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Abstract

We envision an automatic knowledge base
construction system consisting of three inter-
related components. MADDEN is a knowl-
edge extraction system applying statistical
text analysis methods over database sys-
tems (DBMS) and massive parallel processing
(MPP) frameworks; PROBKB performs prob-
abilistic reasoning over the extracted knowl-
edge to derive additional facts not existing in
the original text corpus; CAMEL leverages
human intelligence to reduce the uncertainty
resulting from both the information extraction
and probabilistic reasoning processes.

1 Introduction

In order to build a better search engine that performs
semantic search in addition to keyword matching, a
knowledge base that contains information about all
the entities and relationships on the web and beyond
is needed. With recent advances in technology such
as cloud computing and statistical machine learning
(SML), automatic knowledge base construction is
becoming possible and is receiving more and more
interest from researchers. We envision an automatic
knowledge base (KB) construction system that in-
cludes three components: probabilistic extraction,
deductive reasoning, and human feedback.

Much research has been conducted on text anal-
ysis and extraction at web-scale using SML models
and algorithms. We built our parallelized text anal-
ysis library MADDEN on top of relational database
systems and MPP frameworks to achieve efficiency
and scalability.

The automatically extracted information contains
errors, uncertainties, and probabilities. We use a
probabilistic database to preserve uncertainty in data
representations and propagate probabilities through
query processing.

Further, not all information can be extracted from
the Web (Schoenmackers et al., 2008). A probabilis-
tic deductive reasoning system is needed to infer ad-
ditional facts from the existing facts and rules ex-
tracted by MADDEN.

Finally, we propose to use human feedback to im-
prove the quality of the machine-generated knowl-
edge base since SML methods are not perfect.
Crowdsourcing is one of the ways to collect this
feedback and though much slower, it is often more
accurate than the state-of-the-art SML algorithms.

2 System Overview

Our vision of the automatic knowledge base con-
struction process consists of three main components
as shown in Figure 1.

The first component is a knowledge extraction
system called MADDEN that sits on top of a prob-
abilistic database system such as BAYESSTORE or
PrDB and treats probabilistic data, statistical mod-
els, and algorithms as first-class citizens (Wang et
al., 2008; Sen et al., 2009). MADDEN specifi-
cally implements SML models and algorithms on
database systems (e.g., PostgreSQL) and massive
parallel processing (MPP) frameworks (e.g., Green-
plum) to extract various types of information from
the text corpus, including entities, relations, and
rules. Different types of information are extracted
by different text analysis tasks. For example, the
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Figure 1: Architecture for Automatic Knowledge Base Construction

named entity recognition (NER) task extracts dif-
ferent types of entities including people, companies,
and locations from text.

The second component is a probabilistic reason-
ing system called PROBKB. Given a set of enti-
ties, relations, and rules extracted from a text cor-
pus (e.g., WWW), PROBKB enables large-scale in-
ference and reasoning over uncertain entities and
relations using probabilistic first-order logic rules.
Such inference would generate a large number of
new facts that did not exist in the original text cor-
pus. The uncertain knowledge base is modeled by
Markov logic networks (MLN) (Domingos et al.,
2006). In this model, the probabilistic derivation of
new facts from existing ones is equivalent to infer-
ence over the MLNs.

The third component is a crowd-based human
feedback system called Crowd-Assisted Machine
Learning or CAMEL. Given the set of extracted and
derived facts, rules and their uncertainties, CAMEL
leverages the human computing power from crowd-
sourcing services to improve the quality of the
knowledge base. Based on the probabilities associ-
ated with the extracted and derived information in an
uncertain knowledge base, CAMEL effectively se-
lects and formulates questions to push to the crowd.

The resulting knowledge base constructed from
the extraction, derivation, and feedback steps can be
used in various application domains such as compu-
tational journalism and e-discovery.

3 MADDEN: Statistical Text Analysis on
MPP Frameworks

The focus of the MADDEN project has been to inte-
grate statistical text analytics into DBMS and MPP
frameworks to achieve scalability and paralleliza-
tion. Structured and unstructured text are core assets
for data analysis. The increasing use of text analysis
in enterprise applications has increased the expecta-
tion of customers and the opportunities for process-
ing big data. The state-of-the-art text analysis and
extraction tools are increasingly found to be based
on statistical models and algorithms (Jurafsky et al.,
2000; Feldman and Sanger, 2007).

Basic text analysis tasks include part-of-speech
(POS) tagging, named entity extraction (NER), and
entity resolution (ER) (Feldman and Sanger, 2007).
Different statistical models and algorithms are im-
plemented for each of these tasks with different
runtime-accuracy trade-offs. An example entity res-
olution task could be to find all mentions in a text
corpus that refer to a real-world entity X . Such a
task can be done efficiently by approximate string
matching (Navarro, 2001) techniques to find all
mentions that approximately match the name of en-
tity X . Approximate string matching is a high re-
call and low precision approach when compared
to state-of-the-art collective entity resolution algo-
rithms based on statistical models like Conditional
Random Fields (CRFs) (Lafferty et al., 2001).

CRFs are a leading probabilistic model for solv-
ing many text analysis tasks, including POS tagging,
NER, and ER (Lafferty et al., 2001). To support
sophisticated text analysis, we implement four key
methods: text feature extraction, inference over a
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CRF (Viterbi), Markov chain Monte Carlo (MCMC)
inference, and approximate string matching.

Text Feature Extraction: To analyze text, fea-
tures need to be extracted from documents and it can
be an expensive operation. To achieve results with
high accuracy, CRF methods often compute hun-
dreds of features over each token in the document,
which can be high cost. Features are determined
by functions over the sets of tokens. Examples of
such features include: (1) dictionary features: does
this token exist in a provided dictionary? (2) regex
features: does this token match a provided regular
expression? (3) edge features: is the label of a to-
ken correlated with the label of a previous token?
(4) word features: does this the token appear in the
training data? and (5) position features: is this token
the first or last in the token sequence? The optimal
combination of features depends on the application.

Approximate String Matching: A recurring
primitive operation in text processing applications
is the ability to match strings approximately. The
technique we use is based on qgrams (Gravano et
al., 2001). We create and index 3-grams over text.
Given a string “Tim Tebow” we can create a 3-gram
by using a sliding window of 3 characters over this
text string. Given two strings we can compare the
overlap of two sets of corresponding 3-grams and
compute a similarity as the approximate matching
score.

Once we have the features, the next step is to per-
form inference on the model. We also implemented
two types of statistical inference within the database:
Viterbi (when we only want the most likely answer
from a linear-chain CRF model) and MCMC (when
we want the probabilities or confidence of an answer
from a general CRF model).

Viterbi Inference: The Viterbi dynamic pro-
gramming algorithm (Manning et al., 1999) is a pop-
ular algorithm to find the top-k most likely labelings
of a document for (linear-chain) CRF models.

To implement the Viterbi dynamic program-
ming algorithm we experimented with two different
implementations of macro-coordination over time.
First, we chose to implement it using a combination
of recursive SQL and window aggregate functions.
We discussed this implementation at some length in
earlier work (Wang et al., 2010). Second, we chose
to implement a Python UDF that uses iterations to

drive the recursion in Viterbi. In the Greenplum
MPP Framework, Viterbi can be run in parallel over
different subsets of the document on a multi-core
machine.

MCMC Inference: MCMC methods are classi-
cal sampling algorithms that can be used to esti-
mate probability distributions. We implemented two
MCMC method: Gibbs sampling and Metropolis-
Hastings (MCMC-MH).

The MCMC algorithms involve iterative proce-
dures where the current values depend on previ-
ous iterations. We use SQL window aggregates
for macro-coordination in this case, to carry “state”
across iterations to perform the Markov-chain pro-
cess. We discussed this implementation at some
length in recent work (Wang et al., 2011). We
are currently developing MCMC algorithms over
Greenplum DBMS.

4 PROBKB: Probabilistic Knowledge Base

The second component of our system is PROBKB, a
probabilistic knowledge base designed to derive im-
plicit knowledge from entities, relations, and rules
extracted from a text corpus by knowledge ex-
traction systems like MADDEN. Discovering new
knowledge is a crucial step towards knowledge base
construction since many valuable facts are not ex-
plicitly stated in web text; they need to be inferred
from extracted facts and rules.

PROBKB models uncertain facts as Markov logic
networks (MLN) (Domingos et al., 2006). Markov
logic networks are proposed to unify first-order logic
and statistical inference by attaching a weight to
each first-order formula (rule). These weights re-
flect our confidence of the rules being true. To obtain
these weighted formulae, we have used natural lan-
guage processing (NLP) methods to extract entities
and relations as described in Section 3 and learned
the formulae from the extractions.

One challenge in applying the MLN model is
propagating the uncertainty of facts and rules in the
inference process. A naive method may be discard-
ing facts with low confidence using ad-hoc thresh-
olds and heuristics, but we decided to maintain all
the facts in our knowledge base regardless of their
confidences. The rationale behind this is that some
facts may have low confidence due to absence or in-
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accessibility of evidence rather than being incorrect;
they may prove to be true when new extractions are
available as supporting evidence.

We are experimenting on some state-of-the-art
implementations of MLNs like TUFFY (Niu et al.,
2011) as a base to develop our large-scale proba-
bilistic inference engine. Taking the MLN and un-
certain facts, rules, and their confidence as inputs,
the system is able to answer queries like “how likely
will Bob develop a cancer?”. Though TUFFY is able
to handle uncertainties resulted from extraction sys-
tems, it is no easy task for the system to scale up
to tens of millions of facts and thousands of rules.
To address this problem, we are currently research-
ing several possible ways to parallelize the inference
computation. One challenge for parallelization is
data dependency: the result set (derived facts) of one
rule may affect that of another. As a first attempt, we
are looking at two different partitioning strategies:
partition by rules and partition by facts.

In addition to partitioning techniques, we are also
trying to evaluate the possibility of implementing
MLNs on different MPP frameworks: Greenplum
Database, HadoopDB, and Datapath (Arumugam et
al., 2010). These database systems allow effective
parallel processing of big data and running of in-
ference algorithms, which is essential for scaling up
probabilistic reasoning in the PROBKB project.

5 CAMEL: Crowd-Assisted Machine
Learning

The final proposed component for automatic con-
struction of a knowledge base is a crowd-based sys-
tem, CAMEL, designed for improving uncertainty.
CAMEL is built on top of an existing probabilis-
tic knowledge or database like PROBKB and MAD-
DEN.

In addition to using SML techniques for large
scale analysis, an increasing trend has been to har-
ness human computation in a distributed manner us-
ing crowdsourcing (Quinn et al., 2010; Sorokin and
Forsyth, 2008). Benefits can be gained in problems
that are too difficult or expensive for computers. Ser-
vices like Amazon Mechanical Turk (AMT) (Ipeiro-
tis, 2010) have led the way by setting up an infras-
tructure that allows payment for the combined re-
sources of up to hundreds of thousands of people.

SML is not perfect: for some simple NLP tasks
it achieves a relatively high accuracy while for other
ones involving context and reasoning the results are
much worse. Cases where the model is unable to ad-
equately reason about a difficult piece of data intro-
duces large uncertainties into the output. The need
for a new type of data cleaning process has emerged.
As discussed in Section 4, one approach is to thresh-
old uncertainty and throw away those facts the ma-
chine is unable to reason about, leaving the knowl-
edge base incomplete. Another approach is to con-
vert these high uncertainty examples into questions
for the crowd to answer.

The main tenets of CAMEL are its selection
model and integration model as described below.

Selection Model: The first important feature of
CAMEL is its ability to distinguish and select the
most uncertain fields in the knowledge base. For
tasks involving CRFs (MADDEN), each hidden
node can be marginalized to find a probability distri-
bution over the label space. From the marginal dis-
tribution, we can attach a marginal entropy to each
node in the graph. Our algorithm selects the high-
est entropy node to be sent to the crowd. Additional
research is being done to take advantage of specifics
of the graph structure such as the connectivity and
dependency relationships of each node.

Integration Model: Questions are posted on
AMT and are answered by a number of different
Turkers, generally three or five per question. The
golden standard for aggregating the crowd response
has been to take a majority vote. Since our system is
built on top of a probabilistic knowledge base KB,
we want to establish a distribution over the possible
answers based on the received responses. We use
the machinery of Dempster-Shafer’s (DS) Theory of
Evidence (Dempster, 1967; Shafer, 1976) for com-
bining results in a probabilistic manner. Using an
Expectation-Maximization algorithm proposed by
Dawid and Skene (Dawid and Skene, 1979) for as-
sessing Turker quality and confidence, answers are
aggregated into a single distribution for reinsertion
into the database. The more Turkers that are queried,
the more fine-tuned the distribution becomes.
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6 Conclusion

In this short paper, we described our vision of an
automatic knowledge base construction system con-
sisting of three major components—extraction, rea-
soning, and human feedback. The resulting system
is expected to be scalable, efficient, and useful in
vaiours application domains.
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