
NAACL-HLT 2012 Workshop: Will We Ever Really Replace the N-gram Model? On the Future of Language Modeling for HLT, pages 41–49,
Montréal, Canada, June 8, 2012. c©2012 Association for Computational Linguistics

Large-scale discriminative language model reranking for voice-search

Preethi Jyothi
The Ohio State University

Columbus, OH
jyothi@cse.ohio-state.edu

Leif Johnson
UT Austin
Austin, TX

leif@cs.utexas.edu

Ciprian Chelba and Brian Strope
Google

Mountain View, CA
{ciprianchelba,bps}@google.com

Abstract

We present a distributed framework for large-
scale discriminative language models that can
be integrated within a large vocabulary con-
tinuous speech recognition (LVCSR) system
using lattice rescoring. We intentionally
use a weakened acoustic model in a base-
line LVCSR system to generate candidate hy-
potheses for voice-search data; this allows
us to utilize large amounts of unsupervised
data to train our models. We propose an ef-
ficient and scalable MapReduce framework
that uses a perceptron-style distributed train-
ing strategy to handle these large amounts of
data. We report small but significant improve-
ments in recognition accuracies on a standard
voice-search data set using our discriminative
reranking model. We also provide an analy-
sis of the various parameters of our models in-
cluding model size, types of features, size of
partitions in the MapReduce framework with
the help of supporting experiments.

1 Introduction

The language model is a critical component of an
automatic speech recognition (ASR) system that as-
signs probabilities or scores to word sequences. It
is typically derived from a large corpus of text via
maximum likelihood estimation in conjunction with
some smoothing constraints. N-gram models have
become the most dominant form of LMs in most
ASR systems. Although these models are robust,
scalable and easy to build, we illustrate a limita-
tion with the following example from voice-search.
We expect a low probability for an ungrammatical

or implausible word sequence. However, for a tri-
gram like “a navigate to”, a backoff trigram LM
gives a fairly large LM log probability of -0.266 be-
cause both “a” and “navigate to” are popular words
in voice-search! Discriminative language models
(DLMs) attempt to directly optimize error rate by
rewarding features that appear in low error hypothe-
ses and penalizing features in misrecognized hy-
potheses. The trigram “a navigate to” receives a
fairly large negative weight of -6.5 thus decreasing
its chances of appearing as an ASR output. There
have been numerous approaches towards estimat-
ing DLMs for large vocabulary continuous speech
recognition (LVCSR) (Roark et al., 2004; Gao et al.,
2005; Zhou et al., 2006).

There are two central issues that we discuss re-
garding DLMs. Firstly, DLM training requires large
amounts of parallel data (in the form of correct tran-
scripts and candidate hypotheses output by an ASR
system) to be able to effectively compete with n-
gram LMs trained on large amounts of text. This
data could be simulated using voice-search logs that
are confidence-filtered from a baseline ASR sys-
tem to obtain reference transcripts. However, this
data is perfectly discriminated by first pass features
and leaves little room for learning. We propose a
novel training strategy of using lattices generated
with a weaker acoustic model (henceforth referred
to as weakAM) than the one used to generate ref-
erence transcripts for the unsupervised parallel data
(referred to as the strongAM). This provides us with
enough errors to derive large numbers of potentially
useful word features; this is akin to using a weak LM
in discriminative acoustic modeling to give more

41

room for diversity in the word lattices resulting in
better generalization (Schlüter et al., 1999). We con-
duct experiments to verify whether these weakAM-
trained models will provide performance gains on
rescoring lattices from a standard test set generated
using strongAM (discussed in Section 3.3).

The second issue is that discriminative estima-
tion of LMs is computationally more intensive than
regular N-gram LM estimation. The advent of dis-
tributed learning algorithms (Mann et al., 2009; Mc-
Donald et al., 2010; Hall et al., 2010) and support-
ing parallel computing infrastructure like MapRe-
duce (Ghemawat and Dean, 2004) has made it in-
creasingly feasible to use large amounts of paral-
lel data to train DLMs. We implement a distributed
training strategy for the perceptron algorithm (intro-
duced by McDonald et al. (2010) using the MapRe-
duce framework. Our design choices for the MapRe-
duce implementation are specified in Section 2.2
along with its modular nature thus enabling us to
experiment with different variants of the distributed
structured perceptron algorithm. Some of the de-
scriptions in this paper have been adapted from pre-
vious work (Jyothi et al., 2012).

2 The distributed DLM framework:
Training and Implementation details

2.1 Learning algorithm

We aim to allow the estimation of large scale dis-
tributed models, similar in size to the ones in Brants
et al. (2007). To this end, we make use of a dis-
tributed training strategy for the structured percep-
tron to train our DLMs (McDonald et al., 2010). Our
model consists of a high-dimensional feature vector
function Φ that maps an (utterance, hypothesis) pair
(x, y) to a vector in Rd, and a vector of model pa-
rameters, w ∈ Rd. Our goal is to find model pa-
rameters such that given x, and a set of candidate
hypotheses Y (typically, as a word lattice or an N-
best list that is obtained from a first pass recognizer),
argmaxy∈Y w · Φ(x, y) would be the y ∈ Y that
minimizes the error rate between y and the correct
hypothesis for x. For our experiments, the feature
vector Φ(x, y) consists of AM and LM costs for y
from the lattice Y for x), as well as “word features”
which count the number of times different N-grams
(of order up to 5 in our experiments) occur in y.

In principle, such a model can be trained us-
ing the conventional structured perceptron algo-
rithm (Collins, 2002). This is an online learning
algorithm which continually updates w as it pro-
cesses the training instances one at a time, over
multiple training epochs. Given a training utter-
ance {xi, yi} (yi ∈ Yi has the lowest error rate
with respect to the reference transcription for xi,
among all hypotheses in the lattice Yi for xi), if
ỹ∗i := argmaxy∈Yi

w · Φ(xi, y) is not yi, w is up-
dated to increase the weights corresponding to fea-
tures in yi and decrease the weights of features in ỹ∗i .
During evaluation, we use parameters averaged over
all utterances and over all training epochs. This was
shown to give substantial improvements in previous
work (Collins, 2002; Roark et al., 2004).

Unfortunately, the conventional perceptron algo-
rithm takes impractically long for the amount of
training examples we have. We make use of a
distributed training strategy for the structured per-
ceptron that was first introduced in McDonald et
al. (2010). The iterative parameter mixing strategy
used in this paradigm can be explained as follows:
the training data T = {xi, yi}Ni=1 is suitably parti-
tioned into C disjoint sets T1, . . . , TC . Then, a struc-
tured perceptron model is trained on each data set in
parallel. After one training epoch, the parameters in
the C sets are mixed together (using a “mixture coef-
ficient” µi for each set Ti) and returned to each per-
ceptron model for the next training epoch where the
parameter vector is initialized with these new mixed
weights. This is formally described in Algorithm 1;
we call it “Distributed Perceptron”. We also exper-
iment with two other variants of distributed percep-
tron training, “Naive Distributed Perceptron” and
“Averaged Distributed Perceptron”. These models
easily lend themselves to be implemented using the
distributed infrastructure provided by the MapRe-
duce framework. The following section describes
this infrastructure in greater detail.

2.2 MapReduce implementation details

We propose a distributed infrastructure using
MapReduce (Ghemawat and Dean, 2004) to train
our large-scale DLMs on terabytes of data. The
MapReduce (Ghemawat and Dean, 2004) paradigm,
adapted from a specialized functional programming
construct, is specialized for use over clusters with

42

Algorithm 1 Distributed Perceptron (McDonald et
al., 2010)

Require: Training samples T = {xi, yi}Ni=1

1: w0 := [0, . . . , 0]
2: Partition T into C parts, T1, . . . , TC
3: [µ1, . . . , µC] := [1

C , . . . ,
1
C]

4: for t := 1 to T do
5: for c := 1 to C do
6: w := wt−1

7: for j := 1 to |Tc| do
8: ỹt

c,j := argmaxy w ·Φ(xc,j , y)
9: δ := Φ(xc,j , yc,j)−Φ(xc,j , ỹ

t
c,j)

10: w := w + δ
11: end for
12: wt

c := w
13: end for
14: wt :=

∑C
c=1 µcw

t
c

15: end for
16: return wT

a large number of nodes. Chu et al. (2007) have
demonstrated that many standard machine learning
algorithms can be phrased as MapReduce tasks, thus
illuminating the versatility of this framework. In
relation to language models, Brants et al. (2007)
recently proposed a distributed MapReduce infras-
tructure to build Ngram language models having up
to 300 billion n-grams. We take inspiration from
this evidence of being able to build very large mod-
els and use the MapReduce infrastructure for our
DLMs. Also, the MapReduce paradigm allows us to
easily fit different variants of our learning algorithm
in a modular fashion by only making small changes
to the MapReduce functions.

In the MapReduce framework, any computation
is expressed as two user-defined functions: Map and
Reduce. The Map function takes as input a key/value
pair and processes it using user-defined functions to
generate a set of intermediate key/value pairs. The
Reduce function receives all intermediate pairs that
are associated with the same key value. The dis-
tributed nature of this framework comes from the
ability to invoke the Map function on different parts
of the input data simultaneously. Since the frame-
work assures that all the values corresponding to a
given key will be accummulated at the end of all

SSTable
Feature-
Weights:

Epoch t+1

SSTable
Feature-
Weights:
Epoch t

SSTable
Utterances

SSTableService

Rerank-Mappers

Identity-Mappers

Reducers

Cache
(per Map chunk)

Figure 1: MapReduce implementation of reranking using
discriminative language models.

the Map invocations on the input data, different ma-
chines can simultaneously execute the Reduce to op-
erate on different parts of the intermediate data.

Any MapReduce application typically imple-
ments Mapper/Reducer interfaces to provide the de-
sired Map/Reduce functionalities. For our models,
we use two different Mappers (as illustrated in Fig-
ure 1) to compute feature weights for one training
epoch. The Rerank-Mapper receives as input a set
of training utterances and also requests for feature
weights computed in the previous training epoch.
Rerank-Mapper then computes feature updates for
the given training data (the subset of the training data
received by a single Rerank-Mapper instance will be
henceforth referred to as a “Map chunk”). We also
have a second Identity-Mapper that receives feature
weights from the previous training epoch and di-
rectly maps the inputs to outputs which are provided
to the Reducer. The Reducer combines the outputs
from both Rerank-Mapper and Identity-Mapper and
outputs the feature weights for the current training
epoch. These output feature weights are persisted
on disk in the form of SSTables that are an efficient
abstraction to store large numbers of key-value pairs.

The features corresponding to a Map chunk at the
end of training epoch need to be made available to
Rerank-Mapper in the subsequent training epoch.
Instead of accessing the features on demand from
the SSTables that store these feature weights, every
Rerank-Mapper stores the features needed for the
current Map chunk in a cache. Though the number

43

wt-1

Rerank-Mapper

Reducer

1 utt1
2 utt2

Nc uttNc

Feat1 wt1
Feat2 wt2

FeatM wtM

:

:

U

Cache of wt-1 maintained by the Mapper

wcurr := wt-1, Δ := 0
For each (key,utt) in U:

Map(key,utt) {
Rerank(utt.Nbest,wcurr)
δ := FeatureDiff(utt)
wcurr:= wcurr + δ
Δ := Update(Δ,δ)

}

wt

Reduce(Feat,V[0..n]) {
//V contains all pairs
//with primary key=Feat

//first key=Feat:0
wold := V[0]

//aggregate Δ from rest
//of V (key=Feat:1)
Δ* := Aggregate(V[1..n])

wt[Feat] :=
Combine(wold,Δ*)

}

For each Feat in 1 to M:

Map(Feat,wt-1[Feat]) {
Emit(Feat:0,wt-1[Feat])

}

Identity-Mapper

For each Feat in 1 to M:
Emit(Feat:1,Δ[Feat])

Figure 2: Details of the Mapper and Reducer.

Naive Distributed Perceptron:
- Update(∆, δ) returns ∆ + δ.
- Aggregate([∆t

1, . . . ,∆
t
C]) returns ∆∗ =

∑C
c=1 ∆t

c.
- Combine(wt−1

NP ,∆
∗) returns wt−1

NP + ∆∗.
Distributed Perceptron:

- Update and Combine are as for the Naive Distributed Perceptron.
- Aggregate([∆t

1, . . . ,∆
t
C]) returns ∆∗ =

∑C
c=1 µc∆

t
c.

Averaged Distributed Perceptron: Here, wt = (wt
AV , w

t
DP), and ∆ = (β,α) contain pairs of values; α

is used to maintain wt
DP and β, both of which in turn are used to maintain wt

AV (αt
c plays the role of ∆t

c in
Distributed Perceptron). Only wt

AV is used in the final evaluation and only wt
DP is used during training.

- Update((β,α), δ) returns (β + α + δ,α + δ).
- Aggregate([∆t

1, . . . ,∆
t
C]) where ∆t

c = (βt
c,α

t
c), returns ∆∗ = (β∗,α∗) where β∗ =

∑C
c=1 βt

c, and
α∗ =

∑C
c=1 µcα

t
c.

- Combine((wt−1
AV , w

t−1
DP), (β∗,α∗)) returns (t−1

t wt−1
AV + 1

tw
t−1
DP + 1

N tβ
∗, wt−1

DP + α∗).

Figure 3: Update, Aggregate and Combine procedures for the three variants of the Distributed Perceptron algorithm.

of features stored in the SSTables are determined by
the total number of training utterances, the number
of features that are accessed by a Rerank-Mapper
instance are only proportional to the chunk size and
can be cached locally. This is an important imple-
mentation choice because it allows us to estimate
very large distributed models: the bottleneck is no
longer the total model size but rather the cache size
that is in turn controlled by the Map chunk size.
Section 3.2 discusses in more detail about different
model sizes and the effects of varying Map chunk

size on recognition performance.

Figure 1 is a schematic diagram of our entire
framework; Figure 2 shows a more detailed repre-
sentation of a single Rerank-Mapper, an Identity-
Mapper and a Reducer, with the pseudocode of
these interfaces shown inside their respective boxes.
Identity-Mapper gets feature weights from the pre-
vious training epoch as input (wt) and passes them
to the output unchanged. Rerank-Mapper calls the
function Rerank that takes an N-best list of a training
utterance (utt.Nbest) and the current feature weights

44

(wcurr) as input and reranks the N-best list to ob-
tain the best scoring hypothesis. If this differs from
the correct transcript for utt, FeatureDiff computes
the difference in feature vectors corresponding to
the two hypotheses (we call it δ) and wcurr is in-
cremented with δ. Emit is the output function of
a Mapper that outputs a processed key/value pair.
For every feature Feat, both Identity-Mapper and
Rerank-Mapper also output a secondary key (0 or 1,
respectively); this is denoted as Feat:0 and Feat:1.
At the Reducer, its inputs arrive sorted according to
the secondary key; thus, the feature weight corre-
sponding to Feat from the previous training epoch
produced by Identity-Mapper will necessarily ar-
rive before Feat’s current updates from the Rerank-
Mapper. This ensures that wt+1 is updated correctly
starting with wt. The functions Update, Aggregate
and Combine are explained in the context of three
variants of the distributed perceptron algorithm in
Figure 3.

2.2.1 MapReduce variants of the distributed
perceptron algorithm

Our MapReduce setup described in the previ-
ous section allows for different variants of the dis-
tributed perceptron training algorithm to be imple-
mented easily. We experimented with three slightly
differing variants of a distributed training strategy
for the structured perceptron, Naive Distributed Per-
ceptron, Distributed Perceptron and Averaged Dis-
tributed Perceptron; these are defined in terms of
Update, Aggregate and Combine in Figure 3 where
each variant can be implemented by plugging in
these definitions from Figure 3 into the pseudocode
shown in Figure 2. We briefly describe the func-
tionalities of these three variants. The weights at
the end of a training epoch t for a single feature f
are (wt

NP , w
t
DP , w

t
AV) corresponding to Naive Dis-

tributed Perceptron, Distributed Perceptron and Av-
eraged Distributed Perceptron, respectively; φ(·, ·)
correspond to feature f ’s value in Φ from Algorithm
1. Below, δt

c,j = φ(xc,j , yc,j) − φ(xc,j , ỹ
t
c,j) and

Nc = number of utterances in Map chunk Tc.
Naive Distributed Perceptron: At the end of epoch
t, the weight increments in that epoch from all map
chunks are added together and added to wt−1

NP to ob-
tain wt

NP .
Distributed Perceptron: Here, instead of adding

increments from the map chunks, at the end of epoch
t, they are averaged together using weights µc, c = 1
to C, and used to increment wt−1

DP to wt
DP .

Averaged Distributed Perceptron: In this vari-
ant, firstly, all epochs are carried out as in the Dis-
tributed Perceptron algorithm above. But at the end
of t epochs, all the weights encountered during the
whole process, over all utterances and all chunks, are
averaged together to obtain the final weight wt

AV .
Formally,

wt
AV =

1

N · t

t∑
t′=1

C∑
c=1

Nc∑
j=1

wt′
c,j ,

where wt
c,j refers to the current weight for map

chunk c, in the tth epoch after processing j utter-
ances and N is the total number of utterances. In
our implementation, we maintain only the weight
wt−1

DP from the previous epoch, the cumulative incre-
ment γt

c,j =
∑j

k=1 δ
t
c,k so far in the current epoch,

and a running average wt−1
AV . Note that, for all c, j,

wt
c,j = wt−1

DP + γt
c,j , and hence

N t · wt
AV = N (t− 1)wt−1

AV +
C∑

c=1

Nc∑
j=1

wt
c,j

= N (t− 1)wt−1
AV +Nwt−1

DP +

C∑
c=1

βt
c

where βt
c =

∑Nc
j=1 γ

t
c,j . Writing β∗ =

∑C
c=1 βt

c, we
have wt

AV = t−1
t wt−1

AV + 1
tw

t−1
DP + 1

N tβ
∗.

3 Experiments and Results

Our DLMs are evaluated in two ways: 1) we ex-
tract a development set (weakAM-dev) and a test
set (weakAM-test) from the speech data that is re-
decoded with a weakAM to evaluate our learning
setup, and 2) we use a standard voice-search test
set (v-search-test) (Strope et al., 2011) to evaluate
actual ASR performance on voice-search. More de-
tails regarding our experimental setup along with a
discussion of our experiments and results are de-
scribed in the rest of the section.

3.1 Experimental setup
We generate training lattices using speech data that
is re-decoded with a weakAM acoustic model and

45

●

●

●

●

●

●

0 50 100 150 200

10
20

30
40

50

N

E
rr

or
 R

at
e

● weakAM−dev SER
weakAM−dev WER
v−search−test SER
v−search−test WER

Figure 4: Oracle error rates at word/sentence level for
weakAM-dev with the weak AM and v-search-test with
the baseline AM.

a baseline language model. We use maximum
likelihood trained single mixture Gaussians for our
weakAM. And, we use a sufficiently small base-
line LM (∼21 million n-grams) to allow for sub-
real time lattice generation on the training data
with a small memory footprint, without compromis-
ing on its strength. Chelba et al. (2010) demon-
strate that it takes much larger LMs to get a sig-
nificant relative gain in WER. Our largest models
are trained on 87,000 hours of speech, or ∼350
million words (weakAM-train) obtained by filtering
voice-search logs at 0.8 confidence, and re-decoding
the speech data with a weakAM to generate N-best
lists. We set aside a part of this weakAM-train
data to create weakAM-dev and weakAM-test: these
data sets consist of 328,460/316,992 utterances, or
1,182,756/1,129,065 words, respectively. We use
a manually-transcribed, standard voice-search test
set (v-search-test (Strope et al., 2011)) consisting
of 27,273 utterances, or 87,360 words to evaluate
actual ASR performance using our weakAM-trained
models. All voice-search data used in the experi-
ments is anonymized.

Figure 4 shows oracle error rates, both at the sen-
tence and word level, using N-best lists of utterances
in weakAM-dev and v-search-test. These error rates
are obtained by choosing the best of the top N hy-
potheses that is either an exact match (for sentence
error rate) or closest in edit distance (for word er-
ror rate) to the correct transcript. The N-best lists
for weakAM-dev are generated using a weak AM
and N-best lists for v-search-test are generated us-

ing the baseline (strong) AM. Figure 4 shows these
error rates plotted against a varying threshold N for
the N-best lists. Note there are sufficient word errors
in the weakAM data to train DLMs; also, we observe
that the plot flattens out after N=100, thus informing
us that N=100 is a reasonable threshold to use when
training our DLMs.

Experiments in Section 3.2 involve evaluating
our learning setup using weakAM-dev/test. We
then investigate whether improvements on weakAM-
dev/test translate to v-search-test where N-best are
generated using the strongAM, and scored against
manual transcripts using fully fledged text normal-
ization instead of the string edit distance used in
training the DLM. More details about the impli-
cations of this text normalization on WER can be
found in Section 3.3.

3.2 Evaluating our DLM rescoring framework
on weakAM-dev/test

Improvements on weakAM-dev using different
variants of training for the DLMs
We evaluate the performance of all the variants of
the distributed perceptron algorithm described in
Section 2.2 over ten training epochs using a DLM
trained on ∼20,000 hours of speech with trigram
word features. Figure 5 shows the drop in WER
for all the three variants. We observe that the Naive
Distributed Perceptron gives modest improvements
in WER compared to the baseline WER of 32.5%.
However, averaging over the number of Map chunks
as in the Distributed Perceptron or over the total
number of utterances and training epochs as in the
Averaged Distributed Perceptron significantly im-
proves recognition performance; this is in line with
the findings reported in Collins (2002) and McDon-
ald et al. (2010) of averaging being an effective way
of adding regularization to the perceptron algorithm.

Our best-performing Distributed Perceptron
model gives a 4.7% absolute (∼15% relative)
improvement over the baseline WER of 1-best
hypotheses in weakAM-dev. This, however, could
be attributed to a combination of factors: the use
of large amounts of additional training data for the
DLMs or the discriminative nature of the model.
In order to isolate the improvements brought upon
mainly by the second factor, we build an ML
trained backoff trigram LM (ML-3gram) using the

46

●

● ● ● ● ● ● ● ● ●

2 4 6 8 10

20
25

30
35

Training epochs

W
or

d
Er

ro
r R

at
e(

W
ER

)

● Perceptron
AveragedPerceptron
DistributedPerceptron

Naive Distributed-Perceptron
Distributed-Perceptron
Averaged Distributed-Perceptron

●

● ● ● ● ● ● ● ● ●

2 4 6 8 10

20
25

30
35

Training epochs

W
or

d
Er

ro
r R

at
e(

W
ER

)

● Perceptron
AveragedPerceptron
DistributedPerceptron

Figure 5: Word error rates on weakAM-dev using Per-
ceptron, Distributed Perceptron and AveragedPerceptron
models.

reference transcripts of all the utterances used to
train the DLMs. The N-best lists in weakAM-dev
are reranked using ML-3gram probabilities linearly
interpolated with the LM probabilities from the
lattices. We also experiment with a log-linear
interpolation of the models; this performs slightly
worse than rescoring with linear interpolation.

Table 1: WERs on weakAM-dev using the baseline 1-best
system, ML-3gram and DLM-1/2/3gram.

Data set Baseline
(%)

ML-
3gram
(%)

DLM-
1gram
(%)

DLM-
2gram
(%)

DLM-
3gram
(%)

weakAM-
dev

32.5 29.8 29.5 28.3 27.8

Impact of varying orders of N-gram features
Table 1 shows that our best performing model
(DLM-3gram) gives a significant ∼2% absolute
(∼6% relative) improvement over ML-3gram. We

Table 2: WERs on weakAM-dev using DLM-3gram,
DLM-4gram and DLM-5gram of six training epochs.

Iteration DLM-
3gram
(%)

DLM-
4gram
(%)

DLM-
5gram
(%)

1 32.53 32.53 32.53
2 29.52 29.47 29.46
3 29.26 29.23 29.22
4 29.11 29.08 29.06
5 29.01 28.98 28.96
6 28.95 28.90 28.87

also observe that most of the improvements come
from the unigram and bigram features. We do not
expect higher order N-gram features to significantly
help recognition performance; we further confirm
this by building DLM-4gram and DLM-5gram that
use up to 4-gram and 5-gram word features, re-
spectively. Table 2 gives the progression of WERs
for six epochs using DLM-3gram, DLM-4gram and
DLM-5gram showing minute improvements as we
increase the order of Ngram features from 3 to 5.

Impact of model size on WER
We experiment with varying amounts of train-

ing data to build our DLMs and assess the impact
of model size on WER. Table 3 shows each model
along with its size (measured in total number of
word features), coverage on weakAM-test in percent
of tokens (number of word features in weakAM-test
that are in the model) and WER on weakAM-test. As
expected, coverage increases with increasing model
size with a corresponding tiny drop in WER as the
model size increases. To give an estimate of the time
complexity of our MapReduce, we note that Model1
was trained in ≈1 hour on 200 mappers with a Map
chunk size of 2GB. “Larger models”, built by in-
creasing the number of training utterances used to
train the DLMs, do not yield significant gains in ac-
curacy. We need to find a good way of adjusting the
model capacity with increasing amounts of data.

Impact of varying Map chunk sizes
We also experiment with varying Map chunk sizes to
determine its effect on WER. Figure 6 shows WERs
on weakAM-dev using our best Distributed Percep-
tron model with different Map chunk sizes (64MB,
512MB, 2GB). For clarity, we examine two limit
cases: a) using a single Map chunk for the entire
training data is equivalent to the conventional struc-
tured perceptron and b) using a single training in-

Table 3: WERs on weakAM-test using DLMs of varying
sizes.

Model Size (in
millions)

Coverage
(%)

WER
(%)

Baseline 21M - 39.08
Model1 65M 74.8 34.18
Model2 135M 76.9 33.83
Model3 194M 77.8 33.74
Model4 253M 78.4 33.68

47

●

●
● ● ● ●

1 2 3 4 5 6

20
25

30
35

Training epochs

W
or

d
E

rr
or

 R
at

e(
W

E
R

)

● Map chunk size 64MB
Map chunk size 512MB
Map chunk size 2GB

Figure 6: Word error rates on weakAM-dev using varying
Map chunk sizes of 64MB, 512MB and 2GB.

stance per Map chunk is equivalent to batch training.
We observe that moving from 64MB to 512MB sig-
nificantly improves WER and the rate of improve-
ment in WER decreases when we increase the Map
chunk size further to 2GB. We attribute these reduc-
tions in WER with increasing Map chunk size to
on-line parameter updates being done on increasing
amounts of training samples in each Map chunk.

3.3 Evaluating ASR performance on
v-search-test using DLM rescoring

We evaluate our best Distributed Perceptron DLM
model on v-search-test lattices that are generated
using a strong AM. We hope that the large rel-
ative gains on weakAM-dev/test translate to simi-
lar gains on this standard voice-search data set as
well. Table 4 shows the WERs on both weakAM-
test and v-search-test using Model 1 (from Table
3)1. We observe a small but statistically significant
(p < 0.05) reduction (∼2% relative) in WER on
v-search-test over reranking with a linearly interpo-
lated ML-3gram. This is encouraging because we
attain this improvement using training lattices that
were generated using a considerably weaker AM.

Table 4: WERs on weakAM-test and v-search-test.

Data set Baseline
(%)

ML-3gram
(%)

DLM-3gram
(%)

weakAM-test 39.1 36.7 34.2
v-search-test 14.9 14.6 14.3

It is instructive to analyze why the relative gains in
1We also experimented with the larger Model 4 and saw sim-

ilar improvements on v-search-test as with Model 1.

performance on weakAM-dev/test do not translate to
v-search-test. Our DLMs are built using N-best out-
puts from the recognizer that live in the “spoken do-
main” (SD) and the manually transcribed v-search-
data transcripts live in the “written domain” (WD).
The normalization of training data from WD to SD
is as described in Chelba et al. (2010); inverse text
normalization (ITN) undoes most of that when mov-
ing text from SD to WD, and it is done in a heuris-
tic way. There is ∼2% absolute reduction in WER
when we move the N-best from SD to WD via ITN;
this is how WER on v-search-test is computed by
the voice-search evaluation code. Contrary to this,
in DLM training we compute WERs using string
edit distance between test data transcripts and the
N-best hypotheses and thus we ignore the mismatch
between domains WD and SD. It is quite likely that
part of what the DLM learns is to pick N-best hy-
potheses that come closer to WD, but may not truly
result in WER gains after ITN. This would explain
part of the mismatch between the large relative gains
on weakAM-dev/test compared to the smaller gains
on v-search-test. We could correct for this by apply-
ing ITN to the N-best lists from SD to move to WD
before computing the oracle best in the list. An even
more desirable solution is to build the LM directly
on WD text; text normalization would be employed
for pronunciation generation, but ITN is not needed
anymore (the LM picks the most likely WD word
string for homophone queries at recognition).

4 Conclusions

In this paper, we successfully build large-scale dis-
criminative N-gram language models with lattices
regenerated using a weak AM and derive small but
significant gains in recognition performance on a
voice-search task where the lattices are generated
using a stronger AM. We use a very simple weak
AM and this suggests that there is room for im-
provement if we use a slightly better “weak AM”.
Also, we have a scalable and efficient MapReduce
implementation that is amenable to adapting mi-
nor changes to the training algorithm easily and al-
lows for us to train large LMs. The latter function-
ality will be particularly useful if we generate the
contrastive set by sampling from text instead of re-
decoding logs (Jyothi and Fosler-Lussier, 2010).

48

References
Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J. Och,

and Jeffrey Dean. 2007. Large language models in
machine translation. In Proc. of EMNLP, pages 858–
867.

C. Chelba, J. Schalkwyk, T. Brants, V. Ha, B. Harb,
W. Neveitt, C. Parada, and P. Xu. 2010. Query lan-
guage modeling for voice search. In Proc. of SLT.

C.T. Chu, S.K. Kim, Y.A. Lin, Y.Y. Yu, G. Bradski, A.Y.
Ng, and K. Olukotun. 2007. Map-reduce for machine
learning on multicore. Proc. NIPS, 19:281.

M. Collins. 2002. Discriminative training methods for
hidden markov models: Theory and experiments with
perceptron algorithms. In Proc. EMNLP.

J. Gao, H. Yu, W. Yuan, and P. Xu. 2005. Minimum
sample risk methods for language modeling. In Proc.
of EMNLP.

S. Ghemawat and J. Dean. 2004. Mapreduce: Simplified
data processing on large clusters. In Proc. OSDI.

K.B. Hall, S. Gilpin, and G. Mann. 2010. MapRe-
duce/Bigtable for distributed optimization. In NIPS
LCCC Workshop.

P. Jyothi and E. Fosler-Lussier. 2010. Discriminative
language modeling using simulated ASR errors. In
Proc. of Interspeech.

P. Jyothi, L. Johnson, C. Chelba, and B. Strope.
2012. Distributed discriminative language models for
Google voice-search. In Proc. of ICASSP.

G. Mann, R. McDonald, M. Mohri, N. Silberman, and
D. Walker. 2009. Efficient large-scale distributed
training of conditional maximum entropy models.
Proc. NIPS.

R. McDonald, K. Hall, and G. Mann. 2010. Distributed
training strategies for the structured perceptron. In
Proc. NAACL.

B. Roark, M. Saraçlar, M. Collins, and M. Johnson.
2004. Discriminative language modeling with condi-
tional random fields and the perceptron algorithm. In
Proc. ACL.

R. Schlüter, B. Müller, F. Wessel, and H. Ney. 1999. In-
terdependence of language models and discriminative
training. In Proc. ASRU.

B. Strope, D. Beeferman, A. Gruenstein, and X. Lei.
2011. Unsupervised testing strategies for ASR. In
Proc. of Interspeech.

Z. Zhou, J. Gao, F.K. Soong, and H. Meng. 2006.
A comparative study of discriminative methods for
reranking LVCSR N-best hypotheses in domain adap-
tation and generalization. In Proc. ICASSP.

49

