposed
segmentation of the corpus are used for determining category-to-morph emission probabilities.
An important improvement in this model (compared to its predecessors) is that the morph
lexicon contains hierarchical entries. That is, a morph can either consist of a string of letters
(as in the previous models) or of two submorphs, which can recursively consist of submorphs.
This in turn supports the agglutinative word structure of complex words. The Morfessor
Categories algorithm has one parameter (the perplexity threshold b) that needs to be set to
an appropriate value for optimal performance. Being a Maximum a Posteriori (MAP) model,
an explicit probabilty is calculated for both the lexicon and the representation of the corpus

1Linguistica is publicly available at http://humanities.uchicago.edu/faculty/goldsmith/Linguistica2000/

82

conditioned on the lexicon. Current versions of Morfessor attain an F-measure value of about
70% for the languages Turkish, Finnish and English. We will refer to this model by its family
name, Morfessor.

3.3 Language-Independent Morphological Segmentation

The third algorithm we consider here (henceforth referred to as UnDivide from the name of the
program accompanying the publication(Dasgupta and Ng, 2007)2) is an extension of Keshava
and Pitler’s algorithm (Keshava and Pitler, 2006) on language-independent techniques for
morpheme induction. It is possibly the first to apply unsupervised learning to morphological
parsing of an Indo-Aryan language (Dasgupta and Ng, 2006). At its core is the step for inducing
morphemes using the heuristics in Keshava and Pitler’s algorithm3. The induced morpheme list
is then modified via three extensions -

• Employing a length-dependent threshold to prune the list of candidate affixes - here the
rationale is that shorter morphemes (of length one or two) are likely to be more erroneous
than their longer counterparts;

• Detecting composite suffixes via suffix strength and word-level similarity; and,

• Improving root induction via a simple but novel idea of using relative corpus frequency of
the candidates.

The important features of this algorithm are its ability to move beyond one-slot morphology
to handle words with multiple suffixes and the identification of inappropriate morpheme
attachments. It achieves an F-score of 83.29% on Bengali.

The first two of the algorithms studied here are similar in that they have information theoretic
optimization criteria and the heuristics are guided by probabilistic methods. The last of these
is based on heuristics pertinent to word formations in general. The above algorithms seem
attractive candidates for studying unsupervised morphological segmentation for Kannada owing
to the fact that they have very few or no language dependent parameters and because of their
reasonable performance with Bengali and Finnish (with morphological complexities such as
that of Kannada).

3.4 Challenges to Morphological Analysis in Kannada

Kannada is one of the four major literary languages of the Dravidian family. Kannada is
mainly an agglutinating language of the suffixing type. Nouns are marked for number and
case and verbs are marked, in most cases, for agreement with the subject in number, gender
and person. This makes Kannada a relatively free word order language. Morphologically rich
languages such as Kannada, are characterized by a large number of morphemes in a single
word, where morpheme boundaries are difficult to detect because they are fused together.
In addition, rampant morphophonemic processes (sandhi), productive compounding and
agglutinating morphology of inflectional and derivational suffixes (the latter mostly with words

2Its implementation is available at http://www.hlt.utdallas.edu/ sajib/.
3The key idea in this paper is to use words that appear as substrings of other words and transitional probabilities

together to detect morpheme boundaries

83

of Sanskrit origin naturalized into Kannada) drive the prolific word formation processes of the
language(Sridhar, 1990).

Another challenge at the level of word formations is that Kannada is diglossic - the formal or
the literary variety differs significantly from the spoken (informal) or the colloquial variety.
For example, the first person singular form of the verb ‘tinnu’ (eat) in the non-past tense is
‘tinnuttEne’ in the literary variety and ‘tinnuttIni’ (which gets further simplified to ‘tiMtIni’)
in the spoken variety. Here we restrict ourselves to the analysis of the literary variety but it
must be pointed out that informal written materials (including plays, short stories or humorous
articles) can include a lot of spoken forms.

It may be worth noting here that effective language processing techniques for a language like
Kannada cannot a rely on a purely rule-based or a purely stochastic approach, since the former
demands subtle linguistic expertise and elaborate hand coding whereas the latter a large and
diverse corpus. What is needed is an efficient combination of both approaches.

4 Experiments

4.1 Data

For purposes of experimentation, we use two corpora whose sizes are tabulated in Table 1.

1. A collection of stories for children, dinakkoMdu kathe written in Kannada 4 by one of
the leading writers Dr. Anupama Niranjana. This corpus being a collection of children’s
stories, is informal in nature as a result of which, includes a widespread use of informal
constructions. Although our focus in this study is on the formally constructed word forms,
efforts needed to clean the data prevent us from excluding the informal constructions
from the corpus.

2. The set of written documents in Kannada from the EMILLE-CIIL corpus (EMI).The doc-
uments comprise a collection of essays on diverse topics including commerce, leisure,
social sciences and literature.

Corpus name No. of word tokens No. of word types
Story collection (DINA) 96370 24851
EMILLE (EMIL) 997012 210368

Table 1: Data size of Kannada corpora.

Vocabulary creation: We then preprocess each of these data sets (romanized) by tokenizing (we
follow the standard tokenization of counting word tokens as units delimited by spaces) and
removing punctuations and other unwanted character sequences. The remaining words are
then used to create our vocabulary, which consists of 24851 word types for the story collection
and 210368 for the EMILLE set. Unlike morphological analysis for many European languages,
however, we do not take the conventional step of removing proper nouns from our word list,
because we do not have a named entity identifier for Kannada.

4We would like to acknowledge the help of the members of Sriranga Digital Software Technologies - Prof. C. S.
Yogananda and D. Shivashankar, in Srirangapatna, Karnataka, India, who made this corpus available.

84

Test set preparation: To create our test set, we first get a list of common words in the vocab-
ularies of the two corpora. We then manually removed the proper nouns, informal forms for
verbs hyAge,naMge, words with spelling mistakes and high frequency stop words from the
common word list before performing hand-segmentation of the words. In the absence of a
complete knowledge-based morphological parsing tool and a publicly available hand-tagged
morphological database for Kannada, we had to annotate on a subset of the common word
list for generating our test cases. The test set consists of 53 inflected noun forms and 50 verb
forms amounting to a total of 103 words. The verb forms included are those with one of the
several aspectual auxiliaries, e.g. hArihOyitu(also termed as vectors, (Sridhar, 1990)), as well
as those with various tense, aspect and PNG markers. The noun forms are those with the form
noun+case ending, or noun+plural+case.

Gold standard: We obtain the gold standard by segmenting the words in the test set and for the
purpose of this study we are looking for a surface-level segmentation. That is, the segmented
word form must contain exactly the same letters as the original, unsplit word. Thus there may
be multiple surface-level segmentations for a given word. For instance, the inflected verb form
ODidaru has three surface segmentations - OD idaru, OD id aru and ODi daru all considered
valid for this study.

4.2 Evaluation of the Chosen Methods

We run the algorithms separately for the two corpora with their default parameters. We then
evaluate the results by comparing the segmentation of the words in the test set with that in the
gold segmentation. The algorithms were run in their default parameter settings since a large
enough gold standard to tune the parameters of the algorithms was unavailable.

The evaluation is based on the placement of morpheme boundaries and follows the guidelines
set by the Morphochallenge competition5. We use F-score to evaluate the performance of the
segmentation algorithms on the test set. F-score is the harmonic mean of recall and precision,
which are computed based on the placement of morpheme boundaries as below.

• Precision is the number of hits (H) divided by the sum of the number of hits and insertions
(I): Precision = H/(H+I).

• Recall is the number of hits divided by the sum of the number of hits and deletions (D):
Recall = H/(H+D).

• F-Measure is the harmonic mean of precision and recall: F-Measure = 2H/(2H+I+D).

Here a hit occurs for every correctly placed boundaries between morphemes, an insertion for
every incorrect boundary between morphemes, and a deletion for every missed boundaries
between morphemes - all with respect tot the gold segmentation.

In many cases, it is difficult to come up with one single correct morpheme segmentation.
However, we will use the provided gold standard as the only correct answer. For some words,
there are multiple interpretations in the gold standard. All of them are considered correct, and
the alternative that provides the best alignment against the proposed segmentation is chosen.

5For details see http://research.ics.aalto.fi/events/morphochallenge2005/evaluation.shtml.

85

4.3 Results

Linguistica and UnDivide in their default settings exclude the least frequent words (those seen
only once in the corpus) in their analysis. Consequently, we first run all the algorithms with
words that occur at least twice in the corpus. The corresponding results are summarized in
Table 2

DINA EMIL
Algorithm P R F P R F
Linguistica 62.64 47.11 53.77 45.63 38.21 41.59
Morfessor-CatMAP 73.63 59.82 66.01 67.86 68.47 68.16
UnDivide 63.75 45.13 52.85 72.348 71.58 71.96

Table 2: Evaluation results (reported in terms of precision (P), recall (R) and F-score (F))

Based on the results, it appears that the UnDivide algorithm by far outperforms the other
algorithms for the large data set (EMILLE), whereas Morfessor is the best performing algorithm
for the small data set.

In order to assess the performance of the segmentation algorithm on specific word categories
(noun/verb), we do the following. We split the test set into two - a set of inflected nouns and
another that of inflected verbs and evaluate the performance for the 6 data set and algorithm
combinations. As tabulated in Table 3, we observe that for inflected nouns, UnDivide emerges
as the best performer for EMIL whereas, Morfessor emerges as the best performer for DINA. In
the case of inflected verbs, however, we notice that UnDivide is the best performing algorithm
for both the data sets.

DINA EMIL
Algorithm P R F P R F
Linguistica 67.92 59.02 63.16 40.98 47.17 43.86
Morfessor-CatMAP 93.33 73.68 82.35 80.36 80.36 80.36
UnDivide 64.86 42.11 51.06 79.25 85.71 82.35

Table 3: Evaluation results for inflected nouns (reported in terms of precision (P), recall (R)
and F-score (F)).

DINA EMIL
Algorithm P R F P R F
Linguistica 55.26 35.00 42.86 44.00 35.48 39.29
Morfessor-CatMAP 54.35 45.45 49.50 55.36 55.36 55.36
UnDivide 62.79 47.37 54.00 63.41 55.32 59.09

Table 4: Evaluation results for inflected verbs (reported in terms of precision (P), recall (R) and
F-score (F)).

Noting that several morphological variants of more frequent stems belong to the set of words
occurring only once, we extend the input data to include them and use all words in the analysis.
The resulting change in performance is shown in Table 5 where we compare the results using

86

the trimmed data set (no singletons) with those obtained using the full data set. Here we would
like to mention the fact that Morfessor showed a bigger change in performance compared to
UnDivide6 the other results are not tabulated. In both instances we notice an increased recall
and hence an increase in the F-measure.

Trimmed Full
Algorithm P R F P R F
Morfessor (EMIL) 67.86 68.47 68.16 67.18 80.00 73.03
Morfessor (DINA) 73.63 59.82 66.01 66.91 82.73 73.98
UnDivide(EMIL) 72.348 71.58 71.96 68.97 73.39 71.11
UnDivide(DINA) 63.75 45.13 52.85 63.75 45.13 52.85

Table 5: Evaluation results including all words in the corpus(reported in terms of precision
(P), recall (R) and F-score (F)) for Morfessor and UnDivide. We notice an improved F-measure
owing to an increase in recall in all the cases except for DINA with UnDivide. Linguistica did
not show any change.

5 Discussion and Error Analysis

5.1 Effect of Data size

With the exception of Linguistica, we notice improved morpheme boundary detection (in
terms of increased F-measure) with increase in data sizes. A plausible explanation is that with
increased data sizes, more morphological variants are available permitting better stochastically
motivated decisions. In the case of Linguistica, however, we noticed that only about 65% of the
input data was analyzed (recall that the training data excludes words occurring only once) and
so data sparsity with inadequate access to morphological variants was an obvious reason for
poor performance.

The improved performance resulting from an increased recall (as seen from Table 5) can be
explained as follows. With access to more inflected forms of the same stem, the algorithm
has an improved ability to segment the morphemes. As an example with the segmentation by
Morfessor, consider the form mADuttA which in the trimmed case, was not segmented but in
the full case was segmented as mADutt A. Again, consider the case of janarige which in the
trimmed case was not segmented, but in the full was segmented as jana ri ge. This has the
potential to decrease the number of deletions and in turn cause a corresponding increase in the
number of hits (refer back to Section 4.2 for the meaning of hits and deletions in this context).

5.2 Morpheme Boundary Detection

We will now highlight some observations based on the segmentation output of the algorithms
underscoring some special cases that were handled/not handled by the algorithms.

As shown in Table 6, we notice that Linguistica only separates the final suffix, which in this
example is the plural ending; Morfessor shows a tendency to overly segment the words.

In another instance, the word lekkaparishOdhakarAgalAraru was not analyzed either by
UnDivide or by Linguistica. Morfessor, however, produced the following segmentation:

6UnDivide and Linguistica in their default settings ignore singleton word types. It was possible to change two
parameters of UnDivide to accept this change, but such a change was not possible with Linguistica 3.

87

Algorithm jagaLavADatoDagidaru aNNatammaMdiriddaru
Linguistica jagaLavADatoDagida+ru aNNatammaMdiridda+ru

Morfessor-CatMAP jagaLa+vADa+toDagida+ru aNNatammaMdir+idda+ru
UnDivide jagaLa+vADatoDagidaru aNNa+tammaMdiriddaru

Table 6: Sample of detected morpheme boundaries for the three algorithms for two words
jagaLavADatoDagidaru and aNNatammaMdiriddaru.

lekka/ST M + pari/ST M + shOdha/ST M + ka/SU F + rAga/ST M + lAra/ST M + ru/SU F

Based on the sample and other segmentations, we observe the ability of Morfessor to deal
with the complex morphology of Kannada. In particular, the instance of not splitting the
compound aNNatammandiru (meaning ‘brothers’) interesting. However, there are also cases of
over-segmentation as seen in the last example here, where lekkaparishOdhaka, a compound,
has been segmented. It appears that a more data-driven analysis leading to a careful choice of
the perplexity parameter b is necessary to tune the model.

5.3 Algorithm-specific Features

We will now consider some features we observe when analyzing the segmentation output of
each of the algorithms.

5.3.1 Linguistica

A closer examination of Linguistica output reveals that it is particularly weak at segmenting
Kannada compound words and its complex verbal inflectional system. Kannada being a highly
inflected language with a wide variety of inflectional and derivational morphology acting
upon the stems to produce valid words, the single-slot capability of Linguistica is a serious
shortcoming of the model. With word formation processes in Kannada governed by compounds,
phonotactics (sandhi), prefixation and serial suffixation (from its agglutinative characteristics),
the one-slot procedure seems rather simplistic to capture the wide spectrum of word formation
processes. Nevertheless, looking at the signatures and the stems taking the signatures, a general
framework of a paradigm can be induced and is likely to be more descriptive with a very large
data set.

5.3.2 UnDivide Algorithm

• The algorithm was successfully able to generate the following (character-change) rules
by a single character replacement, addition and deletion at morpheme boundaries as
instantiated below. For the noun stems, guDisalu, hAvu, hUvu, haDagu, kADu, kAlu, mAtu,
nIru, pAlu

1. the stem final u becomes i before the dative case marker ge;

2. the stem final u becomes i before the genitive case marker na; and

3. the stem final u becomes i before the dative case marker niMda

which are incipient rules of noun declension (paradigm generation) for Kannada.

88

• The list of the top suffixes learned by the algorithm includes: gaLannu, yannu, nnu, vannu,
da, lli, nige, gaLu, nannu, ru, ya, diMda, na, ge, yalli, dalli, koMDu. One can identify these
to be the noun endings.

• The algorithm correctly analyzed instances of derivational affixes. As an example, we see
that suffixes shAhi in adhikArashAhi and kAra in itihAsakAra and kUlikAra were identified.

• Although the heuristics to detect composite suffixes seems plausible for Kannada with the
successful detection (and segmentation) of composite suffixes kkiruva in pUrvakkiruva
as kke and ruva, a more reasonable analysis should likely take into consideration the
morphophonemic (internal sandhi) rules.

It is also worth pointing out here that despite the claim of the language-independence of
the algorithm, the 16 parameters in the algorithm need tuning for a better capturing the
morphological nuances of the language under consideration.

5.3.3 Morfessor Categories-MAP

• Upon closer inspection, we noticed that the algorithm has only generated 37 suffixes,
which seems very small given the size of the data. However, owing to the small test
set, the performance does not reflect this shortcoming. In the larger data, the algorithm
generated 196 suffixes.

• The algorithm has the capability to identify prefixes (with its dedicated category for a
prefix, apart from stem and suffix). While it correctly identified the prefixes vi in viBinna,
A in AdEsha, saM in saMpUrNa and a in amUrta, it incorrectly segmented ADuvudu as A -
Prefix and Duvudu - Stem.

• As in the case of the algorithm UnDivide, a few instances of derivational morphology
were successfully analyzed by the algorithm. e.g: The suffix shAhi in adhikArashAhi and
kAra in itihAsakAra and kUlikAra were identified.

Unfortunately owing to the fact that no sufficient segmented data was available to tune the
parameters, we are unable to make further language specific generalizations on the items
mentioned above. Testing the systems on a large collection of words from real world data is the
only way to discover some of the potential problems or interesting segmentation patterns.

6 Analysis of Word Frequency Distributions

We now digress slightly from the unsupervised morphological analysis set up and consider
some aspects of Kannada in the light of analyses derived from its word frequency distribution
obtained from the EMIL corpus considered in the study. In this context we ask the following
questions that we think are important from an IR point of view.

1. We know that in English, one can safely say that the most frequent word in a corpus is
‘the’ and will likely not be very far from truth to say that ‘of’ and ‘and’ follow ‘the’ in the
most frequent list of words. Analogously, what words in Kannada are most frequent?

2. We know that Kannada has a richer morphology compared to English. Is it possible to
obtain a quantitative comparison of the relative complexities? For instance, how do their
vocabulary growths compare?

89

3. In the realm of IR a stopword list contains nonsignificant words that are removed from
a document or a request before beginning the indexing process. What would a list of
stopwords for Kannada look like?

The answers to these questions will be the material we explore in this section.

First we consider the word frequency distribution for the word types in the EMILLE corpus
(with size about a million word tokens) and obtain the frequency of occurrence of the word
types in the corpus. A snapshot of the frequencies of the top ten and the bottom ten are shown
in the Table 7.

10 most frequent words 10 least frequent words
10993 mattu 1 beMbalavAgirisikoLLabEkiruvudariMda

8007 oMdu 1 vyavasthApakarAgiruvadillavAddariMda
5374 A 1 AdEshisalpaTTavugaLu
4803 athavA 1 sURyacaMdranakSatragaLiruvavarege
4608 eMdu 1 AtaMkagaLannuMTumADuvavaruivarella
4525 mEle 1 prItivAtsalyavuLLavarAgiruttAre
3692 Adare 1 toMdaregIDAgiruvavareMdare
3388 tanna 1 nayanamanOharavAgirabEkallade
3370 hAgU 1 paThyapustakagaLaMthavirabEkeMbudannu

Table 7: The most frequent and least frequent words in the EMILLE corpus for Kannada.

We notice that the high frequency slots are occupied by conjunctions, articles, number words,
postposition and pronouns - words that are right candidates for being included in the stopword
list. The words in the other column, the singleton words, may belong to various categories,
but what is salient among them is their length. While some are results of typographical errors,
others are true words formed from internal sandhi processes or compounding or a combination
of both. These singletons account for nearly 66% of the corpus. Successful morphological
analysis of these words cannot be achieved by paradigm look-up alone since their stems are
outcomes of the productive word-formation processes in Kannada and by their very nature, they
cannot all be found in a lexicon. On the other hand, owing to their sparse occurrence in corpora,
taken by themselves, they are not amenable to be considered in statistical analyses. Processing
them requires a combination of rule-based and stochastic approaches deriving the benefits of
linguistic expertise (for rule-based methods) and access to large, diverse and permuted corpora
(for stochastic techniques).

Having obtained a frequency list of the word types we observe that the most frequent word,
mattu, accounts for about 1.3% of all word occurrences, the second most frequent word, oMdu,
accounts for slightly over 1% of all words, followed by the third which accounts for about 0.8%
of all words. Going down the frequency list, we notice that it takes 3458 word types to account
for half the corpus (in terms of word tokens).

Now consider these numbers in the light of the following fact that in the Brown Corpus, the
word the is the most frequently occurring word, and by itself accounts for nearly 7% of all word
occurrences (69,970 out of slightly over 1 million). True to Zipf’s Law, the second-place word
of accounts for slightly over 3.5% of words (36,410 occurrences), followed by "and" (28,854).

90

Only 135 vocabulary items are needed to account for half the Brown Corpus7.

Using the two facts, we make the following important observations towards making a guessti-
mate of the size of a stopword list for Kannada.

• Comparing the number of word types required to cover 50% of the corpus (3458 types in
Kannada vs. 135 in English) and noting that the corpora are roughly of the same size
(and assuming that the genres are similar), we notice that the number of word types
for Kannada is about 25 times that for English. Thus we need to look farther than the
number of stopwords in English to generate a reasonable list of stop words.

• Shifting our attention to the other end of the frequency distribution, we now consider
the growth of vocabulary comparing the proportion of hapax legomena or the number
of words occurring once in the corpus. Baayen ((Baayen, 2001), pp. 49-50) shows how
the growth rate of the vocabulary (the rate at which the vocabulary size increases as
sample size increases), can be estimated as, the ratio of the number of hapax legomena
to the number of tokens. Intuitively, this means that the proportion of hapax legomena
encountered up to the N th token is a reasonable estimate of how likely it is that word
N + 1 will be a hapax legomenon, i.e., a word that we have not seen before and one that
will consequently increase vocabulary size.

For the Brown corpus, the number of hapax legomena is 24375 and given its corpus size
to be 1015945, we have an estimate of vocabulary growth rate for the Brown corpus is
24375/1015945 = 0.024. Now consider a similarly diverse corpus, EMIL with the number
of hapax legomena = 140353 and a corpus size = 997012. An estimate of the vocabulary
growth rate for EMILLE(Kannada) is then 140353/997012 = 0.14. Discounting foreign
words (words with consonant endings are good candidates) totaling to about 4585 words,
the estimate of vocabulary growth rate comes to 0.136. Thus, even at a corpus size of
nearly 1 million, we notice that the growth of vocabulary for Kannada is roughly about 6
times that of English. This could be construed as an approximate quantitative comparison
of the relative complexities in vocabulary between English and Kannada and one could
attribute this difference to the rich and complex morphology of Kannada compared to
English.

7 Conclusion

In this study we have seen that a set of unsupervised methods of morpheme induction perform
morpheme boundary segmentation reasonably well. When trained on a corpus of size of about
990K words, the best performing algorithm (Morfessor) had an F-score of 73%. A key feature
of these methods is that they have no language specific rules - the heuristics are language
independent and probabilistic relying only on the training corpus, but are nonetheless able to
capture some important features of the morphology of Kannada. However, we also saw that for
a reasonable coverage of the productive morphological processes, we would need an approach
that captures the productive process. This is possible by a synergistic approach to morphological
analysis that combines a linguistically grounded, rule-based approach with a stochastic method.

So, where do we go from here? In the comprehensive survey article on unsupervised learning
of morphology (ULM)(Hammarström and Borin, 2011), the authors, summarizing the general

7Source: http://www.edict.biz/textanalyser/wordlists.htm

91

strengths and weaknesses of the methods, state “typically word segmentation algorithms
perform on an insufficient level, apparently due to the lack of any notion of morphotactics. On
the other hand, typical morphology learning algorithms have problems because the ingrained
assumptions they make about word structure are generally wrong (i.e., too strict) for Finnish or
for other highly inflecting or compounding languages. In short, they cannot handle the possibly
high number of morphemes per word.”

Continuing their analysis on whether ULM is of any use, “most ULM approaches reported in
the literature are small proof-of-concept experiments, which generally founder on the lack of
evaluation data. The MorphoChallenge series does provide adequate gold-standard evaluation
data for Finnish, English, German, Arabic, and Turkish as well as task-based Information
Retrieval (IR) evaluation data for English, German, and Finnish. It can be seen that ULM
systems are mature enough to enhance IR, but so far, ULM systems are not close to full accuracy
on the gold standard.”

So if our immediate goal is stemming for IR in Kannada, there is some hope in the pursuit
of a hybrid (unsupervised and rule-based) stemmer for Kannada utilizing the key ideas of
the algorithms considered in this study. Standing on the shoulder of giants such as English
and Finnish (and possibly Turkish) we should look for models attempted and benefit from the
knowledge advances achieved for making progress in the task of morphological segmentation
of words and eventual stemming in Kannada.

Acknowledgements

We would like to acknowledge the help of the members of Sriranga Digital Software Technologies
- Prof. C. S. Yogananda and D. Shivashankar, who not only made the corpus of a collection of
short stories in Kannada available for this study but also made it computation friendly with the
use of their unicode to ASCII converter.

References

The emille/ciil corpus, catalogue reference: Elra-w0037.

Antony, P., Kumar, M., and Soman, K. (2010). Paradigm based morphological analyzer for
kannada language using machine learning approach. International Journal on Advances in
Computational Sciences and Technology ISSN, pages 0973–6107.

Baayen, R. (2001). Word frequency distributions, volume 18. Springer.

Creutz, M. and Lagus, K. (2007). Unsupervised models for morpheme segmentation and
morphology learning. ACM Transactions on Speech and Language Processing, 4(1):3.

Dasgupta, S. and Ng, V. (2006). Unsupervised morphological parsing of bengali. Language
Resources and Evaluation, 40(3):311–330.

Dasgupta, S. and Ng, V. (2007). High-performance, language-independent morphological
segmentation. In Proceedings of NAACL HLT, pages 155–163.

Goldsmith, J. (2001). Unsupervised learning of the morphology of a natural language.
Computational linguistics, 27(2):153–198.

Hammarström, H. and Borin, L. (2011). Unsupervised learning of morphology. Comput.
Linguist., 37(2):309–350.

92

Keshava, S. and Pitler, E. (2006). A simpler, intuitive approach to morpheme induction. In
Proceedings of 2nd Pascal Challenges Workshop, pages 31–35.

Larkey, L. S. and Connell, M. E. (2003). Structured queries, language modeling, and relevance
modeling in cross-language information retrieval. In Information Processing and Management
Special Issue on Cross Language Information Retrieval.

Murthy, K. (1999). A network and process model for morphological analysis/generation. In
ICOSAL-2, the Second International Conference on South Asian Languages, Punjabi University,
Patiala, India.

Ramasamy, V., Antony, P., Saravanan, S., and Soman, K. (2011). A rule based kannada
morphological analyzer and generator using finite state transducer. International Journal of
Computer Applications, 27(10):45–52.

Shastri, G. (2011). Kannada morphological analyser and generator using trie. IJCSNS,
11(1):112.

Sridhar, S. (1990). Kannada. Routledge.

Vikram, T. and Urs, S. (2007). Development of prototype morphological analyzer for the south
indian language of kannada. asian digital libraries. looking back 10 years and forging new
frontiers. Lecture Notes in Computer Science Springer.

93

Proceedings of the 3rd Workshop on South and Southeast Asian Natural Language Processing (SANLP), pages 95–108,
COLING 2012, Mumbai, December 2012.

Manipuri Morpheme Identification

Kishorjit Nongmeikapam
1
Vidya Raj RK

2
 Yumnam Nirmal

2
 Sivaji Bandyopadhyay

3

(1) Department of Comp. Sc. & Engg., MIT, Manipur University, Imphal, India
(2) Department of Comp. Sc., Manipur University, Imphal, India

(3) Department of Comp. Sc. & Engg., Jadavpur University, Kolkata, India

kishorjit.nongmeikapa@gmail.com,vidyarajrk@gmail.com,

yumnamnirmal@gmail.com, sivaji_cse_ju@yahoo.com

ABSTRACT

The Morphemes of the Manipuri word are the real bottleneck for any of the Manipuri Natural

Language Processing (NLP) works. It is one of the Indian Scheduled Language with less

advancement so far in terms of NLP applications. This is because the nature of the language is

highly agglutinative. Segmentation of a word and identifying the morphemes becomes necessary

before proceeding for any of the Manipuri NLP application. A highly inflected word may

sometimes consist of ten or more affixes. These affixes are the morphemes which change the

semantic and grammatical structure. So the inflexion in a word plays an important role. Words

are segmented to the syllables and are examined to extract a morpheme among the syllables.

This work is implemented in the Manipuri words written with the Meitei Mayek (script). This is

because the syllable formations are distinct comparing to the Manipuri written with Bengali

script. The combination of 2-gram or bi-gram and the Standard Deviation technique are used for

the identification of the morphemes. This system gives an output with the recall of 59.80%, the

precision of 83.02% and the f-score of 69.52%.

KEYWORDS : Manipuri, Morpheme, Segmentation, Syllable, Bi-gram, Standard Deviation

95

1 Introduction

Manipuri or Meiteilon which is synonymous with the Manipuri language is a highly agglutinative

Indian scheduled language. A single root word can sometimes have 10 or more affixes which are

attached one after another. For example, different suffixes can be agglutinated to the root word

wb(pu) in order to produce the word wbKgEoEcjAxrqegrsO(pusinhǝnjǝrǝmgǝdǝbǝnidǝko), which

means “I wish (I) myself would have caused to bring in the article”. Here 10 suffixes are being

attached to a bound verbal root (Nonigopal, 2006). Separation of the morphemes in the word are

as follows: wbKgEoEcjAxrqegrsO = wb/pu + KgE/sin + oE/hǝn + c/jǝ + jA/rǝm + x/gǝ + r/dǝ + q/bǝ
+ eg/ni + r/dǝ + sO/ko

Morphology is the identification, analysis and description of the structure of morphemes and

other units of meaning in a language such as words, affixes, part of speech etc (Denial J et.al.

2008). Morphemes are the smallest conceptual meaningful component of a word that has

semantic meaning.

In this work, first the syllables are identified which is followed by the morpheme identification

among the syllables. It is not guaranteed that all the syllables are morphemes. Manipuri usages

two script a borrowed Bengali script and the original Manipuri script which is also known as the

Meitei Mayek. This work is implemented in the Meitei Mayek Manipuri words. This is because

the syllable formations are distinct comparing to the Bengali Script Manipuri.

The paper is organised with the related works in section 2, word segmentation into syllables in

section 3, the system design in section 4 which is followed by experiment and evaluation in

section 5 and at the last section 6 conclusions is drawn.

2 Related work

Morphological works in Germanic and other European languages can be found in (Braschler

et.al, 2004). The various stemming algorithms comparative analysis for nine European

Languages is presented in the survey report by (Tomlinson, 2003).

Some of the other works on Indian Language can be found in the work of (Utpal et. al., 2002a)

where unsupervised learning technique is implemented for highly inflectional language. Another

work of (Utpal et. al., 2008b) deals about acquisition of morphology of an Indic language from

text corpus. Oriya morphological analyser design is reported in (Mohanty et. al., 2008).

Morpheme detection will of great help for Manipuri which is a highly agglutinative Indian

Language. It is because these morphemes are meaningful units and the affixation of these

morpheme changes semantic and POS of a word. This identification may lead us to an easy way

for Machine translation. So far, identification of syllabic unit for Manipuri words are reported in

the work of (Kishorjit et. al, 2012a). The work of Manipuri morphological analyser is reported in

(Sirajul et.al, 2004). Stemming works of Manipuri is also reported in (Kishorjit et. al.,2011b).

Morphological driven Manipuri POS tagging are also reported in (Singh et. al., 2008).

3 Word Segmentation into syllables

Word Segmentation in this context refers to the process of division of words into phonemic units

or syllables that forms the whole word. It is an operation for dividing words into unit syllables by

automatic means (Kalyani et. al., 2009). It is also known as syllabification (Bernd, 1998).

96

Segmentation may be used in a variety of applications which need the unit prosodic cues of the

words, or need the proper understanding of the structural construction of the words (Jean-Luc,

2007). The word segmentation of Manipuri follows the algorithms and the systems mention in

(Kishorjit et. al., 2012b) with certain modifications.

3.1 A brief about Meitei Mayek characters

It will be better if the characters used in the Meitei Mayek are discussed in brief. The work is

based on the 27 scripts approved by the State Government of Manipur. which is also published in

(Kangjia, 2003). The characters used in Meiteilon (Manipuri language) can be classified into five

different categories.

• Iyek Ipee : This character set consists of 27 letters which are mainly major consonants, out of

which three are used to produce vowel sounds (B, T, [). This category is considered as major

consonants in the sense that letters are used in their full form at the initial position of a

syllabic unit. Moreover, associations with Cheitap Iyek are permitted with these characters

only.

• Cheitap Iyek (Matras): These are associative symbols which can be found only in association

with Iyek Ipee character sets. Association with Iyek Ipee characters follow a one to one

relationship i.e. no two (or more) symbols is found to be associated with one letter in Iyek

Ipee. Consecutive occurrence is also not permitted.

• Cheising Iyek (Numerals): This set contains the numeral figures and follow the decimal

system.

• Lonsum Iyek: There are 8 characters in this set and these characters can be considered to be

derivative form of 8 distinct letters in Iyek Ipee. In one sense, these letters can be regarded as

half consonants as they cannot be associated with any symbols in Cheitap Iyek and cannot

initiate formation of a syllable. This character set can only be present in the syllabic final

position. Recurrence or clusters of these characters i.e. consecutive occurrence of these

characters are also not permitted in the language.

• Khudam Iyek (Symbols): Usage of special characters is limited in this language and as such

few symbols suffice the need in expression.

Examples:

‘||’ - Cheikhei (Full Stop)

‘.’ - Lum Iyek (Sign of intonation) eg. vk.q (cha.ba (to eat)) falling intonation and

vkq (cha.ba (swimming/floating)) rising intonation.

‘_’ - Apun Iyek (Sign of Ligature) eg. vAwDjk (cham.pra (lemon))

Other symbols are as internationally accepted symbols.

Before going deep into the syllabic structure it is important to discuss the usage of Apun Iyek for

better understanding. This symbol is used to indicate clustering of Iyek Ipee characters to

produce a combined sound.

 vAwDjk � cǝm.pra (lemon)

 vGSDjl � cǝt.khre (gone)

Important thing to be noted is that clustering of more than two characters in Iyek Ipee is rare and

Cheitap Iyek, if present (along with Apun Iyek), are found in association with the second Iyek

Ipee character.

97

3.2 Syllabic unit structure in Meitei Mayek Manipuri

A hand craft structure is identified. This rule is used to identified the formation of a mono

syllable Manipuri origin words without occurrence of consonant clusters. Basically, the structure

consists of three cells: the initial position, intermediate position and the final position.

FIGURE 1 – The character set and positions of syllabic unit structure in Meitei Mayek Manipuri

3.2.1 Pattern of Character Sets in Different Positions in Mono Syllable

In this section, occurrences of different character sets in different position contributing to the

formation of syllables are discussed along with exceptional cases.

3.2.1.1 Initial Position

The initial position should always be a character from Iyek Ipee. The conditions apply to every

syllable in a Meiteilon origin word, regardless of exceptions.

FIGURE 2 – Illustration of Initial Position with examples.

The first example is a mono syllabic word, in which the initial position is occupied by the

character ‘w’ belongs to Iyek Ipee.

The second example is a word formed by two syllables where in both cases the character in initial

position belongs to Iyek Ipee character set.

3.2.1.2 Intermediate Position

The intermediate position, generally, is occupied by the character set in Cheitap Iyek. This

condition may not apply in case of consonant clustering and exceptional cases. Moreover, it is

not necessary that this position be occupied.

In the first example shown in Fig 3.3, the occurrence of ‘ k’ , a character in Cheitap Iyek in the

intermediate position is illustrated, while in the second example the nonexistent state in this

position is shown in Figure 3.3.

IYEK IPEE CHEITAP IYEK LONSUM IYEK

Initial Intermediate Final

98

FIGURE 3 – Illustration of Intermediate Position with examples.

3.2.1.3 Final Position

Normally, the final position is filled in by characters from the Lonsum Iyek character set, but, as

in the previous case, it is not a necessary condition. Syllables with nonexistent final position are

common in the language.

FIGURE 4 – Illustration of Final Position with examples.

In this example, the final position of the first syllable is occupied by Lonsum Iyek character ‘ G ’

whereas in the second syllable the position is empty.

3.2.1.4 Occurrence of Exceptional Characters in Final Position

In Meiteilon some exceptional characters belonging to Iyek Ipee are found to occur in the final

position of a syllable. Special attention is to be given to each and every letter in this group

because understanding the correct utilization of these letters is important for correct and proper

command over the language.

One such character is the letter ‘ T ’(i). This letter is present in both Iyek Ipee character set as

well as Lonsum Iyek. So, if it initializes a syllable, should it be considered as a major consonant,

and if it finalizes the syllable, should it be considered as Lonsum Iyek? This issue is purely

linguistic in nature. But from a computational view this is a character which has the capability to

initiate as well as finalize syllable and its importance should be kept in mind while developing

algorithm.

FIGURE 5 – Illustration of Exceptional cases with examples.

Similarly, the letters B,_,\,j are found to be used in both initial and final positions, but these

letters do not have their derivative counterparts in Lonsum Iyek character set.

99

FIGURE 6 – Illustration of Exceptional cases with examples.

3.3 Complex Syllabic Structure

Majority of the syllable are of the basic structure. But occurrence of a slightly complex structure

is found if the use of (D) Apun Iyek is found (mostly in close association with j, _, \).

In this case, a syllabic unit is divided into five cells, comprising of initial, final and three

intermediate positions.

FIGURE 7 – Comparison of Simple and Complex Syllabic Structure.

In another sense, the first three cells can be thought as the expanded form of the initial position in

basic structure. The last two cells (4
th

 and 5
th

) are same as that of basic structure.

The first three cells i.e. expansion of the initial position, the second cell is meant to be occupied

by the Apun Iyek (D) and the first and the third cell is filled in by characters from Iyek Ipee

character set.

3.4 The Syllabic Pattern

Syllable can be divided into three parts; onset (beginning of a syllable, either a consonant or a

semivowel), peak (nucleus of the syllable, vowels) and coda (sound which comes after the peak,

generally consonants). In every syllable there must be a peak. But there may not be an onset or

coda in Meiteilon syllabic system.

Referring to section 2.4.1 of (Yashawanta, 2000), the syllabic structure, the author has stated that

the syllables can be of six forms.

Classification A

1. V

2. VC

3. CV where,

4. CCV V = Syllabic peaks, vowels

5. CVC C = Syllabic margins, consonants

6. CCVC

100

In this process, syllables are segmented using a script based algorithm and thus the pattern

observed also are on the basis of the script (Kishorjit et.al. 2012b). The patterns found are as

follows;

Classification B

1. V

2. CV

3. C

4. VVV

5. CVC

6. CC

7. CVV

8. VV where,

9. VVC V = vowel characters

10. VC C = consonant characters

11. CCVC

It must be noted that the previous classification A is based on linguistic approach and the

classification B, on computational view.

 It may seem like the later classification shows more variety of patterns, but it is not so.

Both, classifications are one and same, the only difference lies in the approach. This is elaborated

in (Kishorjit et. al., 2012b).

4 System design

The system design of this work can be divided into two parts. The first part is designed in order

to identify the syllabic units of a word and the second part is the identification of morphemes

from the syllabic units.

4.1 System design for word segmentation

The identification of the syllabic unit follows the same hand craft rule used in the work of

(Kishorjit et. al., 2012b). Fig. 8 shows the details of the segmentation system. The first method

(segmentor) provides the base foundation in which the Input File is read line by line and every

line is tokenized and every tokens or word is provided for syllable extraction. Then from the

stack, where the syllables for every word are stored, the unit/mono syllables are again written

into the Output File.

The second method (extractor), when called by the first, takes a string parameter (word) and

segments the word into unit syllables. Segmentation is done depending on the script based rules

and the syllabic structures defined in this chapter. For every syllable extracted it is pushed down

into a stack object defined for the particular word. The extraction process starts from the left most

syllables, thus suitable for storing in a stack.

101

FIGURE 8 – System Diagram of Segmentation

The Input File is passed to the segmentation algorithm. The segmentation algorithm tokenizes the

string in the file and calls the extractor algorithm passing each word as parameter. The extractor

algorithm refers to the character list for checking the various conditions present and pushes down

each extracted segment in the stack. A stack is used because the segmentation starts from the end

of the word and LIFO (Last In First Out) principle is followed. When extraction is over, control

is shifted to segmentation algorithm and it takes the segments from the stack and gives the

output.

4.2 Morpheme identification system

With the principle that word consists of syllable or syllables and the syllable can be morpheme

but not guaranteed that all the syllables will be a morpheme. For example in the word

“unladylike”, there are 4 syllables (un-, la-, dy- and like) but only 3 morphemes (un-, lady- and

like). Taking a Manipuri word example Kk\OdKI/sa.yok.saŋ/ “animal rearing place or zoo”, there

are three syllables, out of which the first one Kk /sa/ “animal” is a free root (noun) and the second

one is \Od /yok/ “bring up/ rear” is a bound root (verb) and the last one KI /saŋ/ “house/shed” is

again a free root (noun). Together these three syllables form the word Kk\OdKI/sa.yok.saŋ/

meaning “zoo/animal rearing place” also altogether there are three morphemes.

4.2.1 Pre-processing and segmentation process

The system (Fig. 9) is feed with a text corpus, so pre-processing is very important and the process

consists of cleaning of the file. By cleaning it means the correction of spellings, removal of

unwanted characters and the grammatical errors. The cleaned file is fed as the input file. The

input file is procured from local newspaper Huiyen Lanpao
1
 which provides a Meitei Mayek

version of the daily news. Approximately some well cleaned 13,045 words are used for the

system input file.

The Cleaned file is fed as an input for the segmentation process. The segmentation process

follows the same rule mention in section 4.1. The segmented file with syllables as output is used

for the next module of morpheme identification.

1 http://www.hueiyenlanpao.com/meeteilon/

INPUT FILE

CHARACTERS

SEGMENTOR

EXTRACTOR

STACK

OUTPUT FILE

102

FIGURE 9 – System design

4.3 Morpheme identification module

In the morpheme identification module the syllables are used for frequency finding and other

statistical findings. The Bigram model is used in order to measure the relative association

between each syllable present in a word and find their corresponding probability values. This

probability values are normalized so as to bring uniformity in the data and prevent redundancy

and duplication.

The output of Bigram probability is implemented with Standard deviation.

4.3.1 N-gram and Bigram

In order to start a brief discussion of N-gram, the concept of conditional probability is necessary.

In probability theory, the conditional probability of A given B is the probability of A if B is

known to occur (or have occurred). It is commonly denoted as)(BAP , and sometime

)().(BAPAPB can be visualized as the probability of event A when the sample space is

restricted to event B (Freund et. al., 2006).

Segmentation Process Input File

Cleaning Process

Cleaned File Searching for errors

Outfile

Display Output

Syllable frequency

counter

Bigram

Marker
Bigram Frequency

counter

Infile2

Probability Generator

Infile1 Infile3

Probability

Normaliser

Infile4

Standard Deviation

Infile5

Identification

Infile

Morpheme Identification Module

103

Mathematically, it is defined for 0)(≠≠≠≠BP as :	

)(

)(
)(

BP

BAP
BAP

∩∩∩∩
====

An n-gram model is a type of probabilistic language model for predicting the next item in such a

sequence in the form of a (n-1) order Markov model.In the fields of computational linguistics and

probability, an n-gram is a contiguous sequence of n items from a given sequence of text or

speech. The items in question can be phonemes, syllables, letters, words or base pairs according

to the application. n-grams are collected from a text or speech corpus. Mathemetically, it is

defined as :

Given a string of words (w1, w2, w3 ,……………, wn), we can compute the probability of the

complete string using n-gram. If we consider each word occurring in its correct location as an

independent event, we can represent this probability as follows:

P(w1,w2,w3,w4,…….,wn)

This can be further decomposed by the chain rule of probability as follows:

P(w1
n
)=P(w1)P(w2|w1)P(w3|w2)P(w4|w3)…………… P(wn|w1

n-1
)

)|(1
11

−−−−
====∏∏∏∏==== k

k
n
k wwP

And in order to compute the probability like)|(1
1

−−−−n
n wwP , we have to approximate the

probability of a word given all previous words.

An n-gram of size 1 is referred to as a "unigram"; size 2 is a "bigram", size 3 is a "trigram" and so

on. In this system it has restricted to the bigram model which approximates the probability of a

word given all the previous words)|(1
1

−−−−n
n wwP by the conditional probability of the preceding

word)|(1−−−−nn wwP

As an example, instead of computing the probability

P(rabbit | Just the other day I saw a)

We approximate it with the probability:

P (rabbit | a)

Implementing in the syllabic level, for example for the word Kk\OdKI/sa.yok.saŋ/ “animal rearing

place or zoo”, the three syllables are Kk /sa/ “animal”, \Od /yok/ “bring up/ rear” and KI /saŋ/

“house/shed”. And the sample Bigram probability notation is:

P(\\\\OdOdOdOd|KKKK), P(KIKIKIKI|\\\\Od)Od)Od)Od), , , , etc.

4.3.2 Standard deviation

Standard deviation is the degree of variation in the probability distribution. It expresses the

amount of dispersion from the average (mean).

The mean, denoted by µ, of a distribution or set of random variables X is given by:

n

xi
n
i 1====∑∑∑∑

====µµµµ Where, n = total elements in a population/sample

104

The standard deviation of a probability distribution is given by the positive square root of its

variance. Variance is the square of summation of the difference between the probability values

and the mean value divided by the population size.

Variance,

n

x
n

i
i∑∑∑∑ ====

−−−−
==== 12

µµµµ
σσσσ

Standard Deviation,

n

xi
n
i µµµµ

σσσσ
−−−−∑∑∑∑

==== ====1

Standard deviation (σ) and mean (µ) of the probability distribution is calculated for the given

syllables. In Standard Deviation, the domain range is defined as the distance between one σ

difference from µ on both negative and positive values. And this range is used to determine

whether a syllable is a morpheme or not. In our case only the positive values of µ is considered

because negative value is meaningless in our case. It is because the syllabic unit bigram

frequency probability outputs do not have negative values.

5 Experiment and evaluation

A total of 13,045 word forms were supplied. The outcome was 35,840 syllables and 972 of them

were distinct syllables. In order to evaluate the experiment, the system used the parameter of

Recall, Precision and F-score.

Recall,

R =
�����	��	��	��		
��	��	�
�
	���
�	��	�
	����
�
�����	��	��	�������
	��		
��	��	�
�
	��	�
	�
��

Precision,

P=
�����	��	��	��		
��		��	�
�
	���
�	��	�
	����
�

�����	��	��		��	�
�
	���
�	��	�
	����
�

F-measure,

F=
��������

�����
 ; where, ββββ is one, which means precision and recall are given equal

weight.
The Fig. 10 shows the graph of the syllables with the probability values. It can be observed that

the ranges between 0.01 and 0.08 are clustered together. This indicates that there is some

consistency in this range and as mention above only these positive values range is considered

even though in the standard deviation it has a range both comprises of negative and positive

values. It is because negative value is meaningless since it’s calculated with the syllabic unit

bigram frequency probability outputs which do not have negative values.

105

FIGURE 10 – Standard Deviation

The measurement is done using the evaluation method of recall, precision and f-score mention

above. So, the system gives a Recall of 59.80%, Precision of 83.02%, and F-score of 69.52%.

6 Conclusion

The system designed is a morpheme identifier not a morphological analyser, so the job of this

system is to identify the morpheme from a set of syllables. A syllable segmentation algorithm is

applied and the output syllables are verified whether it’s a morpheme or not. In the identification,

the concept of standard deviation is implemented. There is no such report of identifying Manipuri

language morphemes using syllable or syllabic unit inputs.

These could be a boon for this highly agglutinative language since the complexity of Machine

translation could be solved up-to a great extend. Other statistical method can also be

implemented to improve the output.

References

Bernd Mo¨bius (1998): Word and syllable models for German text-to-speech synthesis, In

Proceedings of the Third International Workshop on Speech Synthesis, Jenolan Caves,

Australia, pages 59–64.

Braschler, M. and Ripplinger, B. (2004): How Effective is Stemming and Decompounding for

German Text Retrieval? Information Retrieval, Vol. 7, (3-4), pages 291-306.

Daniel Jurafsky, James H. Martin, 2008. “Speech and Language Processing: An Introduction

to Natural Language Processing, Computational Linguistics, and Speech Recognition”,

Dorling Kindersley (India) Pvt. Ltd., licensees of Pearson Education in South Asia.

F
re

q
u

en
cy

 �

Probability Values �

106

Freund’s E. John, Irwin Miller and Marylees Miller (2006). “Mathmatical Statistics with

Applications”, Dorling Kindersley (India) Pvt. Ltd., licensees of Pearson Education in South

Asia.

Rouas, (2007): Automatic prosodic variations modeling for language and dialect

discrimination, IEEE Transaction on Audio, Speech and language Processing, Vol. 15, 6, pages

1-8.

Kalyani, N. and Sunitha, K.V.N. (2009): Syllable analysis to build a dictation system in Telugu

language, International Journal of Computer Science and Information Security, Vol.6, No. 3,

pp. 171-176.

Kangjia Mangang, Ng. (2003). “Revival of a closed account; A Brief History of Kanglei Script

and the Birth of Phoon (zero) in the World of Arithmetic and Astrology”, Sanamahi Laining

Amasung Punsiron Khupham, Imphal, India.

Kishorjit N., Bishworjit S., Romina M., MayekleimaChanu Ng., Sivaji B., 2011. “A Light

Weight Manipuri Stemmer”, In: The Proceedings of NCILC, Cochin, India.

Kishorjit N., Vidya Raj RK., Imocha Singh O. and Sivaji B., 2012. “Automatic Segmentation

Of Manipuri(Meiteilon) Word Into Syllabic Units”, International Journal of Computer Science

and Information Technology (IJCSIT). ISSN – 0975 – 3826

Mohanty, S., Santi, P.K. and Adhikary, K.P.D. (2004): Analysis and Design of Oriya

Morphological Analyser: Some Tests with OriNet. In: Proceeding of symposium on Indian

Morphology, phonology and Language Engineering, IIT Kharagpur.

Nongthombam Nonigopal Singh, 1987. “A Meitei Grammar of Roots and Affixes”

(Unpublished Thesis), Manipur University, Canchipur, Imphal, India 795003.

Singh, T. D. and Sivaji B. (2008): Morphology driven Manipuri POS tagger, In Proceedings of

IJCNLP-08 workshop on NLP for Less Privilege Languages, India, pages 91-98.

Sharma, U., Kalita, J. and Das, R. (2002): Unsupervised learning of morphology for building

lexicon for a highly inflectional language. In ACL SIGPHON, pages 1–10.

Utpal Sharma, Jugal K. Kalita, and Rajib K. D. (2008): Acquisition of morphology of an Indic

language from text corpus, ACM Transactions on Asian Language Information Processing

(TALIP), vol. 7, Issue 3, August 2008.

Tomlinson, S. (2003): Lexical and Algorithmic Stemming Compared for 9 European

Languages with Hummingbird SearchServerTM, In CLEF 2003, pages 286–300.

Yashawanta Singh, Ch. (2000). “Manipuri Grammar”, Rajesh Publications New Delhi –

110002.

107

Proceedings of the 3rd Workshop on South and Southeast Asian Natural Language Processing (SANLP), pages 109–122,
COLING 2012, Mumbai, December 2012.

Domain Based Classification of Punjabi Text Documents
using Ontology and Hybrid Based Approach

Nidhi, Vishal Gupta
University Institute of Engineering and Technology, Panjab University

naseeb.nidhi@gmail.com, vishal@pu.ac.in

ABSTRACT

Classification of text documents become a need in today’s world due to increase in the
availability of electronic data over internet. Till now, no text classifier is available for the
classification of Punjabi documents. The objective of the work is to find best Punjabi
Text Classifier for Punjabi language. Two new algorithms, Ontology Based Classification
and Hybrid Approach (which is the combination of Naïve Bayes and Ontology Based
Classification) are proposed for Punjabi Text Classification. A corpus of 180 Punjabi
News Articles is used for training and testing purpose of the classifier. The experimental
results conclude that Ontology Based Classification (85%) and Hybrid Approach (85%)
provide better results in comparison to standard classification algorithms, Centroid
Based Classification (71%) and Naïve Bayes Classification (64%).

KEYWORDS: Punjabi Text Classification, Ontology Based Classification, Naive Bayes
Classification, Centroid Based Classification.

109

1. Introduction

The amount of electronic data available such as digital libraries, blogs, electronic
newspaper, electronic publications, emails, electronic books is increasing rapidly.
However, as the volume of electronic data increases the challenge to manage that data
also increases. Thus, automatic organization of text documents becomes an important
research issue of Text Mining. Manual Text Classification is an expensive and time
consuming task, as classifying millions of text documents efficiently and with accuracy is
not an easy task. Therefore, automatic text classifier is constructed whose accuracy and
time efficiency is much better than manual text classification. There are mainly two
machine learning approaches to enhance classification task: supervised approach, where
predefined classes are assigned to text documents with the help of labeled documents;
and unsupervised approach, that does not require labeled documents to classify the text
documents [Chen and Blostein 2006].

So far very little work has been done for text classification with respect to Indian
languages, due to the problems faced by many Indian Languages such as: no
capitalization, non-availability of large gazetteer lists, lack of standardization and
spelling, scarcity of resources and tools. Punjabi is an Indo-Aryan Language, spoken in
both western Punjab (Pakistan) and eastern Punjab (India). It is 10th most widely spoken
language in the world. Also it is the official language of Indian state of Punjab. In
comparison to English language, Punjabi language has rich inflectional morphology. E.g.
English verb “Play” has 4 inflectional forms: play, played, playing, plays; whereas same
word in Punjabi i.e. “ਖੇਡ” has 47 inflectional forms: ਖੇਡ, ਖੇਡਣਾ, ਖੇਡਣੇ, ਖੇਡਣ, ਖੇਡਦਾ, ਖੇਡਦੇ,
ਖੇਡਦੀ, ਖੇਡਦੀਆਂ etc. This depends upon gender, number, person, tense, phase, transitivity
values in a sentence. Therefore, using only statistical approaches to classify the Punjabi
documents do not provide good classification results, there is a need of linguistic
approaches too for the selection of the relevant features that increase the efficiency of
the classification.

No work has been done to classify the Punjabi documents due to lack of resources
available in electronic format. Therefore, two new approaches are proposed for Punjabi
language, Ontology Based Classification and Hybrid Approach. And to compare the
results of these classification algorithms, standard classification algorithms, Naïve Bayes
and Centroid Based Classification are used.

2. Text Classification for Indian Languages

So far Text Classification Techniques implemented for Indian Languages are: Naïve
Bayes classifier has been performed over Telugu News articles in four major classes:
Politics, Sports, Business and Cinema; to about 800 documents. In this, normalized
TFXIDF is used to extract the features. Without any stopword removal and
morphological analysis, at the threshold of 0.03, the classifier gives 93% precision
[Murthy 2003].Semantic based classification using Sanskrit wordnet used to classify
Sanskrit Text Document, this method is built on lexical chain of linking significant words
that are about a particular topic with the help of hypernym relation in WordNet
[Mohanty et al. 2006]. Statistical techniques using Naïve Bayes and Support Vector
Machine used to classify subjective sentences from objective sentences for Urdu

110

language, in this, language specific preprocessing is done to extract the relevant features.
As Urdu language is morphological rich language, this makes the classification task more
difficult. The result of this implementation shows that classification results of Support
Vector Machines is much better than Naïve Bayes [Ali and Ijaz 2009]. For Bangla Text
Classification, n-gram based classification algorithm is used and to analyze the
performance of the classifier Prothom-Alo news corpus is used. The result show that as
we increase the value of n from 1 to 3, performance of the text classification also
increases, but using gram length more than 3 decreases the performance of the classifier
[Mansur et al. 2006]. Text classification is done using Vector Space Model and Artificial
Neural network on morphological rich Dravidian classical language Tamil. The
experimental results show that Artificial Neural network model achieves 93.33% which
is better than the performance of Vector Space Model which yields 90.33% on Tamil
document classification [Rajan et al. 2009]. A new technique called Sentence level
Classification is used for Kannada language; in this, main focus is on sentences as most
users’ comments, queries, opinions etc are expressed in sentences. This Technique
extended further to sentiment classification, Question Answering, Text Summarization
and also for customer reviews in Kannada Blogs [Jayashree R. 2011].

3. Problem Description

Manually classifying millions of documents require lots of effort and time. Therefore,
automatic Punjabi Text Classifier is constructed to manage these documents efficiently
in less time with minimum efforts. In literature review, it has been observed that no
work has been done in this context for Punjabi Language.

The problem is to classify large collection of Punjabi Text Documents into one of the
predefined classes. These classes are: ਿਕ�ਕਟ (krikaṭ) (Cricket), ਹਾਕੀ (hākī) (Hockey), ਕਬ�ਡੀ
(kabḍḍī) (Kabaddi), ਫੁਟਬਾਲ (phuṭbāl) (Football), ਟੈਿਨਸ (ṭainis) (Tennis), ਬੈਡਿਮੰਟਨ
(baiḍmiṇṭan) (Badminton), ਓਲੰਿਪਕ (ōlmpik) (Olympic).

The tasks that need to do to achieve the objectives are following:

• To develop NER system and language dependent rules to extract names, locations,
time/date, designation, abbreviation, numbers/counting from the document.

• To extract the relevant features from the document for better classification results.
• To prepare gazetteer lists for the classification task.
• To create Domain (sports) specific Ontology for the Punjabi language that includes

terms related to class.

4. Punjabi Text Classification

For Punjabi Text Classification, initial steps that need to do are following:

• Prepare Training Set for Naïve Bayes and Centroid Based Classifier. The
documents in the training set are tokenized and preprocessed. Stopwords,
punctuations, special symbols, name entities are extracted from the document.

• For each class, centroid vectors are created so as to calculate the similarity
between centroid vectors and unlabelled document vector.

111

• Create Sports specific Ontology in Punjabi language for Ontology based Classifier

that contains terms related to the class e.g. class ਿਕ�ਕਟ (Cricket) contains terms

such as ਬ� ਲੇਬਾਜ਼ੀ (ballēbāzī) (batting), ਗ�ਦਬਾਜ਼ੀ (gēndbāzī) (bowling), ਫੀਲਿਡੰਗ

(phīlḍiṅg) (fielding), ਿਵਕਟ (vikaṭ) (wicket), ਸਿਪਨ (sapin) (spin), ਆਊਟ (āūṭ),

ਿਵਕਟਕੀਪਰ (vikṭakīpar) (wicket-keeper) etc. For the first time such lists are created

for Punjabi Language.

• Prepare Gazetteer lists such as list of middle and lastnames (ਿਸੰਘ, ਸੰਧੂ, ਗੁਪਤਾ, (siṅgh,

sandhū, guptā)), places (ਬਿਠੰਡਾ, ਚੰਡੀਗੜ(, ਪੰਜਾਬ, (baṭhiṇḍā, caṇḍīgaṛh, pañjāb)),

date/time (ਕ�ਲ (kall), ਸਵੇਰ (savēr)), abbreviations (ਆਈ (āī), ਸੀ (sī), ਐਲ (ail), ਪੀ

(pī), ਬੀ (bī)), designations (ਕਪਤਾਨ (kaptān), ਕੋਚ (kōc), ਕੈਪਟਨ (kaipṭan)) etc.

After initial steps, Punjabi Text Classification is implemented into three main phases:

• Preprocessing Phase
• Feature Extraction Phase
• Processing Phase

4.1 Pre-processing Phase

Each Unlabelled Punjabi Text Documents are represented as “Bag of Words”. Before
processing, stopwords, special symbols, punctuations (<,>, :,{,},[,],^,&,*,(,) etc.) are
removed from the documents, as they are irrelevant to the classification task. Stopwords
list is manually prepared by analysing the punjabi corpus. Table 1 shows lists of some
stopwords that are removed from the document.

ਲਈ
(laī)

ਨ-
(nē)

ਆਪਣੇ
(āpaṇē)

ਨਹ.
(nahīṃ)

ਤ/
(tāṃ)

ਇਹ
(ih)

ਹੀ
(hī)

ਜ/ (jāṃ) ਿਦ� ਤਾ
(dittā)

ਹੋ
(hō)

TABLE 1- Stopwords List

4.2 Feature Extraction Phase

Input document may contain redundant or non-relevant data that increases the
computations. Therefore, to reduce the feature space by extracting the relevant features
from the document, along with statistical approaches, language dependent rules,
gazetteer lists are created by analyzing the Punjabi documents.

4.2.1 Statistical Approaches

For classification of Punjabi Documents TFXIDF is used as statistical approach [Yanbo
et al. 2009; Han and Kamber 2001]. TFXIDF weighting is the most common method
used for term weighting that takes into account this property. In this approach, the
TFXIDF weight of term i in document d assigned proportionally to the number of times

112

the term appears in the document, and in inverse proportion to the number of
documents in the corpus in which the term appears.

W(i) = tf(i)*log(N/Ni)

TFXIDF weighting approach weights the frequency of a term in a document with a factor
that discounts its importance if it appears in most of the documents, as in this case the
term is assumed to have little discriminating power.

4.2.2 Linguistic Features

Statistical approach fails to extract language dependent features. Therefore, Hybrid
Approach is used which is the combination of Rule Based Approach and List Lookup
approach. A number of rules specific for Punjabi language used to extract the language
dependent features are following:

1. Name Rule
a. if word is found, its previous word is checked for middle name.
b. if middle name is found, its previous word is extracted as first name from the

document.
c. Otherwise, word is extracted from the document.

2. Location Rules
a. if word is found, it is extracted from the document.

b. if Punjabi word ਿਵਖੇ (vikhē) is found, its previous word is extracted as location

name.

c. if Punjabi word ਿਪੰਡ (piṇḍ) is found, its next word is extracted as location name.

d. if Punjabi word ਿਜ਼ਲ(ੇ (zilhē) is found, its previous word is extracted as location

name.
3. Date/Time Rules

a. if month is found, it is extracted.
b. if week day is found, it is extracted.

c. if Punjabi words ਅ�ਜ (ajj), ਕ�ਲ (kall), ਸਵੇਰ (savēr), ਸ਼/ਮ (shāmm), ਦੁਪਿਹਰ (duphir)

etc. are found, they are extracted.
4. Numbers/Counting

a. if any numeric character is found, it is extracted.

b. if Punjabi words ਇ�ਕ (ikk), ਦੂਜਾ (dūjā), ਦੋ (dō), ਪਿਹਲਾ (pahilā), ਛੇਵ. (chēvīṃ) etc.

are found, they are extracted.

5. Designation Rule

c. if designation found e.g. ਕਪਤਾਨ (kaptān), ਕੋਚ (kōc), ਕੈਪਟਨ (kaipṭan), it is

extracted.
6. Abbreviation

d. if words like ਆਈ (āī), ਸੀ (sī), ਐਲ (ail), ਪੀ (pī), ਬੀ (bī) etc. are found, they are

extracted.

113

4.2.3 Gazetteer Lists

Due to limited resources available in electronic format for Punjabi language, gazetteer
lists are prepared manually by analyzing the Punjabi Text documents. Each gazetteer list
contains 100-150 words in it. These lists are following:

• Middle Names
• Last names
• Location Names
• Month Names
• Day Names
• Designation names
• Number/Counting
• Abbreviations
• Stop words

• Sports Specific Ontology (e.g. preparing list for class ਹਾਕੀ (Hockey) that contain all

of its related terms like ਸਟਰਾਈਕਰ (Striker), ਡਿਰਬਲਰ (Dribbler), ਪੈਨਲਟੀ (Penalty)

etc.

4.3 Processing Phase

At this phase, apply classification algorithm such as Naïve Bayes, Centroid Based,
Ontology Based and Hybrid Approach to relevant features extracted from feature
extraction phase in order to classify the unlabelled document into predefined classes.

4.3.1 Naïve Bayes Classification

It is simple probabilistic classifier that considers each term independent of each other.
The two common Naïve Bayes Models used for text classification are: Multinomial Event
Model and Multi-variate Bernoulli Event Model. For Punjabi Text Classification,
Multinomial Event Model is used as it performs better than Multi-variate Bernoulli
event model [McCallum and Nigam 1998; Chen et al. 2009]. In this, each document is
represented as “bag of words”. Following steps are taken to classify the Punjabi text
documents using Naïve Bayes Classifier:

Step 1: Training Set
Prepare training set for the classifier in which folders represent class and each folder
contains set of documents called labeled documents. Punctuations, special symbols are
removed from the document. Then, documents are segmented into meaningful units
called words. Stopwords, name entities such as names, locations, date/time, counting
etc. are removed from the document as they are irrelevant to the classification task.
Calculate probability of each class P(Ci), using equation (1)

P(Ci) = (Total docs in Ci) / (total docs in training set) (1)
Step 2: Test Set
After preprocessing and feature extraction steps, each unlabelled document are
represented as list of words i.e. w1, w2 ….wn, where wn is the nth word of the document.
Calculate probability of the document to belong to the particular class using equation
(2).

114

P(Ci|document) = (P(Ci|w1, w2……wn)/ n
 (2)

Where n is the total word in the input document.
Assign class Ci to the document if it has maximum posterior probability with that class.

P(Ci|document) = max (P(Ci)*P(wj|Ci))/ n
Where

P(wj|Ci) = (1+freq. of wj in class Ci)/(total words in Ci + total words in training set)

4.3.2 Centroid Based Classification

Centroid based classifier is simple and efficient method for the classification task. Its
basic idea is to construct Centroid vector per class using training set and document
vector. And then calculate the distance between each Centroid vector and document
vector; assign that class to the document that is having minimum distance from the
Centroid vector [Chen et al. 2008]. Following are steps done for classifying Punjabi Text
Documents are:

Step 1: Training Set: After preprocessing and feature extraction phase, Centroid vector
for each class is calculated using labeled documents in that class. These vectors are:
Ccricket, Chockey, Cbadminton…..etc.
Step 2: Test Set: For each unlabelled document, calculate document vector Cdoc, where
each component of the vector is represented by TFXIDF value i.e.Cdoc=[tfidf1,
tfidf2…….tfidf|V|] ;|V| is total dimensions of the collection.
Step 3: Euclidean Distance: Calculate Euclidean distance between Cdoc and Centroid
vector of each class. And assign that class to the document that is having minimum
distance from Centroid vector of that class. If d and c are two vectors, Euclidean distance
is calculated as in equation (3)

Distance(d,c) = sqrt((di- ci) sup 2) where i=1, 2…..7 (3)

E.g. assume Euclidean distance between each class and unlabelled document is Ccricket,doc
= 2.33 andCHockey,doc =3.15. As Ccricket,doc has minimum distance, class Cricket is assigned
to the unlabelled document [Chen and Ye 2008].

Input

ਰਾਜਵੰਤ ਿਸੰਘ ਹਾਕੀ ਜਗਤ ਦਾ ਉਹ ਹਸਤਾਖਰ ਹੈ, ਿਜਸ ਨ- ਿਬਨ/ ਿਕਸੇ
ਸਰਕਾਰੀ ਮਦਦ ਤ5 ਬਿਠੰਡਾ ਿਜ਼ਲ(ੇ 'ਚ ਹਾਕੀ (rājvant siṅgh hākī jagat
dā uh hastākhar hai, jis nē bināṃ kisē sarkārī madad tōṃ
baṭhiṇḍā zilhē 'c hākī)

Preprocessing Phase &
Feature Extraction

ਹਾਕੀ ਜਗਤ ਹਸਤਾਖਰ ਸਰਕਾਰੀ ਮਦਦ ਹਾਕੀ (hākī jagat hastākhar
sarkārī madad hākī)

Output Class: ਹਾਕੀ (hākī)

TABLE 2- An example of Centroid Based Classification

4.3.3 Ontology Based Classification

Traditional Classification methods ignore relationship between words, they consider
each term independent of each result. But, in fact, there exist a semantic relation
between terms such as synonym, hyponymy etc. [Wu and Liu 2009]. Therefore, for

115

better classification results, there is need to understand the context of the text
document. The Ontology has different meaning for different users, in this classification
task, Ontology stores words that are related to particular sport. Therefore, with the use
of domain specific ontology, it becomes easy to classify the documents even if the
document does not contain the class name in it. The ontology is created manually that
contains Badminton, Cricket, Football, Hockey, Kabaddi, Olympic and Tennis as their
top classes. To create ontology, transliteration and English to Hindi, Hindi to Punjabi
translators are used. Each ontology class contain 80-90 terms related to that class. The
advantage of using Ontology is that there is no requirement of training set i.e. labeled
documents. Hence, no human input is required to create training set. Also this ontology
can be used by other researchers for easily classifying Punjabi sports documents with
accuracy.

Step 1: Create Domain (i.e. sports) specific ontology, represented as “bag of words”.
Step 2: For each unlabeled document, remove stopwords, punctuations, special symbols,
and name entities from the document and represent document as “bag of words”.
Step 3: To determine in which class unlabelled document belongs, calculate the
frequency of document terms matched with class ontology. Assign class cricket to the
unlabelled document, if frequency of matching terms with class cricket ontology is
maximum.
Step 4: If no match is found or a document shows same results for two or more classes
then that document is not classified into any class, and left for manual classification.

Input

ਰਾਜਵੰਤ ਿਸੰਘ ਹਾਕੀ ਜਗਤ ਦਾ ਉਹ ਹਸਤਾਖਰ ਹੈ, ਿਜਸ ਨ- ਿਬਨ/ ਿਕਸੇ ਸਰਕਾਰੀ
ਮਦਦ ਤ5 ਬਿਠੰਡਾ ਿਜ਼ਲ(ੇ 'ਚ ਹਾਕੀ (rājvant siṅgh hākī jagat dā uh
hastākhar hai, jis nē bināṃ kisē sarkārī madad tōṃ baṭhiṇḍā
zilhē 'c hākī)

Preprocessing
Phase &
Feature
Extraction

ਹਾਕੀ ਜਗਤ ਹਸਤਾਖਰ ਸਰਕਾਰੀ ਮਦਦ ਹਾਕੀ (hākī jagat hastākhar
sarkārī madad hākī)

Output Class: ਹਾਕੀ (hākī)

TABLE 3- An example of Ontology Based Classification

4.3.4 Hybrid Approach

In hybrid approach, the two algorithms Naïve Bayes and Ontology based Classifier are
combined for better results of classification. Using TFXIDF, Information Gain (IG) as
feature selection method, results in some features that are still irrelevant. Therefore,
Class Discriminating Measure (CDM), a feature evaluation metric for Naïve Bayes that
calculates the effectiveness of the feature using probabilities, is used. The results shown
in [Chen et al. 2009], indicate that CDM is best feature selection approach than IG.
Therefore, instead of using TFXIDF as feature selection method, CDM is used. The term
having CDM value less than defined threshold value is ignored. It has been observed that
fewer features are left for the computations, this simplifies and speedup the
classification task with accuracy. And the remaining terms are used to represent the
input unlabelled document; and to match the terms with domain specific ontology, to
determine the class of the unlabelled document.

116

Step 1: For each unlabelled document, remove stopwords, punctuations, special
symbols, and name entities from the document and represent document as “bag of
words”.
Step 2: For each term in the unlabelled document, calculate CDM for that term using
equation (4).

CDM(w) = |log P(w|Ci) – log P(w|Ci¯)| (4)
Where P(w|Ci) = probability that word w occurs if class value is i
 P(w|Ci¯) = probability that word w occurs when class value is not i
 i=1 to 7
Step 3: Term having CDM value less than threshold value is ignored. Remaining terms
are represented as input document, are used to determine the class of the document.
Step 4: Calculate the frequency of document terms matched with class ontology. Assign
class cricket to the unlabelled document, if frequency of matching terms with class
cricket ontology is maximum.
Step 5: If no match is found or a document shows same results for two or more classes
then that document is not classified into any class, and left for manual classification.

Input

ਰਾਜਵੰਤ ਿਸੰਘ ਹਾਕੀ ਜਗਤ ਦਾ ਉਹ ਹਸਤਾਖਰ ਹੈ, ਿਜਸ ਨ- ਿਬਨ/ ਿਕਸੇ ਸਰਕਾਰੀ
ਮਦਦ ਤ5 ਬਿਠੰਡਾ ਿਜ਼ਲ(ੇ 'ਚ ਹਾਕੀ (rājvant siṅgh hākī jagat dā uh
hastākhar hai, jis nē bināṃ kisē sarkārī madad tōṃ baṭhiṇḍā
zilhē 'c hākī)

Preprocessing
Phase

ਹਾਕੀ ਜਗਤ ਹਸਤਾਖਰ ਸਰਕਾਰੀ ਮਦਦ ਹਾਕੀ (hākī jagat hastākhar
sarkārī madad hākī)

Feature Extraction
(Naive Bayes)

ਹਾਕੀ ਹਾਕੀ (hākī hākī)

Output Class: ਹਾਕੀ (hākī), means input text belongs to class Hockey

TABLE 4- An example of Hybrid Based Classification

4.4 Performance Measure

In this phase, the performances of the each classifier is evaluated using standard
evaluation measures such as Precision, Recall, F-Score, Fallout, Macro averaged
Precision, Recall and F-score.

5. Results and Discussions

5.1 Dataset

The corpus used for Punjabi Text Classification contains 180 Punjabi text documents, 45
files are used as Training Data and rest of the files are used as Test Data. Training set
contains total 3313 words that are used to train the Punjabi Text Classifier based on
Naïve Bayes and Centroid Based Classification techniques. All the documents in the
corpus are sports related and taken from the Punjabi News Web Sources such as
likhari.org, jagbani.com, ajitweekly.com. Then, classify unlabelled documents into seven
classes: ਿਕ�ਕਟ (krikaṭ), ਹਾਕੀ (hākī), ਕਬ�ਡੀ (kabḍḍī), ਫੁਟਬਾਲ (phuṭbāl), ਟੈਿਨਸ (ṭainis),
ਬੈਡਿਮੰਟਨ (baiḍmiṇṭan), ਓਲੰਿਪਕ (ōlmpik). The system has been implemented using C#.net
platform. The stopword list that is prepared manually for the classification task contains
2319 words.

117

The data structures used for Punjabi Text Classification are files and arrays. Stopwords
list, gazetteer lists and sports specific ontology is stored in text file. During the
implementation, these lists are stored in arrays to access the contents fast, otherwise,
accessing contents directly from the files increase computational time. Even training set
documents and test set document are also stored into files. Test Set contains 154
documents that are distributed among seven classes as shown in figure 1.

FIGURE 1- Distribution of test set documents

5.2 Screenshot of the system

For classification of Punjabi Text Documents, the dataset of 180 documents are arranged
in four sets: Set 1, Set 2, Set 3 and Set 4. Each set contains 40 documents on average.
Figure 2 shows main page of the classification system that consists two menu bar items
“HELP” and “ABOUT US”. In this, there are two buttons “BROWSE” and “APPLY”.

“BROWSE” button is used for browsing Punjabi Text Documents that is to be classified.
“APPLY” button is used to implement classification algorithm chosen from
“COMBOBOX”. “COMBOBOX” consists of following items:

1. Ontology Based Classification
2. Naïve Bayes Classification
3. Centroid Based Classification
4. Hybrid Approach

0

5

10

15

20

25

30

35

40

No. of Documents in each class

118

FIGURE 2- Punjabi Text Classifier System

Figure 2 shows the system takes 8 secs 04 ms to classify 42 Punjabi Text Documents. It
also gives information about number of stopwords removed and number of words that
are left after preprocessing phase.

5.3 Experimental Results

5.3.1 Experiment 1

In experiment 1, F-score for each class is calculated for each classifier using equation (5)

F-Score = (2*Precision*Recall)/ (Precision + Recall)

Precision = (docs correctly classified in class Ci)/ (total docs retrieved in class Ci)

Recall = (docs correctly classified in class Ci)/ (total relevant docs in test set that belong
to class Ci)

 Badminton Cricket Football Hockey Kabaddi

Ontology

Based

Classification

0.84 0.89 0.89 0.81 0.88

Hybrid 0.83 0.91 0.88 0.84 0.8

the system takes 8 secs 04 ms to classify 42 Punjabi Text Documents. It
also gives information about number of stopwords removed and number of words that

score for each class is calculated for each classifier using equation (5)

 (5)

Precision = (docs correctly classified in class Ci)/ (total docs retrieved in class Ci)

correctly classified in class Ci)/ (total relevant docs in test set that belong

Kabaddi Olympic Tennis

0.82 0.8

0.82 0.88

119

Classification

Centroid

Based

Classification

0.64 0.85 0.8 0.64 0.67 0.56 0.81

Naïve Bayes

Classification

0.87 0.77 0.46 0.63 0.42 0.55 0.75

TABLE 5- F-Score of each class using different classification techniques

5.3.2 Experiment 2

In Experiment 2, comparison between classifiers is done, based on non-relevant
documents retrieved by each classifier from the total non-relevant documents in the
collection as shown in figure 4.

The results show that only 2% from the retrieved documents are non-relevant if
Ontology based and Hybrid approach is used to classify the Punjabi Text Documents.
Where, in case of Centroid based classifier and Naïve Bayes, 5% and 6% from the
retrieved documents are irrelevant, respectively.

FIGURE 3- Fallout results of each classifier

5.3.3 Experiment 3

The experiment 3 shows the average value of Precision, Recall and F1 for each classifier.
From table 6, it can be observed that in comparison with others classifiers, Ontology
Based Classification has better averaged Precision (89%) and Recall (85%).

0

0.02

0.04

0.06

0.08

Ontology Based

Classification

Hybrid

Classification

Centroid Based

Classification

Naïve Bayes

Classification

F
a

ll
o

u
t

Classification Algorithms

Comparison of Fallout

Fallout

120

 Ontology Based

Classification

Hybrid

Classification

Centroid Based

Classification

Naïve Bayes

Classification

Macro-averaged

Precision

0.89 0.88 0.73 0.77

Macro-averaged

Recall

0.85 0.84 0.76 0.66

TABLE 6- Macro-averaged Precision and Recall of each classifier

Conclusions

• As of our knowledge, it is first time that we have proposed and implemented two
new algorithms for classification of Punjabi documents as previously no other
Punjabi document classifier is available in the world.

• Two new algorithms proposed by us are Ontology Based Classification and Hybrid
Approach (which is the combination of Naïve Bayes and Ontology Based
Classification) for Punjabi documents classification.

• The experimental results conclude that Ontology Based Classification and Hybrid
Classification provide better results in comparison to standard classification
algorithms Naïve Bayes and Centroid Based for Punjabi documents.

• It is for the first time that sports specific ontology for Punjabi has been developed
manually by us, as no such ontology was previously available and it can be beneficial
for developing other NLP applications in Punjabi.

• An in depth analysis of Punjabi Corpus is done to prepare gazetteer lists such as
middle names, last names, abbreviations, numbers/counting etc. and language
dependent rules for Punjabi NER.

References

ALI, ABBAS RAZA AND IJAZ MALIHA (2009). Urdu Text Classification. In: FIT '09
Proceedings of the 7th International Conference on Frontiers of Information
Technology, ACM New York, USA. ISBN: 978-1-60558-642-7 DOI=
10.1145/1838002.1838025.

CHEN JINGNIAN, HUANG HOUKUAN, TIAN SHENGFENG AND QU YOULI (2009).
Feature selection for text classification with Naïve Bayes. In: Expert Systems with
Applications: An International Journal, Volume 36 Issue 3, Elsevier.

CHEN LIFEI, YE YANFANG AND JIANG QINGSHAN (2008). A New Centroid-Based
Classifier for Text Categorization. In: Proceedings of IEEE 22nd International
Conference on Advanced Information Networking and Applications, DOI=
10.1109/WAINA.2008.12.

CHEN NAWEI AND BLOSTEIN DOROTHEA (2006). A survey of document image
classification: problem statement, classifier architecture and performance evaluation. In
Springer-Verlag, DOI=10.1007/s10032-006-0020-2.

121

HAN JIAWEI AND KAMBER MICHELIN (2006). Data Mining: Concepts and
Techniques. Morgan Kaufmann Publishers, 2nd edition, USA, 70-181.

JAYASHREE, R. (2011). An analysis of sentence level text classification for the Kannada
language. In: Proceedings of IEEE International Conference of Soft Computing and
Pattern Recognition (SoCPaR), 147-151, DOI=10.1109/SoCPaR.2011.6089130.

MANSUR MUNIRUL, UZZAMAN NAUSHAD AND KHAN MUMIT. Analysis of N-Gram
Based Text Categorization for Bangla in a Newspaper Corpus. Center for Research on
Bangla Language Processing, BRAC University, Dhaka, Bangladesh.

McCALLUM, A. AND NIGAM, K. (1998). A comparison of event models for naive Bayes
text classification. In: AAAI-98 workshop on learning for text categorization. 41-48.
Technical Report WS-98-05. AAAI Press.

MOHANTY, S., SANTI, P.K., MISHRA RAJNEETA, MOHAPATRA, R.N. AND SWAIN
SABYASACHI . Semantic Based Text Classification Using WordNets: Indian Language
Perspective. In: Proceedings of 3rd International Global Wordnet Conference (GWC
06), 321-324, DOI=10.1.1.134.866.

MURTHY, KAVI NARAYANA (2003). Automatic Categorization of Telugu News
Articles. In: Department of Computer and Information Sciences, University of
Hyderabad, Hyderabad, DOI= 202.41.85.68.

PUNJABI LANGUAGE (2012). In: http://en.wikipedia.org/wiki/Punjabi_language.

PUNJABI NEWS CORPUS

RAJAN, K., RAMALINGAM, V., GANESAN, M., PALANIVEL, S. AND PALANIAPPAN,
B. (2009). Automatic Classification of Tamil documents using Vector Space Model and
Artificial Neural Network. In: Expert Systems with Applications, Elsevier, Volume 36
Issue 8, DOI= 10.1016/j.eswa.2009.02.010.

SUN AIXIN AND LIM Ee-PENG (2001). Hierarchical Text Classification and Evaluation.
In: Proceedings of the 2001 IEEE International Conference on Data Mining(ICDM
2001), Pages 521-528, California, USA, November 2001.

VERMA, RAJESH KUMAR AND LEHAL, GURPREET SINGH. Gurmukhi-Roman
Transliterator GTrans version 1.0, http://www.learnpunjabi.org/gtrans/index.asp.

WANG, YANBO J., COENEN FRANS AND SANDERSON ROBERT (2009). A Hybrid
Statistical Data Pre-processing Approach for Language-Independent Text Classification.
In: Proceedings of ADMA 5th International Conference on Advanced Data Mining and
Applications. 338-349, DOI=10.1.1.157.6558.

WU GUOSHI AND LIU KAIPING (2009). Research on Text Classification Algorithm by
Combining Statistical and Ontology Methods. In: International Conference on
Computational Intelligence and Software Engineering, IEEE. DOI=
10.1109/CISE.2009.5363406.

122

Proceedings of the 3rd Workshop on South and Southeast Asian Natural Language Processing (SANLP), pages 123–134,
COLING 2012, Mumbai, December 2012.

 1

	
	

Using	 English	 Acoustic	 Models	 for	 Hindi	 Automatic	 Speech	
Recognition	

Anik DEY1 Ying Li1 Pascale FUNG1
(1) Human Language Technology Center

Department of Engineering and Computer Engineering
The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
adey@ust.hk, eewing@ust.hk, pascale@ee.ust.hk

ABSTRACT

Bilingual speakers of Hindi and English often mix English and Hindi together in their everyday
conversations. This motivates us to build a mix language Hindi-English recognizer. For this
purpose, we need well-trained English and Hindi recognizers. For training our English recognizer
we have at our disposal many hours of annotated English speech data. For Hindi, however, we
have very limited resources. Therefore, in this paper we are proposing methods for rapid
development of a Hindi speech recognizer using (i) trained English acoustic models to replace
Hindi acoustic models; and (ii) adapting Hindi acoustic models from English acoustic models
using Maximum Likelihood Linear Regression. We propose using data-driven methods for both
substitution and adaptation. Our proposed recognizer has an accuracy of 96% for recognizing
isolated Hindi words.

KEYWORDS : English, Hindi, Recognizer, Maximum Likelihood Linear Regression, Adaptation,
Substituiton, Data-driven

123

 2

1. INTRODUCTION
Hindi is one of the most widely spoken languages in the world. It is the major language of India
and linguistically speaking, in its everyday spoken form, it is identical to Urdu, the major
language spoken in Pakistan. Approximately 405 million people speak Hindi and Urdu
worldwide (Sil, 1999). This makes research on Hindi automatic speech recognition systems very
interesting due to the high utility of the languages. Hindi is written left to right in a script called
Devangari, which we will discuss more in detail in section 1.1.

The last two decades have a seen a gradual progression in the development and fine tuning of
automatic speech recognition systems. A few commercial automatic speech recognition (ASR)
systems in Hindi have been in use for the last couple of years. The most prevalent ASR systems
among them are IBM Via voice and Microsoft SAPI.

In (Kumar and Agarwal, 2011) we see a Hindi ASR being tested and evaluated on a small
vocabulary for isolated word recognition. Other recognition systems we have seen so far have
been tailor made for certain domains. The Centre for Development of Advanced Computing has
developed a speaker independent Hindi ASR which makes use of the Julius recognition engine
(Mathur et al., 2010). We have also seen significant work to deal with different accents of Hindi
in (Malhotra and Khosla, 2008).

So far the most comprehensive Hindi ASR system we have come across is from the IBM
Research Laboratory of India. They have developed a Hindi ASR where the acoustic models are
trained with training data that is composed of 40 hours of audio data, and their language model
has been trained with 3 million words. The IBM Research group has also worked on large-
vocabulary continuous Hindi speech recognition in (Neti, Rajput and Verma, 2004).

However, significant research work has not been done to build a mixed language Hindi-English
recognizer. To build such a recognizer we face a low-resource problem, because annotated Hindi
speech data is very sparse. Hence, we propose to use well-trained English acoustic models to
represent Hindi acoustic models for Hindi speech recognition. In this paper, we have discussed
the MLRR adaptation technique, which we have used to map English to Hindi acoustic models
using a data-driven approach, in Section 3. We have evaluated the performance of our Hindi ASR
system in Section 4.

2. THE DEVANGARI SCRIPT
The Devangari script employed by Hindi contains both vowels and consonants just like in
English. However, in contrast to English, Hindi is a highly phonetic language. This means that
the pronunciation of any word can be very accurately predicted from the written form of the
word.

In comparison with English, Hindi has half as many vowels and twice as many consonants. This
usually leads to pronunciation problems. This problem is also encountered while modelling of
Hindi phones using English phones is performed. This is because some phones in Hindi may not

124

 3

be present in English at all. For this reason, we propose the data-driven approach. As a result of
this approach we can approximate the English phone/s that is most closely matched to such a
Hindi phone. The result of this approach is elaborated in the following sections.

In Hindi, consonants can be classified depending on which place within the mouth that they are
pronounced.

To pronounce -

• Velar consonants: the back of the tongue touches the soft palate.

• Palatal consonants: the tongue touches the hard palate.

• Retroflex consonants: the tongue is curled slightly backward and touches the front
portion of the hard palate. There are no retroflex consonants in English.

• Dental consonants: the tip of the tongue touches the back of the upper front teeth.

• Labial consonants: lips are used.

The consonants can also be classified according to their manner of articulation, as shown in Table
1 (Shapiro, 2008).

• Unvoiced consonants are when the vocal cords are not vibrated during their
pronounciation.

• Voiced consonants are when the vocal cords are vibrated during pronounciation.

• Unaspirated consonants are when consonants are pronounced without a breath of air
following the pronounciations. Example in English: “p” in “spit.

• Aspirated consonants are when a strong breath of air follows the consonant. Example in
English: “p” in “pit”.

• Nasal consonants are pronounced when some air flows through the nose during
pronounciation.

The vowels in Hindi are ordered in similar ways, as shown in Table 2 (Shapiro, 2008)

The manner of articulation of vowels can be classified into two particular categories:

• Short vowels are articulated for a comparatively shorter duration of time.

• Long vowels are articulated for a comparatively longer duration of time.

Monophthongs are vowels pronounced as a single sound, whereas diphthongs are vowels
pronounced as a syllable comprising of two adjacent sounds glided together.

125

 4

STOPS

UNVOICED VOICED

Unaspirated Aspirated Unaspirated Aspirated

NASALS

Velar क ख ग घ ङ

Palatal च छ ज झ ञ

Retroflex ट ठ ड (ड़) ढ (ढ़) ण

Dental त थ द ध न

Labial प फ (फ़) ब भ म

Table 1: Hindi Consonants

ARTICULATION VOWELS

 MONOPHTHONGS DIPHTHONGS

 SHORT LONG

Guttural अ आ

Palatal इ ई

Labial उ ऊ

Retroflex ऋ -

Palato-Guttural ए ऐ

Labio-Guttural ओ औ

Table 2 : Hindi Vowels

126

 5

The main difference between vowel pairs in Hindi (such as इ ई) is the vowel length.
इ is pronounced like “i” in “bit” whereas ई is pronounced like “ee” in “feet”, and उ is
pronounced like “u” in “put” whereas ऊ is pronounced like “oo” in “boot”.

The final consonants in the Devanagari script are organized into three categories:
semivowels/approximants (य र ल व), sibilants (श ष स), and a glottal (ह).

Table 1 and Table 2 shows an in-depth categorization of Hindi alphabets. Since the distinction
between manners of articulation is more prominent than from where within the mouth the
alphabet is pronounced, we chose to classify the Hindi consonants into two classes, nasals and
other consonants and Hindi vowels into two classes, monophthongs and diphthongs.

The distinction between voiced and unvoiced consonants is not as prominent as the difference
between nasals and all other consonants, hence we chose to keep all voiced and unvoiced
consonants within the same class.

For obtaining the phonetic transcription of English, we are using Arpabet where every English
phoneme is represented by one or two capital letters.

In Arpabet, English vowels are classified into three classes : monophthongs, diphthongs and R-
colored vowels (The CMU Pronounciation Dictionary, 2007).

Consonants are classified into 6 classes : stops, affricates, fricatives, nasals, liquids and
semivowels (The CMU Pronounciation Dictionary, 2007).

By comparing English phonemes with Hindi alphabets, we notice that both languages have nasal
consonants and monophthongs and diphthongs vowels. Hence we are also classifying the English
phonemes into 4 classes : monophthongs (M), diphthongs (D), nasals (N) and all other
consonants (C).

In English Arpabet we have an extra vowel which is neither a monophthong nor a diphthong.
This extra vowel, ER, we label into a separate class V.

3. DATA DRIVEN PHONE MAPPING
One of the first steps to map Hindi phones to English phones is to obtain English phoneme
transcriptions of Hindi characters. As an intermediate step all the Hindi characters can be
transliterated to English using Google Transliteration which uses the International Alphabet of
Sanskrit Transliteration (IAST) scheme.

One can use the English recognizer in free form to search through Hindi speech to obtain English
phonemes to represent each Hindi characters.

This method yields very poor results when the Hindi acoustic data is limited, and is comparable
to randomly searching the Hindi data with an English recognizer with no constraints.

127

 6

This free form phoneme network of the recognizer allows every phoneme to be followed by
every other phoneme including itself just as shown in figure 1.

$phone = all consonants and vowels
(sil <$phone> sil)

Figure 1: Free Form phonetic network

To improve English-phoneme labeling of Hindi speech, we propose to use the linguistic
knowledge of Hindi and English as discussed in section 2 to classify all Hindi syllables and
English phonemes into four different classes based on their articulation properties.

The four classes we selected are monophthongs (class M), dipthongs (class D), nasals (class N)
and consonants (class C).

Each Hindi syllable and English phoneme is labeled to be one of these classes. The classification
is shown in table on page.

By using linguistic knowledge of Hindi, we then modify our recognizer into a constrained form
network where one phone from one class of the target language, Hindi, is mapped to one phone
from the same class of the source language, English.

$phone = class M or class D or class N or class C
(sil <$phone> sil)

Figure 2: Constrained Form phonetic network

For adaptation, we have made use of the Maximum Likelihood Linear Regression (MLRR)
technique which is a popular Expectation-Maximisation technique used for speech adaptations.

MLRR adaptation is performed to minimize the mismatch between the English acoustic models
and the Hindi acoustic data which is used as the adaptation data. MLLR will compute a set of
transformations which will alter the means and variances of Gaussian mixture HMM English
acoustic models so that each state of the HMM model is more likely to generate the Hindi
adaptation data.

The transformation matrix used to give a new estimate of the adapted mean is given by

µˆ = W ξ,

where W is the n × (n + 1) transformation matrix (where n is the dimensionality of the data) and ξ
is the extended mean vector,

ξ=[wµ1µ2 ...µn]T

where w represents a bias offset whose value is fixed (within HTK, the Hidden Markov Model
Toolkit) at 1.

Hence W can be decomposed into

W=[bA]

where A represents a n × n transformation matrix and b represents a bias vector.

128

 7

After adaptation we can use the Hindi-English phonème mapping (shown in table on page) to
construct a pronunciation dictionary for Hindi syllables. Adding linguistic knowledge to enhance
the recognizer improves the Hindi ASR.

4. EXPERIMENT
We collected 1 hour of Hindi acoustic data from 9 native Hindi speakers. We asked each speaker
a set of questions regarding their university life, likes, dislikes, hobbies and about their career
ambitions.

The complete set of Hindi data collected was divided into development and test sets. The test set
of data consists of 50 Hindi phrases from one of the 9 speakers. The development set consists of
45 minutes of Hindi acoustic data from 8 different speakers.

After collecting the data, we hired a native speaker of Hindi to transcribe the data for us. Most of
the speakers used both English and Hindi while answering the questions on the questionairre.
Hence, the transcribed data was a mix of English and Hindi written using the Devangari script.

We used the Carnegie Mellon University (CMU) Pronouncing Dictionary to obtain the phone
level transcriptions of all English words in the above transcription. The CMU dictionary uses a
phoneme set that consists of 39 phonemes. Each phoneme is represented by one or two capital
ASCII letters (ARPAbet).

For all the words written using the Devangari script, we made use of Google’s Phonetic Typing
service to obtain phone level transcription for all Hindi words. The list of phone level
transcription for each Hindi alphabet is shown in table 3 on page 10.

After obtaining the transcriptions, we labelled each phoneme in the transcriptions as one of the 4
classes, discussed in section 3.

For training the English acoustic models 65 hours of native English speech was used, which was
kindly shared to us by the guys at the Wall Street Journal.

Using adaptation by reconstruction, we can now obtain the mapping of Hindi phonemes to
English. This is shown in table 4 on page 11.

By using English acoustic models, the recognition accuracy to recognize Hindi phrases in the test
set, discussed above, is 96%.

CONCLUSION AND DISCUSSION

In this paper, we have proposed steps to rapidly develop a Hindi speech recognizer: (1) by
substituting Hindi acoustic models with trained English acoustic models; and (2) by adapting
these models using MLRR. We have shown how data-driven methods and linguistic knowledge
can be used to map English phonemes to Hindi syllables. With the pronunciation dictionary we
constructed we can easily find the phone level transcriptions of any new Hindi word given in
written form.

129

 8

Given a small set of training data, our proposed Hindi constrained-form recognizer has shown
promising results. However, there is a lot of room for improvements. Provided that we can collect
more Hindi acoustic data, to increase the size of training data drastically, we will be able to better
model the Hindi syllables with more than one phoneme transcription.

We also plant to further study multilingual speech recognition since Hindi and English are
spoken together by virtually all bilingual speakers of English and Hindi. Also we think better
modeling is needed for Hindi phonetic units that do not exist in English.

We are collecting more Hindi acoustic data every month and fine-tuning our Hindi acoustic
models. We hope that this can enhance our Hindi acoustic models and improve recognition
accuracy.

We are also exploring asymmetric acoustic modelling using selective decision tree merging
between a bilingual model and an accented embedded speech model for Hindi and English
multilingual speech recognition since this method has shown to improve recognition results for
mixed language speech consisting of English and Chinese (Ying et al., 2011). For English and
Chinese this method works because English phrases are generally pronounced by a Chinese
speaker with varying degrees of accent. The same is true for English and Hindi.

Acknowledgments
We will like to thank Abhilash Veeragouni of IIT Bombay for helping us collect and transcribe
Hindi acoustic data which we used as training and test data for our experiments.

130

 9

References
K. Kumar and R. K. Agarwal (2011). Hindi Speech Recognition System Using HTK. International Journal
of Computing and Business Research, Vol. 2, No. 2, 2011, ISSN (On- line): 2229-6166.

R. Mathur, Babita and A. Kansal (2010). Domain Specific Speaker Independent Continuous Speech
Recognition Using Julius. ASCNT 2010.

K. Malhotra and A. Khosla (2008). Automatic Identification of Gender & Accent in Spoken Hindi
Utterances with Re- gional Indian Accents. IEEE Spoken Language Tech- nology Workshop, Goa, 15-19
December 2008, pp. 309- 312.

C. Neti, N. Rajput and A. Verma (2004). A Large Vocabulary Continuous Speech Recognition System for
Hindi. IBM Research and Development Journal, September 2004.

L. Ying, P. Fung, P. Xu, Y. Liu (2011). Asymmetric Acoustic Modeling of Mixed Language Speech.
ICASSP 2011.

Michael C. Shapiro (2008). A Primer of Modern Standard Hindi. Motilal Banarsidass Publishers Private
Limited, 2008 Reprint

Carnegie Mellon University (2007). The CMU Pronounciation Dictionary. <
http://www.speech.cs.cmu.edu/cgi-bin/cmudict > (visited 23, October, 2012)

H. Sil (1999). Ethnologue: Languages of the World. < http://www.ethnologue.com/web.asp > (visited 23,
October, 2012)

131

 10

APPENDIX

अ A

आ Ā

इ I

ई Ī

उ U

ऊ Ū

ऋ R ̥

ए Ē

ऐ Ai

ओ Ō

औ Au

क Ka

ख Kha

ग Ga

घ Gha

च Ca

छ Cha

ज Ja

झ Jha

ञ Ña

ट Ṭa

ठ Ṭha

ड Ḍa

ढ Ḍha

ण Ṇa

त Ta

थ Tha

द Da

ध Dha

न Na

प Pa

फ Pha

ब Ba

भ Bha

म Ma

य Ya

र Ra

ल La

व Va

श Śa

ष Ṣa

स Sa

ह Ha

Table 3: IAST Transliteration of Hindi alphabets

132

 11

kh k

ai ey

ch t

au ow ey

gh l

th l

ph f

bh l r

jh d

a ah

c t

b b

e ih

d v

g l

i iy

h l

k k

j d

m m

l l

o ah

n n

p p

s s

r d

u ah

t t

v l

y hh

Table 4: Hindi to English Phoneme Mapping

133

Proceedings of the 3rd Workshop on South and Southeast Asian Natural Language Processing (SANLP), pages 135–144,
COLING 2012, Mumbai, December 2012.

Tagger Voting for Urdu

Bushra Jawaid Ondřej Bojar
Charles University in Prague, Faculty of Mathematics and Physics

Institute of Formal and Applied Linguistics
Malostranské nám. 25, Praha 1, CZ-118 00, Czech Republic

{jawaid,bojar}@ufal.mff.cuni.cz

Abstract
In this paper, we focus on improving part-of-speech (POS) tagging for Urdu by using exist-
ing tools and data for the language. In our experiments, we use Humayoun’s morphological
analyzer, the POS tagging module of an Urdu Shallow Parser and our own SVM Tool tag-
ger trained on CRULP manually annotated data. We convert the output of the taggers
to a common format and more importantly unify their tagsets. On an independent test
set, our tagger outperforms the other tools by far. We gain some further improvement
by implementing a voting strategy that allows us to consider not only our tagger but also
include suggestions by the other tools. The final tagger reaches the accuracy of 87.98%.

Keywords: Urdu language, Parts-of-speech tagging, Tagger voting, Tagset unification.

135

1 Introduction
Urdu belongs to the Indo-Aryan language family, a subclass of the Indo-European lan-
guages. Urdu is the official language of Pakistan and one of the 23 official languages
(including English) spoken in India. It is the native language of at least 65.6 million
speakers with another 40 million or more who speak it as a second language1.

Urdu has borrowed its writing script from Persian, which is a modified form of the Arabic
script, the Urdu script is thus called Perso-Arabic. Urdu is written from right to left
with numbers written from left to right. The morphology of Urdu is similar to other
Indo-European languages, e.g. by having concatenative inflective morphological system.

Urdu is a low-resource language with respect to even the core processing tasks like POS tag-
ging or morphological analysis. Existing taggers for Urdu do not reach sufficient coverage
and accuracy.

In this paper, we demonstrate how an ensemble of available tools and data can be joined to
achieve a better performance. First, we convert the output of the existing morphological
tools to a common representation and more importantly, we unify the different tagsets.
Second, we train and evaluate a new tagger on the available annotated data (in our unified
tagset) and finally, we implement and evaluate a “voting” scheme that combines the outputs
of all available taggers.

2 Resources for Urdu morphology
In this section we briefly list existing morphological tools and POS tagged data for Urdu.

Apart from the available works, there are also some relevant research papers: Anwar et al.
(2007a) developed POS tagger for Urdu based on Hidded Markov Models (HMM). They
tried to combine several smoothing techniques with HMM model to reduce data sparseness
problem. They achieved maximum of 96% accuracy using Good Turing smoothing method
when trained on a 70K-token corpus by (Hardie, 2003). The size of the test data is not
mentioned.

Anwar et al. (2007b) improve a simple unigram and bigram tagger for unknown and am-
biguous words by considering word endings.

2.1 Tools
To the best of our knowledge, only two morphological analyzers for Urdu are freely avail-
able: Hussain (2004) and Humayoun (2006). The former is an implementation of a finite-
state transducer whereas later is based on a functional morphology toolkit for morphol-
ogy development in Haskell (Forsberg and Ranta, 2004). Because the tool published by
Hussain (2004) requires Windows and its word coverage is rather low, we use only the tool
by Humayoun (2006) and call it HUM analyzer in the following.

Language Technologies Research Center of IIIT Hyderabad has developed a shallow parser
for Urdu2 (called SH parser in the following) which analyses Urdu at various levels: tok-
enization, morphological analysis, POS tagging, chunking, etc. Our main interest is to get
the morphologically disambiguated output, which can be extracted from the final output

1http://en.wikipedia.org/wiki/Urdu
2http://ltrc.iiit.ac.in/showfile.php?filename=downloads/shallow_parser.php

136

represented in Shakti Standard Format (SSF)3. Detailed description of SSF and a brief
overview of tagset is available online4.

2.2 Data
Besides the tools mentioned above, there is a freely available POS tagged corpus developed
by CRULP (Center for Research in Urdu Language Processing)5. The underlying tagset is
also available online6. The actual text of the corpus is a translation of portion of the Wall
Street Journal’s section of the Penn Treebank. We use this data to train our tagger, see
Section 4.

Sajjad and Schmid (2009) manually tagged 110K tokens from a news corpus
(www.jang.com.pk) but their data is not freely available7. In addition to 110K tokens,
they also tagged 8K tokens8 from BBC News (www.bbc.co.uk/urdu/) and made it freely
available online9. Sajjad and Schmid (2009) have designed their own tagset10. that is
purely syntactic in nature, we call this tagset Sajjad’s tagset.

Note that Sajjad’s tagset is more coarse-grained than the one used by CRULP. For instance,
Sajjad tags proper noun by PN whereas CRULP distinguishes between the first proper noun
in a multi-word name (NNP) and the following ones (NNPC - Proper Noun Continued).
For instance, “Saudia Arabia” is tagged as “Saudia|NNP Arabia|NNPC” in CRULP data.

Table 1 summarizes the data we use in our experiments. We see that 1315 of the test
tokens (about 15% of the test set) are never seen in the training data.

Train (CRULP) Test (Sajjad) Total
Sentences 4320 404 4724
Tokens 123843 8670 132513
Out-of-vocabulary – 1315 –

Table 1: Statistics of our training and test data.

3 Format and tagset unification
Due to the low coverage of existing morphological tools for Urdu, it is hard to get an entire
corpus tagged with a reasonable accuracy using any of the available linguistic tools alone.
To join the forces of the CRULP tagged data and the two analyzers, we need to unify their
formats and tagsets.

3.1 Conversion of CRULP’s data and output of tools to a common
format

The first step in the conversion is a technical mapping of the file formats to a common one.
3SSF is a highly readable representation for storing language analysis.
4http://ltrc.iiit.ac.in/analyzer/urdu/shallow-parser-urd-3.0.fc8/doc/ssf-guide-4oct07.pdf
5http://www.crulp.org/software/ling_resources/UrduNepaliEnglishParallelCorpus.htm
6http://www.crulp.org/Downloads/ling_resources/parallelcorpus/Urdu%20POS%20Tagset.pdf
7They have used this data for training the taggers in their experiments.
8Small dataset is used for taggers evaluation in their work, we also use it for same purpose.
9http://www.ims.uni-stuttgart.de/~sajjad/resources.html

10http://www.cle.org.pk/Downloads/langproc/UrduPOStagger/UrduPOStagset.pdf

137

Table 2 illustrates the common format of the morphological analysis of word “cloths” by
both tools. Starting from right, each position in a token represents: word, lemma and
tag, separated by the “|” symbol. HUM analyzer, in most cases, provides an ambiguous
morphological analysis for the word. All the possible tags are joined using the “-” sign.
Each predicted tag has also a simple internal structure (reading left to right): the main
part of speech is followed by revelant morphological features. The tag and morphological
features are delimited with the “+” symbol.
We also convert the CRULP annotated data from the original format “<CD>�QWDا” to
“CD|�QWDا”.

HUM Analyzer SH Parser
Output N+NF+Pl+Nom+Masc|اyOD|ےyOD

N+NF+Sg+Voc+Masc-
N+NF+Sg+Obl+Masc-

NN+n+m+pl++|اyOD|ےyOD

Table 2: The output of HUM Analyzer and SH Parser converted to the common format.

3.2 Unification of tagsets
The second step is the tagset unification. We selected Sajjad’s tagset as the target one
because it fits our long-term goal of improving English-Urdu phrase-based translation. We
manually map each of the tagsets (CRULP data, HUM analyzer and SH parser outputs)
to the Sajjad’s tagset. The mapping is shown in Table 3.

The symbol “—” indicates that there is no tag in the given tagset that would correspond
to the Sajjad’s one. In some cases, the Sajjad’s tagset is less detailed and we map several
tags to a single one, e.g. RB and I in CRULP tagset map to ADV.
When designing the mapping rules, we considered available documentation and also data
tagged with the tagset.

3.3 Mapping HUM analyzer and SH parser outputs
Before mapping test set tagged by HUM analyzer and SH parser on Sajjad’s tagset, we
drop all the morphological information and preserve only the set of proposed POS tags.
A sample test sentence tagged by HUM analyzer and SH parser is shown in Table 4. Again,
“|” delimits words from their tags. The mapping to Sajjad’s tagset can again introduce
ambiguity. We delimit ambiguous tags with “-”.

4 Our tagger
Giménez and Màrquez (2004) introduced and made publicly available a multi-purpose
tagger called SVM Tool. SVM Tool performed better than state-of-the-art taggers and
Sajjad and Schmid (2009) confirmed this for Urdu.
We follow up on this work and train SVM Tool on CRULP manually tagged data (Sec-
tion 2.2). SVM Tool offers five different kind of models for training a learner. We use
‘model 4’ with tagging direction from right-to-left. Model 4 boosts identification of un-
kown words during the learning time by artificially marking some of the words as unknown

138

Sajjad’s Tagset CRULP HUM Analyzer SH Parser
A JJRP PostP, Part PSP

AA AUXA — VAUX
AD — RelPron2 DEM

ADJ JJ Adj, Adj1, Adj2, Adj3, AdjD JJ, XC
ADV RB, I Adv RB, INTF, NST
AKP — InterPron1, InterPron2, Inter-

Pron3
—

AP — RelPron2 NST
CA CD Num QC, ECH
CC CC Conj CC

DATE DATE — —
EXP SYM — SYM
FR FR — —
G PRP$ PossPron PRP

GR PRRFP$ — PRP
I ITRP Part RP

INT INJ Intjunc JJ
KD — InterPron WQ

KER KER PossPostPos PSP
KP — InterPron WQ

MUL MUL Verb, Verb1 VM
NEG NEG Neg NEG
NN NN, NNCM, NNC, NNCR,

MOPE, MOPO, NNL
N NN, XC

OR OD RelPron2, N QO
P CM PossPostPos —

PD DM DemPron PRP
PM PM — SYM
PN NNP, NNPC PN NNP, XC
PP PR PersPron, RelPron1 DEM
Q Q IndefPron1, IndefPron2, Rel-

Pron2, IndefPron, RelPron3
QF

QW QW Quest WQ
RD DMRL RelPron —

REP PRRL RelPron PRP
RP PRRF RefPron PRP
SC SC Conj CC
SE SE, RBRP PostP PSP
SM SM — SYM
TA AUXT — VAUX
U U — —

UNK UNK UNK, Verb3, Verb_Aux UNK
VB VB, VBL, VBI, VBLI, VBT Verb, Verb1, Verb2 VM

WALA WALA — —

Table 3: Tagset mapping of Humayoun Morphological Analyzer, Urdu Shallow Parser and
CRULP tagset to a common Sajjad’s tagset.

words. This feature enhances the capabilities of the learning model and makes it more
realistic and refine. Sajjad and Schmid (2009) used the similar model in their work.

Remember that we want to evaluate our tagger using Sajjad’s tagset and the mapping
described in Section 3.2. This gives rise to two approaches: either we could train the
tagger on CRULP manually tagged data and map its output to Sajjad’s tagset afterwards,
or we could map the training data from CRULP to Sajjad’s tagset and train the tagger
on this modified training data. We opted for the latter approach, because a deterministic
mapping after a statistical classifier in general increases the risk of error cumulation.

We measure the accuracy of the tagger as the percentage of correctly tagged tokens of all
the tokens in the Sajjad’s test set, see Section 2.2.

With default settings, our SVM Tool tagger achieves the accuracy of only 63.71%. After

HUM Before Mapping UNK|ـ Verb_Aux|kg3 Verb|ا�J Verb1|kKy2 N|n@kd6 Num|N|تk: UNK|�7
HUM After Mapping UNK|ـUNK|kg3VB-MUL|ا�JVB-MUL|kKy2NN-OR|n@kd6NN-OR-CA|تk:UNK|�7
SH Before Mapping SYM|ـ VAux|kg3 VAUX|ا�J VM|kKy2 NN|n@kd6 ECH|تk: QC|�7
SH After Mapping SM-PM-EXP|ـAA-TA|kg3AA-TA|ا�JVB-MUL|kKy2NN|n@kd6CA|تk:CA|�7

Table 4: Mapping HUM Analyzer and SH Parser outputs to the Sajjad’s tagset

139

analyzing the output, we found a few types of errors caused by ambiguous mappings, i.e.
when a tag X in CRULP tagset maps to tags Y and Z in Sajjad’s tagset. To reduce the risk
of wrong or ambiguous mappings, we modified training data prior to training the tagger
as follows:

1. We initially mapped PR (Pronoun) to PP (Personal Pronoun) and KP (Kaf Pronoun)
and DM (Demonstratives) to PD (Personal Demonstratives) and KD (Kaf Demon-
stratives). This mapping introduced substantial ambiguities in the training data
apparently due to the large number of occurrences of pronouns and demonstratives.
To overcome this problem, PM and DM mappings to the Sajjad’s tags KP and KD,
respectively are removed from the mapping table and we introduce them directly to
the training data. All words starting with the the character ”ك“ (Kaf) get the tag
KP (Kaf pronoun) if they were annotated as PR in the CRULP original annotation
and the tag KD (Kaf demonstrative) if the original annotation was DM.

2. In the training data, the word “�:” is annotated with the tag “CM” if it is used as a
semantic marker. However, in Sajjad’s tagset, a special tag “SE” should be used for
the word, if it has the characteristics of a semantic marker. To avoid the ambiguous
mapping of CM to SE and P (the tag used for marking other semantic markers in
Sajjad’s tagset) for this word, we remove the mapping CM→SE from the table and
apply it to the training data directly: if “�:” is annotated with CM, it gets the
Sajjad’s tag SE.

3. Negation markers “�ifH” and “�H” are annotated using RB (Adverb) in the training
data. However, in Sajjad’s tagset, “NEG” is used to annotate negation markers.
Again, we remove the general mapping of RB to NEG and mark these negation
markers as NEG explicitly.

Table 5 lists our gradual improvement of accuracy. The column “MOD” shows the accuracy
after the above refinement of ambiguous tags, 20% absolute higher than the baseline. On
top of that, we created a list of some closed-class words with a fixed tag. The words in
the list receive the tag from the list, not from the mapping. Similarly hard-coded list is
later added for cardinals, reaching the the accuracy to 85.75%. The “Best” tagger uses all
the previous modifications and also adds new features for SVM tool: the prefixes of 1 and
2 characters for the current token, the suffixes of 1, 2, 3 and 4 characters of the current
token and also the bigram and trigram of preceding word forms and preceding tags. We
use only the “Best” tagger in the following experiments.

Baseline MOD CCW CD Best
Accuracy 63.71% 84.48% 85.40% 85.75% 86.18%

Table 5: Gradual improvements of the baseline tagger: modified training data (MOD), closed-
class words (CCW), cardinals (CD), and two new features for the SVM Tool (Best)

In Table 6 we have shown the output of our best accuracy tagger with the reference sentence
from the test set.

140

Tagger output SM|ـ VB|�J NN|�Mذ ADJ|درج NN|�iY_3 P|�D REP||6
Reference SM|ـ VB|�J NN|�Mذ NN|درج NN|�iY_3 P|�D REP||6

Table 6: Test set sentence tagged by the best accuracy SVM Tool tagger.

5 Tagger voting
In this section, we evaluate the individual performance of each of the taggers11. Then we
describe our voting strategy, the resolution of cases where more than one tag get the same
score in the voting, and also evaluate the examined configurations of tagger voting.

5.1 Performance of individual taggers
Due to the unavailability of a hand-tagged data using original tagset of each tagger, we
originally wanted to measure the accuracy after mapping the output of the taggers on
Sajjad’s tagset. The mapping can however lead to ambiguity, e.g. the tag PRP by SH
parser corresponds to G, GR, PD, REP or RP in Sajjad’s tagset, see Table 3. To avoid
the need of manual disambiguation of these cases, we collapse all such ambiguities to a
common tag for the purposes of this section. The resulting ‘coarse tagset’ is much less
informative than all other ones and would not be very useful in practice. It has only 15
tags instead of the 40 in Sajjad’s tagset and lumps e.g. nouns, proper nouns, adjectives
and adverbs into one tag, AD-PP-AP-Q-OR-NN-PN-ADJ-INT-ADV.

We map Sajjad’s test set and the output of the taggers to the coarse tagset and calculate
the accuracy of each of the taggers, see Table 7. HUM analyzer and SH parser sometimes
tag a word as unknown (UNK). We see that unknown words amount to one third of the
test set for HUM analyzer. Our SVM tagger performs best, reaching 97%. Remember
though, that the accuracies in Table 7 are based on the very coarse tagset and they are
not comparable with accuracies reported in other tables.

HUM Analyzer SH Parser SVM Tagger
Accuracy (Coarse Tagset) 45.49% 81.51% 97.02%
UNK Tokens 2898 (33.4%) 233 (2.68%) 0 (0%)

Table 7: Taggers accuracies and UNK (unknown) tokens count as observed on Sajjad’s test set
using a comparable but very coarse-grained tagset.

5.2 Voting
As shown in Table 7, the accuracy of the HUM analyzer and SH parser appears to be
surprisingly low even in the coarse tagset. Still, we believe these tools could contribute
and propose a simple voting scheme to merge the suggestions from all the three taggers.

Our voting strategy implements the conventional voting style: each tagger has the power of
1 vote. If the tagger emits more than one tags for a token, this one vote is split uniformly
(except SVM tagger, see below) among all the suggested tags. Votes for the unknown tag
(UNK) are discarded and the tag that receives the highest sum of votes is selected. In case
of a voting conflict, i.e. two or more tags receive the same score, we keep them all and

11We call HUM analyzer, SH parser and our tagger based on SVM Tool simply “taggers” in the following.

141

resolve the ambiguity later in Section 5.3. Table 8 illustrates a test sentence before and
after voting. Tags in bold are the winners of the voting.

HUM A. UNK|ـ UNK|kg3 UNK|اy2VB-MUL|kQFا I-A|�J PP|kWM و KER-P|kD PP|�WM و UNK|كx4
SH P. AA-TA|اy2 VB-MUL|kQFا I|�J NN|kWM و A-KER-SE|kD NN|�WM و NN-PN-ADJ|كx4

SM-PM-EXP|ـ AA-TA|kg3
SVM T. SM|ـ VB|kg3 VB|اy2 PN|kQFا I|�J ADV|kWM و P|kD ADJ|�WM و NN|كx4

After Voting SM|ـ VB|kg3 VB|اy2 PN-MUL-VB|kQFا I|�J ADV-PP|kWM و P|kD PP-ADJ|�WM و NN|كx4

Table 8: Output of HUM analyzer, SH parser and SVM tagger before and after voting.

By default, SVM tagger returns its single-best suggestion and always has the power of 1
vote, taking precedence over the other tools too often. To facilitate a smoother merge,
we also consider taking more than just the single-best scoring tag from SVM based on its
internal probabilities assigned to individual tag options. Taking all the options would not
work either, because SVM returns on average more than 5 candidates which would make
its votes to these tags too weak.

We thus resort to a fixed number (one, two or three) of considered tags from SVM tagger
and we normalize probabilities of these tags to sum to 1, the total power of SVM’s vote.

We apply one more hack to tackle the unreliability of SH parser when tagging nouns.
Whenever the SH parser proposes NN among the set of suggested tags, we cut its vote for
NN by half. An example of this is in Table 8 where the word kWM و received only the tags
ADV-PP, despite SH parser was suggesting unambiguous NN.

5.3 Resolving outstanding ambiguities
As seen in Table 8, the word kMدہ“ ”ز had more tags reaching the highest score. We use two
approaches to resolve such remaining ambiguities: either we use a static preference list, or
a list based on the overall frequency of the tags in the training. Of the ambiguous tags, we
pick the one that appears highest in the given list.

Table 9 illustrates the sentence from Table 8 with preference-based or frequency-based
resolution as well as the reference annotation.

Preference-based SM|ـ VB|kg3 VB|اy2 VB|kQFا I|�J ADV|kWM و P|kD ADJ|�WM و NN|كx4
Frequency-based SM|ـ VB|kg3 VB|اy2 VB|kQFا I|�J PP|kWM و P|kD ADJ|�WM و NN|كx4

Reference SM|ـ TA|kg3 VB|اy2 ADJ|kQFا I|�J ADV|kWM و P|kD ADV|�WM و NN|كx4

Table 9: Voted sentence from Table 8 after applying different fall back options.

5.4 Evaluation
We establish SVM tagger’s (individual) accuracy as the baseline for our voting experiments.
Table 10 provides the results. SVM-Tag-1, 2, and 3 are our voting setups where we used
the top 1, 2, or 3 options from SVM before normalizing their probabilities to sum to the
one vote of SVM. The final ambiguity resolution strategy is indicated in the column label.

142

“Voted Only” means that the ambiguous final output is produced, which has no chance to
score well in comparison with the fully disambiguated test set.

A preliminary analysis of SVM Tag-2 and 3 voted output revealed that we make errors
in cases where SVM tagger predicts only one tag (so this tag gets the vote of 1) but it
is still not selected because it is considered less probable by the remaining two taggers.
For such cases, i.e. when SVM had the chance to express its uncertainty but still decided
unambiguously, we give it a preference. As indicated in the lines labeled “SVM Preferred
If Sure”, this gives again a little improvement.

Voted Only Voted & Static
Fall Back

Voted & Freq.
Based Fall Back

Baseline – 86.18%
SVM Tag-1 – 85.15% 86.93% 86.85%

SVM Tag-2 Default 86.48% 87.72% 87.64%
SVM Preferred If Sure 87.65% 87.76% 87.72%

SVM Tag-3 Default 86.66% 87.94% 87.84%
SVM Preferred If Sure 87.84% 87.98% 87.68%

Table 10: Accuracy of test corpus after Voting and applying fall back option.

6 Conclusions and future work
This paper investigated available data and tools for Urdu POS tagging. We unified their
respective tagsets and trained our own tagger on the available training data. A comparison
on an independent test set documented that our tagger clearly outperforms the other tools.

Additionally, we devised a simple voting scheme and obtained improvement by considering
the suggestions of other taggers. The combined tagger reaches the accuracy of 87.98%.

In future, we would like to refine the voting strategy, making it more context-dependent,
e.g. by adding one more custom tagger trained to pick the best tag. Also, we are aware
that the current ensemble of taggers is somewhat impractical: three taggers have to be
run and the final answer is available only after their voting. We plan to run this complex
ensemble on a large monolingual corpus and use this data to train a single, standalone
tagger. We also plan to release the standalone tagger.

As a separate future goal, we would like to add back the detailed morphological information
we are now stripping off.

Acknowledgments
We thank Hassan Sajjad for discussions on characterstics of different taggers and also,
Muhammad Humayoun for helpling us with the addition of extra lexicon in his tool, which
unfortunately we couldn’t add due to time constraints and manual labour involved in it.

This work has been using language resources developed and/or stored and/or distributed
by the LINDAT-Clarin project of the Ministry of Education of the Czech Republic (project
LM2010013) and it was also partially supported by the grant P406/10/P259 of the Czech
Science Foundation.

143

References
Anwar, W., Wang, X., Lu-Li, and Wang, X.-l. (2007a). Hidden markov model based part

of speech tagger for urdu. pages 1190–1198.

Anwar, W., Wang, X., Lu-Li, and Wang, X.-l. (2007b). Morphological ending – based
strategies of unknown word estimation for statistical pos urdu tagger. pages 167–173.

Forsberg, M. and Ranta, A. (2004). Functional morphology. In Proceedings of the Ninth
ACM SIGPLAN International Conference on Functional Programming, pages 213–223.
ACM Press.

Giménez, J. and Màrquez, L. (2004). Svmtool: A general pos tagger generator based on
support vector machines. In Proceedings of the 4th LREC, Lisbon, Portugal.

Hardie, A. (2003). Developing a tagset for automated part-of-speech tagging in urdu.
Department of Linguistics, Lancaster University.

Humayoun, M. (2006). Urdu morphology, orthography and lexicon extraction. In Master’s
Thesis. Department of Computing Science, Chalmers University of Technology.

Hussain, S. (2004). Finite-state morphological analyzer for urdu. In Master’s Thesis.
National University of Computer & Emerging Sciences.

Sajjad, H. and Schmid, H. (2009). Tagging urdu text with parts of speech: a tagger
comparison. In Proceedings of the 12th Conference of the European Chapter of the
Association for Computational Linguistics, EACL ’09, pages 692–700, Stroudsburg, PA,
USA. Association for Computational Linguistics.

144

Proceedings of the 3rd Workshop on South and Southeast Asian Natural Language Processing (SANLP), pages 145–152,
COLING 2012, Mumbai, December 2012.

BIS Annotation Standards With Reference to Konkani
Language

Edna Vaz 1, Shantaram V. Walawalikar2, Dr.Jyoti Pawar3, Dr.Madhavi Sardesai4
(1) Goa University, Taleigao-Goa.

edna.vaz22@gmail.com,goembab@hotmail.com,jyotidpawar@gmail.com,
madhavikonkani@gmail.com

ABSTRACT

The Bureau of Indian Standards (BIS) Part Of Speech (POS) tagset has been prepared for the
Indian Languages by the POS Tag Standardization Committee of Department of Information
Technology (DIT), New Delhi, India. The BIS POS tagset aims to ensure standardization in the
POS tagging of all the Indian Languages. It has been used for POS tagging in the Indian
Languages Corpora Initiative (ILCI) project which has developed parallel annotated corpora
consisting of 25000 sentences each from the tourism and the health domain for 11 Indian
Languages.

In this paper we present some challenges encountered while using the BIS POS tagset for
Konkani, a morphologically rich Indian Language, along with the possible solutions to overcome
these challenges.

KEYWORDS: Part Of Speech Tagging, POS, Department of Information Technology, DIT,
Bureau of Indian Standards tagset, BIS tagset, Indian Languages Corpora Initiative, ILCI,
Konkani, Natural Language Processing, NLP.

145

1. Introduction

Annotated text corpora are a basic and a very useful resource for researchers in Natural Language
Processing (NLP) for developing various language technologies. The annotation of corpora is
done using a set of tags defined for this purpose. The BIS tagset is a set of tags evolved by the
POS Tag Standardization committee appointed by the DIT to standardize and streamline the
process of POS tagging in Indian languages.

A need for standard tagset along with guidelines for using it arose because a lot of researchers
were working independently following the tags of their own choice to mark the POS within and
across languages. This affected the reusability of the tagged data amongst researchers. Hence, in
order to facilitate interoperability an exercise was made to have a consensus on the style and
characteristics of POS tagging, so as to arrive at a common standard for tagging in Indian
Languages. This led to the standardized BIS tagset for POS tagging for Indian Languages.
Several meetings of experts in the field were held to decide on the tagset and all groups engaged
in research in NLP were given standard guidelines for annotation. This paper aims at shedding
light on the peculiarities of the Konkani language that have posed challenges in tagging corpora
using the standard BIS tagset. The paper is organized as follows – section 2 briefly introduces the
BIS tagset and the Konkani Language and the challenges encountered while tagging using the
BIS POS tagset for Konkani are presented in section 3 which is followed by section on
conclusion and future work.

2. BIS tagset and Konkani Language

The BIS POS tagset is prepared keeping in view the comments of experts in the area of NLP and
Language Technology (LT) for Indian languages. This tagset is an important step taken by DIT to
ensure that NLP practitioners involved in tagging follow a common tagset while tagging various
corpora. The tagset initially consisted of 38 tags. These tags were then modified after taking
inputs from linguists, computer scientists and language experts. More details of the BIS tagset
can be found in Chaudhary, 2010. The BIS tagset is a commendable effort. But the process of
tagging was, at times, quite challenging as it was different from the conventional style of tagging
(for example, the case of marking adverbs of place and location as NSTs (locative nouns) .

Konkani is an Indo-European (Indo-Aryan) language evolved from Sanskrit. It is a
morphologically rich Indian language (Almeida, 1989). It is one of the twenty two languages
included in the Eighth Schedule of the Indian Constitution. It is spoken by the people of the state
of Goa, in some parts of Maharashtra, Karnataka and in some pockets of Kerala. It is influenced
and enriched by various other languages like Marathi, Kannada, Malayalam, Hindi, Arabic,
Persian, Portuguese and English. It is the official language of Goa with Devanagari as the
officially recognized script. It is also written in Roman, Kannada, and Malayalam scripts
(Walawalikar, et.al. 2010).

2.1 BIS POS tagset for Konkani

The BIS tagset was used for tagging the Konkani ILCI corpus consisting of a total of 50000
sentences (730330 tokens). The main objective of the ILCI project was to develop standard
quality parallel annotated corpora for 11 Indian languages including English language to promote
NLP research for Indian Languages (Chaudhary, 2010).

146

The following is the tagset for Konkani prepared in line with the BIS tagset.

SI Category Label Annotation
Convention

 Top
Level

Subtype
(level1)

Subtype
(Level2)

 Hindi Konkani

1 Noun N N सं�ा नाम

1.1 Common NN N__NN जा�तवाचक

सं�ा

जातीवाचक

नाम

1.2 Proper NNP N__NNP �यि�तवाचक

सं�ा

�य�तीवाचक

नाम

1.3 Nloc NST N__NST देश-काल-

सापे� सं�ा

थळ-काळ-

सापे� नाम

2 Pronoun PR PR सव�नाम सव�नाम

2.1 Personal PRP PR__PRP पु�षवाचक

सव�नाम

पु�श

सव�नाम

2.2 Reflexive PRF PR__PRF �नजवाचक

सव�नाम

आ!मवाचक

सव�नाम

2.3 Relative PRL PR__PRL संबंधवाचक

सव�नाम

संबंद$

सव�नाम

2.4 Reciprocal PRC PR__PRC पार&प'रक

सव�नाम

एकमेक)

सव�नाम

2.5 Wh-word PRQ PR__PRQ *+नवाचक

सव�नाम

*&नाथ,

सव�नाम

2.6 Indefinite PRI PR_PRI अ�न+चीत

सव�नाम

3 Demonstrative DM DM संकेतवाची दश�क

3.1 Deictic DMD DM__DMD

3.2 Relative DMR DM__DMR संबंधवाचक

संकेतवाची

संबंद$ दश�क

3.3 Wh-word DMQ DM__DMQ *+नसूचक

संकेतवाची

*&नाथ,

दश�क

 Indefinite DMI DM_DMI अ�न+चीत

दश�क

147

4 Verb V V /0या /0यापद
4.1 Main VM V__VM मु1य /0या मुखेल

/0यापद
4.1.1 Finite VF V_VM_VF प'र3मत

/0या

पूण� /0यापद

4.1.2 Non-
finite

VNF V_VM_VNF अपूण�

/0यापद
4.1.3 Infinitive VINF V_VM_VINF अप'र3मत

/0या

सादारण �प

4.2 Gerund VNG V_VM_VNG /0यावाचक

सं�ा

/0यावाचक

नाम

4.4 Auxiliary VAUX

4.4.1 Finite V_VAUX_VF पालवी

/0या

पालवी पूण�

/0यापद
4.4.2 Non-Finite V_VAUX_VNF पालवी अपूण�

/0यापद

5 Adjective JJ 5वशेषण 5वशेशण

6 Adverb RB /0या5वशेषण /0या5वशेशण

7 Postposition PSP परसग� संबंद$

अ�यय

8 Conjunction CC CC योजक श8द जोड अ�यय

8.1 Co-ordinator CCD CC_CCD समाना:धकरण समानाधीकरण

जोड अ�यय

8.2 Subordinator CCS CC_CCS आ:;त आ;ीत जोड

अ�यय

9 Particles RP RP अ�यय अ�यय

9.1 Default RPD RP_RPD सामा<य सरभरस

अ�यय

9.2 Classifier CL RP_CL वग�क वग�क

9.3 Interjection INJ RP_INJ 5व&मया>द

बोधक

उमाळी

अ�यय

148

9.4 Intensifier INTF RP__INTF ती@ता-

बोधक

�त@कार$

अ�यय

9.5 Negation NEG RP__NEG नकारा!मक <हयकार$

अ�यय

10 Quantifiers QT QT सं1यावाची सं1यादश�क

10.1 General QTF QT__QTF सामा<य सामा<य

10.2 Cardinals QTC QT__QTC गणनावाची सं1यावाचक

10.3 Ordinals QTO QT__QTO 0मवाची 0मवाचक

11 Residuals RD RD अव3शBट हेर
11.1 Foreign

word
 RDF RD_RDF 5वदेशज 5वदेशी

11.2 Symbol SYM RD_SYM :चDन कू�

11.3 Punctuation PUNC RD_PUNC 5वरामकू�

11.4 Unknown UNK RD__UNK अ�ात अनवळखी
11.5 Echowords ECH RD__ECH *�तEव�न-

श8द

पडसाद$

उतरा ं
TABLE 1 – The BIS tagset for Konkani

3. Issues in tagging using the standardized BIS tagset

POS tagging is an ongoing process and we may need to modify the tagset to accommodate newer
findings, etc. Some tags have been modified whereas some are still being discussed. For example,
in the initial stages of BIS POS discussions, it was decided that names of cities, institutions,
organizations, people and months were to be tagged as Proper Nouns (NNP) whereas names of
medicines, diseases, flowers, animals and seasons were to be taken as Common Nouns (NN).
This decision was later refined. Blood Cancer (a specific type of a Cancer) was tagged as NNP
and Cancer (a general category of diseases) was tagged as NN. Decisions taken may have to be
modified and documenting these will help us trace the line of our path. So also this
documentation will help newcomers in this area to foresee problems which may arise in tagging
corpora using this tagset. It is important to remember that flexibility in the tagset is for the
purpose of refinement and accuracy in the tagging process and not for disclosing our earlier
‘inappropriate’ decisions. We know that words in a language have the capacity to function
differently when they appear in a sentence. For example, in रां>दFलG जेवण (rAMdilleM jevaNa)
‘cooked food’ , रां>दFलG functions as a modifier whereas रा>ंदFलG in हांवG दनपारां जेवण रां>दFलG
(hAveM danapArAM jevaNa rAMdilleM) (‘I had cooked food in the afternoon’) functions as a
verb. The present tagset is used to tag words according to their lexical rather than syntactic
function. The lacunae if any in this practice may come to light only when we move to higher
levels of NLP.

Some of the minor challenges arising from the usage of the proposed BIS tagset while POS
tagging the ILCI Corpora for Konkani language could be placed under the following main heads:

149

3.1 Word Sense Disambiguation Challenges
The hyphen is marked as punctuation in the BIS tagset, but in Konkani it conveys different
information on different occasions. In some cases, a pair of two words joined by a hyphen is a
compound word whereas in other cases it may be just a noun phrase. Various senses conveyed by
the hyphen need to be separated and structurally identified as specific compounds. This would
facilitate word sense disambiguation.
Examples:
• बरG-वायट bareM-vAyaT (‘good-bad’). In this example, the hyphen marks a pair of

antonyms. In isolation, the words in this pair function as adjectives whereas the pair as a
whole functions as a noun.
For example, in तG एक बरG चल$ teM eka bareM chalI (‘she is a good girl’), and तG एक वायट
चल$ teM eka vAyaT chalI (‘she is a bad girl’, बरG bareM ‘good’ and वायट vAyaT ‘bad’
both function as adjectives. However, in ताका बरG-वायट समजना tAkA bareM-vAyaT
samajanA (‘he does not know what is good and what is bad’ i.e. ‘he does not know his
good’), the pair बरG-वायट bareM-vAyaT functions as noun.

• The hyphen in the pair बायल-मनीस bAyal manIsa (‘woman-human’) marks a specifier-
specified relationship. In Konkani, मनीस manIsa ‘human being’ is a gender neutral term.
The following sentences illustrate this point:
1. तो एक बरो मनीस to ek baro manIs (‘he is a good human being’)
2. ती एक बर$ मनीस tI ek barI manIs (‘she is a good human being’)

We see that in both the above sentences मनीस ‘human being’ remains the same. However, the
term can be specified by other gender specific nouns such as दादलो dAdlo (masculine) ‘man’,
चल$ chalI (feminine/neuter) ‘girl/daughter’, बायल bAyl (feminine) ‘woman’ when it occurs in
compounds such as दादलो मनीस (‘man-human’), बायल मनीस (‘woman-human’), चल$ मनीस
(‘girl-human’). For example, in दादFया मनशाक तG कळचGना dAdlya manashAka teM
kaLacheMnA (‘a male human (i.e. a man) will not understand this’), dAdlo ‘man’ specifies the
masculine gender of मनीस manIsa ‘human being’. Thus the role of hyphen cannot be ignored in
the compounds of the above type.
• In भाट-बGस bhAT- beMsa (‘property-assets’), the hyphen is used to mark a ‘synonymic

compound’. Such an occurrence of a hyphen is very common in Konkani. For example,
भांगर-3शगंर, धन-दौलत etc. These synonymous pairs are mostly a combination of a native
and a foreign language word. For example, in भाट-बGस, the first word is a native word
whereas the second one is a word from Portuguese.

• The hyphen in /कताब-ए->हदं kitAba-e-hiMda (‘kitab-e-hind’) is used to highlight a foreign

title.

• The hyphen in 10-20 means ‘to’ (i.e. it conveys the inclusion of numerals from 10 to 20).
The hyphen does occur in other expressions containing numerals. However, it conveys a

different sense. For example in the Konkani sentence ताका मारपाक सात-आठ मनीस

आ3शFले (tAkA mArapAka sAta-ATh manIs Ashille) ‘to hit him seven-eight people were

there’ (i.e. ‘around seven to eight people were present to hit him’), the phrase सात-आठ is

joined by the hyphen. Here, the hyphen expresses a sense of ‘unsurety’ within the mind of
the speaker about number of people that were present before him.

150

• The phrase साड-ेसात sADe-sAta means ‘half past seven’. Such an usage of the hyphen can

be found in other temporal expressions such as in सवाय-आठ savAya-ATh (quarter past

eight), etc. It is the hyphen that helps to mark this phrase.

3.2 Punctuation
Marking an inverted comma as punctuation is misleading in some cases. For example, in ‘कॉKेंस
पाटL’ चो kA.Ngresa pArTI cha.o (‘of Congress Party’), चो is a suffix of the noun phrase
‘Congress Party’. This phrase is put in inverted commas as it is a foreign language phrase. Thus
marking inverted commas in such cases as punctuation is not proper.

3.3 Tagging of spatio-temporal adverbs as NST
All nouns in Konkani undergo oblique formation before they take a case suffix.
राम rAm becomes रामा rAmA before it takes any suffix like -क ka, -न na, -चो cho, etc. However,
the spatio-temporal adverbs take suffixes before undergoing oblique formation. E.g. भायर+लो
bhAyara + lo> भायलो bhAyalo ‘of outside’, सकयल +Mयान sakayala +chyAna > सकयFयान
sakayalyAna ‘from below’.
Moreover, these adverbs take only the above mentioned suffixes. Combinations like भायर +क
bhAyara +ka ‘to the one outside’ भायर +आंत bhAyara+AMta ‘in the one outside’ are not
permitted in the language. If these adverbs are tagged as nouns (NSTs) then they must be treated
as a special category of nouns.

3.4 Recognition of frozen expressions
Some expressions in language function in a certain way. खरG NहणFयार khareM mhaNalyAra
(Truly/Really speaking) खरG KhareM in Konkani means ‘truth’ whereas NहणFयार mhaNalyAra
means ‘having told’ which is a quotative.
However, when these two words come together, they always function like an adverb. Tagging
these words individually would serve no purpose. Some more examples in the same category are
listed below -
सांगपाचG NहणFयार sAMgapAcheM mhaNalyAra “Of-telling if told” means ‘actually’.
तशG पळेFयार tasheM paLayalyAra “that way if seen” also means ‘actually’.

3.5 Negation
One has to be careful in the treatment of negation in Konkani. Negation found in Hindi is not all
the same in Konkani. In Hindi, negation is mainly a syntactic process whereas in Konkani, it is a
morphological one. Examples illustrating this point are given below:
Hindi:

3.5.1 a नह$.ं मO नह$ ंआउंगा nahIM. maiM nahI AuMgA (‘No. I will not come’)

3.5.1 b नह$.ं हम नह$ ंआयGगे nahIM. hama nahIM AyeMge (‘No. We will not come’)
Konkani:

3.5.2 a ना. हांव येवंचो ना nA. hAMva yevaMcho nA (‘No. I will not come’)

3.5.2 b ना. आमी येवंच ेनात nA. AmI yevaMche nAt (‘No. We will not come’)

So also in Hindi, negation occurs at all places as a particle (in the sentences 3.5.1 a and 3.5.1 b),
whereas in Konkani the first word in 3.5.2 a and 3.5.2 b is a particle and the second one in 3.5.2b
is a finite verb.

151

Conclusion and Future Work

A fruitful comparison between languages (for example between different grammatical
categories) has been possible because of the BIS tagset. The tagset has helped in bringing to our
minds the differences existing between Indian Languages. For example, Konkani words marked
as NSTs (a subcategory of nouns) under the BIS tagset do not have an oblique form whereas
other subcategories of nouns in Konkani always have an oblique form. However, the tag NST
seems to work fairly well in other Indian languages.

Differences between languages which may pose challenges in Indian Language–Indian
Language translation can be predicted to a fair extent with this tagset. For example,
postpositions like Hindi का never occur separately in Konkani. One may be tempted to translate
राम का rAm kA (of Ram) as राम चो rAm -cho which actually should be रामाचो rAmAcho.

• solutions proposed for the issues faced:

The BIS tagset has no doubt prepared the ground for fruitful annotations. It is up to the experts of
each language to examine this tagset closely and suggest necessary refinements pertaining to
their language. It may not be possible to include new tags to handle current issues but we could
deal with them keeping the standardized tagset intact. We propose following suggestions to deal
with some of the above mentioned issues.

The hyphen sometimes functions as an integral part of compounds and phrases. Marking it as a
punctuation mark will mean ignoring the subtle information that it conveys in these occurrences.
We feel that the role of the hyphen has to be recognized as it would not only help in word sense
disambiguation (as in the case of बरG-वायट bareM-vAyaT ‘good-bad’) but also bring to light
certain peculiarities of Konkani (as in the case of भाट-बGस bhAT- beMsa ‘property-assets’ where
the synonymic compound is formed with a word from Portuguese).

Frozen expressions, for example can be marked with a special tag at POS level itself so that there
is no wastage of time in unnecessary work, later. For example, in खरG NहणFयार KhareM
mhaNalyAra ‘really/truly speaking’ tagging individual words would serve no purpose. Instead
the token ‘खरG NहणFयार’ could be marked as FE i.e. frozen expression. The appropriate category
(i.e. adverb) could be marked at the next level of NLP.

While recognizing the importance of standardization in the POS tagging of all the Indian
Languages, we also feel that we should be careful in not to lose on the grammatical peculiarities
of individual languages as it may have an adverse effect on the later stages of NLP.

References

Almeida, Matthew. (1989). A Description of Konkani. Miramar, Goa: Thomas Stephens
Konkani Center.

Chaudhary. Narayan et.al. (2010). ILCI Parts of Speech guidelines document.

Jawaharlal Nehru University.

Walawalikar et.al. (2010) Experiences in Building the Konkani Wordnet using the Expansion
Approach in Proceedings of the 5th Global Wordnet Conference.

152

Proceedings of the 3rd Workshop on South and Southeast Asian Natural Language Processing (SANLP), pages 153–162,
COLING 2012, Mumbai, December 2012.

Automatic Extraction of Compound Verbs from Bangla

Corpora

Sibansu Mukhopadhyay
1 Tirthankar Dasgupta

2
 Manjira Sinha

2
 Anupam Basu

2

(1) Society for Natural Language Technology Research, Kolkata 700091
(2) Indian Institute of Technology Kharagpur, Kharagpur 721302

{sibansu, iamtirthankar, manjira87, anupambas}@gmail.com

ABSTRACT

In this paper we present a rule-based technique for the automatic extraction of Bangla compound

verbs from raw text corpora. In our work we have (a) proposed rules through which a system

could automatically identify Bangla CVs from texts. These rules will be established on the basis

of syntactic interpretation of sentences, (b) we shall explain problems of CV identification

subject to the semantics and pragmatics of Bangla language, (c) finally, we have applied these

rules on two different Bangla corpuses to extract CVs. The extracted CVs were manually

evaluated by linguistic experts where our system and achieved an accuracy of around 70%.

KEYWORDS: COMPOUND VERBS, AUTOMATIC EXTRACTION, VECTOR VERBS

153

1 Introduction

Compound verbs (henceforth CV) are special type of complex predicates consisting of a

sequence of two or more verbs acting as a single verb and express a single expression of

meaning. However, not all verb sequences are considered as compound verbs. A compound verb

consists of a sequence of two verbs, V1 and V2 such that V1 is a common verb with /-e/ [non-

finite] inflection marker and V2 is a finite verb that indicates orientation or manner of the action

or process expressed by V1 (Dasgupta, 1977). The verb V1 is known as pole and V2 is called as

vector. For example, in the sentence রুটিগুলরো খেলে খপলরো (/ruTigulo kheYe phela/) “bread-plural-the

eat and drop-pres. Imp” “Eat the breads”, the verb sequence “kheYe phela” is an example of CV.

Identification of compound verbs from sentences is useful in many NLP applications including

Wordnet development, Information Retrieval, and Machine Translation. However, automatic

identification of compound verbs from a given text document is not a trivial task. As mentioned

in (Dasgupta, 1977), a sequence of two or more verbs does not always guarantees to be a

compound verb. Depending on the context a verb sequence may or may not act as CV. Thus,

automatic identification of compound verbs is extremely important and a challenging task.

This paper deals with the rule-based automatic identification of these types of Bangla CV,

where V1 is a pole and V2 is a vector. In our work (a) we shall propose rules through which a

system could automatically identify Bangla CVs from texts and these rules will be established on

the basis of syntactic interpretation of sentences, (b) we shall explain problems of CV

identification subject to the semantics and pragmatics of Bangla language, (c) finally we shall

make a statistical evaluation of our rules.

The rest of the paper is organized as follows: In section 2 we first perform the linguistic study

and the related concepts of the compound verb and different issues related to the automatic

extraction of CVs. Section 3 briefly discuss about the different related works done in this area.

Section 4 discuss about the different linguistic rules that can be applied to extract CVs from text

corpuses. Section 5 presents the experimentations, evaluations and results of our work.

2 Background

An important feature of CV is that the vector verb has no independent meaning. The Vector verb

only can affect/support the pole to express some certain pragmatic expression. Linguists call this

process of semantic nullification, process of grammaticalization. Considering the previous

example, if we have a CV like „খেলে খপলরো‟, we, or any native speaker of Bangla, must not

differentiate those two verbs to comprehend the meaning for the each. Bangla native speakers

have the sense that the combination „খেলে খপলরো‟ produces a common meaning which is almost but

not really same to the central meaning of the verb „েো‟ [khaa: „eat‟]. And the meaning of the 2
nd

verb, „খপল্‟ [phel: „drop‟] is being bleached out. This second or the vector verb is functionally

attached to the pole and grammatically subservient and both the two verbs produce a single

meaning.

This is true that each of the verbs of this phrase can be used as a pole or as an independent verb in

different contexts. Native speakers are pragmatically competent to understand the phrase duly

depending on the certain contexts. If one says in Bangla, “রুটিগুলরোয কলেকটো খেলে খপলর

দোও।” (/ruTigulor kaYekaTaa kheYe phele daao/), it means “Eat some of the breads and reject the

rest of breads.” The same combination of the root verbs, “েো” (eat) and “খপল্”, (drop) plays a

different role. The interesting thing can be pointed out that there is another one verb „দোও‟ is being

154

attached on the right side of the combination „খেলে খপলর‟ and the „খপলর‟ is containing an infinite

inflection /-e/. It means „খপলর‟ (phele) is no more playing role of a vector. There the combination

of CV is being shifted from „েো‟ (eat) and „খপর‟ (drop) to „খপল্‟ (drop) and „খদ‟ (give). The new CV

has a new vector „খদ‟ (give), which has lost its meaning. There about twenty two verbs are used as

vectors which support poles to describe its action in CVs.

2.1 Why Compound Verbs Occur?

Now a psycho-cognitive question arises. Why do the speakers intend to speak a half-hearted

semantically bliched out vector verb with a main verb, when she has an option to manage her

expression with a pole? We have to say that the poles always do nothing in such cases where

speakers need to realize specific genres of daily speech, though it is a question of natural

language survey. We have to consider some examples [(8) to (11)], where the poles cannot cover

up the specification necessary for the conversation.

(8) তুমভ মক কোর টোকোটো অভলরয োলে মদলে খলযল ো?

Expression: “Could you give the money to Amal yesterday?”

(9) তুমভ মক কোর টোকোটো অভলরয োলে মদলে উঠলে খলযল ো?

Expression: “Could you at last give the money to Amal yesterday? Or something like: “Had you

managed your time to give the money to Amal yesterday?”

(10) তুমভ কোজটো কলযল ো।

Expression: You have done the job.

(11) তুমভ কোজটো কলয খপলরল ো।

Expression: You have finished the job.

(8)-(9) and (10)-(11) are the pairs of sentences, where (9) and (11) have CVs, whereas (8) and

(10) have not. The expressions are indicating the differences between CV and non-CV. Some

verbs feel lonely. They cannot take the risks of such expressions, which go beyond the physical

property of the language. Hook (1974) shows that, a CV can tackle sometimes aspectual or modal

expressions in Hindi.

The speech act of vector can be discussed under the area of pragmatics. Ancient Indian tradition

of grammar proposed more than one way of understanding meaning of speech. According to such

Indian grammatical discourse, native speakers have the potential to under meaning depending on

some lakshans (indication) of the components. A word or a speech unit has this power of

concieving intended meaning (lakshana shakti). Vectors also have the power. Let us consider

again some examples below.

(12) অভর গোন গোইলরো।

“Amal sang song.”

(13) অভর গোন খগলে উঠলরো।

“Amal started to sing song.”

(14) অভর এভন ভে ঠোৎ গোন গোইলরো।

“At that time, suddenly Amal sang song.”

155

(15) অভর এভন ভে ঠোৎ গোন খগলে উঠলরো।

“At that time, suddenly Amal started to sing the song.”

(16) অভর কোর লযেলফরো জরোে গোন গোইলফ।

“Amal will sing song in a function tomorrow evening.”

(17) *অভর কোর লযেলফরো জরোে গোন খগলে উঠলফ।

“Amal will start to sing (suddenly) song in a function tomorrow evening.”

Now we need to focus on the above sentence (12) which is a simple sentence. Speaker states that

“Amal sang song”. Sentence (13) has a complex predicate /geYe uThalo/. Sentence like (13)

expresses that there is a reason for which Amal started to sing song. This sentence also deserves

sentential extension with such words like “emana samaYa haThat.h” (at that time suddenly) to

relate the reason for which Amal started to sing song [(15)]. Therefore, we see there is a question

of appropriateness we have to face regarding understanding the semantics of the vectors. As

“uThalo” refer to the sudden reason behind fact of Amal‟s singing in past, it cannot be appear in

future. That is why the sentence (17) is unacceptable to Bengali speakers. So CV is very specific

for its use in the social discourses.

2.2 Challenges in Automatic CV Extraction

Now allow us to turn to the question of identification. We have understood that a couple of verbs

(V1+V2) can be considered as a CV when the second verb helps to express some pragmatic

specification of the first verb (pole) and when the second verb has no independent meaning. We

recognize a CV as we have the pragmatic competence. But how do we refer that pragmatic sense

which is beyond the physical property? How does a machine understand that these compound

components are CV and these are not? After POS-tagger describes a sentence, how can a

machine annotate CV, as there are so many possibilities where more than one verb occurs

immediately in a syntagmatic order?

This paper tries to reveal such syntactic conditions for the identification of CV without applying

pragmatics. And we have targeted to fix certain properties for the CV that a system can easily

identify. This has to be said that these conditions will work well to a trained or supervised data

but not for the all. However, the easiest way to identify a CV is to mark the vectors in a language

first. Let us consider following non-semantic or non-pragmatic conditions to identify a CV in

Bangla:

(18) (a) Verb (V1) + verb (V2).

 (b) V1 ends with an inflection /-e/ (not –te of course).

 (c) V2 is a marked vector.

But these conditions (18) do not properly handle the situations. We have discussed little earlier

that all the verb plus verb is not CV. V1 with /-e/-ending is also a common form of infinitive in

Bangla. For example, consider (19).

(19) যমফ বোে খেলে ফরলফ।

/rabi bhaata kheYe balabe/

“Eating rice Rabi will say.”

“kheYe balabe” in this sentence (19) is not a CV, though there V1 ends with /-e/. And for

(18)/(c), this is said that the vectors, usually, are poles (normal verbs). This is very difficult to

156

identify a verb as a vector, if we do not have the idea of context or the information about its

position in a V+V sequence. If a machine understands that the second position in a V+V is for the

vectors and if such a vector, machine finds from the list it may identify that this V+V is a CV.

But, even in Bangla, there are many options, where a vector-listed verb plays a role of pole. In

those cases, V+V are to be sub-categorized as Pole + Pole, not as Pole + Vector. Table 1

describes a list of 16 vector verbs as proposed by (Paul, 2003).

Table 1: Bangla Vector Verb List

Sl.

No.

Vector

Verb

Transliterati

on

General

Meaning

Example

1 মো /yaa/ Go কোর খেলক বৃমি লে মোলে।

2 আস্ /aas.h/ Come ফহুমদন ধলয যমফ কোজ ক'খয আল ।

3 ড়্ /pa.D.h/ Fall যমফ আজ কোর কোর ঘুভ খেলক উলঠ

ের।

4 খপল্ /phel.h/ Drop যমফ কেোটো ফলর খপরর।

5 খদ /de/ Give যমফ মফস্কুটটো খেলরো নো খপলর মদলরো।

6 খন /ne/ Take যমফ েোেোেোমে োলেয কোজ ক'টো খলয

মনর।

7 ভর্ /mar.h/ Die তুমভ শ্যোভলরয জন্য মভলে খবলফ

ভযল ো।

8 ফস্ /bas.h/ Seat যমফ কলরয োভলন কেোটো ফলর

ফলরো।

9 উঠ্ /uTh.h/ Get up তুমভ মক খেোভোয ফোফোলক কেোটো ফলর

উঠলে োযলর?

10 তুর /tul/ Lift তুমভ মক ভোনুললক জোমগলে তুরলফ

বোফল ো?

11 োড়্ /chhaa.D.h/ Leave যমফ কোজটো কলয োেলরো।

12 যোখ্ /raakh.h/ Put down খভোয কোর কোর কোজ গুম লে

খযলেল ।

13 আন্ /aan.h/ Bring কোজটো প্রোে খল কলয এলনম ।

14 োঠো /paaThaa/ Send মেমন ফলর োঠিলেল ন।

3 Related works

Recent trends in computational linguistics revisit several old issues from hardcore linguistics or

traditional grammar. CV is one such issue, natural language scientists have the scope to use it in

the computational aspect and experiment through a large linguistic corpus. CV issues in Indian

language perspective have been reviewed by many Indian researchers, such as (Alsena, 1991;

Abbi, 1991, 1992; Gopalkrishnan and Abbi, 1992; Butt, 1993; Butt, 1995) with a special focus to

Hindi (Burton-Page, 1957; Hook, 1974), Urdu (Butt, 1995), Bangla (Sarkar, 1975; Paul, 2003,

2004, 2010), Kashmiri (Kaul, 1985) and Oriya (Mohanty, 1992, 2010).

Paul (2004) has attempted to work on a constraint-based and semantically-grounded account of

Bangla CV within the HPSG (Head-Driven Phrase Structure Grammar) framework (Paul, 2010).

An automatic extraction of Hindi CV was presented in (Chakrabarty et al., 2008). They analyses

157

the Hindi complex predicate system and provides scope of linguist test for identification of Hindi

CV. Chakrabarty and Paul, both have conceptualized vector and used an incomplete list of those

vectors. An automatic extraction of Bangla complex predicates have been performed by (Das

et.al, 2010). The system uses the vectors as proposed in the literature of (Paul, 2003). To the best

of our knowledge, this is the only attempt made to extract Bangla CV from the text corpuses.

4 Compound Verb Identification Grammar and Formal Rules

Apart from all and keeping (18) in our mind we can certify some more rules for the identification

of CV in Bangla. This section is basically an overall revisit of our entire dialogues. To identify a

CV we can follow the following condition:

(I) The common identification of a CV: Verb + Verb [V1 (+ /-e/) + V2 (-so many inflectional

endings according to the tense, aspect, modality and so on)].

(II) Noun + Verb combination is not a Compound Verb, it may be considered as Composite Verb

(For Example, োম খর, যোগ কযলরো, ঘুভ খর.)

(III) V1+V2 = CV and v2 has no meaning. V2 is grammatically subservient, i.e., v2 serves or

acts in a subordinate capacity and formally attached to the v1. On the other hand v1 is

grammatically central. (Hook, 1974; Dasgupta, 1977)

(IV) As V2 plays a role of an essentially subordinate of V1, it cannot even take a modifier.

(V) V1, i.e., a pole must not immediately be followed by a V2, i.e. a vector. For

example, কোজটো কলয(v1) তুমভ ঠিক খপরলফ(v2)। This implies possibilities of such following

combinations too:

N+P+N+V = CV

N+P+V+N = CV

(VI) CV collapses if there is an adverb in between V1 and V2. For example, *ফইটো লে (v1) েোেোেোমে

(adv) খপর (v2) ।

(VII) If there is a sequence like V+V+V, then first two verbs should be (normally) poles.

<v1+v2+v3 = pole + pole + vector>.

(VIII) Direct question to a vector is not allowed. Consider an example,

অভর গলেয ফইটো লে খপরলফ।

Amal story book-sing-the read (inf) drop-future

Amal will finish the story book.

 One cannot ask question to the vector of the combination, 'লে খপরলফ';

* অভর মক খপরলফ?

One must ask completely;

অভর মক লে খপরলফ?

158

This proves CV (V1 + V2) is a single entity and as V2 is subservient, it cannot take a question

directly.

(IX) Bangla CV does not allow double negation like English

5 Experimentation and Results

Based on the CV extraction technique discussed in the earlier section, we try to identify Bangla

CVs from the Rabindra-Rachanabali
1

and Bankim Rachanabali
2

 corpus. The Rabindra-

Rachanabali corpus has a collection of 176000 Bangla sentences and the Bankim-Rachanabali

corpus has a collection of 34000 sentences. These sentences were POS (part of Speech) tagged

using the Bangla POS tagger
3
. From the POS tagged corpus, we have identified all possible

sentences containing multiple verbs. We consider the verb + verb combinations within these

sentences, as potential CVs. Altogether 26500 sentences containing the potential CVs are

identified from the corpus (see Table 1).

Table 1: Corpus Statistics

Total No. of Sentence in Corpus 2,10,000

Total Number of V+V sequence 26500

Total No. of CV Annotated

Sentence

6500

Total No. of CVs (identified

manually)

895

Table 2: Results of the Compound Verb Extraction Module

 Before POS

Modification

After POS

Modification

No. of V+V correctly identified as CV by the

system (True Positive)

313 427

No. of V+V correctly identified as Not-CV by the

system (True Negative)

197 197

No. of V+V falsely identified as CV by the system

(False Positive)

201 160

No. of V+V falsely identified as non-CV by the

system (False Negative)

184 111

Precision (%) 61 72

Recall (%) 63 79

F-Measure (%) 62 75

Accuracy (%) 57 70

Out of these 26500 Bangla sentences, we have manually annotated 6500 sentences using a

Linguist. We then applied the CV extraction rules, mentioned in the previous section. The

extracted CVs are then compared with the manually evaluated gold standard data. The summary

of the results obtained are depicted in table 2.

1 www.rabindra-rachanabali.nltr.org
2 www.bankim-rachanabali.nltr.org
3 www.nltr.org/downloades/

159

The result from table 2 implies that, we have a precision of around 61% and a recall value of

63%. The F-measure is coming out to be 62% whereas the overall accuracy of the system comes

to be 57%.

The results of table 2 imply that a lot of anomalous verb sequences have been incorrectly

identified as CV by the present system. A close observation over the result reveals some

interesting findings that may play some crucial role during the extraction of Bangla CV. Our

result shows that, whenever a pole is attached with a suffix “-te” the V1+V2 sequence does not

belongs to the CV group irrespective of whether V2 belongs to the pre-defined list of vectors.

Thus, we have incorporated an additional rule on the system that checks whether a pole verb

contains a suffix “-te” along with its vector counterpart. We further observe that, the loss in

precision was also caused due to high error in POS tagging. We identified around 30% of errors

are generated due to incorrect POS tags. Thus, when measures were taken to eliminate these

errors we reached an accuracy of around 70%.

Further, we perform the analysis for each of the individual vector verbs. The result shows that

not all vector verbs are equally responsible to form compound verbs. It has been observed that in

most of the cases, vector verbs like, ত োলো, তেড়োন ো, and মরো have a higher tendency of forming

compound verbs as compared to vectors like, আসো, থোকো and তেখো. Figure 1 presents the graph

that shows the percentage of cases for which different vectors form the compound verb structure.

Figure 1: The role of different vector verbs in CV formation

We further classify the vector verbs according to their frequencies. Depending on the frequency,

we categorize the list of vectors into the following four different classes:

 Class-I: Frequently occurring vectors with high precision like, ফো and উঠা.

 Class-II: Less frequent vectors with high precision like, ফ াা and ফেড়ান া.

 Class-III: Frequently occurring vectors with low precision like, য়াওযা and আসা

 Class-IV: Less frequent vectors with low precision like, আ া and রাখা.

We have considered the low frequency vectors to be those for which the frequency is below the

average frequency. We observe that, the vectors belonging to class-III are very frequent but have

160

a very low probability of being a CV. Similar effects have been found for vectors belonging to

class-IV. We also observed that low frequency vectors have a higher tendency to construct the

CV where as high frequency words do not tend to construct CVs.

Conclusion

In the present work we try to automatically extract the Bangla Compound verbs from the literary

documents belonging to Rabindra Rachanabali and Bankim Rachanabali. These corpuses have

been chosen because of the varied type of text contents. In order to extract the CV we have used

the vector verb list as provided by (Paul, 2003). We observe that vector verbs cannot identify the

occurrence of compound verbs alone. There are several other features responsible for a verb +

verb combination to be a CV. We also saw that, frequencies as well as the type of a vector are

very much responsible in order to classify a V+V combination as CV.

In the next stage of our work, we will try to enhance the existing model of CV identification and

try to apply the information content measures to identify the degree of compositionality of a

given CV.

Acknowledgement

We thank Prof. Probal Dasgupta for providing us useful linguistic insight about the problem and

Society for Natural Language Technology Research Kolkata for providing us with the Bangla

corpus and partially sponsoring us to conduct the research work.

References

Abbi, Anvita. 1991. Semantics of Explicator Compound Verbs. In South Asian Languages,

Language Sciences, 13(2): 161-180.

Alsina, Alex. 1996. Complex Predicates: Structure and Theory. Center for the Study of Language

and Information Publications, Stanford, CA.

Butt, Miriam. 1995. The Structure of Complex Predicates in Urdu. Doctoral Dissertation,

Stanford University.

Burton-Page, John. 1957. Compound and conjunct verbs in Hindi. Bulletin of the School of

Oriental and African Studies, 19: 469-78.

Chakrabarti, Debasri, Mandalia Hemang, Priya Ritwik, Sarma Vaijayanthi, Bhattacharyya

Pushpak. 2008. Hindi Compound Verbs and their Automatic Extraction. International

Conference on Computational Linguistics –2008, pp. 27-30.

Das, D., Pal, S., Mondal, T., Chakraborty, T., Bandyopadhyay, S., “Automatic Extraction of

Complex Predicates in Bengali”, Proceedings of the Multiword Expressions: From Theory to

Applications (MWE 2010), pages 37–45, Beijing, August 2010

Dasgupta, Probal. 1977. The internal grammar of Bangla compound verbs. Indian Linguistics

38:2.68-85.

Hook, Peter. 1974. The Compound Verbs in Hindi. The Michigan Series in South and South-east

Asian Language and Linguistics. The University of Michigan.

161

Kaul, Vijay Kumar. 1985. The Compound Verb in Kashmiri. Unpublished Ph.D. dissertation.

Kurukshetra University.

Mohanty, Panchanan. 2010. WordNets for Indian Languages: Some Issues. Global WordNet

Conference-2010, pp. 57-64.

Mohanty, Gopabandhu. 1992. The Compound Verbs in Oriya. Ph. D. dissertation, Deccan

College Post-Graduate and Research Institute, Pune.

Paul, Soma. 2010. Representing Compound Verbs in Indo WordNet. Golbal Wordnet

Conference- 2010, pp. 84-91.

Paul, Soma. 2004. An HPSG Account of Bangla Compound Verbs with LKB Implementation.

Ph.D dissertation, University of Hyderabad, Hyderabad.

Paul, Soma. 2003. Composition of Compound Verbs in Bangla. Multi-Verb constructions.

Trondheim Summer School.

Sarkar, Pabitra. 1975. Aspects of Compound Verbs in Bengali. Unpublished M.A. dissertation,

Chicago University.

162

Proceedings of the 3rd Workshop on South and Southeast Asian Natural Language Processing (SANLP), pages 163–172,
COLING 2012, Mumbai, December 2012.

Influences of particles on Vietnamese tonal
Co-articulation

Thị Lan NGUYỄN
1 Đỗ Đạt TRẦN

1

(1) International Research MICA, 1 Dai Co Viet, Hanoi, VIETNAM

thi-lan.nguyen@mica.edu.vn, Do-Dat.Tran@mica.edu.vn

ABSTRACT

In continuous speech, the pitch contour exhibits variable patterns and it is strongly influenced by

its tone context. Although several effective models have been proposed to improve the accuracy

for tonal syllables, the quality of Vietnamese synthesis system is poor by lack of lexical

parameters corresponding to each syllable in modelling of fundamental frequency. This problem

will be clarified by our experiment in this study.

This paper presents our study on tonal co-articulation of particles which are frequently used in

Vietnamese language. The obtained results show that tonal co-articulation phenomenon always

takes place at the transition between two adjacent syllables, the progressive co-articulation is the

basic tonal co-articulation and there is an influence of the function of particles on form of F0

contour of Vietnamese tones.

KEYWORDS : tonal co-articulation; Vietnamese tones; F0 generation ; lexical category; particles

163

1 Introduction

Vietnamese is a monosyllabic and tonal language. Each Vietnamese character corresponds to a
syllable which is associated with a lexical tone. Syllables with different tone have different
meanings, so the tone plays an important role in distinguishing lexical meaning for a family of
syllables. As is well known, for a tonal language, like Vietnamese, Chinese (Mandarin or
Cantonese) or Thai, fundamental frequency (F0) contours of utterances are always composed of
tonal local features (tones and the co-articulation between adjacent tones) and the sentential
intonation (corresponding to higher-level structures). This makes F0 variations of sentence more
complicated than non-tonal languages such as English or French.

Recently, Vietnamese has been the subject of much linguistic research. Most of studies have
concentrated on analyzing the characteristics of isolated word [2][3] or some on tonal features
[1][4]. Researches on tonal co-articulation in Vietnamese were also presented in studies [1][4][5].

Tonal co-articulation phenomena are specific co-articulation phenomena for languages using
tones. In Thai language [6], there are two types of tonal co-articulation: anticipatory and carryover
co-articulation. The F0 contour shape of a syllable that is influenced by the succeeding syllable is
called “anticipatory co-articulation”. The carryover co-articulation occurs when the preceding
syllable influences the succeeding syllable. Gandour [6] reported that the co-articulation effect of
Thai tones is asymmetric. Thai tones were more influenced by carryover than by anticipatory co-
articulation. The tonal co-articulation in Mandarin is also classified into both types: anticipatory
and carryover co-articulation [7][8]. In Shen’s study [7], nonsense strings of syllables were used as
reading list, whereas Shir and Sproat [8] used real words and phrases. In Shir’s study speakers
were instructed to produce the utterances as naturally as possible. In order to study phenomena
involved in co-articulation of tones in Mandarin, Xu Y [9] provided 4 theoretically possible
transitional patterns between two tones. Similar to the results of [8], two in four possible tonal
transitions (Exclusive Assimilation and Exclusive Carryover) were found for Mandarin language.

In Vietnamese, the studies [1][4] and [5] show that the progressive tonal co-articulation is stronger
than the regressive tonal co-articulation. In these studies, authors focused on analysis of tonal co-
articulation between two adjacent syllables, they have not take into account information about
lexical category (or part of speech) of considered words.

In order to study the influence of lexical category in phenomena of tonal co-articulation, this

paper presents our study on tonal co-articulation of particles (such as ‘ạ’, ‘dạ’, ‘chứ’, ‘đi’ …)

which are frequently used in Vietnamese language. The paper is organized as follows. Section II

introduces the speech corpus which is used in the analysis process. Section III gives the analysis

results on the tonal co-articulation phenomenona which occur at the considered particles. Section

IV gives some conclusions and perspectives.

2 Bi-tone speech corpus

A speech corpus of bi-tone pairs of two adjacent syllables was prepared in our experiment. In

addition, each sentence in the text corpus is constructed of an affirmative sentence and a particle

at the last position of the sentence, for instance: “Lâu lâu mới gặp lại, chị vào nhà tôi chơi /

nhé!”(We haven’t met each other for a long time, let’s come to my house). In the sentence the

word “nhé” is a particle and “Lâu lâu mới gặp lại, chị vào nhà tôi chơi” is an affirmative

sentence. The bi-tone pairs in these sentences are the last two syllables. For example, in the

164

sentence “Trước mẹ con vẫn gắp cho con kia!” (Figure 1) the last two syllables “con kia” are

analyzed. The corpus of these bi-tone pairs help to clarify the effects which the tonal context or

the lexical context causes.

Figure 1: F0 contour of the sentence “Trước mẹ con vẫn gắp cho con kia!”

Therefore, a text corpus including 144 sentences in dialogs which were extracted from 6

Vietnamese famous short stories “Bóng mây chiều”, “Dế mèn”, “Tuyển tập truyện ngắn Hồ

Dzếnh”, “Kính vạn hoa”, “Tuyển tập truyện ngắn Thạch Lam” và “Tuổi 20 yêu dấu” was

collected.

These 144 sentences are divided into 6 groups as follows:
- Group 1: 24 sentences contain particles carrying the level tone (Tone 1).

- Group 2: 24 sentences contain particles carrying the falling tone (Tone 2).

- Group 3: 24 sentences contain particles carrying the broken tone (Tone 3).

- Group 4: 24 sentences contain particles carrying curve tone (Tone 4).

- Group 5: 24 sentences contain particles carrying the rising tone (Tone 5).

- Group 6: 24 sentences contain particles carrying the drop tone (Tone 6).

Each group is divided into 6 subgroups based on the tone (6 tones) which is carried by the
preceding syllable of the particle. Each subgroup contains 4 sentences. For example:

Group 1 is composed of 6 subgroups: S1-1, S1-2, S1-3, S1-4, S1-5 and S1-6. In the subgroup
S1-1, the sentences have particles carrying level tone and the preceding syllable also carrying
level tone.
- “Trước mẹ con vẫn gắp cho con / kia!”(In meal my mother used to pick food for me)

- “Có một việc quan trọng phải nhờ cậu mới xong / đây!”(There is an important work that

we must need your help)

The text corpus is then used to build a speech corpus. The recording progress was taken place in

a quite environment at a quiet studio. A male and female who have Hanoi voice were asked to

read each sentence two times at a normal speaking rate. The speech corpus was then labeled

manually using the PRAAT program.

165

3 Analysis

We carry out an analysis of the variation of fundamental frequency for every subgroup of

sentences. F0 values of the sentences are extracted automatically by using Praat software.

Figure 2: F0 contours in subgroup 2-2

Figure 2 presents evolution of F0 contours in subgroup S2-2 (which has a pair of tones: falling –

falling). In the figure m and f refer consequently “male” and “female”; mij denotes the ith

recorded sample of the jth sentence of the male speaker in the group; and fij denotes the ith

recorded sample of the jth sentence of the female speaker.

We can see in Figure 2, the F0 contours of the preceding falling tones fall slowly and converge at

the ending position. However, values of F0 at the beginning positions of these syllables are quite

different. By carrying a larger analysis, we found that the difference is caused by an effect of

tonal co-articulation. The tones of the syllables that stand just before the analyzed syllables are

different. For example, concerning f11 and f14 sentences, the three last syllables of these

sentences are “có tiền à” (/kɔ_5 tien_2 ɑ_2/) and “nhiều tiền mà” (/ɳiew_2 tien_2 mɑ_2/)

consequently. It is easy to see that the last two syllables have the same pair of tones (falling –

falling), but the tone of the 1
st
 syllable in case of f14 is the falling tone (Tone 2), while the tone of

the 1
st
 syllable in case of f11 is the rising tone (Tone 5). Thus, F0 values of the beginning

positions in sentence f11 are higher than that of sentence f14.

166

Concerning the falling tone carried by the particle words, in Figure 2 we found that, the shape of

F0 contours of this tone has a little difference in comparison to that in the static mode. The F0

contours of these syllables fall slowly at the start positions and then rise to the ending positions.

This can be explained as follows: a particle is also the last syllable of an imperative or a question,

so its F0 contour usually rises up, like the results of studies [10][11].

To observe the tonal co-articulation more clearly, similar to the research of Brunelle [1], we

carried out comparing an effect of the preceding syllable’s tone on the succeeding syllable’s tone.

In order to facilitate the analysis, the values of the extracted F0 are normalized into a sequence of

six points. Each syllable is divided into 6 parts and the average value of F0 is calculated for each

part. Therefore, for a syllable pair, points from 0 to 5 are belong to the first syllable (the last

syllable of the affirmative sentence), and points from 6 to 11 are belong to the second syllable (a

particle).

4 The results

The normalized F0 contours of the subgroups of sentences are presented in figures 3, 4, 5, 6, 7, 8.

In these figures:

- t1 presents the average normalized F0 contour of the set of sentences that have the

preceding syllable (the syllable stands before the particle) porting the level tone (Tone 1).

- Similar to t1, t2 – t6 present the average normalized F0 contours of sets of sentences that

have the preceding syllable carrying tones 2, 3, 4, 5 and 6 consequently.

From these figures, the first result can be easily seen that: tonal co-articulation phenomenon

always happens at the transition between two adjacent syllables, and the progressive co-

articulation seems the basic tonal co-articulation, like the results presented in [1][4][5].

We pay more attention to representations of Tone 1 and Tone 2 which are presented in the figures

3 and 4.

Figure 3: F0 contours of tone pairs in Group 1 (particle carries level tone) with male (left) and female
(right) speakers

167

Figure 4: F0 contours of tone pairs in Group 2 (particle carries falling tone) with male (left) and female
(right) speakers

In Figure 3, after ending the preceding syllable, F0 contours of Tone 1 (level tone) tend to rise to

the end of succeeding syllables and it only fall lightly at the last point. Whereas, in studies

[1][11], the F0 contour of Tone 1 is quite stable and falls lightly down to the end of the

succeeding syllable (same as Tone 1 in isolated syllable).

Like the particles carrying Tone 1, we can see clearly the same result in case of the particles

porting Tone 2 (falling tone). In Figure 4, F0 contour of this tone can start at either low or high

register. At the last half of syllable F0 contour either is stable or rises slightly. Whereas, in static

mode, Tone 2 starts lower than the level tone then falls slowly and its slope is never goes up. In

the studies of [1][11], in dynamic mode (continuous speech), F0 contours of Tone 2 falls slowly.

This results shows that there is an affect of the function of particles on evolution of F0. The result

seems logic, because the particles in our corpus stand at the last position of sentence. The

function of these words is to make the sentence become either an interrogative or an imperative

sentence. According to studies [10][11], in Vietnamese interrogative and imperative sentences,

the contour of the last syllable or of its second half tends to increase.

Figure 5: F0 contours of tone pairs in Group 3 (particle carries broken tone) with male (left) and female
(right) speakers

168

Figure 6: F0 contours of tone pairs in Group 4 (particle carries curve tone) with male (left) and female
(right) speakers

Figure 7: F0 contours of tone pairs in Group 5 (particle carries rising tone) with male (left) and female
(right) speakers

Figure 8: F0 contours of tone pairs in Group 6 (particle carries drop tone) with male (left) and female
(right) speakers

In remaining tones, the phenomenon in which F0 contour of the last half of particle rises up also
takes place. However, phenomenon is caused not only by the function of particles but also by the
evolution of F0 contour of the tone that syllables carry. These tones (Tone 3, Tone 4 and Tone 5)
have the F0 contour rising at the last half of syllable.

The standard deviation of 6 tones at 6 points is presented in following tables:

Table 1: Standard deviation (%) of tones at 6 points (male)

 Point

Tone

P1 P2 P3 P4 P5 P6

Tone 1 8.1 6.6 5.6 4.5 5.5 11.5

169

 Point

Tone

P1 P2 P3 P4 P5 P6

Tone 2 18.0 12.9 8.1 7.6 7.8 8.5

Tone 3 18.0 14.9 9.6 10.4 6.2 7.8

Tone 4 19.1 15.4 12.1 7.6 3.7 5.2

Tone 5 18.0 14.1 10.5 7.7 6.0 5.3

Tone 6 17.7 17.3 16.2 16.2 15.3 17.2

Table 2 : Standard deviation (%) of tones at 6 points (female)

Point

Tone

P1 P2 P3 P4 P5 P6

Tone 1 7.6 5.3 4.3 3.85 5.26 8.73

Tone 2 17 13 9.1 4.66 3.22 4.09

Tone 3 12 11 8.2 8.04 7.03 7.12

Tone 4 16 16 14 9.12 5.08 2.56

Tone 5 17 16 16 14.6 10 4.55

Tone 6 17 16 16 16.5 17.1 16.7

We can see that the standard deviation values at initial points (P1, P2 and P3) which are close to
the preceding syllable are almost higher than that’s of the final points (P4, P5 and P6). This is
entirely consistent with above results.

The variation of F0 of Tone 6 is quite different in comparison with other tones. Because of the
glottalization phenomenon at ending position, F0 contour at the second last syllable of syllables
porting this tone changes in large range and this can make a non precise measurement of F0 by
Praat. Therefore, value of standard deviations is quite high.

Conclusion and perspectives

The paper presents our research on phenomena of tonal co-articulation on particles in

Vietnamese. The obtained results show that tonal co-articulation phenomena always take place at

the transition between two adjacent syllables, and the progressive co-articulation is the basic

tonal co-articulation. And there is an influence of the function of particles on form of F0 contour

of Vietnamese tones. Therefore, it has to take into account this information when doing an

analysis variation of fundamental frequency, especially on modeling Vietnamese intonation for

Vietnamese text to speech synthesis.

In our study, the corpus is still limited. There are only two speakers and the particles always

stand at the last position of sentences. These limitations will be studied more deeply in next

researches with more speakers and other specific words at different positions.

170

Acknowledgments

The research leading in the paper was supported by the Vietnamese National Key

Project KC03.07/11-15. We would like to thank the project and people involved in this project

References

[1] Brunelle M. “Co-articulation effects in Northern Vietnamese tones”, Proc. ICPhS,

Barcelona, pp. 2673 – 2676, 2003.

[2] Nguyen, Q.C, “Reconnaissance de la parole en langue Vietnamienne”, PhD. thesis INP-

Grenoble, France, June 2002.

[3] Tran D.D, Castelli E., Serignat JF., Le X.H., Trinh V.L., “Influence of F0 on Vietnamese

syllable perception”, Proc. of Interspeech2005, Lisbon, pp. 1697-1700, 2005.

[4] Han M.S. and Kim K., “Phonetic variation of Vietnamese tones in disyllabic utterances”,

Journal of Phonetics April 1974, pp.223-232, 1974.

[5] Tran D.D, Castelli E., “Generation of F0 contours for Vietnamese speech synthesis”, Third

International Conference on Communications and Electronics (ICCE), Nha Trang, 2010.

[6] Gandour, J., Potisuk, S., & Dechangkit, S. (1994). “Tone co-articulation in Thai,Journal of

Phonetics”, 22, 477-492.

[7] Shen, X. S. (1990). “Tonal co-articulation in Mandarin. Journal of Phonetics”, 18,281-295.

[8] Shih, C., & Sproat, R (1992). “Variations of the Mandarin rising tone”. In Proceedings of the

IRCS Workshop on Prosody in Natural Speech No. 92-37, (pp. 193-200). Philadelphia:

The Institute for Research in Cognitive Science, University of Pennsylvania.

[9] Xu Y., “Contextual tonal Variations in Mandarin”, Journal of Phonetics 25, 61-83, 1997.

[10] Nguyen, T. T. H. 2004, Contribution à l’étude de la prosodie du vietnamien. Variations de

l’intonation dans les modalités: assertive, interrogative et impérative, PhD. thèses, Doctorat

de Linguistique Théorique, Formelle et Automatique, Paris.

[11] Vu M.Q., Tran D. D., Castelli E. 2006, Prosody of Interrogative and Affirmative Sentences

in Vietnamese Language: Analysis and Perceptive Results, The Ninth International

Conference on Spoken Language Processing – INTERSPEECH 2006 - ICSLP, Pittsburgh,

Pennsylvania, USA, September 2006.

[12] Tran D.D. Castelli E., Serignat J.F., Trinh V.L. & Le X.H., “Linear F0 Contour Model for

Vietnamese Tones and Vietnamese Syllable Synthesis with TD-PSOLA”, Proc. TAL2006,

La Rochelle, April 2006.

171

Proceedings of the 3rd Workshop on South and Southeast Asian Natural Language Processing (SANLP), pages 173–180,
COLING 2012, Mumbai, December 2012.

Toward an amazigh language processing

Fatima Zahra NEJME1 Siham BOULAKNADEL2 Driss ABOUTAJDINE1
(1) GSCM-LRIT, Université Mohamed V, BP 1014 Agdal-Rabat, Maroc

(2) IRCAM, Avenue Allal El Fassi, Madinat Al Irfane, Rabat-Instituts, Maroc

Fatimazahra.nejme@gmail.com, Boulaknadel@ircam.ma,
aboutaj@fsr.ac.ma

ABSTRACT

Since antiquity, the Amazigh heritage is expanding from generation to generation. In the aim of
safeguarding it from being threatened of disappearance, it seems opportune to equip this language
of necessary means to confront the stakes of access to the domain of New Information and
Communication Technologies (ICT). In this context, and in the perspective to build tools and
linguistic resources for the automatic processing of Amazigh language, we develop a lexicon and
morphological rules using finite state technology within the linguistic developmental
environment Nooj to parse amazigh texts.

Vers un traitement automatique de la langue Amazighe
Depuis l’antiquité, le patrimoine Amazighe est en expansion de génération en génération. Dans
l’objectif de sauvegarder, exploiter ce patrimoine et éviter qu’il soit menacé de disparition, il
semble opportun d’équiper cette langue de moyens nécessaires pour affronter les enjeux d'accès
au domaine des nouvelles technologies de l'information et de la communication (NTIC) qui
s’avère primordial pour promouvoir et informatiser cette langue. Dans ce contexte, et dans les
perspectives de développer des outils et des ressources linguistiques pour le traitement
automatique de cette langue, nous avons entrepris d’utiliser la plateforme d’ingénierie
linguistique NooJ afin de créer un module pour la langue Amazighe standard (Ameur et al.,
2004a). Notre premier objectif est l'analyse des textes Amazighe. A cet effet, nous commençons
par la formalisation du vocabulaire Amazighe (Nom, Verbe et Particules). Dans cet article nous
nous intéresserons à la formalisation de deux catégories, nom et de particules, permettant de
générer à partir d'une entrée lexicale son genre (masculin, féminin), son nombre (singulier,
pluriel) et son état (libre, annexion). Enfin, nous développons un dictionnaire électronique afin de
l'utiliser, d'une part, pour tester nos règles de flexions et d'autre part pour l'analyse lexicale des
textes Amazighe.

KEYWORDS: Amazigh language, NooJ, Natural language processing, Less-resourced language,
lexical analysis, inflectional morphology, flexional grammar, dictionary.

KEYWORDS IN L2 : La langue Amazighe, NooJ, Traitement automatique des langues naturelles,
langue peu dotée, analyse lexicale, morphologie flexionnelle, grammaire flexionnelle,
dictionnaire.

173

Introduction
The Amazigh language in Morocco is considered as a prominent constituent of the Moroccan
culture and this by its richness and originality. However it has been long discarded otherwise
neglected as a source of enrichment cultural. Nevertheless, due to the creation of the Royal
Institute of Amazigh Culture (IRCAM)1, this language has been introduced in the public domain
including administration, media also in the educational system in collaboration with ministries. It
has enjoyed its proper coding in the Unicode Standard (Andries, 2008; Zenkouar, 2008), an
official spelling (Ameur et al., 2006a), appropriate standards for keyboard realization and
linguistic structures that are being developed with a phased approach (Ameur et al., 2006b;
Boukhris et al., 2008). This process was initiated by the standardization, vocabularies
construction (Kamel, 2006; Ameur et al., 2009a; Ameur et al., 2006a; Ameur et al., 2009b),
Alphabetical Arrangement (Outahajala, 2007), spelling standardization (Ameur et al., 2006a) and
development of rules grammar (Boukhris et al., 2008).

However, this not sufficient for a less-resourced language (Berment, 2004) as the Amazigh to
join the well-resourced language in information and Communication Technologies, mainly due to
the lack of already available language processing resources and tools. Therefore, a set of
scientific and linguistic research are undertaken to remedy to the current situation. These
researches are divided, on the one hand, on researches that are concentrated on optical character
recognition (OCR) (Amrouch et al., 2010; Es Saady et al., 2010; Fakir et al., 2009), and in the
other hand, on those that are focused on natural language processing (Iazzi and Outahajala, 2008;
Ataa Allah and Jaa, 2009; Boulaknadel, 2009; Ataa Allah and Boulaknadel, 2010; Outahajala et
al., 2010; Boulaknadel and Ataa Allah, 2011), which constitute the priority components of
researches.

In this context, the present work deals with ongoing research efforts to build tools and linguistic
resources for the Amazigh language. Our first main objective is to develop a morphological
analyzer to parse amazigh texts. For this purpose, we begin by building a morphological analyzer
for Amazigh nouns, implemented using the Finite State Technology within the linguistic
developmental environment Nooj.

This paper is structured around five main sections: the first present a description of the Amazigh
language particularities. The second expose the automatic Amazigh language processing, which
includes an overview of NooJ environment, and the formalization of a set of rules. While the last
section is dedicated to the conclusion and perspectives.

Amazigh language particularities
The Amazigh language also known as Berber or Tamazight (ⵜ ⴰ ⵎ ⴰ ⵣ ⵉ ⵖ ⵜ [tamazight]), is
belonged to the African branch of the Afro-Asiatic language family, also referred to as Hamito-
Semitic in the literature (Greenberg, 1966; Ouakrim, 1995). It is currently presented in a dozen
countries ranging from Morocco, with 50% of the overall population2 (Boukous, 1995), to Egypt,
passing through Algeria with 25%, the Tunisia, Mauritania, Libya, Niger and the Mali (Chaker,
2003).

1 Institution responsible for the preservation of heritage and the promotion of the Moroccan Amazigh culture and
its development (see http://www.ircam.ma/).
2 It present the Amazigh population largest in number.

174

In Morocco, we distinguish between three major Amazigh dialects. Tarifit is spoken in northern
Morocco, Tamazight in the Middle Atlas and south-eastern Morocco, and Tashelhit in south-
western Morocco and the High Atlas.

Today, the current situation of the Amazigh language is at a pivotal point. It holds co-official
status in Morocco. Its morphology as lexical standardization process is still underway. At present,
it represents the model taught in must schools and used on media and official papers published in
Morocco.

Amazigh morphology

The Amazigh language presents a rich and complex morphology whose words can be classified
into three morphosyntactic categories which we cite: the noun, the verb and particles (Boukhris et
al., 2008; Ameur et al., 2004b). Practically, nouns and verbs are the base of the Amazigh
morphology and the more important categories to focus on, as others can be derived from them.
In this paper, we are interested in noun morphology.

1. Noun characteristics

The noun in the Amazigh language is always composed of one word between two spaces and
formed from a root and a pattern. It is characterized by gender (masculine or feminine), number
(singular or plural), and state (free or construct) (Boukhris et al., 2008).

Gender: the Amazigh noun is characterized by one of grammatical gender: masculine or
feminine.

 The masculine noun: begins with one of the initial vowels: ⴰ [a], ⵉ [i] or ⵓ [u].
However, there are some exceptions as: ⵉ ⵎ ⵎ ⴰ [imma] “(my) mother”.

 The feminine noun: is marked with the circumfix ⵜ ⵜ [t....t]. However, there are
some exceptions such as nouns which have only the initial ⵜ [t] or the final ⵜ [t] of
morpheme of the feminine: ⵜ ⴰ ⴷ ⵍ ⴰ [tadla] “the sheaf”, ⵕⵕⵎ ⵓ ⵢ ⵜ [ṛṛmuyt] “the
fatigue”.

Number: the noun, masculine or feminine, has a singular and plural. This latter has four forms:
the external plural, broken plural, mixed plural and plural in ⵉ ⴷ [id].

 The external plural: is formed by an alternation of the first vowel ⴰ /ⵉ [a/i] accompanied
by a suffixation of ⵏ [n] or one of its variants.

 The broken plural: involves a change in the vowels of the noun.

 The mixed plural: is formed by vowels’ change accompanied, sometimes by the use of
the suffixation by ⵏ [n].

 The plural in ⵉ ⴷ [id]: this kind of plural is obtained by ⵉ ⴷ [id] prefixing. It is applied
to a set of nouns including: nouns with an initial consonant, proper nouns, parent nouns,
compound nouns, numerals, as well as borrowed nouns.

State: we distinguish between two states: the free state and the construct one.

 The free state: is unmarked. The noun is in free state if it is: a single word isolated from
any syntactic context, a direct object, or a complement of the predictive particle ⴷ [d].

175

 The construct state: involves a variation of the initial vowel. In case of masculine nouns,
it takes one of the following forms: initial vowel alternation ⴰ [a] /ⵓ [u] or adding of
ⵡ [w]; adding of ⵢ [y] to the nouns of vowel ⵉ [i]. For the feminine nouns, it consists to
drop the initial vowel or maintaining of this vowel.

Automatic Amazigh language processing: development and evaluation
Nooj platform

NooJ3 , released in 2002 by Max Silberztein (Silberztein, 2007), is a linguistic development
platform that provides a set of tools and methodologies for formalizing and developing a set of
Natural Language Processing (NLP) applications. It presents a package of finite state tools that
integrates a broad spectrum of computational technology from finite state automata to
augmented/recursive transition networks. Thus, it presents a complete platform for formalizing
various types of textual phenomena (orthography, lexical and productive morphology, local,
structural and transformational syntax). For each of these formalization levels, NooJ propose a
methodology, one or more formalisms, tools, software development and a corresponding parser
that can be used to test each piece of the linguistic formalization over large corpora.

Given these advantages, we have undertaken to adopt NooJ for formalization, description and
analysis of Amazigh language for building a module for that language. We begin our work by the
formalization of the Amazigh language vocabulary. This formalization is described and stored
into inflectional grammars, and can recognize all the corresponding inflected forms. To test these
grammars, we built an electronic dictionary in which the lexical entries are attached to a set of
linguistic information automatically generate using inflectional grammars which will be used for
lexical analysis of texts.

Development of the lexicon
As part of developing a NooJ module for the Amazigh language, we elaborate our dictionary for
Amazigh nouns based on a set of lexicons: Taifi dictionary (Taifi, 1988), amazigh vocabulary
(Ameur et al., 2006b), and vocabulary of media (Ameur et al., 2009a).Our dictionary contains,
currently, 5210 lexical entries which consist of: 4542 simple nouns, 424 proper nouns, 200 Non-
inflected nouns and 44 numerals which are given with their plural form, feminine correspondent
and annexation state. Our inflected dictionary, calculated after the compilation of the dictionary,
encounters 19,597 entries. Thus, we get from each lexical entry all forms related to it.

Morphological rules implementation

This study presents the formalization of the noun category in the NooJ platform. For this, a set of
rules has been defined allowing to generate from a each entry, its inflectional information:
gender, number and state.

The formalization is based on the use of certain generic commands predefined such as:

- <LW> move at the beginning of Lemma,

- <RW> move at the end of Lemma,

- <S> delete current character,

3 See http://www.nooj4nlp.net/ for information of NooJ.

176

- delete last character,

- <L> go left,

- <R> go right,

 Gender

To formalize the gender we built this rule that generates from a masculine entry its feminine
correspondent. The rule is to add the discontinuous morpheme ⵜ [t] at the beginning and at the
end of the noun.

The rules in Nooj Explanation Examples
<LW>ⵜ <RW>ⵜ /f+s This rule adds "ⵜ " at the

beginning and at the end.
ⵉ ⵙ ⵍ ⵉ [isli] “married” ->
ⵜ ⵉ ⵙ ⵍ ⵉ ⵜ [tislit] “married”.

TABLE 1 – Example of a gender rule.

 Number

For the amazigh plural, we have many plural forms which are generally unpredictable due to
Amazigh complex morphology. To formalize these plural types, we have have relied on the
works of Boukhris (Boukhris et al., 2008) and those of Oulhaj (Oulhaj, 2000). We searched
formal rules to unify the calculation of plural forms. According to these works and to an heuristic
study of the nouns in the Taifi dictionary and those of amazigh language vocabulary, we have
raised, at this moment, 303 classes which 97 classes is for the external plural, 99 for the broken
plural, 104 for the mixed plural and 3 classes for the plural in ⵉ ⴷ [id]. Each word could be
associated with, at least, one flexional class. Thereafter, we provided some examples of rules for
each of plural types.

- The external plural

The rules in Nooj Explanation Examples
<LW>ⵉ <S><RW>ⵜ ⵏ /m+p The initial vowel is

transformed into ⵉ and the
suffix ⵜ ⵏ [tn] is add at the
end of the noun.

ⴰ ⵙ ⵉ ⵔ ⴰ [asira] “desk” ->
ⵉ ⵙ ⵉ ⵔ ⴰ ⵜ ⵏ [isiratn]

TABLE 2 – Plural forms for the masculine nouns beginning and ends with ⴰ [a].

- The broken plural

The rules in Nooj Explanation Examples
<LW>ⵉ <S><RW><L>ⴰ /m+p The rule changes the

initial vowel into ⵉ [i]
and include ⴰ [a] before
the final consonant.

ⴰ ⵣⴳ ⵣ ⵍ [azgzl] abbreviation”
-> ⵉ ⵣⴳ ⵣ ⴰ ⵍ [izgzal]

TABLE 3 – Plural forms for the nouns in VCn form.

- The mixed plural

177

The rules in Nooj Explanation Examples
<LW>ⵉ <S><RW>ⵏ <L2>ⵉ /m+p The rule change the initial

vowel into ⵉ [i], include the
vowel ⵉ [i] before the last
consonant and add a suffix
ⵏ [n] at the end of the noun.

ⴰ ⵃ ⵓ ⴷ ⵔ [aḥudr] “fait de
se pencher” ->
ⵉ ⵃ ⵓ ⴷ ⵉ ⵔ ⵏ [iḥudirn]

TABLE 4 – Example of plural forms for the masculine nouns.

- The plural in in ⵉ ⴷ [id]
The rules in Nooj Explanation Examples
<LW>ⵉ ⴷ " "/m+p The rule adds ⵉⴷ [id] before the

noun.
ⴱⵓ ⵜ ⴳⵔⴰ [butgra] “tortoise” ->
ⵉⴷ ⴱⵓ ⵜ ⴳⵔⴰ [id butgra]

TABLE 5 – Example of plural in ⵉ ⴷ [id].

 State

The rules in Nooj Explanation Examples
<LW><R>ⵓ /EA+m The rule deletes the initial

vowel and adds ⵓ [u] at the
beginig of the noun.

ⴰ ⴼ ⵉ ⵔ ⴰ ⵙ [afiras] “pear” ->
ⵓ ⴼ ⵉ ⵔ ⴰ ⵙ [ufiras]

 TABLE 6 – Example of plural in ⵉ ⴷ [id].

Evaluation

We conducted our experimentation on a sample of texts for story children. By applying our
morphological grammars and our dictionary on text, we obtained the following results:

FIGURE 11 – Example of lexical analysis of Amazigh text

The text contains 778 nouns. After performing lexical analysis we identified a total of 686
occurrences of nouns recognized and well annotated (1837 annotations). However, a total of 92
occurrences expressing unknowns nouns. This experiment shows that only 8% of the unknowns
nouns that do not belong to our dictionary.

178

Conclusion and future works
In this paper, we try to restore the Amazigh language and culture and give it more visibility
nationally and internationally through developing tools and resources necessary for its
computational processing. Our aim to work on a morphological analyzer for Amazigh came from
this scarcity of computational framework, a morphological analyzer being one of the fundamental
tools in many NLP tasks. However, we build a morphological analyzer for Amazigh nouns,
implemented using the Finite State Technology within the linguistic developmental environment
Nooj. Amazigh morphological analyzer for nouns is an underway work and further development
must be performed to make it a complete one. However, our analyzer achieves over 92% correct
results in the analysis of 778 nouns extracted from the corpus.

For future work we planed to:

- Enlarge the lexicon to include nouns from other dialects,

- Include other part of speech in the morphological analyzer,

- Construct a corpus of texts to evaluate the out-of-vocabulary rate of our dictionary.

References
Ameur M., Boumalk A. (DIR) (2004a). Standardisation de l’amazighe, Actes du séminaire
organisé par le Centre de l’Aménagement Linguistique à Rabat, 8-9 décembre 2003, Publication
de l’Institut Royal de la Culture Amazighe, Série : Colloques et séminaires.

Ameur M., Bouhjar A., Boukhris F., Boukouss A., Boumalk A., Elmedlaoui M., Iazzi E., Souifi
H. (2004b). Initiation à la langue amazighe. Rabat, Maroc: IRCAM.

Ameur M., Bouhjar A., Boukhris F., Boukouss A., Boumalk A., Elmedlaoui M., Iazzi E.
(2006a). Graphie et orthographe de l’amazighe. Rabat, Maroc : IRCAM.

Ameur M., Bouhjar A., Boukhris F., Elmedlaoui M., Iazzi E. (2006b). Vocabulaire de la
langue amazighe (Français-Amazighe). série : Lexiques N°1, IRCAM, Rabat, Maroc.

Ameur M., Bouhjar A., Boumalk A., El Azrak N., Laabdelaoui R. (2009a). Vocabulaire des
médias (Français-Amazighe-Anglais-Arabe). série : Lexiques N°3, IRCAM, Rabat, Maroc.

Ameur M., Bouhjar A., Boumalk A., El Azrak N., Laabdelaoui R. (2009b). Vocabulaire
grammatical. série : Lexiques N°5, IRCAM, Rabat, Maroc.

Amrouch M., Rachidi A., El Yassa M., Mammass D. (2010). Handwritten Amazigh Character
Recognition Based On Hidden Markov Models. International Journal on Graphics, Vision and
Image Processing. 10(5), pp.11--18.

Andries P. (2008). Unicode 5.0 en pratique, Codage des caractères et internationalisation des
logiciels et des documents. Dunod, France, Collection InfoPro.

Ataa Allah F., Jaa H,. (2009). Etiquetage morphosyntaxique : Outil d’assistance dédié à la
langue amazighe. In Proceedings of the 1er Symposium international sur le traitement
automatique de la culture amazighe, Agadir, Morocco, pp. 110- -119.

Ataa Allah F., Boulaknadel S. (2010). Online Amazigh Concordancer. In Proceedings of
International Symposium on Image Video Communications and Mobile Networks. Rabat,
Maroc.

179

Berment V. (2004). Méthodes pour informatiser des langues et des groupes de langues peu
dotées, Thèse de doctorat de l’Université J. Fourier - Grenoble I, France.

Boukhris F., Boumalk A., Elmoujahid E., Souifi H. (2008). La nouvelle grammaire de
l'amazighe. Rabat, Maroc: IRCAM.

Boukous A. (1995), Société, langues et cultures au Maroc: Enjeux symboliques, Casablanca,
Najah El Jadida.

Boulaknadel S. (2009). Amazigh ConCorde: an appropriate concordance for Amazigh. In
Proceedings of the 1er Symposium international sur le traitement automatique de la culture
amazighe, Agadir, Morocco, pp. 176--182.

Boulaknadel S., Ataa Allah F. (2011). Building a standard Amazigh corpus. In Proceedings of
the International Conference on Intelligent Human Computer Interaction. Prague, Tchec.

Chaker S. (2003), Le berbère, Actes des langues de France, 215-227.

Es Saady Y., Rachidi A., El Yassa M., Mammas D. (2010). Printed Amazigh Character
Recognition by a Syntactic Approach using Finite Automata. International Journal on Graphics,
Vision and Image Processing, 10(2), pp.1--8.

Fakir M., Bouikhalene B., Moro K. (2009). Skeletonization methods evaluation for the
recognition of printed tifinaghe characters. In Proceedings of the 1er Symposium International
sur le Traitement Automatique de la Culture Amazighe. Agadir, Morocco, pp. 33--47.

Greenberg J. (1966). The Languages of Africa. The Hague.

Iazzi E., Outahajala M. (2008). Amazigh Data Base. In Proceedings of HLT & NLP Workshop
within the Arabic world: Arabic language and local languages processing status updates and
prospects. Marrakech, Morocco, pp. 36--39.

Kamel S. (2006). Lexique Amazighe de géologie. Rabat, Maroc: IRCAM.

Max S. (2007). An Alternative Approach to Tagging. NLDB 2007: 1-11

Ouakrim O. (1995). Fonética y fonología del Bereber, Survey at the University of Autònoma de
Barcelona.

Oulhaj L. (2000). Grammaire du Tamazight. Imprimerie Najah El Jadida.

Outahajala M. (2007). Les normes de tri, Du clavier et Unicode. La typographie entre les
domaines de l’art et de l’informatique. Rabat, Morocco, pp. 223--237.

Outahajala M., Zekouar L., Rosso P., Martí M.A. (2010). Tagging Amazigh with AnCoraPipe.
In Proceeding of the Workshop on Language Resources and Human Language Technology for
Semitic Languages. Valletta, Malta, pp. 52--56.

Taifi M. (1988). Le lexique berbère (parlers du Maroc central).

Zenkouar L. (2008). Normes des technologies de l’information pour l’ancrage de l’écriture
amazighe. Etudes et documents berbères. 27, pp. 159--172.

180

Proceedings of the 3rd Workshop on South and Southeast Asian Natural Language Processing (SANLP), pages 181–190,
COLING 2012, Mumbai, December 2012.

Bidirectional Bengali Script and Meetei Mayek
Transliteration of Web Based Manipuri News Corpus

Thoudam Doren Singh

Centre for Development of Advanced Computing (CDAC)
Gulmohor Cross Road No 9, Juhu

Mumbai-400049, India

thoudam.doren@gmail.com

ABSTRACT

The transliteration has attracted interest of several sections of researchers. Several techniques of

transliteration have been developed and used – both statistical based approaches and rule based

approaches. In the present method, a simple but effective rule based technique is developed for

the transliteration between Bengali script and Meetei Mayek script of written Manipuri text.

Typically, transliteration is carried out between two different languages –one as a source and the

other as a target. But, for the languages which use more than one script, it becomes essential to

introduce transliteration between the scripts. This is the reason why the present task is carried out

between Bengali script and Meetei Mayek for Manipuri language. The proposed rule based

approach points out the importance of deeper linguistic rule integration in the process by making

use of the monosyllabic characteristics of Manipuri language. The Bengali script to Meetei

Mayek transliteration system based on the proposed model gives higher precision and recall

compared to the statistical model. But, in contrast to that, the statistical based approach gives

higher precision and recall compared to the rule based approach for the reverse transliteration.

KEYWORDS : Meetei Mayek, Bengali Script, Transliteration, Monosyllabic

181

1 Introduction

Manipuri language is in eighth schedule of the constitution of India and spoken approximately by

three million people mainly in the state of Manipur in India and in the neighbouring countries

namely Bangladesh and Myanmar. It is a less privileged Tibeto-Burman language and highly

agglutinative in nature, influenced and enriched by the Indo-Aryan languages of Sanskrit origin

and English. The Manipuri or Meeteiron is represented using two different scripts, viz. Bengali

script and Meetei Mayek (also known as Meitei Mayek). So, it is essential to produce a Manipuri

text both in Bengali script as well as Meetei Mayek. The Meetei Mayek is the original script used

to represent Manipuri language. It may be noted that Manipuri is the only Tibeto-Burman

language which has its own script. We carry out transliteration to cope up with different writing

systems by converting from one writing system to another writing system between Bengali script

and Meetei Mayek. Transliteration is used in several applications of natural language processing

such as machine translation, named entity transliteration, out of vocabulary transliteration and

cross lingual information retrieval etc. The proposed rule based approach points out the

importance of deeper linguistic rule integration in the transliteration process by making use of the

monosyllabic characteristics. Natural language processing tasks for Manipuri language is at the

very initial stage and most of the tools available so far do not perform at the required measure

and more importantly, there is not enough digitized Manipuri language resources, be it

monolingual or bilingual.

2 Related Work

The transliteration models can be categorized as grapheme based, phoneme-based and hybrid

based. The grapheme based model (Li et al, 2004) is the direct orthographic mapping and only

uses orthography-related features while phoneme based model (Knight and Graehl, 1998) works

on phonetic correspondence to generate the target text. The hybrid method refers to the

combination of several different models which may use other knowledge source. The papers by

(Gao, 2004), (Knight and Graehl, 1998), (Virga and Khudanpur, 2003) report the attempt to build

statistical transliteration model. In this approach, the transliteration model performance is limited

by what it sees during the training process from the training data. This approach faces one

important challenge to disambiguate the noise introduced during the training process for reverse /

backward transliteration. The reason behind is that some of the silent syllable may be lost due to

the noisy model as in the case of Chinese-English transliteration (Yang et al, 2008). Some of the

researchers devised methods to improve the statistical approach by making use of bilingual

resources.

Manipuri is a resource constrained language and a bilingual resource is very limited (Singh and

Bandyopadhyay, 2010a). The first Manipuri to English transliteration is reported for the named

entities using modified joint source channel model (Ekbal et al., 2006) and is used in the parallel

corpora extraction from comparable news corpora (Singh and Bandyopadhyay, 2010b) and

reused in the Manipuri to English example based machine translation system (Singh and

Bandyopadhyay, 2010c) and Phrase Based Statistical Machine Translation (PBSMT) system

development (Singh and Bandyopadhyay, 2011). The performance of the rule based approach is

improved by integrating syllable based unit as transliteration unit (TU) in the present grapheme

based approach. However, Manipuri being a tonal language, there is loss of accents for the tonal

words. There is essence of intonation in Manipuri text; but differentiation between Bengali

182

characters such as ি (i) and (ee) or (u) and (oo) cannot be made using Meetei Mayek.

This increases the lexical ambiguity on the transliterated Manipuri words in Meetei Mayek script.

To the best of our knowledge, the present task of transliterating from Meetei Mayek to Bengali is

the first attempt so far. This attempt is essential for the generation who are accustomed to Bengali

script only prior to full fledged reinstatement of Meetei Mayek at schools, offices and

administrative levels.

3 The Manipuri News Corpus

The web walked into the ACL meetings starting in 1999 as a source of linguistic data. In recent

times, there are online Manipuri news websites available such as

http://www.thesangaiexpress.com/ where the news items are published in both Manipuri and

English. Some other websites are http://www.ifp.co.in/ published in English;

http://www.poknapham.in/ published in Manipuri and http://www.hueiyenlanpao.com/ is

published in both English and Manipuri (in both Bengali script and Meetei Mayek script).

However, the Manipuri news is available only in PDF format from these websites. A web based

Manipuri news corpus collection is reported (Singh and Bandyopadhyay, 2010a) using the

Bengali script in Unicode format. The resource constrained Manipuri language news corpus is

collected from http://www.thesangaiexpress.com/. At present, there is a Manipuri news

monolingual corpus of 4 million wordforms in Bengali script Unicode format. Our experiment

makes use of this corpus on news domain. The news items cover national and international news,

brief news, editorial, letter to editor, articles, sports etc. The local news coverage is more than the

national and international news in these websites. The corpus is tokenized and cleaned to

minimise spelling errors.

4 Manipuri scripts and Linguistic Features

Manipuri uses two different scripts – Bengali Script
1
 and Meetei Mayek

2
 (Unicode range: ABC0-

ABFF of Unicode Standard Version 6.0) also known as Meitei Mayek script to some linguists.

The Bengali script has 52 consonants and 12 vowels. The Meetei Mayek has 27 letters (Iyek

Ipee), 8 dependent vowel signs (Cheitap Iyek), 8 final consonants (Lonsum Iyek), 10 digits

(Cheising Iyek) and 3 punctuation (Cheikhei, Lum Iyek and Apun Iyek). The transliteration

models convert source text to target text based on the phonetic equivalent mapping. Though there

can be direct one-to-one mapping for the 27 Meetei Mayek letter (Iyek Ipee) to Bengali script,

there are some Bengali scripts which does not have a one-to-one direct mapping to Meetei Mayek

such as (ঋ, ক্ষ, , ঞ, etc.) which has resulted in the loss of target representation. This is the

most basic problem with grapheme based transliteration system. An important question is – how

do we handle these characters in Manipuri text with Bengali script for the transliteration into

Meetei Mayek. An expert level agreement on mapping these characters to Meetei Mayek is the

need of the hour in order to improve the rules based transliteration performance between the two

scripts.

1 http://unicode.org/charts/PDF/U0980.pdf
2 http://unicode.org/charts/PDF/UABC0.pdf

183

5 Bengali script to Meetei Mayek Transliteration

Our method has two advantages. Firstly, there is a sizable monolingual Manipuri news corpus

available to be used. Secondly, our method can be improved by including syllable based

transliteration unit to the existing list of TU. Concretely, there are two phases involved in our

approach. In the first phase, we split the individual words into syllables, and then a syllable based

searching can be employed to revise the result. In the second phase, for any syllable unit or TU

match, it is searched from the list of TUs and the corresponding mapping unit is picked up from

the mapping table and the syllables are concatenated to form the target word. Two different

models are developed – baseline and monosyllabic based model.

5.1 Baseline Model

As a baseline system, a grapheme based – that is character to character and numeral to numeral

transliteration is carried out. A hand crafted one-to-one mapping rule between Bengali script and

Meetei Mayek is established and transliteration is carried out. However, there is no exact one-to-

one correspondence between each phoneme associated with each Bengali script grapheme and

Meetei Mayek grapheme. A direct one-to-one grapheme for the conjuncts between Bengali script

and Meetei Mayek is not possible based on the order of appearance of each character. This model

has several drawbacks including the mishandling of conjuncts. Hence, this model does not give a

reasonably good transliteration. So, the several NLP tools developed using the transliterated

corpus using this model suffers very badly in terms of performance.

5.2 Syllable Based Model

As a baseline system, a grapheme based – that is character to character and numeral to numeral

transliteration is carried out. There is no one-to-one correspondence between phoneme associated

with the Bengali script grapheme and Meitei Mayek grapheme. So, a hand crafted rule between

this is established and transliteration is carried out. This scheme has several drawbacks including

the mishandling of conjuncts. There is no direct one-to-one grapheme for the conjuncts as well.

Thus, the injective function behaviour does not suit between the two character sets for

transliteration. Hence, this model does not give a reasonably good transliteration.

Bengali Script Meetei Mayek

ষ, স, শ, ছ K (Sam)

ন, ণ e (Na)

ট, ত f (Til)

থ, ঠ F (Thou)

য়, য \ (Yang)

দ, ড r (Dil)

ঢ, ধ R (Dhou)

উ, ঊ B (Un)

ই, ঈ T (Ee)

র, ড়, ঢ় j (Rai)

ি , g (Inap)

 , b (Unap)

TABLE 1 – Many-to-One mapping table.

184

Based on the above observation, there is no possibility of one-to-one mapping between the two

scripts for all the Meitei Mayek scripts as given in table 1, a syllable based transliteration model

is developed. One of the most significant shortfalls is that – the conjuncts which are appearing in

the Bengali representations need to be addressed as a single transliteration unit. Use of conjuncts

using Bengali script of Manipur text is very common and large in numbers. The overall conjunct

representation is many-to-many characters in nature for the bilingual transliteration task of

Bengali-Manipuri language pair. Some of the example words using the conjuncts are given as:

প্রেসন wDjlKe (press-na)

িডিিকিক rgKfDjgdsg (district-ki)

প্রসক্রেটিরক্রয়ত্তা KlsDjlfjg\lGf (secretariate-ta)

প্রেক্ররাল wlfDjOM (petrol)

And the Bengali script conjuncts and its constituents along with the Meetei Mayek notation for

the above examples are as given below:

প্রে ে + র + প্র wDjl

িি ষ + ট + র + ি KfDjg

প্রে ক + র + প্র sDjl

প্ররা ট + র + প্র া fDjO

One of the observations is that vowels presentation of Bengali and Meetei Mayek is not in the

same order. Again, the প্র (l-e) is a constituent of প্র া (O-o) and প্র (y -ou) . This may result in

the misinterpretation in case of character by character transliteration. Over and above, the

conjuncts need to be fragmented down towards its basic units. In such occurrences the one-to-one

mapping fails to work as given in the order. So, a better solution to this problem is addressed in

the proposed syllable based model. Since Manipuri is monosyllabic and highly agglutinative, it is

essential to analyze at the syllable level for each word. Each syllable can be represented by a

group of characters also termed as transliteration unit (TU). Inside this TU, there can be

conjuncts such as (ঙ+ক = ঙ্ক) .In this syllable based model, the monosyllabic TU with the highest

number of characters are picked from a table, i.e., a many-to-many model. This table maintains

the Bengali TU and its corresponding Meetei Mayek representation as shown in table 2. The step

is repeated towards the smaller conjuncts up to single character level. This technique is

specifically effective for the transliteration of the same language with different scripts.

Bengali Script Meetei Mayek

প্ররা fDjO

প্রে sDjl

প্রে wDjl`

িি KfDjg
TABLE 2 – Sample transliteration unit mapping between Bengali and Meitei Mayek scripts

The mapping tables have been prepared at different levels with separate tables for single

characters and conjuncts with two or more than two characters. The single character mapping

table contains 72 entries and the multiple characters mapping table consists of 738 entries. There

are conjuncts of 2, 3 and 4 characters. Sub-tables for each of the conjuncts are prepared. The

many-to-many character based syllables are collected from the news corpus based on its

185

occurrence and iterative procedure till it covers the written text in the corpus followed by one-to-

one mapping. First of all, we split the transliteration candidate TCi in the word list into syllables,

{s1, s2,…..sn}. Then this syllable sequence is used as a query for syllable-based searching and

mapping using the mapping table. An input word can be represented by a vector of syllables {s1,

s2,…..sn}. The syllables are the units to construct a word. The algorithm for search and map

starts using the mapping table with highest degree of many-to-many mapping table. This reduces

the overall complexity still keeping the performance high. Figure 1 shows two examples of

convergence due to phonetic similarity of TU from Bengali script to Meetei Mayek.

 (a) (b)

FIGURE 1 – Two examples of convergence of TU from Bengali Script to Meitei Mayek.

5.3 Modified Joint Source Channel

The problem of machine transliteration has been studied extensively in the paradigm of the noisy

channel model. A Bengali script to Meetei Mayek script transliteration of Manipuri news text is

developed based on Modified Joint Source Channel Model for transliteration (Ekbal et al, 2006).
A bilingual training set of Bengali script and their respective Meetei Mayek transliterations, has

been created. This bilingual training set is automatically analyzed to acquire mapping knowledge

in order to transliterate new Bengali script to Meetei Mayek. Transliteration units (TUs) are

extracted from the Bengali script to Meetei Mayek counterparts. Some examples are given below:

(a) মিনে র (ꯃꯅꯤꯄꯨꯔ) [manipur] ম | িন | ে | র

ꯃꯅꯤꯄꯨꯔ ꯃ | ꯅꯤ | ꯄꯨ | ꯔ

 রাজকুমার (ꯔꯥꯖꯀꯨꯃꯥꯔ) [rajkumar] রা | জ | কু | মা | র

ꯔꯥꯖꯀꯨꯃꯥꯔ ꯔꯥ | ꯖ | ꯀꯨ | ꯃꯥ | ꯔ

(b) অিিনন্দন (ꯑꯚꯤꯅꯟ꯭ꯗꯟ) [abhinandan] অ | িি | ন | ন্দ | ন

ꯑꯚꯤꯅꯟ꯭ꯗꯟ ꯑ | ꯚꯤ | ꯅ | ꯟ꯭ꯗ | ꯟ

The TUs are the lexical units for machine transliteration. The Bengali script is divided into

Transliteration Units (TU) with patterns C+M, where C represents a consonant or a vowel or a

conjunct and M represents the vowel modifier or matra. The system learns mappings

automatically from the bilingual training set of 20,000 entries. Aligned TUs along with their

ꯁꯤ

স
 িশ

শ

িছ

ছ

িস

ꯁꯨ

স

শু
 শ

ছ

ছ

স

186

contexts are automatically derived from this bilingual training set to generate the collocation

statistics.Transliteration units (TUs) are extracted from the Bengali script and the corresponding

Meetei Mayek words, and Bengali script TUs are associated with their Meetei Mayek

counterparts along with the TUs in context.

6 Meetei Mayek to Bengali Script Transliteration

The reverse/backward transliteration of Bengali to Meetei Mayek is carried out using the same

mapping tables. This Meetei Mayek to Bengali transliteration faces several challenges using

linguistics rules. Based on the table 2, the many-to-one mapping is one-to-many mapping for

Meetei Mayek to Bengali script transliteration thus it suffers very badly due to probability

distribution based on the number of target characters. A one-to-one map is not feasible option. A

step to enhance the performance of the transliteration is to consider the preceding few characters

and following few characters of the TU to be transliterated as a context in order to forecast the

most likely target TU. This enables to choose the right mapping by a certain factor. However, in

case of a single character TU, this approach does not help much.

In the Meetei Mayek to Bengali transliteration, there are certain limitations which are caused by

many-to-one character mapping and identification and addressing of the right representation of

Bengali. However, this issue can be further addressed using possible language model and its

probability parameters. One typical example of many-to-one transliteration such as ষ, স, শ and
ছ to K (as given in the Table 2) which results in the lost of tone that could affect other NLP

activities such as various lexical ambiguity of word sense disambiguation, POS tagging etc using

the transliterated corpus. The convergence shown in figure 1 has to be resolved for the backward

transliteration through a statistical approach since the exploration and establishment of rules is

quite difficult for such cases for the Meetei Mayek to Bengali script transliteration process.

Similarly, there are several other cases of many-to-one and one-to-many sets in between Bengali

script and Meetei Mayek. For such instances, the transliteration deems to face the difficulty to

make the right choice of the target TU using the rule based approach.

7 Evaluation

Once the experimental corpus is decided, a metric to measure the system’s precision and recall is

required. The appropriate metric depends on the scenario in which the transliteration system is to

be used. The human evaluation takes enormous time compared to automatic evaluation. In our

present task, we used 50,000 wordforms as gold standard reference test set. Table 3 gives the

precision and recall of the different transliteration systems.

Transliteration model Baseline Model Syllable Based Model Modified Joint

Source Channel

Model

Precision Recall Precision Recall Precision Recall

Bengali to Meetei Mayek
68.31 65.23 96.23 94.57 93.23 92.45

Meetei Mayek to Bengali
59.56 58.87 89.78 88.56 93.43 91.97

TABLE 3 – Precision and Recall of the Transliteration Models

187

Conclusion and Discussion

A bidirectional transliteration system between Bengali script and Meetei Mayek of Manipuri text

is developed exploiting the monosyllabic characteristics of Manipuri language. The system

abruptly outperforms compared to the baseline transliteration systems of this language using the

given two scripts. Since, the Meetei Mayek script is in the process of induction at different

administrative and academic levels, there is a need still for Meetei Mayek to be transliterated

back to Bengali script to reach other section of Manipuri speakers who know only the Bengali

script. The grapheme based approach works well for the transliteration of the same language

using the two different scripts. In future, statistical model for transliteration between Bengali

script and Meetei Mayek can be experimented using a decent size of training data collected from

different sources. Over and above, the Meetei Mayek to Bengali script transliteration has the

shortfall using the same TU list using the linguistics rules and a statistical approach is the

alternative to yield a better result.

Acknowledgments

I, sincerely, thank Dr. Zia Saquib, Executive Director, CDAC (Mumbai), Prof. Sivaji

Bandyopadhyay, Jadavpur University, Kolkata and the anonymous reviewers for their support

and valuable comments.

References

Ekbal, A., Sudip K. N., Bandyopadhyay, S. (2006). A Modified Joint Source-Channel Model

for Transliteration, Proceedings of the COLING/ACL 2006 Main Conference Poster Sessions,

Pages 191–198, Sydney.

Gao, W. (2004). Phoneme-based Statistical Transliteration of Foreign Name for OOV Problem.

A thesis of Master. The Chinese University of Hong Kong.

Knight, K. and Graehl, J. (1998). Machine Transliteration. Computational Linguistics 24(4).

Li, H., Zhang, M., and Su, J. (2004). A joint source-channel model for machine transliteration.

In Proc. 42nd ACL Annual Meeting, pages 159–166, Barcelona, Spain.

Singh, T. D., Bandyopadhyay, S. (2010a). Web Based Manipuri Corpus for Multiword NER

and Reduplicated MWEs Identification using SVM, Proceedings of the 1st Workshop on South

and Southeast Asian Natural Language Processing (WSSANLP), the 23rd International

Conference on Computational Linguistics (COLING), Pages 35–42, Beijing.

Singh, T. D., Bandyopadhyay, S. (2010b) Semi Automatic Parallel Corpora Extraction from

Comparable News Corpora, In the International Journal of POLIBITS, Issue 41 (January – June

2010), ISSN 1870-9044, Pages 11-17.

Singh, T. D., Bandyopadhyay, S. (2010c). Manipuri-English Example Based Machine

Translation System, International Journal of Computational Linguistics and Applications

(IJCLA), ISSN 0976-0962, Pages 147-158.

188

Singh, T. D., Bandyopadhyay, S. (2011). Integration of Reduplicated Multiword Expressions

and Named Entities in a Phrase Based Statistical Machine Translation System, Proceedings of

the 5th International Joint Conference on Natural Language Processing, Pages 1304–1312,

Chiang Mai, Thailand, November 8 – 13.

Virga, P., Khudanpur, S. (2003). Transliteration of proper names in cross-lingual information

retrieval. In Proc. of the ACL workshop on Multilingual Named Entity Recognition.

Yang, F., Zhao, J., Zou, B., Liu, K., Liu, F. (2008). Chinese-English Backward Transliteration

Assisted with Mining Monolingual Web Pages, Proceedings of ACL-08: HLT, pages 541–549,

Columbus, Ohio, USA, June.

189

Proceedings of the 3rd Workshop on South and Southeast Asian Natural Language Processing (SANLP), pages 191–200,
COLING 2012, Mumbai, December 2012.

Rule-based Machine Translation between Indonesian and
Malaysian

Ra ymond Hend y Susanto1 Septina Dian Larasati2 F rancis M . T yers3

(1) Department of Computer Science, National University of Singapore
(2) Institute of Formal and Applied Linguistics, MFF, Charles University in Prague

(3) Dept. Lleng. i Sist. Inform., Universitat d’Alacant
raymondhs@nus.edu.sg, larasati@ufal.mff.cuni.cz, ftyers@dlsi.ua.es

ABSTRACT
We describe the development of a bidirectional rule-based machine translation system between
Indonesian and Malaysian (id-ms), two closely related Austronesian languages natively spoken
by approximately 35 million people. The system is based on the re-use of free and publicly
available resources, such as the Apertium machine translation platform and Wikipedia articles.
We also present our approaches to overcome the data scarcity problems in both languages by
exploiting the morphology similarities between the two.

KEYWORDS: machine translation, Malay languages, morphology.

191

1 Introduction

In this paper we describe the development of apertium-id-ms, a bidirectional Indonesian and
Malaysian machine translation system based on the Apertium platform. The paper is laid out as
follows: Section 2 gives a brief description of the two languages; Section 3 gives a short review
of the previous work in Indonesian-Malaysian language pair; Section 4 describes the system
and the creation of the resources; Section 5 presents an evaluation of the system, and finally
we describes future work that could be done and some concluding remarks.

2 Languages

Indonesian (Bahasa Indonesia) and Malaysian (Bahasa Malaysia) are standards of the Malay
language and both belong to the Austronesian family. Indonesian is spoken by approximately 35
million people1, mostly from Indonesia, but also widespread in the Netherlands, the Philippines,
Saudi Arabia, Singapore, and the United States. Malaysian has 10 million speakers across the
Peninsular Malaysia, and other speakers coming from parts of Sarawak, Indonesia (Sumatra),
Singapore, and United States.

Indonesian and Malaysian are closely related; both languages are mutually intelligible to a
great extent. The morphology of the two languages are the same, where agglutination is used
extensively (by means of affixation, reduplication, and compounding), although some affixes
are more frequently used in one language over the other. For instance, the prefix juru- is often
used in Malaysian to indicate an actor characterized by the stem it is attached to. While this
affixation also happens in Indonesian, it is not as frequently found as in Malaysian.

The main difference between Indonesian and Malaysian languages lies in their vocabulary;
Indonesian is largely influenced by Dutch and Javanese, whereas Malaysian has many words
borrowed from English, e.g. dokter vs. doktor (‘doctor’) and tas vs. beg (‘bag’). Moreover,
there are frequent minor spelling differences, e.g. kabar vs. khabar (‘news’) and mau vs. mahu
(‘want’).

3 Motivation

The development of this system is motivated by an early prototype Apertium system developed
in Larasati and Kubon (2010). Since then, most of the components in the prototype were
completely redesigned, and the direction of the development was based on the following
rationale:

• Morphological analyser: We wanted to create a morphological analyser which is not
only robust, but also does not overgenerate either. Both Indonesian and Malaysian
morphology are characterized by rich derivational morphology, but poor inflectional
morphology, unlike some other morphologically-complex languages such as Arabic and
Turkish. Moreover, each root undergoes an idiosyncratic subset of these derivational
processes (i.e. we cannot simply apply the derivational affixes to new words).

• Bidirectional: A new translation direction from Malaysian to Indonesian was added,
and used as the starting point instead of the opposite direction, since translating from
Indonesian to Malaysian appears to be more ambiguous.

• Evaluation: Finally, we performed a quality evaluation of our system, which has not been
done before.

1http://www.lmp.ucla.edu/Profile.aspx?menu=004&LangID=89 Last accessed: October 2012

192

We have chosen the rule-based approach, instead of the ubiquitous corpus-based statistical
approach, due to the dearth of parallel corpora for the two languages. Moreover, the closeness
between the two languages makes the rule-based approach favourable. Recent development for
closely related languages with the rule-based approach have shown competitive performance
with respect to the statistical approach, e.g. the rule-based Swedish→Danish system in Tyers
and Nordfalk (2009) and the Italian→Catalan system in Toral et al. (2011), where both systems
outperform a rivaling statistical-based system.

4 System

The system is based on the Apertium machine translation platform (Forcada et al., 2011).2

The platform was originally aimed at the Romance languages of the Iberian peninsula, but has
also been adapted for other, more distantly related language pairs. The whole platform, both
programs and data, are licensed under the Free Software Foundation’s General Public Licence3

(GPL) and all the software and data for the 33 supported language pairs (and the other pairs
being worked on) is available for download from the project website.

4.1 Architecture of the system

morph.

analyser

morph.

disambig.

morph.

generator

post-

generator

SL

text

TL

text

deformatter

reformatter

structural

transfer

lexical

transfer

lexical

selection

Figure 1: The pipeline architecture of the Apertium system.

The Apertium translation engine consists of a Unix-style pipeline or assembly line with the
following modules (see Fig. 1):

• A deformatter which encapsulates the format information in the input as superblanks that
will then be seen as blanks between words by the other modules.

• A morphological analyser which segments the text in surface forms (SF) (words, or, where
detected, multi-word lexical units or MWLUs) and for each, delivers one or more lexical
forms (LF) consisting of lemma, lexical category and morphological information.

• A morphological disambiguator (constraint grammar) which chooses, using linguistic rules
the most adequate sequence of morphological analyses for an ambiguous sentence.

• A lexical transfer module which reads each SL LF and delivers the corresponding target-
language (TL) LF by looking it up in a bilingual dictionary encoded as an FST compiled
from the corresponding XML file. The lexical transfer module may return more than one
TL LF for a single SL LF.

• A lexical selection module which chooses, based on context rules the most adequate
translation of ambiguous source language LFs.

2http://www.apertium.org/
3http://www.fsf.org/licensing/licenses/gpl.html

193

• A structural transfer module which performs local syntactic operations, is compiled from
XML files containing rules that associate an action to each defined LF pattern. Patterns
are applied left-to-right, and the longest matching pattern is always selected.

• A morphological generator which delivers a TL SF for each TL LF, by suitably inflecting it.

• A reformatter which de-encapsulates any format information.

4.2 Morphological transducers

There is one publicly available morphological tool for Indonesian, MorphInd (Larasati et al.,
2011). However, MorphInd is only designed for analysis, while we wanted a tool for both
morphological analysis and generation. Moreover, there are rarely linguistic resources and
tools available for Malaysian. Baldwin (2006) has developed the free/open-source lemmatiser
for Malay, but this does not meet our need either since we wanted to include more robust
morphological information into our Malaysian transducer, such as part-of-speech and affixes.
Thus, we decided to build the morphological transducers from scratch.

Similar to most Apertium language pairs, the morphological transducers for both Indonesian and
Malaysian are constructed using lttoolbox, a toolbox for morphological analysis and generation
that is available under a free/open-source licence. The monolingual dictionary for each language
is provided as XML-formatted entries, which is then compiled into a finite state transducers
using lttoolbox.

4.2.1 Indonesian morphological transducer

A lexicon list was created semi-automatically to the Indonesian morphological analyser based
on a words frequency list, with the most frequent words being added first. The frequency list
was taken from a database dump of the Indonesian Wikipedia. For each word in the frequency
list, we obtained its lemma and part-of-speech information from Kateglo4, an online Indonesian
dictionary with over 70,000 entries licensed under CC BY-SA 3.0.5. Since we also wanted
to include affix information in our analyser, we wrote a rule-based morpheme segmentor to
decompose a given Indonesian surface form into their constituent morphemes, also by making
use of the lemma information from Kateglo. Moreover, closed word classes (e.g. pronouns,
conjunctions) were added by hand.

4.2.2 Malaysian morphological transducer

A frequency list for Malaysian was also created based on a database dump of the Malaysian
Wikipedia. Unlike Indonesian, we did not find a comprehensive Malaysian dictionary with
adequate morphological information, such as lemma and part-of-speech. Hence, the Malaysian
analyser was built using the two strategies below.

First, Malaysian words that also exist as an Indonesian word were assumed to share the
same morphological information (i.e. the same lemma and part-of-speech), and were added
automatically to the analyser. Although this method may introduce a number of false friends
(e.g. polisi means ‘policy’ in Malay but ‘police’ in Indonesian), the benefit outweighs the risk

4http://kateglo.bahtera.org/
5http://creativecommonsorg/licenses/by-sa/3.0/

194

since there is huge overlap in the lexicons of the two languages. Moreover, most of these false
friends usually belong to the same part-of-speech.

Second, we also added Malaysian words which appear in our bilingual dictionary. Since every
entry in a bilingual dictionary is a pair of words with the same meaning, we can assume that
these words also belong to the same part-of-speech most of the time. Our approaches to building
the bilingual dictionary are presented in the following section.

4.3 Bilingual dictionary

There is no freely available bilingual dictionary between Indonesian and Malaysian, so we had
to build the dictionary from scratch. At the moment, the bilingual dictionary contains 12,142
entries, which was developed in several ways described below.

First, most of the entries were added using automatic word alignments. We created an
Indonesian-Malaysian parallel corpus by translating many articles taken from Malaysian
Wikipedia. The translation process is mostly automatic, with the help of existing Malaysian-
Indonesian machine translation systems such as Google Translate.6

Next the Wikipedia corpus is tagged using our morphological analyser, and word alignments
were created by running GIZA++ (Och and Ney, 2003) on the tagged corpus. We fed the proba-
bilistic dictionary into the ReTraTos toolbox (Caseli et al., 2006), which extracts both phrases
and single-word translations from alignments, and converts them into Apertium translation
entries. The ReTraTos method gave us about 12,000 translation entries, but also required a
manual check due the amount of noise in the resulting data.

Finally, some entries were added manually, which included closed word classes and words that
frequently appeared in Wikipedia but were not yet added to the bilingual dictionary.

4.4 Disambiguation

The output from the morphological analysis is disambiguated using Apertium’s statistical
disambiguator module. The module implements a bigram part-of-speech tagger based on
hidden Markov models (HMM). To improve the accuracy of our disambiguator, a Constraint
Grammar (Karlsson, 1990) could be used as a pre-disambiguator module before feeding the
input to the HMM, which is left for future work.

4.5 Lexical selection rules

Given the closeness of the languages, lexical selection is not a large problem between Indonesian
and Malaysian. However, a number of rules can be written for ambiguous words; for example,
the Malaysian preposition daripada ‘from (to explain the origin of something), than (compari-
son)’ can be translated into Indonesian as either dari ‘from’ or daripada ‘than (comparison)’,
depending on the surrounding context.

Another example is the copulas adalah and ialah (both meaning ‘be’), which exist in both
Indonesian and Malaysian, but have a slightly different usage in each language. In Malaysian,
adalah is used before an adjective phrase or a prepositional phrase, and ialah is used only
before a noun phrase. In comparison to Indonesian, there are no strict rules governing the use
of the two words, and their usage is more interchangeable.

6http://translate.google.com/

195

4.6 Transfer rules
There are barely differences between the grammar of Indonesian and Malaysian, in that the
structure of words, phrases, clauses, and sentences are almost exactly the same. That said, the
lexical transfer between the two languages works by simple word substitution in most cases.

(Malaysian) Input Cuaca kelmarin amatlah sejuk.

Mor. analysis ˆCuaca/Cuaca<n><sg>$ ˆkelmarin/kelmarin<adv>$
ˆamatlah/amatlah<adv>$ ˆsejuk/sejuk<adj>$
ˆ./.<sent>$

Mor. disambiguation ˆCuaca<n><sg>$ ˆkelmarin<adv>$ ˆamatlah<adv>$
ˆsejuk<adj>$ˆ.<sent>$

Transfer ˆCuaca<n><sg>$ ˆkemarin<adv>$ ˆamatlah<adv>$
ˆdingin<adj>$ˆ.<sent>$

Mor. generation Cuaca kemarin amatlah dingin.

Table 1: Translation process for the sentence Cuaca kelmarin amatlah sejuk. ‘The weather yesterday is
very cold’.

5 Evaluation

The system was evaluated in three ways. The first was the coverage7 of the system. The second
was the word error rate (WER) of the translation output for our test data set, together with
the error analysis of the translations. Lastly, we did a comparative evaluation with an existing
system.

5.1 Coverage
Lexical coverage of the system is calculated over the Indonesian and Malaysian Wikipedia
articles, as shown in Table 2. The database dump of the Indonesian Wikipedia8 was from the
29th April 2012, and that of Malaysian Wikipedia9 from the 28th April 2012. Both database
dumps were stripped of formatting.

Corpus Tokens Coverage

Indonesian Wikipedia 19,021,087 80.70%

Malaysian Wikipedia 12,613,364 80.10%

Table 2: Naïve vocabulary coverage over Wikipedia articles.

5.2 Quantitative and Qualitative
We tested our system on a 2,084 word text taken from various articles in Malaysian Wikipedia.
The translation quality was measured using Word Error Rate (WER), a metric based on the

7Here coverage is defined as naïve coverage, that is for any given surface form at least one analysis is returned by our
monolingual dictionaries

8http://id.wikipedia.org/; idwiki-20120429-pages-articles.xml.bz2
9http://ms.wikipedia.org/; mswiki-20120428-pages-articles.xml.bz2

196

Levenshtein distance (Levenshtein, 1966). We calculated the WER for each sentence using the
apertium-eval-translator10 tool. The WER metric was preferred to other MT metrics such as
BLEU (Papineni et al., 2002) since we want to evaluate the system for the postedition task. That
is, we want to assess the amount of manual labour needed to improve the machine-generated
translation.11

For the Malaysian to Indonesian direction, the sentences were translated by the system, and
then postedited by a native Indonesian speaker. For the Indonesian to Malaysian direction, we
used the reference translation, as postedited by the native speaker and used it as a source of
Indonesian to be translated to Malaysian, then the original Malaysian sentence was used as the
reference translation.

Corpus Direction Tokens Unknown WER

Malaysian Wikipedia
id→ms 2,079 211 14.43% (83.89%)
ms→id 2,084 256 7.58% (69.53%)

Table 3: Word error rate over the Malaysian Wikipedia test data. Number in parentheses gives percentage
of unknown words which were free rides.

We consider the WER of our system, as depicted in Table 3 is quite acceptable for postediting.
In our system, unknown words are left unprocessed. Nonetheless, many of these unknown
words are free rides12, which will not affect the final quality of the translation.

As a direction for future improvement, we did an error analysis by reviewing the translation
outputs from our system. Most of the translation errors were due to the mistakes and gaps in
our analyser. Specifically, many of the stems do not have the complete set of its derived forms.
As a result, it cannot provide analysis for a unknown derived wordform even if the stem already
exists in the analyser. Moreover, the analyser cannot handle clitics attached to unknown words
(e.g. possessive enclitic -nya). These errors can be fixed by a more thorough revision of the
morphological analyser. Lastly, the system is often not capable of choosing the most suitable
translation given a particular context. A lexical selection module can be written to alleviate this
problem.

Dir. System WER

id→ms
Apertium 14.43%
Google 13.90%

ms→id
Apertium 7.58%
Google 4.07%

Table 4: Accuracy comparison between the two systems.

10https://apertium.svn.sourceforge.net/svnroot/apertium/trunk/apertium-eval-translator/
11BLEU is not used in our evaluation because we are using a reference translation which is a postedition of the

machine-translated text, and the normal use of BLEU is for evaluating against a non-postedited reference. If we used
BLEU it would give artifically high scores.

12That is, the word is unknown to the system, but the same in Indonesian and Malaysian. Typical free-rides include
names and special terminology.

197

5.3 Comparative

We compared our system to another MT system for Indonesian to Malaysian and Malaysian
to Indonesian, Google Translate, a web-based statistical machine translation system. The
evaluation was performed the same way: the test data was translated with Google Translate,
then postedited.

We notice from Table 4 that Google outperforms the Apertium system in both translation
directions. For Malaysian to Indonesian, the error rate is reduced by almost a half. It is also
interesting that both systems perform almost as worse for Indonesian to Malaysian, perhaps due
to the fact that translating from Indonesian to Malaysian is more ambiguous than translating to
Indonesian. Google seems to have a greater vocabulary coverage than Apertium, as exemplified
in the first example in Table 5. The Malaysian word mencuba (‘try’) is unknown to the Apertium
system (denoted by the asterisk), whereas it is correctly translated by Google as mencoba.

Moreover, in many cases, Google seems to be performing better in picking the most natural
translations. In the second example, it translates the noun phrase kuasa ketenteraan (‘military
power’) to kekuatan militer, which sounds much more natural than kuasa ketentaraan.

Source Para saintis mencuba menjawab pertanyaan tersebut.
Apertium Para ilmuwan *mencuba menjawab pertanyaan tersebut.
Google Para ilmuwan mencuba menjawab pertanyaan tersebut.
Reference Para ilmuwan mencoba menjawab pertanyaan tersebut.

‘Scientists are trying to answer that question.’

Source Sebuah kuasa ketenteraan yang disegani.
Apertium Sebuah kuasa ketentaraan yang disegani.
Google Sebuah kekuatan militer yang disegani.
Reference Sebuah kekuatan militer yang disegani.

‘A respectable military power.’

Table 5: Example translations from Malaysian to Indonesian.

Conclusion and future work

We have presented a bidirectional rule-based machine translation system between Indonesian
and Malaysian, two closely-related Malay languages. The system is available as free/open-source
software under the GNU GPL and the whole system may be downloaded from SVN.13

The resulting system provides comparable results with a leading corpus-based machine transla-
tion system, and we are looking forward to improving the translation quality of our system in
the future. The long-term plan is to integrate the data created to make transfer systems with
more distantly related languages such as Indonesian-English and Malaysian-English.

Acknowledgments

Development of the system was funded as part of the Google Summer of Code14, an annual
program sponsored by Google, Inc. to promote students’ participation in open-source software
projects.

13https://apertium.svn.sourceforge.net/svnroot/apertium/trunk/apertium-id-ms
14http://code.google.com/soc/

198

References

Baldwin, T. (2006). Open source corpus analysis tools for Malay. In In Proc. of the 5th
International Conference on Language Resources and Evaluation.

Caseli, H. M., Nunes, M. D., and Forcada, M. L. (2006). Automatic induction of bilingual
resources from aligned parallel corpora: application to shallow-transfer machine translation.
Machine Translation, 20(4):227–245.

Forcada, M. L., Ginestí-Rosell, M., Nordfalk, J., O’Regan, J., Ortiz-Rojas, S., Pérez-Ortiz, J. A.,
Sánchez-Martínez, F., Ramírez-Sánchez, G., and Tyers, F. M. (2011). Apertium: a free/open-
source platform for rule-based machine translation. Machine Translation, 25(2):127–144.

Karlsson, F. (1990). Constraint grammar as a framework for parsing running text. In Proceedings
of the 13th Conference on Computational Linguistics - Volume 3, COLING ’90, pages 168–173.

Larasati, S. and Kubon, V. (2010). A study of Indonesian-to-Malaysian MT system. In
Proceedings of the 4th International MALINDO Workshop, Depok, pages 16–22.

Larasati, S., Kuboň, V., and Zeman, D. (2011). Indonesian Morphology Tool (MorphInd):
Towards an Indonesian Corpus. Systems and Frameworks for Computational Morphology, pages
119–129.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions, and reversals.
Soviet Physics—Doklady 10, 707–710. Translated from Doklady Akademii Nauk SSSR, pages
845–848.

Lewis, M. P. e. (2009). Ethnologue: Languages of the World, Sixteenth edition. Dallas, Tex.: SIL
International.

Och, F. J. and Ney, H. (2003). A systematic comparison of various statistical alignment models.
Comput. Linguist., 29(1):19–51.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). BLEU: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting on Association for
Computational Linguistics, ACL ’02, pages 311–318.

Toral, A., Ginestí, M., and Tyers, F. M. (2011). An Italian to Catalan RBMT system reusing
data from existing language pairs. In Proceedings of the Second Workshop on Free/Open-Source
Rule-Based Machine Translation.

Tyers, F. M. and Nordfalk, J. (2009). Shallow-transfer rule-based machine translation for
Swedish to Danish. In Proceedings of the First Workshop on Free/Open-Source Rule-Based
Machine Translation.

199

Proceedings of the 3rd Workshop on South and Southeast Asian Natural Language Processing (SANLP), pages 201–210,
COLING 2012, Mumbai, December 2012.

Building Multilingual Search Index using open
source framework

Arjun Atreya V1 Swapnil Chaudhari1 Pushpak Bhattacharyya1
Ganesh Ramakrishnan1

(1) Deptartment of CSE, IIT Bombay

{arjun, swapnil, pb, ganesh}@cse.iitb.ac.in

ABSTRACT

This paper presents a comparison of open source search engine development
frameworks in the context of their malleability for constructing multilingual search
index. The comparison study reveals that none of these frameworks are designed for this
task. This paper elicits the challenges involved in building a multilingual index. We also
discuss policy decisions and the implementation changes made to an open source
framework for building such an index. As a main contribution of this work, we propose
an architecture that can be used for building multilingual index. It also lists some of the
open research challenges involved.

KEYWORDS: Inverted Index, Multilingual Index, Search Engine Framework

201

1. Introduction

There are lots of open source frameworks available to build a search engine. These open
source frameworks provide multiple features to build an inverted index of web
documents used for information retrieval. Some features like Scalability, term storage,
document posting list storage etc, are common across these frameworks. These
frameworks facilitate customization of building index to make it compatible for the
desired application.

To retain the structure of a document in an inverted index, field based indexing is used.
Instead of viewing a document as a collection of terms, the document is viewed as a
collection of fields and the field as a collection of terms. Each document that needs to be
indexed is parsed and terms in the document are grouped into fields prior to indexing.
The conceptual view of field based inverted index is shown in the figure 1. Figure 1(a)
shows two documents as is. Figure 1(b) shows a view of inverted index built for these
documents.

1(a) 1(b)

FIGURE 1 - Conceptual view of an inverted index

All terms in the document are indexed, and a document posting list is created for each
indexed term. For every document containing an indexed term, there is a posting list.
This posting list contains position information of the indexed term and the field in which
this indexed term is present in the document. Field information helps in prioritizing the
document for a given search.

2 Overview of open source search frameworks

There are lots of works on building the inverted index using an open source framework.
The most popular indexing library is Apache Lucene (Apache Lucene, 2011). Lucene is
not a complete search engine framework, but an indexing library used to generate
inverted index from crawled documents. Lucene needs to be plugged in with a crawler in
order to index web documents. Apache Lucene provides facilities for customizing the
library and makes it easily pluggable with the crawler that is being used.

Apache Solr (Apache Solr, 2012) is an enterprise indexing solution built on top of
Lucene. Along with indexing, Solr provides features to add, delete and modify
documents in an index. Solr also provides basic search facilities that include faceted
search, highlighting etc. One of the advantages of Solr is to seamlessly add documents to
the index, hence reducing the down time of the application.

202

Apache Nutch (Apache Nutch, 2005) is an open source crawler is built using Java. This
project was initiated as a part of Apache Lucene project. Nutch is a scalable crawler
framework used for crawling web documents. Heritrix (Heritrix, 2012) is also a web
based crawler built using Java. Heritrix provides almost all features of Nutch along with
good scalability. The comparison study between the two suggests that Heritrix is better
for Multimedia retrieval, whereas Nutch with Hadoop (Apache Hadoop, 2012) is best
suited for distributed text retrieval.

Two most popular search frameworks used in research are Terrier (Terrier, 2011) and
Lemur (Lemur, 2012). Both of these projects do not include crawler and are not
designed for web based search. However, these frameworks are highly scalable and best
suited for crawling local file system, TREC Collection, CLEF collection, FIRE collection
etc.

Other open source search engines built on top of Lucene include Compass (Compass,
2010), Oxyus (Oxyus, 2010), Lius (Lius, 2010), Regain (Regain, 2004). All these search
engines have similar features with different capabilities. Compass and Oxyus are
designed for crawling web documents, whereas Regain is designed for local system
crawl. YaCy (YaCy, 2007) is a decentralized web search framework. This project deals
with the usage of networked systems to store a shared index. YaCy provides consistent
retrieval for all users without censoring data from the shared index. A small scale search
engine Swish-e (Swish-e, 2007), is designed for crawling web pages but for a scale of less
than a million documents. MG4J (MG4J, 2005) is a scalable full text search engine built
using Java. This framework uses quasi-succinct index for searching. It supports large
document collection and indexes large TREC collection without much effort. Google
also provides an open source search engine framework called Hounder (Hounder, 2010).
Hounder is built on top of Lucene for web retrieval.

Many of the open source search engine frameworks mentioned above are compared for
their efficiency in (M. Khabsa et. al., 2012). Each of these frameworks provides certain
good qualities. Comparison study in (M. Khabsa et. al., 2012) shows that Lucene takes
more time for indexing but storage size of the index is minimized. Similarly MG4J takes
lesser time to index. However, these comparison studies are done for certain
parameters. There is no such comparison study that considers all parameters of a web
crawler.

Keeping in mind the humongous growth of the web and also the need for common
solution to search multiple language documents in the web, it is important to evaluate
parameters pertaining to multilingual documents while building index. These
parameters include language tagging of the document in an index, retrieval efficiency for
a specific language and so on.

These frameworks are designed for generating monolingual index. None of the before
mentioned frameworks provides all features for generating multilingual index.
Frameworks demand changes in the architecture to handle language information of the
document while indexing them. Changes in the architecture for one of these open source
frameworks called Solr is proposed in this work.

This work details the importance of these parameters. Section 3 describes features of a
web crawler that are required to build an index for text retrieval. Features discussed in

203

this section indicate development of web crawlers in the recent past. Our proposed
architecture to build multilingual index is introduced in section 4. Section 5 lists several
research problems to be addressed in the area of building multilingual index.

3. Features of Web based Crawler/Indexer

A crawler should possess certain features to build a web text retrieval engine. The
crawler must be able to process different document formats like HTML, XML, doc, pdf,
rtf, etc. These documents are fetched from the Internet and parsed individually to get the
clean content. With the growth of commercial online advertisement industry, cleaning
the HTML content is becoming more challenging. Obtaining the clean text helps us in
indexing documents efficiently (Apache Tika, 2012).

There are several components involved in the crawler, viz., fetcher, parser and indexer.
Each of these components is customized to enhance the capabilities of a search engine.
In this section we discuss several features of the web crawler that are necessary for a
good web search engine. The challenges involved in building multilingual index with
respect to each of these features are discussed.

3.1 Incremental crawl/index

Crawling is a continuous process of fetching new web documents from the Internet. This
is because, all search engines try to achieve a near real time search by making the latest
information available to the user . To achieve this, it is important to seamlessly add
documents to the index as and when they are fetched. This process of seamlessly adding
documents to an existing index is called incremental crawling.

A process need to be in place that adds latest crawled documents to the index while
crawling of other pages is still going on. A crawler process that is continuously running
and seamlessly adding documents to the index is essential for a near real time search.
The open source framework chosen for this task should possess these qualities. There
should not be considerable downtime of the index while updating. This downtime would
restrict the user from searching documents in the web.

Another aspect of the incremental crawl is re-crawling of already fetched documents. Re-
crawling involves identifying changes in fetched documents and indexing them again.
This involves deleting a previous version of the document and adding new one to the
index.

3.2 RSS Feeds

There are various categories of data in the web that need to be crawled. One such
categorization is with respect to the format of a document like HTML, XML, pdf, doc,
etc. Another categorization is with respect to the modification frequency of the website.
There are several websites that remain unchanged for a longer period of time like
tourism information sites. Whereas, there are several other sites that change very
frequently and these changes need to be tracked in order to crawl them continuously.

As discussed earlier, all search engines try to be real-time or near real-time search
engines. To achieve this, crawler should provide a facility to keep track of changes
happening in a website. In recent times many websites are being developed as search

204

engine friendly and maintain a record of all changes happening in that site. Websites log
all changes in the form of RSS feeds at a single location. This helps the crawler to
monitor a particular or small set of RSS feed documents to know if there are any changes
in that site.

RSS feeds are generally in XML format containing links to changes done in that site
along with metadata information. Crawler need to handle these pages in a special way
i.e., after fetching RSS feeds, crawler need to parse the page for changes. If changes exist
in the RSS feed page then all out links in the RSS feed document are fetched and
indexed. Currently there are many open source crawlers like Nutch which support this
feature but older versions of these crawlers do not support crawling of RSS feeds.

3.3 Web graph

Crawling of web pages is driven by links present in the document. While parsing the
fetched document all out-links of the document are recorded for crawling in the next
depth. This process continues till the specified depth is reached. Hence link information
in all documents is a vital part of the information for crawling. This link information is
processed to build a web graph of crawled pages. The web graph thus built can then be
used for scoring the document or for ranking retrieved results.

Several algorithms use the web graph generated while crawling. These algorithms
include the following.

 Recognizing hub pages: This process involves categorizing the page as a hub
page (main page or home page of a site). The number of in-links and out-links of
a page is used to do this task.

 Ranking algorithm: There are several ranking algorithms designed based on the
link graph among crawled pages. Google’s Page Rank algorithm (Arasu et. al.,
2002) is one of the famous ranking principles built based on the web graph of
crawled pages.

 Document scoring: While indexing, each document is given certain boosting so
as to indicate the importance of a document over other crawled documents. The
intuitive methodology is to use the ratio of in-link to out-link score to identify
the boosting factor of the document.

Apart from the above mentioned applications, web graphs are also used to find the
relation between crawled documents, clustering of related documents in the crawl, etc.

4. Our proposed architecture

Based on the popularity of open source search frameworks and their method of
implementation, we chose tools for building a multilingual search index. The latest
version of Nutch with Hadoop was chosen as a crawler and Apache Solr for building the
index of crawled documents. Both Nutch and Solr support customization of modules to
make them adaptable to a desired application. The desired application for which these
tools are used is to develop monolingual web search engine for 9 Indian languages, viz.,
Assamese, Bengali, Gujarati, Hindi, Marathi, Odiya, Tamil and Telugu.

During the development process, several implementation challenges were encountered.
Some of these challenges were handled by developing new modules like language

205

identifier. These were additional functionality requirements. A few other problems were
addressed by building resources for modules to handle different language phenomenon.
The named entity list and multiword list for each of these 9 Indian languages are
examples of building resources. But there exists some implementation challenges that
require a policy decision or an architectural change. In this section we discuss these
policy decisions and architectural changes of Solr to make it suitable for the desired
application.

Before discussing changes in the architecture of a system, it is important to detail the
infrastructure that is being used for the application. Changes in policy decisions should
also consider the infrastructure of a search system. The crawling process is distributed
across 12 systems and the generated single multilingual index is stored in a high end
search server that hosts web application.

The experience of crawling around 6 million documents possesses a few implementation
challenges. One of them being re-crawling of documents already crawled. Building a
mechanism to re-crawl documents that are already crawled require some insight into
types of documents that are being crawled. There were documents from different
domains like news sites, blogs, general sites and encyclopedia sites. We observed that
frequency of updation in these sites vary enormously. News sites update on hourly basis,
while blogs gets updated at a frequency of few days. General web sites change more
slowly and encyclopedia sites hardly change at all. These differences make it impossible
to have same re-crawl period for all documents in the crawl.

A policy decision was made to have different re-crawl periods for different kinds of sites.
Nutch framework provides a facility for adaptive fetching. This method of fetching
monitors a document to be crawled and adapts the re-crawl period based on whether the
document has changed between two successive crawls. This algorithm reduces/increases
the re-crawl period of the document by a fixed interval if the document has changed/not
changed respectively from the previous crawl. Policy decisions involve bootstrapping the
re-crawl period and also to decide upon the interval for different types of documents.

FIGURE 2 - Architecture depicting the re-crawl periods of a document

Figure 2 depicts decisions taken on re-crawl periods for different types of documents to
be crawled. The bootstrapping values are used for initial fetching and then adaptive
fetching is run for each of these documents. The challenge of categorizing documents is
done at the level of domain name. List of sites belonging to news and blogs are built.
These lists are used to fix the bootstrapping re-crawl period for a crawled document.
Also, this list is prepared separately for each language.

206

Another important issue involves building multilingual index using Solr. Solr doesnot
support use of single multilingual index, hence, architecture of Solr need to be modified.
In Solr, all language analysis filters are listed in a configuration file called schema.xml.
This file lists all filters to be called over a token stream of the document in an order.
Token stream is a list of tokens that need to be indexed for a particular document.
Architecture of the Solr system applies all the filters listed in schema.xml on the given
token stream.

In the context of multilingual index, the language analyzer corresponding to the
language of a document should be invoked while indexing. This demands a change in the
architecture of Solr so that along with the token stream object, a language tag
corresponding to the document is also passed in each module’s API. Further the
schema.xml file was changed to accommodate the language tag with each of these filters.
Each filter listed in the configuration file has an associated language tag for which the
filter is applicable. Figure 3 shows the differences in the schema.xml file before and after
the architectural change in Solr. The filters listed in the schema.xml after changes
indicate that only those filters whose language tag matches with the document’s
language tag are invoked while indexing.

FIGURE 3 - Snapshot of schema.xml (left) without change (right) with change

It is important to note that none of the open source frameworks discussed in the initial
sections of this paper deal with building a multilingual index. To build a multilingual
index, change in the architecture is must. This is irrespective of the framework chosen.
In this direction, change in the architecture of open source indexing framework like Solr
is an important step.

5. Research challenges in building multilingual index

The ranking algorithm drives the issues listed in this section. This is because, the impact
of these issues is studied with respect to the ranking of retrieved documents. Most of the
ranking algorithms used in text retrieval systems are based on variations of the tf (term
frequency)-idf (inverse document frequency) based scoring. Tf–idf values are calculated
based on the number of documents and terms in the document while building index.

In case of the multilingual index, it is possible to have the same indexed term that
appears in multiple languages. For example, the term “दरु्गा” {Durgaa; name of Indian
Goddess} is common for languages like Marathi, Hindi, Konkani and Nepali. This is
because prior mentioned languages share the same script. This phenomenon will have

207

an impact in evaluating idf value of the term. During creation of the multilingual index,
every term is indexed with a list of documents in which the term is present. The list
includes documents from all languages for the term that is same across languages. If the
goal of a retrieval system is to retrieve documents for a query irrespective of languages
then this phenomenon will not have any negative impact but, in case of cross lingual
search or monolingual search, this kind of index would mislead. The idf value captured
by this term is inclusive of all language documents, this is not desired for monolingual
search of a particular language.

The intuitive solution to this problem is to tag the language for each document that has
been indexed. Even though this methodology helps in identifying the language of a
document while retrieving, this would not be a complete solution because of misleading
idf score of the term. The idf scores are not altered during index building as only
language tagging is done to the document posting list. Conceptually a term and its
corresponding posting list should be present in the index as many times as that of the
number of languages in which the term is present.

One of the solutions to this problem involves having language based multiple indices.
This however solves the problem of recognizing a document’s language as well as having
precise idf score. On the other hand, this solution demands a change in the
infrastructure and brings in performance issues. Variation in the number of documents
of each language is so large in the web that few languages dominate the web content
hence language based indexing is not prescribed. Another solution to this problem is to
change the structure of the conventional inverted index and force the index to store
multiple entries of the same term for each language in which it is present. This still
stands as an open issue in building a single multilingual index.

Conclusion and perspectives

This paper dealt with building a multilingual index using an open source framework. We
proposed an architecture by customizing an open source framework called Solr to build a
multilingual index. Policy decisions taken and implementation challenges faced in this
process are explained in detail. A wide range of open source search engine frameworks
were discussed with their benefits and limitations. A comparative study based on several
parameters of these search engines were done to get better perspective with respect to
building an index.

Several features of the crawler were detailed for web based text retrieval system. These
features were discussed so as to indicate the importance of the continuous crawling
process and seamless modifications that need to be done to the index. The proposed
architecture is already been implemented and the evaluation process of the search
engine is in progress.

Few research challenges involved in building multilingual index were introduced.
Having an indexed term sharing the script in multiple languages poses a challenge of
getting wrong document frequency. This leads to an idea of having separate index for
every language and also demands a change in infrastructure. These issues are yet to be
addressed to build an efficient multilingual index.

208

Acknowledgments

Thanks to AAI Group, CDAC Pune for providing the crawling infrastructure for this
application.

References

Apache Lucene (2011) http://lucene.apache.org/

Apache Solr (2011) http://lucene.apache.org/solr/

Apache Nutch (2005) http://nutch.apache.org/

Heritrix (2012) https://webarchive.jira.com/wiki/display/Heritrix/Heritrix

Apache Hadoop (2012) http://hadoop.apache.org/

Terrier (2011) http://terrier.org/

Lemur (2012) http://www.lemurproject.org/

Compass (2010) http://compass-project.org/

Oxyus (2010) http://sourceforge.net/projects/oxyus/

Lius (2010) http://sourceforge.net/projects/lius/

Regain (2004) http://regain.sourceforge.net/

YaCy (2007) http://yacy.de/

Swish-e (2007) http://swish-e.org/

MG4J (2005) http://mg4j.di.unimi.it/

Hounder (2010) http://code.google.com/p/hounder/

M. Khabsa, Stephen Carman, S. R. Choudhury and C. L. Giles (2012)A Framework for
Bridging the Gap Between Open Source Search Tools, In proceedings of the SIGIR 2012
Workshop on Open Source Information Retrieval

Arasu, A. and Novak, J. and Tomkins, A. and Tomlin, J. (2002). "PageRank
computation and the structure of the web: Experiments and algorithms". Proceedings
of the Eleventh International World Wide Web Conference, Poster Track. Brisbane,
Australia. pp. 107–117.

Apache Tika - The Parser interface (2012) https://tika.apache.org/1.2/parser.html

209

Proceedings of the 3rd Workshop on South and Southeast Asian Natural Language Processing (SANLP), pages 211–220,
COLING 2012, Mumbai, December 2012.

Automatic Searching for English-Vietnamese Documents on the Internet
Quoc Hung Ngo1, Dinh Dien2, Werner Winiwarter3

(1) Faculty of Computer Science, University of Information Technology, HoChiMinh City, Vietnam
(2) Faculty of Information Technology, University of Natural Sciences, HoChiMinh City, Vietnam

(3) University of Vienna, Research Group Data Analytics and Computing, Vienna, Austria
hungnq@uit.edu.vn, ddien@fit.hcmus.edu.vn,

werner.winiwarter@univie.ac.at

ABSTRACT

Bilingual corpora together with machine learning technology can be used to solve problems in
natural language processing. In addition, bilingual corpora are useful for mapping linguistic tags
of less popular languages, such as Vietnamese, and for studying comparative linguistics.
However, Vietnamese corpora still have some shortcomings, especially English–Vietnamese
bilingual corpora. This paper focuses on a searching method for bilingual Internet materials to
support establishing an English–Vietnamese bilingual corpus. Based on the benefit of natural
language processing toolkits, the system concentrates on using them as a solution for the problem
of searching any Internet English–Vietnamese bilingual document without the need for any rules.
We propose a method for extracting the main content of webpages without the need for frame of
website or source of website before processing. Several other natural language processing tools
included in our system are English-Vietnamese machine translation, extracting Vietnamese
keywords, search engines, and comparing similar documents. Our experiments show several
valuable auto-searching results for the US Embassy and Australian Embassy websites.

ABSTRACT (L2)

Sự kết hợp giữa ngữ liệu song ngữ và máy học có thể giúp giải quyết nhiều vấn đề trong xử lý
ngôn ngữ tự nhiên. Hơn nữa, các ngữ liệu song ngữ còn giúp ích rất nhiều trong việc ánh xạ nhãn
ngôn ngữ cho các ngôn ngữ ít phổ biến như tiếng Việt và các nghiên cứu trong ngôn ngữ học so
sánh. Tuy nhiên, ngữ liệu tiếng Việt vẫn còn có ít và hạn chế, đặc biệt là ngữ liệu song ngữ Anh-
Việt. Bài báo này tập trung vào việc đưa ra một phương pháp tìm kiếm các tài liệu song ngữ từ
nguồn dữ liệu Internet nhằm hỗ trợ cho việc xây dựng bộ ngữ liệu song ngữ Anh-Việt. Dựa trên
những công cụ xử lý ngôn ngữ tự nhiên hiện có, hệ thống tập trung vào sử dụng chúng như là
một giải pháp để giải quyết vấn đề tìm kiếm tài liệu song ngữ bất kỳ từ Internet mà không cần
các quy tắc định trước. Chúng tôi cũng đề xuất một phương pháp để rút trích nội dung chính
trang web mà không phải phụ thuộc vào thiết kế cũng như nguồn gốc của trang web đó. Một số
công cụ xử lý ngôn ngữ tự nhiên khác sử dụng trong hệ thống của chúng tôi gồm có dịch máy tự
động Anh-Việt, rút trích từ khóa tiếng Việt, tìm kiếm tài liệu từ Internet, và so sánh độ tương
đồng văn bản. Bài báo cũng đưa ra một số thử nghiệm với các kết quả có giá trị trong quá trình
tìm kiếm tự động các tài liệu song ngữ từ nguồn là trang web của Đại sứ quán Hoa Kỳ và Đại sứ
quán Úc.

Keywords: Building Corpus, English-Vietnamese Bilingual Corpus, Search Engines
Keywords (L2): Xây dựng Ngữ liệu, Ngữ liệu Song ngữ Anh-Việt, Công cụ Tìm kiếm

211

1 Introduction

Nowadays, corpus-based NLP research has been developing rapidly. There are many corpus-
based studies and tools in machine translation (Koehn, 2005), information retrieval (Chen, 2000;
Hawking, 1996; Oard, 1998), bitext alignment (Burkett, 2010), etc. These tools are built flexibly
to work on many languages with an input corpus. For example, YAMCHA toolkit1 was built for
classifying tasks, such as POS tagging, Named Entity Recognition, and Text Chunking. It works
effectively on English partly because of the quality of English corpora. However, its result on
Vietnamese is not as good as on English because of the low quality and quantity of Vietnamese
corpora. Moreover, bilingual corpora are also used to map linguistic tags from English to other
languages (Dien, 2003). Hence, building monolingual and bilingual corpora is still valuable for
many languages.

With the vast resources from the Internet, many researchers have studied to mine them to build
bilingual corpora, such as Yang, C.C. and co-authors (Yang, 2003) and Zhang, Y. and co-authors
(Zhang, 2006) for the English-Chinese pair; and Van, D.B. and Quoc, H.B. (Van, 2007) and Vu,
P.D.M. (Vu, 2007) for the English-Vietnamese pair. However, their bilingual corpus building
systems work on the supposition that these documents and their translations come from the same
origin. It means that their URL addresses have the same domain or at least related domains. For
the English-Vietnamese pair, authors used a bilingual dictionary to look up the meaning of words
in the English documents, then search translation documents from a specific domain which cover
these word meanings.

This project points out a system to search English-Vietnamese bilingual documents on the
Internet by combining several NLP modules: extracting keywords, machine translation, search
engine, and comparing similar documents. The system is based on a framework-free web content
extraction module and search engines, therefore, it leads to our system being independent from
the domains in which it searches the candidates of translation documents.

2 Related work

2.1 WPDE system

The WPDE system of Zhang and co-authors has three main stages: choosing candidate websites
and extracting web contents; extracting parallel bilingual document pairs; and analyzing
translation pairs (Zhang, 2006). Features which are used for choosing bilingual document pairs
are domains in URLs, addresses and filename. The system determines such words, phrases such
as “e”, “en”, “eng”, “english” for English and “c”, “ch”, “chi”, “cn” or “zh” for Chinese.
Moreover, the system also uses the similarity in the html structure to detect translation candidate
pairs. Analyzing the translation pairs is based on mechanical features, such as file size between
two files, structures of html pages, etc. Finally, the WPDE’s model uses the k-nearest neighbor
approach to classify candidate pairs.

2.2 PTMiner System

PTMiner system of Chen, J., Nie, J.J. searches and identifies English–Chinese bilingual sites
automatically (Chen, 2000). The system works in a similar way as Resnik’s system (Resnik,

1 http://chasen.org/~taku/software/yamcha/

212

1998). However, the authors used several features for filtering and detecting bilingual websites
after downloading and used an approach based on web content and content alignment:

+ Filtering based on length of web pages,

+ Filtering based on structures,

+ Filtering based on content alignment.

2.3 English-Vietnamese Alignment System

The system of Van D.B. and Quoc H.B. (Van, 2007) and the system of Vu P.D.M. (Vu, 2007)
download web pages from specific addresses or domains (such as www.voanews.com). In the
same way as other systems, they remove HTML tags and get the main content as the raw
document of the process. Then, they use several heuristics to detect parallel bilingual pairs. These
candidates are analysed by a two-step filter:

+ Sentence length filtering

+ Lexicon-based sentence alignment

To reduce the dictionary size and increase precision, the authors used the Porter algorithm to
stem English words before looking them up in the dictionary (Van, 2007). The authors applied
their approach on the VOANews website, and the precision was 90% with about 8,500 bilingual
sentence pairs. However, the limitation of the approach is using heuristics to create candidate
pairs.

3 Research framework

The system uses an English–Vietnamese translation system, a keyword extraction tool based on
Vietnamese words, and a document similarity comparison tool to find translated documents of
English pages. Translated pages are found on the Internet by using the Google Search engine and
NLP toolkits. Our searching system includes three main phases: (1) download webpages and get
web content; (2) translate and search candidates; and (3) compare similarities between translated
document and candidates (see Figure 1).

FIGURE 1 – Architure of the system for searching English-Vietnamese documents automatically

In general, Phase 1 includes downloading webpages, parsing the HTML files into the HTML
trees, and then choosing the main content from the tree. Phase 2 includes translating main content
of webpages into Vietnamese text by using Google Translate2, extracting keywords from
Vietnamese text, and searching Vietnamese documents on the Internet by extracted keywords

2 http://translate.google.com/

213

and saving them as candidate documents. Finally, Phase 3 is simply comparing similarity
between the translated Vietnamese document and candidate documents.

3.1 Get web content

Because results of the searching system can be from any resource domain, the first task of the
system is detecting the main content of web pages of any domain which can be unknown in
advance. These web pages are in English or Vietnamese. Unlike the framework-based
approaches (Vu, 2007), our approach for this task is parsing web pages into HTML trees,
identifying the content node in these trees, and then analysing their contents (see Figure 2 and
Figure 3).

FIGURE 2 – Model of extracting web content

Parsing the web page into an HTML tree is based on the Majestic12 project3 . Next, the process
of extracting the main content includes two steps: analysing and giving marks to HTML nodes
and then detecting the content node in the HTML tree. Giving marks to HTML nodes is based on
counting content sentences for these nodes. Rules for calculating weights for nodes in HTML
trees are (see an illustration in Figure 3):

FIGURE 3 – Illustration of extracting web content for an US Embassy web page.

+ Only weighing nodes with TEXT tags because these nodes contain real content.

+ Weights of TEXT nodes are based on the number of their sentences. The more sentences
nodes have, the higher weights are.

+ Nodes contain at least one paragraph.

+ Weights of parent nodes are calculated by summing all weights of children.

3 http://www.majestic12.co.uk/projects/html_parser.php

HTML

Web
pages

Parse
HTML

Calculate
weights &

detect content
node

Generate
content
TEXT

214

Finally, the content node is the deepest node with the highest weight in the HTML tree. This
approach can detect the content node and extract the main content of webpages without the need
for frame of website as well as source of website before processing.

For example, node DIV-1 in Figure 3 contains node H1-0, P-0, SPAN-14, SPAN-15, SPAN-17,
SPAN-18, SPAN-20, SPAN-22, and SPAN-24. Weight of node SPAN-15, SPAN-18, and
SPAN-24 are 3, 2, and 3, respectively, while weight of other nodes is zero because they contain
phrases instead of complete sentences. Hence, weight of node DIV-1 is 8 (= 3+2+3).

3.2 Get keywords for searching

Unlike English, Vietnamese words can be a group of several tokens, therefore, extracting
Vietnamese keywords has to consider to extract words instead of tokens. Firstly, word
segmentation is implemented by ensuring that extracted keywords have meaning and are real
words. Steps for extracting Vietnamese keywords include:

+ Segment Vietnamese words,

+ Remove Stopwords,

+ Estimate term frequencies.

Calculating and extracting keywords has two sub-steps (Matsuo, 2004):

+ Calculate the co-occurrence frequency of word w and word g by freq(w,g)

+ Calculate co-occurrence with the χ2 estimate.

Keywords are words which have highest χ2 weights in the document. In our experiment, the
system only extracts 3 first keywords for next searching step (based on our experiment shown in
Section 4.2).

3.3 Using search engines for searching candidates

Keywords are provided for the searching system by generating an address which includes these
keywords. Searching result is search engines’ response file which is acquired by this address. For
example, keywords “building parallel corpus” generate URL addresses for searching systems:

Google: http://www.google.com.vn/search?hl=vi&q=building+parallel+corpus

Yahoo: http://search.yahoo.com/search?p=building+parallel+corpus

FIGURE 4 – Searching process by Google system

By acquiring web page of these addresses, the system gains searching results from Google or
Yahoo (as shown in Figure 4). Google and Yahoo also support searching results which come
from any domain, a specific domain or except a specific domain. This option allows our auto-
searching system to be able to direct its searching results. It can be implemented by adding
following parameters:

215

− Search in specific domain: site:<domain>

− Search in except domain: -site:<domain>

For example, the URL address for searching “building parallel corpus” from site
www.aclweb.org is “site:aclweb.org building parallel corpus”. It means that every result of the
search engine will come from aclweb.org.

From Google’s results, the system continues to download candidate documents from the result
addresses and extracts main content to store them as candidates for evaluating translation pairs at
phase 3, comparing similarity between the automatic translation document and candidates.

3.4 Document comparison for Vietnamese

In general, the comparison module includes two steps: mechanical filter and content-based
similarity comparison. The mechanical filter uses several features to remove less suitable
candidates, such as rate of file size between two documents, the differences in number of
paragraphs or sentences. The content-based similarity comparison step calculates documents as
vectors. Words which are chosen for representation in the vector are the top 30% frequent words
in the document. Comparing two documents becomes calculating the distance between two
vectors by measuring the Euclidean distance between two document vectors (Guo, 2008).

4 Experiments and results

4.1 Get web content

In general, getting web content works effectively on embassy websites and result webpages of
the searching process. Table 1 shows the result of getting web content from the US Embassy
website and searching results from the Internet (from unanticipated domains).

For news expresses, the number of articles is very huge and there is additional information, such
as title, abstract, category, publish date, authors, etc. This information is very useful for other
natural language processing tasks which are based on this corpus. Hence, the system builds
several specific definitions to identify content nodes for these websites. These definitions help
the system to be able to extract effectively and get more information fields.

 USEmbassy Other Domains4

Number of web pages 2,054 3,973

Number of main content files 1,870 3,035

Correct result
1,853 2,885

99% 95%

TABLE 1 – Result of extracting main content

4.2 Keywords for search engines

Results of search engines depend on the provided keywords. To know how many keywords are

4 Statistics based on 3,973 return records of the search engine from out of the US. Embassy website.

216

good for the bilingual document searching system, this project implements an experiment on the
data from the Australian embassy website with 86 parallel document pairs. Tests acquire 30
returns from the Google search engine. The test has a different number of keywords to calculate
the precision of returns of the search engine for our system. The result is shown in Table 2.

Number of keywords 2 3 4 5 6

Results of Google search 1,652 1,419 1,393 1,174 1,118

Result in parallel pairs 37 45 35 22 13

TABLE 2 – Results of Google search with several different numbers of keywords

Our experiments show that the accuracy of the searching module is highest when looking for 3
keywords for each document (see Table 2). In this test, correct results of search engines are
addresses in the parallel pairs. In fact, the Google’s response for 3 keywords has 1,419 results
with 45 correct results, while it has 1,652 results with 37 correct results for 2 keywords.
Similarly, the Google search just acquires 35, 22 and 13 correct results when searching with 4, 5,
and 6 keywords, respectively.

4.3 Searching results on embassy websites

In our first experiment, the system carries out several tests on the US Embassy and Australian
Embassy websites with totally 2,500 web pages in which there are 440 parallel English–
Vietnamese document pairs (see Table 3).

Website URL Content pages Data size

USEmbassy: English site 896 832 2.4 MB

USEmbassy: Vietnamese site 1,150 1,076 12.8 MB

AUEmbassy: English site 207 178 2.4 MB

AUEmbassy: Vietnamese site 158 128 12.8 MB

TABLE 3 – Characteristics of data from embassy websites

Table 4 shows the result of bilingual website of the US Embassy and Australian Embassy with
the similarity threshold of 0.7 .

Website Parallel pairs Results Precision (%) Recall (%)

USEmbassy 354 197 92% 51%

AUEmbassy 86 45 93% 49%

TABLE 4 – Result of the bilingual document searching system on the US Embassy and
Australian embassy pages after Phase 1

Table 5 shows the results of whole system when applying it to the US Embassy and Australian
Embassy bilingual websites.

217

Website Parallel pairs Results Precision (%) Recall (%)

USEmbassy 354 350 90% 89%

AUEmbassy 86 84 92% 90%

TABLE 5 – Result of the searching bilingual document system on the US Embassy and
Australian Embassy pages after Phase 2

In our experiments, recall parameter is only evaluated on the webpages of the US Embassy and
Australian Embassy instead of on the global Internet because the resources from the Internet are
enormous and, maybe, there are some correct pages from other domains which our system does
not discover.

4.4 Searching result on other websites

Result of searching translation documents depends on the content of web pages. Translation
documents come from any domain in the Internet. However, the original documents which are
translated and then posted on other domains as well as re-published as translation versions on
other locations mainly come from the Press Releases division of the Embassy website.

Another experiment is focused on news announcements of the US Embassy. It has 354 English
news articles in the Press Releases section of the US Embassy website while only some articles
are translated into Vietnamese and posted on the Embassy website (see Table 6).

Website
English pages

(Press Releases)
Vietnamese documents

in searching results

USEmbassy 354 52

TABLE 6 – Result of searching parallel documents from embassy websites

In 52 found results, there are ten results for which there are no translations on the US Embassy
website. These articles are news announcements which were published in English by the US
Embassy before 2004 (without in Vietnamese) and which were translated and published on News
expresses.

5 Conclusions

The project has pointed out a process to search English—Vietnamese bilingual documents on the
Internet. The approach allows to look for translation documents from any resource instead of
from a specific domain. We also demonstrated the process by building an application to search
bilingual documents automatically, the result on the US Embassy and Australian Embassy
websites are very promising. Moreover, the project also has produced several valuable tools,
such as getting web content, extracting Vietnamese keywords, comparing similar documents.
Particularly, for getting main content, we presented a method to calculate content nodes in the
HTML tree and extract the main content from the HTML parser result. This tool can be used for
NLP projects which are based on web contents.

218

6 References

Burkett, D., Petrov, P., Blitzer, J., and Klein, D. (2010). Learning Better Monolingual Models
with Unannotated Bilingual Text. Proceedings of CoNLL 2010, pp. 46-54.

Chen J., and Nie, J. (2000). Parallel Web Text Mining for Cross-Language IR. Proceedings of
RIAO-2000: Content-Based Multimedia Information Access. College de France, Paris, France,
pp. 188-192.

Dien, D., and Kiem, H. (2003). POS-tagger for English-Vietnamese bilingual corpus,
Proceedings of HLT-NAACL, Workshop on Building and Using Parallel Texts, pp. 88-95.

Guo, Q. (2008). The Similarity Computing of Documents Based on VSM, 32nd Annual IEEE
International Computer Software and Applications Conference, pp. 585-586.

Koehn, Ph. (2005). Europarl: A Parallel Corpus for Statistical Machine Translation, In
Proceedings of the 10th Machine Translation Summit, Phuket, Thailand, pp. 79-86.

Hawking, D., Bailey, P., and Campbell, D. (1996). A Parallel Document Retrieval Server for
the World Wide Web. Proceedings of the Australian Document Computing Symposium
(ADCS), Melbourne, pp. 73-78.

Matsuo, Y., and Ishizuka, M. (2004). Keyword Extraction From A Single Document Using
Word Co-Occurrence Statistical Information, International Journal on Artificial Intelligence
Tools, Vol. 13, No. 1, pp. 157-169.

Oard, D. W., and Diekema, A. R. (1998). Cross-Language Information Retrieval. Annual
Review of Information Science and Technology (ARIST), Volume 33, pp. 223-256.

Resnik, P. (1998). Parallel Stands: A preliminary investigation into mining the web for bilingual
text. Proceedings of AMTA’98, pp. 72-82.

Van, D.B., and Quoc, H.B. (2007). Automatic Construction of English-Vietnamese Parallel
Corpus through Web Mining, In Proceedings of 5th IEEE International Conference on Computer
Science - Research, Innovation and Vision of the Future (RIVF’2007), Hanoi, Vietnam, pp.
261-266.

Vu, P.D.M. (2007). Building bilingual corpus by mining data from Internet, Master thesis in
Computer Science, University of Natural Science, HoChiMinh City, Vietnam, 2007 (in
Vietnamese).

Yang, C.C., and Li, K.W. (2003). Automatic Construction of English/Chinese. Parallel Corpora,
Journal of the American Society for Information Science and Technology, pp. 730-742.

Zhang, Y., Wu, K., Gao, J., and Vines, P. (2006). Automatic Acquisition of Chinese–English
Parallel Corpus from the Web. Advances in Information Retrieval, Volume 3936/2006, pp. 420-
431.

219

Proceedings of the 3rd Workshop on South and Southeast Asian Natural Language Processing (SANLP), pages 221–228,
COLING 2012, Mumbai, December 2012.

Error tracking in search engine development

Swapnil Chaudhari
1
 Arjun Atreya V

1
 Pushpak Bhattacharyya

1
 Ganesh Ramakrishnan

1

(1) Department of CSE, IIT Bombay

{swapnil, arjun, pb, ganesh}@cse.iitb.ac.in

ABSTRACT

In this paper, we describe a tool that allows one to track the output of every module of a search

engine. The tool provides the ability to perform pseudo error-correction by allowing the user to

modify these outputs or tune parameters of the modules to check for improvement of results.

Often it is important to see if certain surface level changes can help in the improvement of the

result quality. This is crucial since it saves the immediate need to make changes in the system in

terms of resource updation or development efforts. We describe query processing pipeline in

sufficient detail and then show the efficacy of our tool for an example in Marathi along with

giving a thorough error analysis for the example considered. We believe this paper will establish

that such a tool is of significant importance for instant detection and correction of errors along

with giving the readers an idea on how to develop the same.

KEYWORDS: INFORMATION RETRIEVAL, TRACKER, ERROR TRACKING, ERROR ANALYSIS TOOL

221

1 Introduction

Information retrieval refers to searching relevant documents satisfying the user information need.

User information need is typically captured in the form of a query. A search system consists of

two parts viz. offline processing and online processing.

Offline processing mainly consists of two parts – crawling and indexing. In crawling, documents

from the web are fetched and stored. These documents have to be parsed and stored in optimal

way in terms of both storage space and search time. For efficient retrieval of documents, an

inverted index of terms in the documents is created.

Online processing consists of converting the user’s information need in a format which facilitates

the matching of query terms with terms in documents. Query expansion using feedback or

thesaurus, semantic search, etc. are different ways of capturing user information need. A naive

way to capture information need is to consider query terms as representative of user information

need. These terms in the query have to be processed before they can be used to search

documents. Processing of terms involves stop word removal, stemming and query formulation.

Some of the search engines also do named entity recognition, multi word recognition or word

sense disambiguation to enhance query processing. This processing is done in the form of a

pipeline where output of one stage is fed as input to the next stage.

Most of these modules need language based resources and processing. For example, named entity

recognition requires applying machine learning techniques on a large corpus and extracting

named entities out of it. The output of named entity recognition engine is used as dictionary for

searching named entities in the query. All such modules cannot generate an exhaustive resource

list and are vulnerable to errors. Errors in each module degrade the overall performance of the

system. Evaluation forums like TREC (TREC, 1992), CLEF (CLEF, 2000), NTCIR (NTCIR,

1999) and FIRE (FIRE, 2008) provide platform to evaluate the system performance in terms of

precision, recall, MAP value, etc. However, these measures indicate end to end performance of

the system and do not evaluate performance of individual module in the system. Since the

architecture is pipelined, the error propagates and multiplies. In such architecture, tracking the

root cause of error is important. To facilitate this tracker was developed.

Tracker is a tool which captures the input and output information of each stage of the pipeline

and displays it to the assessor. This helps in identifying the root cause of the error. A relevance

judgement tool is integrated in tracker to aid storing relevance judgments for each query.

The roadmap of the paper is as follows. We describe query processing pipeline in the next section

with an example case of Marathi. In section 3, we look at different types of errors that can occur

in a search engine. Then we discuss at different functionalities in Tracker in section 4 followed

by implementation details in section 5. Tracker was used by more than 100 developers and

assessors across the country. Section 6 covers these user experiences about tracker.

2 Query processing pipeline

Figure 1 illustrates query processing pipeline. A query given in Marathi is

म ुंबईमधील क ुं वा रायगडमधील स ुंदर राष्ट्रीय उद्यान

mumbaimadhil kiva raaygadmadhil sundar raashtriya udyaan

222

in Mumbai or in Raigad beautiful national park

beautiful national park in Mumbai or Raigad

FIGURE 1- Query Processing illustrated with Marathi

The stop word removal module removes stop words by doing a dictionary look up. In this query

क ुं वा (kiva) (or) is a stop word in Marathi which gets removed in this stage. The resultant query

after removing stop word is म ुंबईमधील रायगडमधील स ुंदर राष्ट्रीय उद्यान (mumbaimadhil

raaygadmadhil sundar raashtriya udyaan). This is given as an input to the stemmer.

The Marathi stemmer (Bapat et. al, 2010) is implemented as a Finite State Transducer in which

we specify a word as a sequence of legal morphemes. Each morpheme corresponding to the root

word is called the stem and this stem possesses features which are extracted by the means of a

morphological parser. In this case, the suffix मधील (madhil) (in) is attached to words म ुंबई

(mumbai) (Mumbai) and रायगड (raajgad) (Raigad). This suffix is removed by the stemmer and

the words म ुंबईमधील (mumbaimadhil) (in Mumbai) and रायगडमधील (raaygadmadhil) (in

Raigad) are reduced to their root forms म ुंबई (mumbai) (Mumbai) and रायगड (raaygad) (Raigad)

respectively. The resultant query is म ुंबई रायगड स ुंदर राष्ट्रीय उद्यान (Mumbai raaygad sundar

raashtriya udyaan). The Marathi stemmer stems the words with an accuracy of 95 percent. These

stemmed words are used by the named entity recognition module to detect named entities in the

query.

The named entity recognition module detects named entities by searching through a dictionary of

named entities. This dictionary is pre-computed from a large corpus. In this query, म ुंबई

(mumbai) (Mumbai) and रायगड (raaygad) (Raigad) are two named entities. After detecting

named entities, multi-words in the query are detected.

The multi-word detection module takes an n-gram window to match the query terms against a

dictionary of multi-words. This dictionary is precompiled from a large corpus. In this query,

राष्ट्रीय उद्यान (raashtriya udyaan) (national park) is a multiword. After detecting the important

terms in the query like named entities and multi-words, we form a Boolean query. The terms in

the query are given appropriate boosts based on their importance. The results retrieved are then

presented to the user. The quality of these set of results is a function of the accuracy of individual

modules. Diagnostics of each module is called for at this stage.

223

3 Error analysis

Each module can contribute to error and affect the overall performance of the system. The

following section describes the different kinds of errors that can occur in each stage of pipeline.

3.1.1 Types of errors and their impact on performance

In the stop word removal stage, errors can be due to a stop word not being detected by the

module. This can boost non-relevant results to the top of ranked list because of high count of stop

word content in it. Another possible error is wrongly detecting an important word as stop word

and removing it from the query. Stemming involves two kinds of errors viz. Wrong stem and no

stem. A wrong stem may be due to over-stemming or under stemming. Wrong stem results in

change in meaning of the word used in the query. This can cause topic drift in results.

E.g. Consider the query

ग जरातचे लो

gujaraatche loka

of Gujarat people

People of Gujarat

In this case, over stemming ग जरातचे (gujaraatche) (of Gujarat) will give root ग जर (gujar)

(Gujar) instead of correct root ग जरात (gujarat) (Gujarat). ग जर (gujar) (Gujar) is a caste while

ग जरात (gujarat) (Gujarat) is a state name. The query formed after stemming is (gujar people)

(Gujar people). Instead of getting information about people of Gujarat, the user will get results

related to people belonging to Gujar caste.

If the stemmer is not able to stem the word, it may return the original query term. In both cases,

the error in stemming gets propagated to further stages. An error in stemming may cause error in

detecting named entities and multi-words. In the above example, if ग जरातचे (gujaraatche) (of

Gujarat) is not stemmed, then named entity ग जरात (gujarat) (Gujarat) will not be recognized. If a

named entity is not recognized, we may lose the information about importance of that word.

Similarly, if a multiword is not recognized, then information about importance as well as

proximity of those query terms is lost. For example, consider the multi-word query राष्ट्रीय उद्यान

(raashtriya udyaan) (national park). In this, if multi-word identification fails, then राष्ट्रीय

(raashtriya) (national) and उद्यान (udyaan) (park) will be searched as two different entities. The

word राष्ट्रीय (raashtriya) (national) can match with documents containing terms like राष्ट्रीय
सीमा (raashtriya seema) (national border), राष्ट्रीय सुंस्था (raashtriya sansthaa) (national

institute), राष्ट्रीय सुंग्रहालय (raashtriya sangrahaalay) (national museum), etc. and retrieve

irrelevant results.

An error in a module may be corrected by adding resources or might require re-engineering to

solve the issue. Changing the module for each error and retesting the system after change is quite

time consuming. One way to analyze this problem is pseudo error correction. This involves

correcting the output of a particular module temporarily without making a change in the module

for detecting errors in further modules. To facilitate monitoring the outputs of individual modules

and pseudo error correction, tracker was developed. As per our knowledge, no such tool for a

search engine exists.

224

4 Tracker

Tracker is an error analysis tool developed to assist developers and assessors to analyze each

module of a search engine for errors and tune the system parameter to find the best parameters

that suit the system. Tracker captures input and output of each module for a query and displays

them to the assessor. The assessor can then manually judge the outputs as correct or incorrect.

This helps in detecting errors in modules.

For example, while processing the query म ुंबईमधील क ुं वा रायगडमधील स ुंदर राष्ट्रीय उद्यान
(mumbaimadhil kiva raaygadmadhil sundar raashtriya udyaan), let us assume that stemmer is

not able to remove the suffix मधील (madhil) (in) from words म ुंबईमधील (mumbaimadhil) (in

Mumbai) and रायगडमधील (raaygadmadhil) (in Raigad). As a result, the named entity module

will not be able to detect म ुंबई (mumbai) (Mumbai) and रायगड (raaygad) (Raigad) as named

entities. By looking at the output of stemming stage, the assessor can conclude that stemmer

should be further improved. However, even if we correct the stemmer, we are not sure whether

named entity module will detect म ुंबई (mumbai) (Mumbai) and रायगड (raaygad) (Raigad) as

named entities.

To avoid delay in the detection of errors in subsequent modules, Tracker allows assessor to

replace the output of a particular module with the correct output without actually modifying the

module. Once the assessor submits the query again after modifying the stemmer output, the new

corrected output will override the existing output and will be fed as input to next stage. This can

be done incrementally to detect errors in all the modules. While doing this, tracker stores

information about past changes and masks all the outputs of the modules which assessor wish to

change. This information is stored till the assessor wish to clear it for that query. Let us see some

additional capabilities in tracker which makes development and bug detection faster.

4.1.1 Capabilities of Tracker

A relevance judgement tool1 is integrated with the tracker which allows the user to perform

relevance judgement on a query. These judgements are stored in a database for future reference.

The relevance judgements are pre-populated on the interface for subsequent firing of the same

query. The result set for a query may change because of change in a module’s output. The

assessor has to perform relevance judgements only for those URLs whose relevance judgement

was not stored earlier. This saves time of re-judging the same page for a query. The tracker

automatically calculates precision values at rank 5 and 10 using these judgements. These figures

help the assessor in analyzing the effect of current change in module outputs on the precision

values of the result set.

Tracker also maintains a revision history for each query fired by the assessor. This history

captures the changes done in different modules and corresponding precision values. This helps in

summarizing what kind of changes can help to improve the system as a whole. Consider a

scenario where the system was tested for around 100 queries. Out of these queries, 60% of the

queries showed improvement after changing the output of stemmer. 20-30% showed

improvement after modifying named entity recognition output and the rest didn’t show a

significant change in results after modifying any output. In this case, stemmer and named entity

1
 A relevance judgement tool is an interface to help an assessor mark a retrieved URL as relevant, partially relevant, link-

relevant, irrelevant and error

225

recognition modules should be improved. Such data can help prioritize tasks for development and

help improve the system faster.

5 Implementation Details

Tracker is developed in Java. Tracker has a web interface which is linked to the results page of

the search engine. The system maintains login information of the assessors to store relevance

judgement of each assessor separately in a database. Relevance judgment is stored in a table with

primary key as combination of the username of assessor, query and URL of the search result.

When a query is fired, the input and output of each module is stored in an object. This object

persists till expiry of session. The values captured in the object are displayed to the assessors on

the tracker web interface. The assessor is allowed to modify the output of any module. The

modified output is stored back in the object and used for overriding the output of the stages for

which modification is done. The object stores change information till either session expires or

user fires a different query. In the latter case, the object is used for storing information about new

query. A separate table is created in database for maintaining revision history of the changes done

for each query.

Figure 2 shows a screen of the tracker interface used for tracking output. The first column

specifies the level in module hierarchy, second denotes module name and the last column shows

the output of the corresponding output. Since it is pipeline architecture, the output of one module

directly forms input of other module and hence inputs are not explicitly shown. The assessors are

allowed to edit one level at a time which enables tracking incremental changes.

FIGURE 2- Tracker Web Interface

226

Figure 3 shows how a revision history for each query is maintained. The boost values used for

named entity, multi-word, title, content, etc. are part of system parameters which can be tuned

using tracker. In this case change in stemmer, which is second module in the pipeline, causes

significant rise in precision values. The third row in figure shows the effect of reducing named

entity boost during query formulation. The fourth row depicts that change in title boost have no

effect on precision values for this query.

FIGURE 3- Revision History

6 User experiences of Tracker

Tracker was used by more than 100 developers and assessors all over India for tracing errors in

multiple languages. A sample of overall feedback obtained is as follows:

 Positive points:

o Useful tool to track query processing

o Easy to evaluate and check the system’s performance on varying boosts factors.

o Revision History helps in comparing results.

 Improvements Suggested:

o Should be extended to calculate precision values up to 25 results.

o Should be extended to support dynamic resource updation while tracking

changes.

Conclusion and perspectives

In this paper, we have highlighted the importance of having an error analysis tool like tracker to

track individual modules of a large scale system. Tracker facilitates detection of errors in

different modules of the search engine. Pseudo error correction of outputs helps discovering

further errors in the system without making a change in the module. With an example of Marathi

retrieval system, we have shown the use of tracker and its effectiveness in error analysis and

analyzing performance of the system for various system parameters. Tracker is independent of

the language of search and portable across search systems. This idea can be extended for making

error analysis tools for any large scale system based on pipelined architecture.

Acknowledgments

Thanks to DAIICT, Gujarat for their contribution in developing a relevance judgement tool that

is integrated with the tracker.

References

Text REtrieval Conference (TREC) Home Page (1992). http://trec.nist.gov/

227

The CLEF Initiative (Conference and Labs of the Evaluation Forum) – Homepage (2000).

http://www.clef-initiative.eu/

NTCIR HOME (1999). http://research.nii.ac.jp/ntcir/index-en.html

FIRE - Forum for Information Retrieval Evaluation (2008). http://www.isical.ac.in/~clia/

Mugdha Bapat, Harshada Gune, Pushpak Bhattacharyya (2010). A Paradigm-Based Finite State

Morphological Analyzer for Marathi. Proceedings of the 1st Workshop on South and Southeast

Asian Natural Language Processing (WSSANLP), pages 26–34, the 23rd International

Conference on Computational Linguistics (COLING), Beijing, August 2010.

228

Proceedings of the 3rd Workshop on South and Southeast Asian Natural Language Processing (SANLP), pages 229–236,
COLING 2012, Mumbai, December 2012.

An Efficient Database Design for IndoWordNet Development
Using Hybrid Approach

Venkatesh Prabhu2 Shilpa Desai1 Hanumant Redkar1

Neha Prabhugaonkar1 Apurva Nagvenkar1 Ramdas Karmali1

(1) GOA UNIVERSITY, Taleigao - Goa
(2) THYWAY CREATIONS, Mapusa - Goa

venkateshprabhu@thywayindia.com, sndesai@gmail.com, hanumantredkar@gmail.com,
nehapgaonkar.1920@gmail.com, apurv.nagvenkar@gmail.com, rnk@unigoa.ac.in

ABSTRACT
WordNet is a crucial resource that aids in Natural Language Processing (NLP) tasks such
as Machine Translation, Information Retrieval, Word Sense Disambiguation, Multi-lingual
Dictionary creation, etc. The IndoWordNet is a multilingual WordNet which links WordNets of
different Indian languages on a common identification number given to each concept. WordNet
is designed to capture the vocabulary of a language and can be considered as a dictionary cum
thesaurus and much more. WordNets for some Indian Languages are being developed using
expansion approach.

In this paper we have discussed the details and our experiences during the evolution
of this database design while working on the Indradhanush WordNet Project. The Indradhanush
WordNet Project is working on the development of WordNets for seven Indian languages.
Our database design gives an efficient plan for storage of WordNet data for all languages. In
addition it extends the design to hold specific concepts for a language.

KEYWORDS: WordNet, IndoWordNet, synset, database design, expansion approach, semantic
relation, lexical relation.

229

1 Introduction

1.1 WordNet and its storage methods

WordNet (Miller, 1993) maintains the concepts in a language, relations between concepts and
their ontological details. The concept in a language is captured as a Synonym set called synset.
The IndoWordNet is a multilingual WordNet which links WordNets of different Indian languages
on a common identification number called as synset Id. A synset represents a unique concept in
a language. Synset is composed of a Gloss describing the concept, example sentences and a set
of synonym words that are used for the concept. Besides synset data, WordNet maintains many
lexical and semantic relations. Lexical relations (Fellbaum, 1998) like antonymy, gradation
are between words in a language whereas semantic relations like hypernymy, hyponymy are
between concepts in a language. Ontology details for a synset are also maintained in a WordNet.

WordNet contains information about nouns, verbs, adjectives and adverbs and is organized
around the notion of a synset. Earlier the WordNet data was stored in flat text files. This storage
method was found insufficient for developing multi-lingual WordNet applications requiring
random access to synsets or its constituents. This was the motivation for storage of data in
a relational database. The design of the database was for a single language WordNet. The
approach used to build the WordNet had an impact on how the data should be ideally stored.
The various WordNet development approaches are discussed next.

1.2 WordNet development Approaches and its impact on the storage
structure

Various approaches are followed in the construction of WordNets across the languages of the
world. WordNets are constructed by following either the merge approach or the expansion
approach (Vossen, 1998). The merge approach is also referred to as WordNet construction
from first principles (Bhattacharyya, 2010). Here exhaustive sense repository of each word is
first recorded. Then the lexicographers constructs a synset for each sense, obeying the three
principles namely principle of minimality, coverage and replacebility (Bhattacharyya, 2010).

For many Indian languages, WordNets are constructed using the expansion model where Hindi
WordNet synsets are taken as a source. The concepts provided along with the Hindi synsets
are first conceived and appropriate concepts in target language are manually provided by the
language experts. The target language synsets are then built based on the concepts created
keeping in view the three principles mentioned above. The expansion approach gives rise to
a multi-WordNet where a concept is given an id called synset-id and is present in all target
language WordNets. One of our contributions is the storage structure of such a multi-WordNet.
We maintain the data common to all languages in a central shared database for the multi-
WordNet and the data which changes as per the language in separate databases for each
language. The issues regarding the approach which affect the storage structure are discussed
next.

1.3 Advantages and disadvantages of each approach

Both the merge and expansion approaches have their advantages and disadvantages. The
advantages of using merge approach are: There is no distracting influence of another language,
which happens when the lexicographer encounters culture and region specific concepts of the
source language. The quality of the WordNet is good but the process is typically slow. The

230

advantages of using expansion approach are: Using this approach, instead of creating the synset
from the scratch, synsets are created by referring to existing WordNet of the related language.
WordNet development process becomes faster as the gloss and synset of the source language is
already available as reference. Also it has the advantage of being able to borrow the semantic
relations of the given WordNet. That leads in saving an enormous amount of time.

The WordNets developed using expansion approach is very much influenced by the source
language and may not reflect the richness of the target language. Therefore there was a need for
Hybrid Approach to achieve perfection with respect to WordNet development time and quality.
In order to overcome this disadvantage the IndoWordNet Community classified the synsets in
the source language as Universal, Pan Indian, In family, language-specific, etc. Each language
initially developed the synsets for Universal and Pan Indian synsets and then proceeded to
develop synsets which were specific to their respective language viz. language-specific synsets.

Another contribution is that our storage structure also provides the flexibility to include concepts
specific to a language or group of language. We also provide for a mechanism in our storage
structure whereby the concept can be accepted by all languages or a group of languages.

The rest of the paper is organized as follows – section 2 introduces the IndoWordNet, section 3
presents tools for IndoWordNet Development and limitations of the existing tool. The details of
IndoWordNet Database design and its strengths are presented in section 4. Section 5 presents
the future perspectives and conclusions.

2 IndoWordNet

The IndoWordNet is a linked structure of WordNets of major Indian languages from Indo-Aryan,
Dravidian and Sino-Tibetan families. These WordNets have been created by following the
expansion approach from Hindi WordNet which was made available free for research in 2006.
Since then a number of Indian languages have been creating their language WordNets (Pushpak
Bhattacharyya, 2010). The issues faced while using the expansion approach which affect the
storage structure are discussed next.

2.1 Challenges faced while using Expansion Approach

The challenges faced while using the Expansion Approach are:

1. Linking of contextual words: Using the expansion approach, certain synsets may totally
get omitted because of the variety of shades of meaning of different words.

2. Linking a concept which is not present in the source language.
3. Coining of words: Another issue that remains to be resolved is how far the lexicographer

can be given the liberty to coin new words.
4. Coverage of synsets: Though the meaning of many words are known to the people and are

not found in common literature, but one may find some of the words possibly in poetry.
Whether we have to cover them is also a question (Walawalikar et al., 2010).

Some of the challenges were addressed in the following ways:

1. The first and second challenge was addressed by creating language specific synsets and
validating with experts before finalization.

2. The third challenge was addressed by following two approaches: first was by adapting
the source language word and second approach was coining of new words.

231

3. The fourth challenge was addressed by adding such words towards the end of the
synonymous set.

3 Tools for IndoWordNet Development

During the development of IndoWordNet we felt the need of various tools developed which
drove us to reconsider the storage strategy used to store the IndoWordNet.

3.1 Existing tools

1. For the synset creation, we use the offline tool, Synset Creation Tool provided by IIT
Bombay along with Hindi WordNet sysnets. This standalone interface allows users to
view the Hindi synsets, concepts, example sentences on one side and simultaneously
keying the target language synsets, concepts and example sentence. The tool also has
the Princeton WordNet English synsets interlinked. The generated target language synset
files which are stored in a flat text files have extension as .syns.

2. English-Hindi Linkage Tool is a heuristic based tool to link Hindi-English synsets.
3. Synset Categorization Tool is used to chose common linkable synsets across all lan-

guages by classifying them as Universal, Pan Indian, In family, language-specific, Rare,
Synthesized and Core.

4. The Sense Marking Tool is used to find the synset coverage of a WordNet.

3.2 Limitations of existing tools with respect to the storage structure

The tools used for the development of WordNets using the Expansion approach were mostly
based on flat files. Flat files have their own advantages but there are several disadvantages too.
Some of the problems faced while working on the above tools were as follows:

1. Synset counting with respect to different criteria such as getting the synset count belonging
to a specific grammatical category or range.

2. Merging synset files, finding common set of synsets
3. Security and Data integrity
4. Status of synsets – to know whether the synset is validated or not.
5. Additional data about synsets (meta data – source, useful links, video, audio, domain,

images which gives additional information about the synset, etc).
6. Also it is difficult to store lexical and semantic relations between words and synsets in a

flat file.

The major contribution presented in this paper is the storage design we implemented for
IndoWordNet in form of solutions to the above problems. This design related solutions to the
above problems are:

1. The data is stored in a systematic and classified manner.
2. Meta data feature - to store additional information about the synset.
3. Language-dependent information such as synset entries in the target language, lexical

relations, etc. is maintained in the individual WordNets.
4. Language-independent information such as semantic relation, ontological details of a

concept, etc. is stored only once and is made available to all the language-specific modules
via the inter-lingual relations.

5. Centrally controlled system for issuing Ids in case of language specific synsets.

232

In order to provide support for a systematic and rapid expansion approach for development of
good quality WordNets for languages, it was felt essential to have the data stored in databases
in a systematic manner using normalised database design.

4 Database Design Details

Figure 1: Database design depicting language dependent data and language independent data
using colour coding.

The IndoWordNet database is designed to maintain the data for a WordNet in two databases. The
common data such as semantic relations and ontology details for all languages are maintained
in a common database called wordnet-master. The wordnet master maintains the data shared
by all the languages. This database will keep tables which borrow the relations from the source
WordNet (Hindi WordNet). The wordnet-master includes tables for semantic relations. It will
include all ontology related tables in English.

The synset data for a language is maintained in a separate database for each language called
wordnet-<respective-language>. Here respective-language is to be replaced by the actual
language name for e.g. wordnet-konkani, wordnet-hindi, wordnet-marathi for Konkani, Hindi
and Marathi languages respectively. Figure 1 shows the language dependent and language
independent data represented in colour coding.

WordNet classifies word meanings into four basic lexical categories: nouns, verbs, adjectives
and adverbs. Each synset in the WordNet is linked with other synsets through the well-known
lexical and semantic relations. Semantic relations are between synsets and lexical relations are
between words. These relations serve to organize the lexical knowledge base.

4.1 Salient features of using IndoWordNet Database design

Some of the salient features of using IndoWordNet Database design for storing synset data are
as follows:

• Centralized database for common concepts and language databases for language concepts.

233

• Incorporates both merge-approach and expansion approach data
• Design provides for developing a centrally controlled system for issuing Ids in case of

concepts specific to a language or language group.
• Open, scalable, normalized and modular design.
• Maintains language-specific relations in the WordNets.
• Achieves maximal compatibility across the different resources.
• Can be used for building the WordNets relatively independently (re)-using existing

resources.
• Supports development of online and offline applications such as dictionary, synset creation

tool, multilingual information retrieval, etc. Speeds up retrieval and processing time;
• Stores semantic, lexical relations,ontological details and Meta-data;

All the above features make it a flexible design. The Entity-Relationship diagram for
IndoWordNet database design is shown in Figure 2.

Figure 2: Entity Relationship diagram for IndoWordNet Database Design.

Conclusion and perspectives
The advantages of the IndoWordNet Database design are: Different WordNets can be compared
and checked cross-linguistically which will make them more compatible. It will be possible to
use the database for multilingual information retrieval, by expanding words in one language
to related words in another language. The IndoWordNet Database design can be used for
development of online and offline applications such as Multi-lingual Dictionary, WordNet for
public use, etc. The IndoWordNet Application Programming Interfaces developed by Goa
University which helps the developer to access and modify the IndoWordNet database is
developed using IndoWordNet database schema.

234

References

George A. Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross, and Katherine Miller
(Revised August 1993). Introduction to WordNet: An On-line Lexical Database.

George A. Miller 1995. WordNet: A Lexical Database for English.

Fellbaum, C. (ed.). 1998. WordNet: An Electronic Lexical Database, MIT Press.

Pushpak Bhattacharyya, Christiane Fellbaum, Piek Vossen 2010. Principles, Construction and
Application of Multilingual WordNets, Proceedings of the 5th Global Word Net Conference (Mumbai-
India), 2010.

Pushpak Bhattacharyya, IndoWordNet, Lexical Resources Engineering Conference 2010
(LREC2010), Malta, May, 2010.

Shantaram Walawalikar, Shilpa Desai, Ramdas Karmali, Sushant Naik, Damodar Ghanekar,
Chandralekha D’souza and Jyoti Pawar. Experiences in Building the Konkani Word Net using
the expansion Approach. In Proceedings of the 5th Global WordNet Conference on Principles,
Construction and Application of Multilingual WordNets (Mumbai-India), 2010.

Vossen P. (ed.). 1998. EuroWordNet: A Multilingual Database with Lexical Semantic Networks.
Kluwer Academic Publishers, Dordrecht.

235

Proceedings of the 3rd Workshop on South and Southeast Asian Natural Language Processing (SANLP), pages 237–244,
COLING 2012, Mumbai, December 2012.

IndoWordNet Application Programming Interfaces

Neha R Prabhugaonkar1 Apurva S Nagvenkar1 Ramdas N Karmali1

(1) GOA UNIVERSITY, Taleigao - Goa
nehapgaonkar.1920@gmail.com, apurv.nagvenkar@gmail.com, rnk@unigoa.ac.in

ABSTRACT
Work is currently under way to develop WordNet for various Indian languages. The IndoWord-
Net Consortium consists of member institutions developing their own language WordNet using
the expansion approach. Many tools and utilities have been developed by various institutes
to help in this process. In this paper, we discuss an object oriented Application Programming
Interface (API) that we have implemented to facilitate easy and rapid development of tools
and other software resources that require WordNet access and manipulation functionality.
The main objective of IndoWordNet Application Programming Interface (IWAPI) is to provide
access to the WordNet resource independent of the underlying storage technology. The current
implementation manipulates data stored in a relational database. Furthermore the IWAPI also
supports parallel access and manipulation of WordNets in multiple languages.

In this paper, we discuss functional requirements, design and the implementation of
IndoWordNet API and its uses.

KEYWORDS: WordNet, Application Programming Interface (API), WordNet CMS, IndoWordNet,
IndoWordNet Database, WordNet Website.

237

1 Introduction

An Application Programming Interfaces (API) is defined as a set of commands, functions and
protocols which developer can use when building software. It allows the developer to use
predefined functions to interact with systems, instead of writing them from scratch. APIs are
specially crafted to expose only chosen functionality and/or data while safeguarding other parts
of the application which provides the interface. The characteristics of good API (Joshua Bloch,
2007) are as follows:

• Easy to learn and use, hard to misuse.
• Easy to read and maintain code that uses it.
• It is programming language neutral.
• Sufficiently powerful to support all computational requirements.

The IndoWordNet API provides a simple and easy way to access and manipulate the WordNet
resource independent of the underlying storage technology. The functionality is exposed
through a set of well defined objects that developer can create and manipulate as per his/her
processing requirement. Although the current implementation expects the data to be available
in a relational database, a two layered architecture separates functionality offered to the user
from the data access functionality. This allows for future enhancements to support any data
storage technology and design without changing the API provided to the developer.

The IndoWordNet API allows parallel access and updates to single or multiple language Word-
Nets. A new design using relational database has been implemented for this purpose. This
database design (IndoWordNet database) supports storage of multiple language WordNets. An
effort has been made to optimize the design to reduce redundancy. Certain data common across
all languages i.e. ontology information, semantic relationships, etc are stored in a separate
master database and data specific to a language i.e. synsets, lexical relationships, etc are stored
separately for each language in the database of respective language. The rest of the paper is
organised as follows – section 2 discusses functional requirements of IWAPI, section 3 presents
the architecture and design of IWAPI. The implementation details of IWAPI are presented in
section 4. Section 5 presents the conclusion.

2 Functional Requirements

Users often have to rely on others to perform functions that he/she may not be able or permitted
to do by themselves. Similarly, virtually all software has to request other software to do some
things for it. To accomplish this, the asking program uses a set of standardized requests, called
application programming interfaces that have been defined for the program being called upon.
Developer can make requests by including calls in the code of their applications. The syntax
is described in the documentation of the application being called. By providing a means for
requesting program services, an API is said to grant access to or open an application.

Following information needs to be maintained for any WordNet resource. The synsets of the
langauge which includes concept definition, usage examples and a set of synonym words (Miller,
1993). Each synset also belongs to a specific lexical class, namely noun, adjective, verbs and
adverbs. There is also an ontology maintained and every synset maps to a specific ontology
node in this hierarchy. The synsets are related through semantic relations and words are
related through lexical relations. IWAPI should allow developer to access and manipulate above
information. Besides the above requirement it was also felt that it should be possible to maintain
additional information about the synsets i.e. an image describing a concept, pronunciations of

238

words in the synsets, links to websites and other resources, etc. The IWAPI should also support
storage and access to such additional information. The developer based on his application
requirement may also require accessing multiple language WordNets simultaneously. The IWAPI
should also support this feature.

3 Architecture and Design

The IWAPI has two layered architecture. The upper layer is the Application layer and the lower
layer is the Data layer. The class diagram of IndoWordNet API (Application layer) is shown
below. The Application layer exposes the set of classes and methods which the developer will
use to access and manipulate the WordNets as discussed in section 2. The Application layer
does not directly access the data stored on the disk but uses Data layer for this purpose. The
Data layer provides this service through a set of data classes and methods which it exposes to
the Application layer. The Data layer understands the design and storage technology used to
store the data i.e. relational database, flat text files, indexed files, XML etc. The Data layer is
responsible for actual access and manipulation of data stored in files/database and is expected
to reorganize the data in memory so that it can be exposed to the Application layer using
the Data objects. This protects the Application layer from changes in storage technology or
storage design. In the current implementation the Data layer accesses the data from relational

Figure 1: A simplified Class diagram of IndoWordNet API (Application Layer).

database. In future any changes in the storage method would only require a new Data layer
to be implemented for that specific storage technology. Only the Application layer classes are
exposed to the developer and Data layer classes are hidden so any changes will not affect the
tools and software already created by the developer. The implementation maintains the classes
and objects belonging to the different layers in separate libraries facilitating replacement of
Data layer when desired.

239

Some of the important classes of Application Layer are as follows:

1. IWAPI : A static class that allows initialising the IndoWordNet API library for use. To
use the IndoWordNet API the first thing you need to do is authenticate the user i.e.
IWAPI.init ("username","password");
This class manage connectivity to language specific databases. By establishing a single
connection with the master database, you can connect to multiple language specific
databases using, IWAPI.getLanguageObject(IWLanguageConstants.KONKANI); where
IWLanguageConstant is static class that contains all the constant names for language
specific databases. It also allows developer to maintain Meta information:
• To get/add/delete various lexical and semantic relation.
• To get/add/delete various property values of lexical relation such as action, amount,

color, direction, etc and semantic relations.
• To manipulate domain names, grammatical categories, ontology nodes, ontology

hierarchy, etc.
2. IWLanguage: A class that provides connection to language WordNets by using IWLan-

guage langObj = IWAPI.getLanguageObject(IWLanguageConstants.KONKANI); Using
the langObj i.e the object of IWLanguage it allows the developer:
• To get the total number of synsets, total number of words of a given language.
• To get all synsets/words belonging to a domain/ category/range of Id’s.
• To create/destroy a new synset, word, domain, category, ontology, relation, etc.
• To get words and synsets having a given semantic and lexical relations.

3. IWSynset: A class that represents a synset. The synset object of IWSynset class allows
developer:
• To get the concept, translated concept, transliterated concept of a given synset which

is present in the database. To get usage examples of the synset.
• To get/set the category, domain, source, concept of a given synset.
• To add/remove examples, files and various semantic/lexical relations of a synset.

4. IWSynsetCollection: A class that represents a collection of synsets. It allows developer:
• To get the size of the collection i.e. the number of synsets present in the collection,

using the method, count();
• To iterate through the collection, using getElement(); first(); next(); previous();

last(); respectively.
5. IWWord: A class that represents a word. The word object of IWWord class allows

developer:
• To get the id of the word, to get synsets for a given word.
• To get various lexical relation such as antonymy relation, compounding relation,

gradation relation, etc.
• To add/remove various lexical relations for specified synset and word such as

antonymy relation, compounding relation, gradation relation, etc.
6. IWWordCollection: A class that represents a collection of words for a synset. It allows

developer:
• To get the size of the collection i.e. the number of words present in the collection.
• To iterate through the collection, using getElement(); first(); next(); previous();

last(); respectively.
• It also allows deleting a word, to insert a word at a particular location, to move a

word to a particular location, to change the priority of the words, etc.
7. IWExampleCollection: A class that represents a collection of examples for a synset. It

240

allows developer:
• To get the size of the collection i.e. the number of examples present in the collection.
• To iterate through the collection, using getElement(); first(); next(); previous();

last(); respectively.
• To move the current example at a specified location, to insert a new element in

a collection at a specified location, to insert a new element at last position in the
collection, etc.

8. IWFile: A class that represents files. Using the object of IWFile class it allows developer:
• To get/set the file content, file Id, file size, file type, etc.

9. IWOntology: A class that represents ontology node. Each synset is mapped to an ontology
node in the ontology tree. Using the object of IWOntology class the developer can
• get/set the ontology Id, ontology data, ontology translated data, ontology transliter-

ated data,
• get/set the ontology description, ontology translated description, and ontology

transliterated description from the database.
10. IWOntologyCollection: Collection of child nodes for a given onto node. Using the object

of IWOntology class it allows developer:
• To get the size of the collection i.e. the number of ontology nodes present in the

collection.
• To iterate through the collection, using getElement(); first(); next(); previous();

last(); respectively.
Similarly we have classes such as IWAntonymyCollection, IWGradationCollection,

IWMeroHoloCollection, IWNounVerbLinkCollection, etc.
11. IWException: A class that defines all the exceptions which occurs in case of error or

failure.

Note: There are additional classes like IWAntonymy, IWGradation and IWMeronymyHolonymy
which are the private classes used internally in the API and are hidden from the developer.

The Data layer will change depending on the storage technology but the Application layer will
remain unchanged. The Data layer deals with encapsulation of the storage design. It provides a
standard interface to the application layer. The Data layer supports all the operations needed to
be performed on the data. Data Layer consists of the following important classes:

1. IWDb: A class that represents to a database/file store.
2. IWCon: A class that represents up an authenticated connection to a database/file store.
3. IWStatement: A class which contains all data manipulation functionality required by the

Application layer.
4. IWResult: A class which returns result to the application layer i.e. synsets, collections,

etc.

4 Implementation

Reference implementation of IndoWordNet API is done in JAVA and PHP. The size of JAVA jar
file is 224 KB and the size of PHP API package is 452 KB. The IndoWordNet API classes are
stored in 4 packages:

• unigoa.indowordnet.api: This package consists of important classes of Application Layer
such as the IWAPI, IWLanguage, IWSynset, etc. as discussed earlier in section 3.
• unigoa.indowordnet.constants: This package consists of static classes which define all

241

the constants used by API and do not contain any methods.
• unigoa.indowordnet.maintenance: This package consists of a class which allows the

developer to maintain master data.
• unigoa.indowordnet.storage: This package consists of classes of Data Layer such as

the IWDb, IWCon, IWStatement and IWResult. They provide a standard interface to
the application layer and their implementation will change depending on the storage
technology.

Figure 2: Example to create a new synset using IndoWordNet API.

An example to illustrate the use of IndoWordNet API is shown above. The basic flow is as follows:
Initialize the API library and authenticate the user (line no. 10). Connect to a language WordNet
(Konkani WordNet line 11-12). The same method can be used repeatedly to create connections
to multiple language WordNets. Each call will return an object representing connection to a
language WordNet. This facilitates simultaneous access to multiple WordNets. Create a new
synset using the language object (line no. 14). Add a word or an example to the new synset
(line no. 19-20). Similarly, to get synset information of a given synset Id. First, create the object
of the synset, and use the synset object to get synset information (line no. 22-39).

Conclusion
The IndoWordNet API can be used to facilitate easy and rapid development of tools and other
WordNet related software resources with minimal effort, with enhanced features by a developer
in a very short time for any language. The ease and speed at which new tools to support research
community can be developed was demonstrated during the implementation of WordNet Content
Management System(CMS) which used IndoWordNet API implemented in PHP. A demo paper
on WordNet Content Management System has been accepted at COLING 2012. The Konkani
WordNet website is deployed using WordNet CMS.

The IndoWordNet API has been successfully used by other IndoWordNet members to develop
web-based tools such as bi-lingual dictionary, multi-lingual dictionary, Lexical Relation Tool to
capture various lexical relations such as antonym, gradation, etc. A Synset Management System
is under development to assist creation of language specific synsets and manage their linkages
to other Indian language WordNets. We expect that in future the IndoWordNet API’s will be
used for the development of tools and software resources by IndoWordNet members.

242

References

George A. Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross, and Katherine Miller
1993. Introduction to WordNet: An On-line Lexical Database.

George A. Miller 1995. WordNet: A Lexical Database for English.

Joshua Bloch 2007. How to Design a Good API and Why it Matters.

Pushpak Bhattacharyya, IndoWordNet, Lexical Resources Engineering Conference 2010
(LREC2010), Malta, May, 2010.

Pushpak Bhattacharyya, Christiane Fellbaum, Piek Vossen 2010. Principles, Construction and
Application of Multilingual WordNets, Proceedings of the 5th Global Word Net Conference (Mumbai-
India), 2010.

243

Author Index

Aboutajdine, Driss, 173
Anwar, Waqas, 69
Atreya, Arjun, 201

B, Sivaji, 95
Bajwa, Usama Ijaz, 69
Bandyopadhyay, Sivaji, 25, 41
Banerjee, Somnath, 25
Basu, Anupam, 153
Bhat, Suma, 79
Bhattacharyya, Pushpak, 201, 221
Bojar, Ondřej, 135
Boulaknadel, Siham, 173
Buranasing, Watchira, 15

Charoenporn, Thatsanee, 15
Chaudhari, Swapnil, 201, 221

Das, Dipankar, 41
Dasgupta, Tirthankar, 153
Debbarma, Khumbar, 41
Desai, Shilpa, 229
Dey, Anik, 123

Fung, Pascale, 123

Gupta, Vishal, 109

Jawaid, Bushra, 135

Karmali, Ramdas, 229, 237
Khan, Sajjad Ahmad, 69
Krail, Nidhi, 109
Kruengkrai, Canasai, 15

Larasati, Septina Dian, 191

Miyao, Yusuke, 53
Mukhopadhayay, Sibanshu, 153

Nagvenkar, Apurva, 229, 237

Nejme, Fatima Zahra, 173
Ngo, Quoc Hung, 211
Nguyen, Ngan L.T., 53
Nguyen, Quy T., 53
Nguyen, Thi Lan, 163
Nongmeikapam, Kishorjit, 95

Patra, Braja Gopal, 41
Pawar, Jyoti, 145
Prabhu, Venkatesh, 229
Prabhugaonkar, Neha, 229, 237
Prasad, K.V.S, 1

Ramakrishnan, Ganesh, 201, 221
Redkar, Hanumant, 229
RK, Vidya Raj, 95

Sardesai, Dr. Madhavi, 145
Singh, Thoudam Doren, 181
Sinha, Manjira, 153
Sornlertlamvanich, Virach, 15
Susanto, Raymond Hendy, 191

Tran, Do Dat, 163
Tyers, Francis M., 191

V, Arjun Atreya, 221
Vaz, Edna, 145
Virk, Shafqat Mumtaz, 1

Walawalikar, Shantaram, 145
Wang, Xuan, 69

Y, Nirmal, 95
Ying, Li, 123

245

	Program
	Computational evidence that Hindi and Urdu share a grammar but not the lexicon
	Semantic Relation Extraction from a Cultural Database
	Bengali Question Classification: Towards Developing QA System
	Morphological Analyzer for Kokborok
	Comparing Different Criteria for Vietnamese Word Segmentation
	A Light Weight Stemmer for Urdu Language: A Scarce Resourced Language
	Morpheme Segmentation for Kannada Standing on the Shoulder of Giants
	Manipuri Morpheme Identification
	Domain Based Classification of Punjabi Text Documents using Ontology and Hybrid Based Approach
	Using English Acoustic Models for Hindi Automatic Speech Recognition
	Tagger Voting for Urdu
	BIS Annotation Standards With Reference to Konkani Language
	Automatic Extraction of Compound Verbs from Bangla Corpora
	Influences of particles on Vietnamese tonal Co-articulation
	Toward an amazigh language processing
	Bidirectional Bengali Script and Meetei Mayek Transliteration of Web Based Manipuri News Corpus
	Rule-based Machine Translation between Indonesian and Malaysian
	Building Multilingual Search Index using open source framework
	Automatic Searching for English-Vietnamese Documents on the Internet
	Error tracking in search engine development
	An Efficient Database Design for IndoWordNet Development Using Hybrid Approach
	IndoWordNet Application Programming Interfaces

