
Proceedings of the 11th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+11), pages 162–170,
Paris, September 2012.

Creating a Tree Adjoining Grammar
from a Multilayer Treebank

Rajesh Bhatt
Univ. of Massachusetts

Amherst, MA 01003, USA
bhatt@linguist.umass.edu

Owen Rambow
CCLS, Columbia University
New York, NY 10115, USA
rambow@ccls.columbia.edu

Fei Xia
Univ. of Washington

Seattle, WA 98195, USA
fxia@uw.edu

Abstract

We propose a method for the extraction of
a Tree Adjoining Grammar (TAG) from a
dependency treebank which has some rep-
resentative examples annotated with phrase
structures. We show that the resulting TAG
along with corresponding dependency struc-
ture can be used to convert a dependency
treebank to a TAG-based phrase structure
treebank.

1 Introduction

In this paper, we address the problem of extract-
ing a Tree Adjoining Grammar (TAG) from a tree-
bank which has been annotated manually for de-
pendency structure (DS), and which has a small
set of representative example sentences manually
annotated for both DS and phrase structure (PS).
There has been much work on TAG extraction
from PS treebanks (e.g., (Xia, 1999; Chen, 1999)).
In those studies, heuristics are used to “cut up” the
PS trees of entire sentences into elementary trees,
which are then collected into a grammar.

This paper extends the previous work and
makes the following novel contributions:

• We present a method for extracting a TAG
from a DS treebank augmented with a set of
representative examples of (DS, PS) pairs.

• We show that the resulting TAG paired with
DS subtrees can be interpreted as conversion
rules for converting the DS treebank to a PS
treebank.

The structure of the paper is as follows. In Sec-
tion 2, we review the relevant properties of the
Hindi Treebank, which serves as the source of our
examples in this paper. We then discuss the crucial
notion of “consistency” in Section 3, and present

our basic algorithm in Section 4. We then dis-
cuss two issues which require extensions to our
agorithm: empty categories (Section 5) and long-
distance word order variations (Section 6). These
extensions are sketched, but we do not present
them in full detail due to lack of space. Finally,
we discuss remaining issues in Section 7 and then
conclude.

2 The Hindi Treebank

In this paper, we use the Hindi Treebank (HTB)
(Palmer et al., 2009) as an example, but the princi-
ples we present are language-independent. Com-
pared to other existing treebanks, the HTB is un-
usual in that it contains three layers: dependency
structure (DS), PropBank-style annotation (PB)
(Kingsbury et al., 2002) for predicate-argument
structure, and an independently motivated phrase-
structure (PS) annotation which is automatically
derived from the DS plus the PB. The treebank is
created in three steps. The first step is the manual
annotation of DS. The second step is PropBank-
ing, which focuses on adding the lexical predicate-
argument structure on top of DS. The third step
is the automatic creation of PS, which is done by
a DS-to-PS conversion process that takes DS and
PB as input and generates PS as output.

Figure 1 (top row) shows the three layers for Ex
(1), a sentence with the unaccusative verb break.
Because the three layers are independently mo-
tivated, they have a certain freedom in choos-
ing how they represent syntactic phenomena. In
this example, the DS layer decides to treat unac-
cusative verbs the same way as unergative (such
as sleep), and marks their subjects as a k1. In con-
trast, the PB makes the distinction, marking the
subject of an unaccusative verb as an ARG1, not
ARG0 (as is the case for the subjects of unerga-
tive verbs); PS also makes the distinction, by in-

162



a. DS tree: b. PB annotation: c. PS tree:

broke/V

k1
windows/N

vmod
suddenly/Adv

Predicate: break
Frame id: break.1
ARG1: windows

VP

NPi

N
windows

VP-Pred

ADVP

Adv
suddenly

VP-Pred

NP

NULL
CASEi

V
broke

d. DSconst tree: e. DSderiv tree:

broke/V

k1i
windows/N

vmod
suddenly/Adv

k2
CASEi/NULL

broke/V(e5)

k1
windows/N(e3)

vmod
suddenly/Adv(e2)

Figure 1: The three annotation levels of the HTB: Dependency Structure, PropBank, and Phase Structure (top
row); the consistent DS (DSconst) and the derivation tree (DSderiv) obtained from these structures (bottom row);
ei in the DSderiv tree refers to elementary trees in Figures 5-6.

dicating movement from the object position to the
subject position using a coindexed trace.

(1) khir.kiyã:
windows.F

acaanak
suddenly

t.uut.ı̃:
broke.FPl

‘The windows broke suddenly.’

3 Consistency between DS and PS

In our previous study (Xia et al., 2009; Bhatt et
al., 2011), we proposed a DS-to-PS conversion al-
gorithm, which extracts conversion rules from a
small number of (DS, PS) pairs, and then applies
the rules to a new DS to generate a PS for the DS.

The algorithm introduces two concepts: con-
sistency and compatibility. A DS and a PS tree
are consistent if and only if there exists an assign-
ment of head words for the internal nodes in the
PS such that after merging all the (head child, par-
ent) nodes in the PS, the new PS is identical to
the DS. In Figure 1, the DS in (a) and the PS in
(c) are not consistent because the empty category
CASE appears only in (c). In contrast, the depen-
dency structure in (d), where CASE is added to the
original DS as a k2 dependent of the verb, is con-
sistent with the PS in (c). A DS and a PS analysis

for a linguistic phenomenon are compatible if the
(DS,PS) tree pairs for the sentences with that phe-
nomenon are consistent.

Bhatt and Xia (2012) demonstrate that auto-
matic, high-quality DS-to-PS conversion is facil-
itated when the analyses chosen by the DS and
PS guidelines for most linguistic phenomena are
compatible; for the phenomena with incompati-
ble analyses, manually written rules transform DS
to an intermediate representation called DSconst

(const stands for consistency). The process of cre-
ating DSconst from a DS is explained in that pa-
per.

We are currently using the algorithm to auto-
matically generate the PS trees in the HTB, given
the manual annotation of the DS and PB layers.
The process is illustrated in Figure 2.1 The pro-
cess assumes that there is a small set of sentences
with all three layers of annotation, which are used
in the training stage of the conversion to extract

1PB is part of the input for the conversion process because
it provides certain information (e.g., unaccusative vs. unerga-
tive distinction) that is not present in the DS. For the sake of
simplicity, we still call the process “DS-to-PS conversion”,
though “DS+PB-to-PS conversion” would be more complete.

163



conversion rules. The rules are then applied to the
DS and PB for the new sentences in the test stage
to generate PS. For instance, if the DS and PB in
Figure 1a. and 1b. are the input to the training
stage, the system will create DSconst in Figure 1d.
From the (DSconst, PS) pair (Figure 1d. and 1c.),
the system will automatically extract the conver-
sion rules in Figure 3. If these rules are applied
to the same DSconst tree in the test stage, the PS
created by the system will be identical to the one
in Figure 1c. The details of the algorithm can be
found in (Xia et al., 2009; Bhatt and Xia, 2012).

(a) Training stage

(b) Test stage

create

create

extract
rules

rules
apply

 DS

 DS

 PB

 PB

 PS

 PS

 conversion rules

 conversion rules

DS

DS

DS

DS

const

const

const

const

Figure 2: The flow chart for DS-to-PS conversion

4 Basic TAG Extraction Algorithm

Given a dependency treebank DTB and a set of
(DS, PS) pairs, the goals of this study are (1) to
design the algorithm that extracts a TAG from the
DTB, and (2) transforms the DTB into a treebank
for the extracted TAG–that is, for each sentence in
the DTB, we want to create a derivation tree and a
derived tree for the sentence based on the extracted
TAG with the requirement that the derived tree is
consistent with the DSconst for the sentence.

One possible approach works as follows: (1)
run the DS-to-PS conversion algorithm described
in Section 3 on the DTB to generate a PS tree-
bank; (2) extract a TAG from the PS treebank by
adapting an existing grammar extraction algorithm
(e.g., (Xia, 1999; Chen, 1999)); (3) run a TAG
parser to generate a set of parse trees for each
sentence in the DTB; (4) for each sentence in the
DTB, to maintain the dependency relation in its
DS, a filter is needed to throw away all the parse
trees generated in (3) that are not consistent with
the DSconst for that sentence.

This approach has several limitations. First, it
requires adapting a grammar extraction algorithm

in Step (2) and writing a filter in Step (4). Second,
it is highly inefficient; for instance, many parse
trees generated in Step (3) will later be thrown
away in Step (4). Third, the connection between
dependency relation in the DTB and elementary
trees in the extracted TAG is not represented as
the latter is extracted from the PS produced in Step
(1), not from the DS directly.

We propose a new approach (see Figure 4),
which not only extracts a TAG from a dependency
treebank directly, but also provides a new way for
converting DS to PS. Compared to the DS-to-PS
conversion algorithm (see Figure 2), the second
modules in the training and test stages are differ-
ent and the definition of conversion rules is ex-
tended. In the original definition, the lefthand side
of a conversion rule is a dependency link, and the
righthand side is similar to a context-free rule. In
the new definition, the lefthand side is a subtree
of a DS that includes a head and either all its argu-
ments or one adjunct with the adjunct’s arguments,
and the righthand side is an elementary tree. We
call the new rule etree-based rule (etree for ele-
mentary tree).

(a) Training stage

(b) Test stage

 DS

 DS

 PB

 PB

 PS

etree-based rules

const
DS

DS const

DSconst

create

create

etree-based rules

DS deriv

extract etree-
based rules

DS
const

create

and build PS

PS

Figure 4: The flow chart for converting the HTB into a
TAG-based treebank

4.1 Extracting etree-based conversion rules
and TAGs

The training stage, as in Figure 4(a), has two mod-
ules. The first module is the same as the first mod-
ule in the DS-to-PS conversion algorithm and is
described in (Bhatt and Xia, 2012). The second
module takes (DSconst,PS) pairs as input and out-
puts etree-based rules, and Table 1 shows its pseu-
docode.

Xia et al. (1999) described an algorithm that
extracts TAGs from a PS treebank. Given a phrase
structure T, the algorithm extracts a TAG in four

164



V

N NP

VP V

VNP

k1

VP-Pred

k2
VP-Pred

Adv ADVP

VP-PredV
vmod

VP-PredNULL

Figure 3: Conversion rules extracted from the (DSconst,PS) pair in Figure 1, which is produced by the DS-to-PS
conversion process in Figure 2.

Input: TreePairs is a set of (DSconst, PS) pairs
ArgTable is a set of (head-POS-tag, dep-types)

Output: ConvRules is a set of etree-based conversion rules

Algorithm: ExtConvRules(TreePairs, ArgTable)
(1) ConvRules = φ;
(2) for each (DSconst, PS) pair in TreePairs
(3) // Step 1: Make argument/adjunct distinction in the DSconst

(4) for each internal node h in DSconst

(5) mark each child d of h as argument or adjunct based on ArgTable

(6) // Step 2: Choose head child and make argument/adjunct distinction in the PS
(7) for each dependency link (d, h) in DSconst, do the following in the PS
(8) find the lowest ancestor of d and h in PS and call it Y
(9) let Xd be Y ’s child that dominates d and Xh be Y ’s child that dominates h
(10) mark Xh as the head child of Y
(11) mark Xd as an argument or adjunct child of Y based on the label of d in line (5)

(12) // Step 3: deflat the PS and extract etrees from it
(13) deflat the PS so that arguments and adjuncts are not siblings
(14) extract etrees from the deflatted PS

(15) // Step 4: create conversion rules
(16) for each node h in DSconst

(17) for each adjunct child d of h
(18) create a rule where the lefthand side is a subtree of DSconst with dependency
(19) link (d, h) and links between d and all its argument children (if any),
(20) and the righthand side is the corresponding auxiliary tree anchored by d
(21) if (h is the root of DSconst) or (h is not marked as an adjunct child of its parent)
(22) create a rule where the lefthand side is h with all its argument children in the
(23) DSconst, and the righthand side is the corresponding initial tree anchored by h
(24) add the rules to ConvRules

(25) return ConvRules

Table 1: Algorithm for extracting etree-based conversion rules

165



Input: ConvRules which is extracted from the training stage
ArgTable is the same as the one used in the training stage
A new DSconst

Output: A set of PSs for the input DSconst

Algorithm: BuildPS(ConvRules, ArgTable, DSconst)
(1) DSderiv= DSconst

(2) DSderiv has an extra field EtreeSet[n] that stores the possible etrees for node n

(3) // Step 1: make argument/adjunct distinction in DSconst

(4) for each internal node h in DSderiv

(5) mark each child d of h as argument or adjunct based on ArgTable

(6) // Step 2: Find etrees for the nodes in DSconst

(7) for each node h in DSconst

(8) for each adjunct child d of h
(9) find rules in ConvRules whose lefthand side is a subtree of DSconst that
(10) includes the dependency link (d, h) and links between d and its arguments
(11) EtreeSet[d] = the etrees in these matched rules
(12) if (h is the root of DSconst) or (h is not marked as an adjunct child of its parent)
(13) find rules in ConvRules whose lefthand side is a subtree of DSconst that
(14) includes h and all its argument children (if any)
(15) EtreeSet[h] = the etrees in these matched rules

(16) // Step 3: Build PSs from DSderiv

(17) PSset = φ
(18) for each combination of etrees in DSderiv

(19) (In a combination, one etree is picked from EtreeSet[n] for each node n in DSderiv)
(20) generate PSs from the combination
(21) add these PSs to PSset

(22) return PSset

Table 2: Algorithm for building PSs for a given DSconst

166



steps: (i) for each internal node n in T, select one
of its children as head child according to a head
percolation table; (ii) for other children of n, deter-
mine whether each child is an argument or an ad-
junct of n using an argument table; (iii) deflat the
PS so that arguments and adjuncts are not siblings;
(iv) extract etrees from deflatted PS by decompos-
ing the PS into pieces and gluing some pieces to-
gether to form etrees.

The algorithm in Table 1 can be seen as an ex-
tension of the algorithm in (Xia, 1999). First, be-
cause its input includes DSconst, the dependency
relation is already given between words so Step (i)
is no longer needed; second, argument/adjunct dis-
tinction is made on DSconst first (see Step 1) and
then carried over to PS (see Step 2). Step 1 uses
an argument table which specifies what kind of de-
pendents are considered as arguments of a head.
For instance, if dependents with k1, k2, or k4 role
labels are considered arguments of a verb, the ar-
gument table will include an entry (v, k1/k2/k4).
Step 2 makes the argument/adjunct distinction in
the PS based on the decision made in the DS. Step
3 is identical to Steps (iii)-(iv) and it extracts etrees
from the deflatted PS. Step 4 links subtrees in the
DSconst to extracted etrees to form etree-based
rules. Each subtree in an etree-based rule includes
a head and either all its arguments (this determines
how many substitution nodes the etree has) or one
adjunct of the head and the adjunct’s arguments (if
any). The righthand side of the etree-based rules
form a TAG.

Given the (DSconst, PS) pair in Figure 1d
and 1c, the extracted rules are shown in Figure 5.
Compared to the rules in Figure 3, etree-based
rules have extended locality.

4.2 Generating PS from DS

The test stage (see Figure 4(b)) also has two mod-
ules: the first one is the same as the one in the
training stage. Table 2 shows the algorithm for
the second module. The algorithm has three steps.
The first step makes argument/adjunct distinction
in the input DSconst.

The second step finds the etrees that each word
in the DSconst could anchor. This is done by
forming a subtree of DSconst that a word be-
longs to (similar to Step 4 in Table 1) and then
selecting conversion rules that match that sub-
tree. The etrees in those selected conversion rules
are stored with the node in DSconst, resulting in

a new tree called DSderiv. The subscript de-
riv in DSderiv stands for derivation tree because
DSderiv is just like the derivation tree in the TAG
except that it does not include the positions of sub-
stitution/adjoining operations and which etree the
word anchors in the current sentence is not deter-
mined.

The third step produces a set of PSs from the
DSderiv. The set could have more than one PS due
to various types of ambiguity. In principle, one
could imagine that there is already a one-to-many
mapping between the DSconst the PS. We do not
handle ambiguities that have such a source as we
consider these to be a treebank design flaw. Either
side should be enriched or modified during the de-
sign process to eliminate intrinsically ambiguous
mappings. However, ambiguity can arise despite
careful design of the levels of representation. For
example, in Hindi adverbs can occur before or af-
ter the subject. From the DS and PS trees for a
sentence such as (1), the rule with adjunction at the
VP-Pred-level will be extracted (the second rule in
Figure 5), while the DS and PS trees for acaanak
khir. kiyã: t.uut. ı̃: (“suddenly the windows broke”)
yields a rule with adjunction at the VP-level. Thus,
we have an ambiguous rule. Most of the time this
does not matter since word order resolves the ad-
junction level, but if the subject is empty we ob-
tain two possible derivations using two different
etrees. Another, related type of ambiguity arises
when there are multiple instances of a node label
in one tree, allowing for multiple derivation us-
ing the same etrees. Consider a simple case of a
verb that has a left adjunct as well as a right ad-
junct: L V R. Let us assume that, according to the
conversion rules, both L and R can adjoin at the
VP level. This will lead to two PSs, one with L
attached higher than R, and the other with R at-
tached higher than L.

5 Empty Categories

In the basic algorithm outlined in Section 4,
DSderiv is isomorphic to DSconst by design. The
problem with that design is that DSconst may in-
clude nodes labeled with empty categories (ECs)
(see Figure 1d.), meaning that some etrees in the
resulting TAG would be “lexicalized” by an EC
and that could cause difficulty when using the
TAG for parsing.

To solve this problem, we make two minor revi-
sions to the basic algorithm: in the rule extraction

167



V

N
NP

VP

VNP

k1

VP-Pred
k2

Adv
ADVP

VP-PredV

vmod

VP-Pred*

Adv

NP

N

N
i

NULL i
i

i

NP

NULL

NULL

(d1) (e1)
(d2) (e2) (d3) (e3) (d4) (e4)

Figure 5: Etree-based rules extracted by the algorithm in Table 1 from the (DSconst,PS) pair in Ex (1)

module (see Table 1), if in the DSconst a head has
a dependent which is an EC, then the EC (along
with its phrase structure projection, if any) is in-
cluded in the etree for the head word (see the etree
in Figure 6). Similarly, in the creating DSderiv

module (see Table 2), the EC leaf node will be re-
moved from DSderiv as it is already included in
the etree for its parent node.

V

N

NP

VP

VNP

k1
VP-Predk2

i

NULL i

i

i

NULL
CASE

(e5)(d5)

Figure 6: The new etree-based rule extracted from the
(DSconst, PS) pair in Figure 1. It will replace the first
and last rules in Figure 5

In the case of our unaccusative example, the
extracted TAG will include the rule in Figure 6,
which replace the first and last rules in Figure 5.
The new DSderiv is in Figure 1e., where e2 and e3
are two etrees in Figure 5, and e5 is the etree in
Figure 6.2

6 Issues in Word Order

It has been known for a long time that in a lexi-
calized TAG, the derivation tree is a lexical depen-
dency tree (since the nodes are bijectively identi-
fied with the words of the sentence), and that this
dependency structure is not necessarily the lin-
guistically plausible structure (Rambow and Joshi,
1997; Candito and Kahane, 1998; Rambow et al.,
2001). Consider the following example (2):

2It is not a coincident that in this example DSderiv and
DS are isomorphic, as the DS-to-DSconst module involves
adding ECs and DSconst-to-DSderiv involves removing ECs.
But in theory, DSderiv and DS are not necessarily always
isomorphic as the DS-to-DSconst module is not limited to
adding ECs.

(2) kitaabẽ
books.F

mẼ-ne
I-Erg

khariid-nii
buy-Inf.F

caah-ii
want-Pfv.F

‘Books, I had wanted to buy.’

Here, the standard analysis is that the matrix
clause anchored on want is adjoined into the em-
bedded clause anchored on buy, which results in
a derivation structure in which the buy node dom-
inates the want node, contrary to the dependency
representation. Furthermore, it has been known
that if we want the etrees and the derivation struc-
ture to have a linguistic interpretation, then certain
word orders in free word order languages cannot
be derived using a TAG (Rambow, 1994; Chen-
Main and Joshi, 2008). Consider the following
example.

(3) mẼ-ne
I-Erg

yeh
this

kitaab
book

sab-se
all-Instr

khariid-ne-ko
buy-Inf-Acc

kah-aa
say-Pfv
‘I told everyone to buy this book.’

In (3), this book is an argument of the embed-
ded verb buy, and is placed between the matrix
verb’s two arguments. While this can be derived
by a TAG, it would require an etree headed by buy
to have a VP foot node, which has no plausible
linguistic interpretation (since buy does not have a
clausal argument).

Both problems have a common solution: non-
local multicomponent TAGs with dominance links
(nlMC-TAG-DL), for example in the definition
given in (Rambow et al., 2001) as D-Tree Substi-
tution Grammars (DSG). In a DSG, there is only
the substitution operation, but all links in trees
are interpreted as non-immediate dominance links;
in fact, the trees can be seen as tree descriptions
rather than as trees; this allows components of
trees to move up and be inserted into other trees.
For large-scale grammar development in DSG, see
(Carroll et al., 1999).

There are good reasons to want to try and re-
strict the generative power of a formal system used

168



for the description of syntax: on the one hand,
we may want to restrict the formal power in order
to obtain parsing algorithms of certain restricted
complexities (Kallmeyer, 2005), and on the other
hand, we may want to make assumptions about the
underlying formalism in order to make predictions
about what word orders are grammatical (or plau-
sible) (Chen-Main and Joshi, 2008). However, in
this paper we do not address the tradeoff between
non-local and restricted MC-TAG systems, and we
do not present empirical arguments from Hindi in
order to address the issue of what formal com-
plexity is required for the syntactic description of
Hindi. We leave those issues to future work. In-
stead, we assume a simple framework in which we
can explore the issue of grammar extraction.

The algorithm for extraction of a TAG can be
extended straightforwardly to an algorithm for ex-
tracting a DSG: whenever in DSconst we have a
node labeled with an empty category which is co-
indexed with a node which is higher in the tree (in
a c-command relationship), then we put the two
etrees resulting from those two nodes into one set,
and add a dominance relation. The step for creat-
ing DSderiv should also be revised accordingly to
indicate that the two etrees belong to one set.

7 Conclusion

We have given a basic algorithm for the extrac-
tion of a TAG from a dependency treebank which
has some representative examples annotated with
phrase structures. This TAG can be used for any
purpose TAGs can be used, such as parsing or gen-
eration, but we can also use etree-based conversion
rules to convert the entire DS treebank to a TAG-
based treebank. We have also sketched how this
basic algorithm can be extended to handle empty
categories and word order variation.

There are several important remaining issues.
The first issue is ambiguity. Ideally, we want to
have exactly one PS and one TAG derivation tree
for each DSconst in the test stage because we can
then transform the original dependency treebank
into a treebank for the extracted TAG. However, as
discussed in Section 4.2, the second module in the
test stage may produce multiple PSs for a given
DSconst. One possible way to reduce spurious
ambiguity is to look at the PS trees in the train-
ing data where ambiguity of attachment can arise.
If there are regularities in these situations (for ex-
ample, lowest attachment possible, and a certain

order for attaching left and right adjuncts), then
that information could be passed to the test stage
to reduce ambiguity.

The second issue is unseen rules. The etree-
based rules are extracted from the (DSconst, PS)
pairs in the training stage. If the number of such
representative examples is small, it is unlikely that
the rules extracted from the pairs are complete
enough to cover the DSconst subtrees in the test
stage. Some kind of backoff strategy is needed to
handle such cases. We will study both issues in the
future.

Acknowledgment This work is supported by NSF
grants CNS-0751089, CNS-0751171, and CNS-
0751213. We would like to thank the anony-
mous reviewers for helpful comments and our col-
leagues on the Hindi-Urdu Treebank Project for
their support.

References

Rajesh Bhatt and Fei Xia. 2012. Challenges in con-
verting between treebanks: a case study from the
hutb. In Proceedings of META-RESEARCH Work-
shop on Advanced Treebanking, in conjunction with
LREC-2012, Istanbul, Turkey.

Rajesh Bhatt, Owen Rambow, and Fei Xia. 2011. Lin-
guistic phenomena, analyses, and representations:
Understanding conversion between treebanks. In
Proceedings of the 5th International Joint Confer-
ence on Natural Language Processing (IJCNLP),
pages 1234–1242, Chiang Mai, Thailand.

Marie-Hélène Candito and Sylvain Kahane. 1998. Can
the TAG derivation tree represent a semantic graph?
An answer in the light of Meaning-Text Theory. In
Proceedings of the Fourth International Workshop
on Tree Adjoining Grammars and Related Frame-
works (TAG+4), IRCS Report 98–12, pages 21–24.
Institute for Research in Cognitive Science, Univer-
sity of Pennsylvania.

John Carroll, Nicolas Nicolov, Olga Shaumyan, Mar-
tine Smets, and David Weir. 1999. Parsing with an
extended domain of locality. In Ninth Conference of
the European Chapter of the Association for Com-
putational Linguistics (EACL’99), pages 217–224.

Joan Chen-Main and Aaravind K. Joshi. 2008. Flexi-
ble composition, multiple adjoining and word order
variation. In Proceedings of the 9th International
Workshop on Tree Adjoining Grammars and Related
Formalisms (TAG+ 9), Tübingen, Germany.

John Chen. 1999. An Investigation into Efficient Sta-
tistical Parsing Using Lexicalized Grammatical In-
formation. Thesis proposal, University of Delaware.

169



Laura Kallmeyer. 2005. Tree-local multicomponent
tree-adjoining grammars with shared nodes. Com-
put. Linguist., 31(2):187–226, June.

Paul Kingsbury, Martha Palmer, and Mitch Marcus.
2002. Adding semantic annotation to the Penn Tree-
Bank. In Proceedings of the Human Language Tech-
nology Conference (HLT-2002), San Diego, CA.

Martha Palmer, Rajesh Bhatt, Bhuvana Narasimhan,
Owen Rambow, Dipti Misra Sharma, and Fei Xia.
2009. Hindi Syntax: Annotating Dependency, Lexi-
cal Predicate-Argument Structure, and Phrase Struc-
ture. In Proceedings of ICON-2009: 7th Interna-
tional Conference on Natural Language Processing,
Hyderabad.

Owen Rambow and Aravind Joshi. 1997. A formal
look at dependency grammars and phrase-structure
grammars, with special consideration of word-order
phenomena. In Leo Wanner, editor, Recent Trends
in Meaning-Text Theory, pages 167–190. John Ben-
jamins, Amsterdam and Philadelphia.

Owen Rambow, K. Vijay-Shanker, and David Weir.
2001. D-Tree Substitution Grammars. Computa-
tional Linguistics, 27(1).

Owen Rambow. 1994. Formal and Computational
Aspects of Natural Language Syntax. Ph.D. thesis,
Department of Computer and Information Science,
University of Pennsylvania, Philadelphia. Avail-
able as Technical Report 94-08 from the Institute for
Research in Cognitive Science (IRCS) and also at
ftp://ftp.cis.upenn.edu/pub/rambow/thesis.ps.Z .

Fei Xia, Owen Rambow, Rajesh Bhatt, Martha Palmer,
and Dipti Misra Sharma. 2009. Towards a multi-
representational treebank. In The 7th International
Workshop on Treebanks and Linguistic Theories
(TLT-7), Groningen, Netherlands.

Fei Xia. 1999. Extracting Tree Adjoining Gram-
mars from Bracketed Corpora. In Proc. of 5th Nat-
ural Language Processing Pacific Rim Symposium
(NLPRS-1999), Beijing, China.

170


