
Proceedings of the 11th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+11), pages 144–152,
Paris, September 2012.

Practical Parsing of Parallel Multiple Context-Free Grammars

Peter Ljunglöf
Department of Computer Science and Engineering

University of Gothenburg and Chalmers University of Technology
Gothenburg, Sweden

peter.ljunglof@gu.se

Abstract

We discuss four previously published
parsing algorithms for parallell multiple
context-free grammar (PMCFG), and ar-
gue that they are similar to each other, and
implement an Earley-style top-down algo-
rithm. Starting from one of these algo-
rithms, we derive three modifications – one
bottom-up and two variants using a left cor-
ner filter. An evaluation shows that sub-
stantial improvements can be made by us-
ing the algorithm that performs best on a
given grammar. The algorithms are imple-
mented in Python and released under an
open-source licence.

We start by introducing the necessary concepts.
Then we discuss four previously published PM-
CFG algorithms, and argue that they are similar.
We take Angelov (2009) as a starting point for
introducing three new parsing strategies. Finally
we discuss various optimizations of the parsing
strategies and give a small evaluation.

1 Background

1.1 PMCFG

Let Σ and N be sets of terminal and nonter-
minal symobls, respectively. A parallel multi-
ple context-free grammar (PMCFG) (Seki et al.,
1991) consists of a set of context-free produc-
tion rules A → f( ~B), where A ∈ N and ~B =
B1, . . . , Bn ∈ N are nonterminals. f is a lin-
earization function:

f : (Σ∗)δ(B1) × · · · × (Σ∗)δ(Bn) → (Σ∗)δ(A)

where δ(X) is the fan-out, or dimension, of the
non-terminal X . The linearization function f is

S → f(A) f(〈x, y〉) = 〈x y〉
A→ g(A) g(〈x, y〉) = 〈a x b, c y d〉
A→ h() h() = 〈a b, c d〉

Figure 1: A grammar that recognizes the langauge
{anbncndn | n > 0}.

S → f(A) f.1 = 〈1.1〉 〈1.2〉
A→ g(A) g.1 = a 〈1.1〉 b g.2 = c 〈1.2〉 d
A→ h() h.1 = a b h.2 = c d

Figure 2: The same grammar in variable-free form.

normally written like this:

f
(〈
x1,1 . . . x1,δ(B1)

〉
, . . . ,

〈
xn,1 . . . xn,δ(Bn)

〉)

=
〈
α1, . . . , αδ(A)

〉

where each αi is sequence of terminal symbols
and bound variables. However, in this paper
we write the linearizations in variable-free form,
where each bound variable xd,r is written as a pair
of the form 〈d.r〉. We use f.s to denote the sth
constituent of the linearization, i.e. αs.

Figure 1 contains an example grammar recog-
nizing the language anbncndn, and its variable-
free form is shown in figure 2. The fanouts of this
grammar are δ(S) = 1 and δ(A) = 2.

1.2 MCFG and LCFRS
A linearization function is linear if no argument
constituent 〈d.r〉 occurs more than once in the
right-hand side. It is non-erasing if all possible ar-
gument constituents occurs in the right-hand side.

A multiple context-free grammar (MCFG) is
a PMCFG where all linearization functions are
linear. A linear context-free rewriting system
(LCFRS) (Vijay-Shanker et al., 1987) is a linear
and non-erasing PMCFG. Erasingness does not

144



add to the expressive power, and therefore LCFRS
and MCFG are weakly equivalent. However,
reduplication does give extra expressive power, so
PMCFG is a proper extension of MCFG/LCFRS
(Seki et al., 1991).

1.3 Emptiness and left corners
We define the context-free approximation of a
PMCFG rule A → f( ~B) to be δ(A) context-free
rules A.r → βr, where βr is the linearization f.r
with every occurrence of 〈d.s〉 replaced by Bd.s.
The nonterminals of the context-free approxima-
tion are of the form A.r.

We define (⇒) as the standard reflexive and
transitive rewriting relation on the context-free
approximation. We say that a constituent A.r is
empty if A.r ⇒ ε. We define the left corner rela-
tion as: A.r . x iff A.r ⇒ x β for some β, where
x is either a terminal w or a constituent B.s.

1.4 Non-empty grammars
Our algorithms can handle all kinds of PMCFG
grammars, but the two bottom-up variants work
much better if the grammar has no empty lin-
earizations, i.e., if A.r 6⇒ ε for all constituents
A.r. This is discussed further in section 4.3.

All grammars with empty linearizations can be
transformed to nonempty grammars (Seki et al.,
1991). We use an adaptation of an algorithm
for context-free grammars. The transformation
does not lose any important information, and it is
straightforward to translate parse trees back into
the original grammar efficiently.

2 Existing parsing algorithms

Most existing parsing algorithms require that the
grammar is a LCFRS or a subclass thereof (Bur-
den and Ljunglöf, 2005; de la Clergerie, 2002;
Gómez-Rodríguez et al., 2008; Kallmeyer, 2010;
Kallmeyer and Maier, 2009; Kanazawa, 2008),
often in some kind of normal form such as a bi-
narized or an ordered LCFRS. There are some al-
gorithms that can handle general PMCFG gram-
mars (Angelov, 2009; Boullier, 2004; Ljunglöf,
2004), including the algorithms presented in this
paper. This is important when parsing Grammat-
ical Framework (GF) grammars (Ranta, 2011),
since the algorithm for converting a GF grammar
results in an erasing PMCFG (Ljunglöf, 2004).

In this section we give an informal introduc-
tion to the algorithm by Angelov (2009), and dis-

S → A1A2 S → A′1A
′
2 S → A′′1 A

′′
2 . . .

A1 → a b A′1 → aA1 b A′′1 → aA′1 b . . .

A2 → c d A′2 → cA2 d A′′2 → cA′2 d . . .

Figure 3: Infinite context-free equivalent of the exam-
ple PMCFG in figure 1.

cuss its similarities with three other algorithms
(Kallmeyer and Maier, 2009; Kanazawa, 2008;
Ljunglöf, 2004). We argue that all four algorithms
implement the same basic Earley-style top-down
parsing algorithm.

2.1 Angelov’s top-down algorithm

Angelov (2009) views a PMCFG as a CFG with
a possibly infinite number of nonterminals and
rules. Note that the term “infinite CFG” is an oxy-
moron, since such a grammar can recognize non-
context-free languages. E.g., the infinite CFG
shown in figure 3 is equivalent to the grammar
in figure 1, which recognizes a non-context-free
language.

Since this CFG is infinite, it cannot be calcu-
lated from the PMCFG beforehand. But given a
certain input string, there are only a finite number
of nonterminals and rules that are used in the final
parse trees. Angelov’s idea is to dynamically cre-
ate nonterminals and rules during parsing: When-
ever the parser has recognized a new constituent r
of a nonterminal A, between input positions i−j,
it creates a new nonterminal A′ = A(i, j, r), and
new grammar rules for A′.

2.2 Similarity with other approaches

Angelov’s dynamic CFG is not conceptually dif-
ferent from the parsing algorithms described by
other authors. The new nonterminals are all of
the form A′ = A(i1, j1, r1) . . . (in, jn, rn), which
is equivalent to the PMCFG nonterminal A, cou-
pled with a sequence of the constituents that have
been found during parsing. This is similar to how
other algorithms store their found constituents:

• Angelov (2009) uses an ordered sequence
where the constituents are stored in the order
they are found.

• Ljunglöf (2004, section 4.6) separates the
nonterminal A from the “range record” Γ,
which is a set containing the found con-
stituents.

145



Angelov Ljunglöf K&M Kanazawa

A(i1, j1, r1) {r1 : i1-j1} 〈i1-j1, ?, . . . , ?〉 A1(i1, j1)

A(i1, j1, r1) . . . (in, jn, rn) {r1 : i1-j1, . . . , rn : in-jn} 〈i1-j1, . . . , in-jn〉 An(i1, j1, . . . , in, jn)

Table 1: How different algorithms denote similar derived facts.

• Kallmeyer and Maier (2009) also separates
the nonterminal A from the “range vector”
Φ, which is a ordered tuple of ranges. In a
range vector, the constituents that are not yet
found are uninstantiated.

• Kanazawa (2008) derives successively in-
creasing Datalog facts of arity (2× the num-
ber of found constituents).

In table 1 we can see how the different authors
denote similar derived facts. The first row corre-
sponds to when the first constituent r1 of a non-
terminal A has been found spanning the positions
i1 − j1. The second row corresponds to when the
parser has found all n constituents of A.

All the discussed algorithms use the same gen-
eral top-down parsing strategy: First they predict
the toplevel nonterminal, followed by its children,
and further down until they reach the lexical rules.
Then they try to match the lexical rules with the
next input token, and so on. This strategy is a
PMCFG version of Earley’s context-free parsing
algorithm (Earley, 1970).

2.3 Bottom-up parsing

However, there are alternative context-free pars-
ing strategies which have not been adopted
for PMCFG parsing (Sikkel and Nijholt, 1997;
Moore, 2004). Ljunglöf (2004, section 4.6.1)
makes an attempt at bottom-up prediction, but it
is not very efficient. The problem with a pure
bottom-up approach is that the algorithm will rec-
ognize all constituents independently, and then it
is very costly to combine the constituents further
up in the parse tree.

The solution we adopt in the next section is to
always use a top-down parsing strategy to recog-
nize additional constituents. This means that the
different prediction strategies in sections 3.4–3.6
only apply when recognizing the first constituent
of a grammar rule.

3 Three new algorithms

We describe our parsing algorithms as deduc-
tive parsing systems (Shieber et al., 1995; Sikkel,
1998), where we infer a set of parse items called
a chart. Furthermore, we assume that the input is
given as n input tokens w1w2 . . . wn.

3.1 Parse items
We use four different kinds of parse items, and we
divide the chart into four indexed sets, Aj,k, Fj,k,
Pk and Rk, where j ≤ k are input positions. The
fundamental item is the active item:

[ r : α • β | A→ f( ~B) ] ∈ Aj,k

which says that the parser is trying to find the
constituent A.r using the linearization f.r = αβ.
It has already found α between the positions j and
k, but is still looking for β.

The other parse items are strictly not necessary,
but they simplify our presentation of the algo-
rithms. The following predict item says that the
parser is looking for a constituent A.r starting in
position k:

[ ?A.r ] ∈ Pk

When the parser finds the constituent A.r be-
tween j and k, it creates a new nonterminal A′ =
A(j, k, r), and infers both a dynamic grammar
rule and a passive item:

[A′ → f( ~B) ] ∈ Rk [A.r : A′ ] ∈ Fj,k

The dynamic rule is used whenever a parent
searches for a new constituent of a partly recog-
nized A child. The passive item says that A.r has
been found between j and k, and is used when the
parser combines the recognized constituent with
an active item looking for A.r.

We have reformulated Angelov’s algorithm
slightly so that it fits better with our alternative
parsing strategies. Angelov does not use predict
items, but we have added them since they simplify
the filtered bottom-up parsing strategy (Moore,
2004). Another difference is that we separate the
original (static) grammar rules A → f( ~B) from
the dynamic rules [A′ → f( ~B) ].

146



predict-item
[ r : α • 〈d.s〉 β | A→ f( ~B) ] ∈ Aj,k

[ ?Bd.s ] ∈ Pk

predict-next
[A→ f( ~B) ] ∈ Rj [ ?A.r ] ∈ Pk

[ r : • β | A→ f( ~B) ] ∈ Ak,k

f.r = β, j ≤ k

scan
[ r : α • wk β | A→ f( ~B) ] ∈ Aj,k−1
[ r : α wk • β | A→ f( ~B) ] ∈ Aj,k

complete
[ r : α • | A→ f( ~B) ] ∈ Aj,k

[A′ → f( ~B) ] ∈ Rk [A.r : A′ ] ∈ Fj,k
A′ = A(j, k, r)

combine
[ r : α • 〈d.s〉 β | A→ f( ~B) ] ∈ Ai,j [Bd.s : B′d ] ∈ Fj,k

[ r : α 〈d.s〉 • β | A→ f( ~B[d := B′d]) ] ∈ Ai,k

Figure 4: General inference rules

3.2 General inference rules

Most of the inference rules will be reused by the
alternative algorithms, so we split the inference
rules into general rules (which are used by all al-
gorithms), and algorithm-specific rules. The gen-
eral inference rules are shown in figure 4. Since
we want to be able to use different prediction
strategies for the first constituent, and still predict
additional constituents top-down, we have split
Angelov’s top-down prediction into two separate
inference rules. The rule that predicts additional
constituents is included here as predict-next.

The inference rules predict-item, scan and
complete are mutually exclusive, since their an-
tecedent is an active item which either looks for a
nonterminal, a terminal, or nothing at all. The rule
predict-item infers a predict item for Bd.s from
an active item looking for 〈d.s〉. The scan rule
moves the dot forward if the active item is look-
ing for the next input tokenwk. The complete rule
applies when the dot is at the end of the lineariza-
tion, and it derives a dynamic rule and a passive
item, together with a fresh dynamic nonterminal
A′ = A(j, k, r).

The fundamental inference rule is combine,
which takes one active item looking for a nonter-
minal Bd.s starting in position j, and one passive
item that has found Bd.s between j and k. The
combine rule moves the dot of the active item for-
ward, but it also updates the nonterminal child Bd
to B′d = Bd(j, k, s).

Now, if the active item that is inferred by com-
bine, in a later parsing stage wants to find another
constituent of B′d (say B′d.u starting in position
p ≥ k), the item [ ?B′d.u ] ∈ Pp is infered by
predict-item. This in turn triggers predict-next to
look for a dynamic rule [B′d → g(. . .) ]. But since
that rule was inferred at the same time as the pas-
sive item [Bd.s : B′d ] ∈ Fj,k, predict-next will
start recognizing the constituent B′d.u.

3.3 Top-down prediction
The only infenrence rules that are specific to a
parsing strategy are the prediction rules. An-
gelov’s (2009) unfiltered top-down strategy con-
sists of the two rules shown in figure 5. Whenever
there is a predict item looking for A.r (where A
is a grammar nonterminal, not a dynamic one),
predict-topdown finds all A rules in the grammar
and adds them as active items.

The parsing process is initiated by init-
topdown, which predicts the starting nonterminal
S at the beginning of the string.

3.4 Bottom-up prediction
In bottom-up parsing we predict a nontermi-
nal constituent only when its first symbol has
been found (Ljunglöf and Wirén, 2010, section
4.4.4). There are three possibilities, depending on
whether the first symbol is a terminal, a nonter-
minal, or if the constitutent is empty. They con-
stitute the inference rules predict-bottomup, scan-
bottomup and scan-empty, respectively.

147



init-topdown
[ ?S.r ] ∈ P0

start(S)

predict-topdown
[ ?A.r ] ∈ Pk

[ r : • β | A→ f( ~B) ] ∈ Ak,k

A→ f( ~B), f.r = β

Figure 5: Top-down prediction

predict-bottomup
[Bd.s : B′d ] ∈ Fj,k

[ r : 〈d.s〉 • β | A→ f( ~B[d := B′d]) ] ∈ Aj,k

A→ f( ~B), f.r = 〈d.s〉 β

scan-bottomup
[ r : wk • β | A→ f( ~B) ] ∈ Ak−1,k

A→ f( ~B), f.r = wk β

scan-empty
[ r : • | A→ f( ~B) ] ∈ Ak,k

A→ f( ~B), f.r = ε

Figure 6: Bottom-up prediction

The rule predict-bottomup is triggered when we
have found a passive item covering the first con-
stituent 〈d.r〉 of f.r. Since Bd.r is found, we can
directly move the dot past 〈d.r〉, but then we have
to update the nonterminal Bd to the dynamic non-
terminal B′d, in the same way as combine does.

One problem with this algorithm is that scan-
empty adds an item for every empty constituent
A.r and every position k in the input. Depending
on the grammar, this can lead to a very large chart.
There are several ways to solve this: One is to
let scan-bottomup and predict-bottomup skip over
initial empty constituents, similar to the context-
free GHR algorithm (Graham et al., 1980). An-
other possibility is to only infer an empty con-
stituent A.r if it can be followed by the input to-
ken starting in position k. Our solution is to use
the left corner relation as a filter, see section 3.6.

3.5 Filtered top-down prediction

The problem with the top-down algorithm is that
it predicts lots of useless items that cannot pos-
sibly be inferred from the input tokens. So, we
augment predict-topdown with a filter, shown in
figure 7. Using this filter the parser can only pre-
dict a new A.r item in position k if the next input
token wk+1 is a left corner (A.r . wk+1), or if the
constituent is empty (A.r ⇒ ε).

This filter is not as strict as it can be, since it
doesn’t test empty constituents against the input.

One way of making it stricter would be to only
predict empty constituents that can be followed
by the next input token wk+1.

3.6 Filtered bottom-up prediction

A problem with bottom-up prediction is that it
infers lots of items that cannot be used in a fi-
nal parse tree. We adapt a context-free left cor-
ner strategy (Moore, 2004) to our bottom-up al-
gorithm. The modified inference rules are shown
in figure 8.

Each inference rule now requires a predict item
[ ?D.u ], such that D.u . A.r. In other words,
the parser will only predict a constituent A.r if
it is the left corner of another constituent D.u that
the parser is already looking for. To initialize this
left corner filter, we borrow the init-topdown rule
from the top-down strategy.

3.7 Other possible filters

Kallmeyer and Maier (2009) discuss two addi-
tional filters. The length filter prohibits parse
items that are too long to fit in the sentence. The
terminal filter checks that all terminals in a lin-
earization occurs among the input tokens, and in
the same order.

We have not incorporated their filters in our
parser implementations, but we see no reason why
this could not be done.

148



init-topdown
[ ?S.r ] ∈ P0

start(S)

predict-topdown
[ ?A.r ] ∈ Pk

[ r : • β | A→ f( ~B) ] ∈ Ak,k

{
A→ f( ~B), f.r = β

A.r ⇒ ε ∨ A.r . wk+1

Figure 7: Top-down prediction with bottom-up filtering

init-topdown
[ ?S.r ] ∈ P0

start(S)

predict-bottomup
[ ?D.u ] ∈ Pj [Bd.s : B′d ] ∈ Fj,k

[ r : 〈d.s〉 • β | A→ f( ~B[d := B′d]) ] ∈ Aj,k

{
A→ f( ~B), f.r = 〈d.s〉 β
D.u . A.r

scan-bottomup
[ ?D.u ] ∈ Pk−1

[ r : wk • β | A→ f( ~B) ] ∈ Ak−1,k

{
A→ f( ~B), f.r = wk β

D.u . A.r

scan-empty
[ ?D.u ] ∈ Pk

[ r : • | A→ f( ~B) ] ∈ Ak,k

{
A→ f( ~B), f.r = ε

D.u . A.r

Figure 8: Bottom-up prediction with left corner filtering

4 Incrementality and optimizations

Let us define stage k to be all sets Ai,k, Fi,k, Pk

and Rk that end in position k. Then we can say
that a parser is incremental if all sets in stage k
are computed before it starts computing the sets
in stage k+1. All our inference rules are straight-
forward to implement incrementally, since no an-
tecedent belongs to a later stage than the state be-
longing to the consequent item.

If we assume that the implementation is incre-
mental, we can make some optimizations, some
more obvious than others. One immediate conse-
quence is that predict-next never needs to check if
j ≤ k since it is trivially satisfied. But there are
more things that can be optimized.

4.1 Dynamic rules

As the rule is stated in figure 4, if predict-next is
triggered by the predict item, it will have to search
through all sets R0, . . . , Rk to find a matching dy-
namic rule. However, if parsing is performed in-
crementally, we do not have to separate the rules
into different sets, but we can instead add all dy-
namic rules to one big set R.

4.2 Optimizing previous stages
The passive sets Fj,k are only used in stage k.
This means that when the parser starts building
the k + 1 sets, it can discard all sets Fj,k from
stage k. The same holds for the predict items Pk,
except in the filtered bottom-up algorithm.

Furthermore, since all dynamic nonterminals
A′ = A(j, k, r) are created in stage k, they be-
come static in later stages. This means that when
stage k is completed, we can replace all stage k
nonterminals with atomic values, such as fresh
integers. It is more efficient to compare atomic
values than to compare sequences of the form
A(i1, j1, r1) . . . (in, jn, rn).

Angelov (2009) implements both these opti-
mizations, and also the previous one merging the
dynamic rule sets into one big set R.

4.3 Filtered bottom-up and empty rules
If the grammar contains empty constituents, the
filtered bottom-up strategy in figure 8 could be
very slow. This is because every time a new
predict item [ ?D.u ] ∈ Pk is inferred, predict-
bottomup tries to find some passive item [Bd.s :
B′d ] ∈ Fk,k that is a left corner of D.u. Most
of the time this fails, or the active item that is

149



English Resource English FraCaS Swedish FraCaS

Nr. terminals (w) 1,549 1,549 208

Nr. nonterminals (A) 189 194 274

Nr. constituents (A.r) 4,663 4,728 3,178

Nr. grammar rules (A→ f( ~B)) 43,910 2,992 1,967

Nr. linearizations (f.r = α) 256,855 74,709 35,365

Nr. left corner pairs (D.u . A.r) 323,471 256,865 915,650

Table 2: The grammars used for testing

English Resource English FraCaS Swedish FraCaS

Nr. terminals (w) 1,549 1,549 208

Nr. nonterminals (A) 211 231 468

Nr. constituents (A.r) 20,669 22,422 8,017

Nr. grammar rules (A→ f( ~B)) 45,919 135,121 103,334

Nr. linearizations (f.r = α) 567,818 1,318,915 3,701,923

Nr. left corner pairs (D.u . A.r) 400,657 424,709 2,288,044

Table 3: The test grammars with empty constituents removed

the consequence will already be in the chart. In
the end, lot of useless work will be performed by
predict-bottomup.

This problem completely disappears if the
grammar does not have any empty constituents.
In that case all passive items will span at least one
input token, i.e., j < k, and the predict items will
always be from an earlier parsing state.

4.4 Building the sets in stages
Especially the bottom-up strategies benefit from
a grammar without empty constituents. In that
case, the bottom-up strategies have no use scan-
empty, and the side condition in predict-topdown
can be simplified. Furthermore, combine can only
be triggered by the passive item, since the active
item will be from an earlier parsing state.

If the grammar is non-empty, the inference
rules also say something about in which order the
sets can be built. As an example, if the grammar
is non-empty, the set Ak,k can only be created by
predict-next from Pk which on the other hand is
built by predict-item from Ajk (j ≤ k). This
means that Ak,k and Pk depend on each other.

By analyzing all inference rules, we come to
the following build order, where j < k:

Aj,j ,Pj ⇒ Aj,k,Fj,k ⇒ Rk ⇒ Ak,k,Pk

This ordering suggests the following pseudo-code

for parsing n tokens using a non-empty grammar:

1. Build the sets P0 and A0,0

[init-topdown, pred.-topdown, pred.-item]

2. For each k between 1 and n:

(a) Build Aj,k and Fj,k (for all j < k)
[complete, combine, scan,
scan-bottomup, pred.-bottomup]
As a side-effect, this will also add
new rules to R

(b) Build Pk and Ak,k

[pred.-topdown, pred.-item, pred.-next]

5 Evaluation

We performed a small evaluation of our four pars-
ing strategies. We tested two English grammars
and one Swedish grammar written in GF (Ranta,
2011) on 100 randomly selected sentences from
the FraCaS textual inference problem set (Cooper
et al., 1996). One of the English grammars is
the GF English Resource grammar (Ranta, 2009)
with the FraCaS lexicon added. The other two
grammars and the Swedish translations of the sen-
tences are taken from the FraCaS GF Treebank
(Ljunglöf and Siverbo, 2011).

150



English Resource English FraCaS Swedish FraCaS
chart time /item chart time /item chart time /item

Top-down 721,000 9,2 s 13 µs 96,000 1,7 s 18 µs 96,000 1,7 s 18 µs

Bottom-up 144,000 2,5 s 17 µs 51,000 1,1 s 21 µs 167,000 3,8 s 23 µs

Filtered top-down 239,000 3,2 s 13 µs 38,000 0,8 s 21 µs 27,000 0,5 s 20 µs

Filtered bottom-up 27,000 0,5 s 17 µs 8,000 0,2 s 20 µs 17,000 0,6 s 34 µs

Table 4: Average chart size per sentence, parse time per sentence and parse time per chart item.

5.1 Non-empty bottom-up grammars
As explained in section 4.3, the bottom-up strate-
gies perform especially poorly if the grammars
contain empty constituents. So we also created
non-empty versions of the grammars. Table 2
contains some statistics about the grammars and
table 3 about their non-empty versions. The ta-
bles show that the size of the grammar can ex-
plode quite dramatically when removing empty
constituents, but it depends on the grammar. E.g.,
the number of rules in the FraCaS grammars in-
crease by 50 times, while the Resource grammar
is almost unaffected.

Despite the dramatic increase of the grammar
size, the non-empty grammars always outperform
the empty grammars when doing bottom-up pars-
ing. On the other hand, the top-down strategies
perform much worse on the empty grammars.
Therefore we tested the bottom-up strategies on
the empty grammars, and the top-down strategies
on the original grammars.

5.2 Test results
We tested each of the four parsing strategies on
each of the three grammars and their test sen-
tences. The results are given in table 4, which
contains the average size of the chart after pars-
ing each test sentence, together with the aver-
age parsing time and the average parsing time per
chart item. The tests were run on a 2GHz Intel
Core2Duo processor with 4GB RAM.

It is clear from the table that the filtered algo-
rithms outperform the unfiltered ones, and that the
filtered bottom-up algorithm is the fastet most of
the time. However, we have only tested on three
quite similar grammars, so the results could very
well be different when testing on other grammars.

Note the increase in parsing time per item for
the filtered bottom-up algorithm on the Swedish
grammar. This is most certainly caused by the
extreme size of the non-empty Swedish grammar,

forcing the Python interpreter to perform garbage
collection much more often than usual.

6 Final remarks

We compared four previously published PM-
CFG/LCFRS parsing algorithms, and argued that
they all implement the same top-down Earley
style algorithm without bottom-up filtering. From
Angelov’s (2009) algorithm we derived three new
PMCFG parsing algorithms, one pure bottom-up
variant and two variants using a left corner fil-
ter. An initial evaluation suggested that these new
algorithms can increase PMCFG parsing perfor-
mance dramatically, at least for some grammars.

6.1 The correct-prefix property

An algorithm satisfies the correct-prefix property
(CPP) if it aborts and reports a failure as soon as
it reads a prefix that is not a prefix of any correct
string in the grammar (Nederhof, 1999).

Angelov’s (2009) original top-down algorithm
already satisfies CPP, and since the filtered top-
down algorithm does not add any additional parse
items it also satisfies CPP.

The filtered bottom-up algorithm would also
be prefix-correct if the left corner relation was
perfect. But we extract the left corners from a
context-free approximation, which means that the
relation is over-generating. Therefore some non-
CPP parse items can be pass through the left cor-
ner filter, which means that neither of the bottom-
up algorithms satisfy CPP.

6.2 Implementation

We have implemented all four algorithms as a li-
brary in the programming language Python. The
library is released under an open-source licence
and can be downloaded or forked from the fol-
lowing URL:

http://github.com/heatherleaf/MCFParser.py

151



Acknowledgments

I would like to thank Krasimir Angelov and three
anonymous reviewers for insightful and valuable
comments and suggestions.

References
Krasimir Angelov. 2009. Incremental parsing

with parallel multiple context-free grammars. In
EACL’09, 12th Conference of the European Chap-
ter of the Association for Computational Linguis-
tics, pages 69–76, Athens, Greece.

Pierre Boullier. 2004. Range concatenation gram-
mars. In Harry Bunt, John Carroll, and Giorgio
Satta, editors, New developments in parsing tech-
nology, pages 269–289. Kluwer Academic Publish-
ers.

Håkan Burden and Peter Ljunglöf. 2005. Parsing lin-
ear context-free rewriting systems. In IWPT’05, 9th
International Workshop on Parsing Technologies,
Vancouver, Canada.

Robin Cooper, Dick Crouch, Jan van Eijck, Chris Fox,
Josef van Genabith, Jaspars Jan, Hans Kamp, David
Milward, Manfred Pinkal, Massimo Poesio, Steve
Pulman, Ted Briscoe, Holger Maier, and Karsten
Konrad. 1996. Using the framework. Deliverable
D16, FraCaS Project.

Éric Villemonte de la Clergerie. 2002. Parsing mildly
context-sensitive languages with thread automata.
In COLING’02, 19th International Conference on
Computational Linguistics.

Jay Earley. 1970. An efficient context-free parsing
algorithm. Communications of the ACM, 13(2):94–
102.

Carlos Gómez-Rodríguez, John Carroll, and David
Weir. 2008. A deductive approach to dependency
parsing. In ACL’08: HLT, 46th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, Columbus, Ohio.

Susan Graham, Michael Harrison, and Walter Ruzzo.
1980. An improved context-free recognizer. ACM
Trans. Program. Lang. Syst., 2(3):415–462.

Laura Kallmeyer and Wolfgang Maier. 2009. An in-
cremental Earley parser for simple range concate-
nation grammar. In IWPT’09, 11th International
Workshop on Parsing Technologies, Paris, France.

Laura Kallmeyer. 2010. Parsing Beyong Context-Free
Grammars. Springer.

Makoto Kanazawa. 2008. A prefix-correct Earley
recognizer for multiple context-free grammars. In
TAG+9, 9th International Workshop on Tree Ad-
joining Grammar and Related Formalisms, Tübin-
gen, Germany.

Peter Ljunglöf and Magdalena Siverbo. 2011. A bilin-
gual treebank for the FraCaS test suite. CLT project
report, University of Gothenburg.

Peter Ljunglöf and Mats Wirén. 2010. Syntactic pars-
ing. In Nitin Indurkhya and Fred J. Damerau, ed-
itors, Handbook of Natural Language Processing,
2nd edition, chapter 4. CRC Press, Taylor and Fran-
cis. ISBN 978-1420085921.

Peter Ljunglöf. 2004. Expressivity and Complexity
of the Grammatical Framework. Ph.D. thesis, Uni-
versity of Gothenburg and Chalmers University of
Technology, Gothenburg, Sweden.

Robert C. Moore. 2004. Improved left-corner chart
parsing for large context-free grammars. In Harry
Bunt, John Carroll, and Giorgio Satta, editors, New
Developments in Parsing Technology, pages 185–
201. Kluwer Academic Publishers.

Mark-Jan Nederhof. 1999. The computational com-
plexity of the correct-prefix property for TAGs.
Computational Linguistics, 25(3):345–360.

Aarne Ranta. 2009. The GF resource grammar library.
Linguistic Issues in Language Technology, 2.

Aarne Ranta. 2011. Grammatical Framework: Pro-
gramming with Multilingual Grammars. CSLI Pub-
lications, Stanford.

Hiroyuki Seki, Takashi Matsumara, Mamoru Fujii, and
Tadao Kasami. 1991. On multiple context-free
grammars. Theoretical Computer Science, 88:191–
229.

Stuart M. Shieber, Yves Schabes, and Fernando C. N.
Pereira. 1995. Principles and implementation of
deductive parsing. Journal of Logic Programming,
24(1–2):3–36.

Klaas Sikkel and Anton Nijholt. 1997. Parsing of
context-free languages. In G. Rozenberg and A.
Salomaa, editors, The Handbook of Formal Lan-
guages, volume II, pages 61–100. Springer-Verlag.

Klaas Sikkel. 1998. Parsing schemata and correct-
ness of parsing algorithms. Theoretical Computer
Science, 199:87–103.

K. Vijay-Shanker, David Weir, and Aravind K. Joshi.
1987. Characterizing structural descriptions pro-
duced by various grammatical formalisms. In
ACL’87, 25th Annual Meeting of the Association for
Computational Linguistics, Stanford, California.

152


