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Abstract

This paper presents a memoryless categoriza-
tion learner that predicts differences in cate-
gory complexity found in several psycholin-
guistic and psychological experiments. In par-
ticular, this learner predicts the order of diffi-
culty of learning simple Boolean categories,
including the advantage of conjunctive cate-
gories over the disjunctive ones (an advantage
that is not typically modeled by the statistical
approaches). It also models the effect of la-
beling (positive and negative labels vs. posi-
tive labels of two different kinds) on category
complexity. This effect has implications for
the differences between learning a single cat-
egory (e.g., a phonological class of segments)
vs. a set of non-overlapping categories (e.g.,
affixes in a morphological paradigm).

1 Introduction

Learning a linguistic structure typically involves cat-
egorization. By “categorization” I mean the task
of dividing the data into subsets, as in learning
what sounds are “legal” and what are “illegal,” what
morpheme should be used in a particular morpho-
syntactic context, what part of speech a given words
is, and so on. While there is an extensive literature
on categorization models within the fields of psy-
chology and formal learning, relatively few connec-
tions have been made between this work and learn-
ing of linguistic patterns.

One classical finding from the psychological liter-
ature is that the subjective complexity of categories
corresponding to Boolean connectives follows the

order shown in figure 1 (Bruner et al., 1956; Neisser
and Weene, 1962; Gottwald, 1971). In psycholog-
ical experiments subjective complexity is measured
in terms of the rate and accuracy of learning an arti-
ficial category defined by some (usually visual) fea-
tures such as color, size, shape, and so on. This
finding appears to be consistent with the complex-
ity of isomorphic phonological and morphological
linguistic patterns as suggested by typological stud-
ies not discussed here for reasons of space (Mielke,
2004; Cysouw, 2003; Clements, 2003; Moreton and
Pertsova, 2012). Morphological patterns isomorphic
to those in figure 1 appear in figure 2.

The first goal of this paper is to derive the above
complexity ranking from a learning bias. While the
difficulty of the XOR category is notorious and it
is predicted by many models, the relative difference
between AND and OR is not. This is because these
two categories are complements of each other (so
long as all features are binary), and in this sense
have the same structure. A memorizing learner can
predict the order AND > OR simply because AND
has fewer positive examples, but it will also incor-
rectly predict XOR > OR and AND > AFF. Many
popular statistical classification models do not pre-
dict the order AND > OR (such as models based
on linear classifiers, decision tree classifiers, naive
Bayes classifiers, and so on). This is because the
same classifier would be found for both of these cat-
egories given that AND and OR differ only with re-
spect to what subset of the stimuli is assigned a pos-
itive label. Models proposed by psychologists, such
as SUSTAIN (Love et al., 2004), RULEX (Nosof-
sky et al., 1994b), and Configural Cue (Gluck and
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AFF (affirmation) AND OR XOR/↔
• N
◦ M

• N
◦ M

• N
◦ M

• N
◦ M

circle circle AND black triangle OR white (black AND triangle)
OR (white AND circle)

Figure 1: Boolean categories over two features, shape and color: AFF > AND > OR > XOR

affirmation AND OR XOR/↔
sg pl

−part m. - -im
+part m. - -im

sg pl
−part -s -
+part - -

sg pl
−poss - -s
+poss -s -s

sg pl
acc. - -s
nom. -s -

Hebrew, verb English, verb English nouns Old French,
agreement in pres. agreement in pres. o-stem nouns

Figure 2: Patterns of syncretism isomorphic to the structure of Boolean connectives

Bower, 1988) also do not predict the order AND >
OR fore similar reasons. Feldman (2000) speculates
that this order is due to a general advantage of the
UP-versions of a category over the DOWN-versions
(for a category that divides the set of instances into
two uneven sets, the UP-version is the version in
which the smaller subset is positively labeled, and
the DOWN-version is the version in which the larger
subset is positively labeled). However, he offers no
explanation for this observation. On the other hand,
it is known that the choice of representations can af-
fect learnability. For instance, k-DNF formulas are
not PAC-learnable while k-CNF formulas describing
the same class of patterns are PAC-learnable (Kearns
and Vazirani, 1994). Interestingly, this result also
shows that conjunctive representations have an ad-
vantage over the disjunctive ones because a very
simple strategy for learning conjunctions (Valiant,
1984) can be extended to the problem of learning
k-CNFs. The learner proposed here includes in its
core a similar intersective strategy which is respon-
sible for deriving the order AND > OR.

The second goal of the paper is to provide a uni-
fied account of learning one vs. several categories
that partition the feature space (the second problem
is the problem of learning paradigms). The most
straight-forward way of doing this – treating cate-
gory labels as another feature with n values for n
labels – is not satisfactory for several reasons dis-

cussed in section 2. In fact, there is empirical ev-
idence that the same pattern is learned differently
depending on whether it is presented as learning a
distinction between positive and negative instances
of a category or whether it is presented as learning
two different (non-overlapping) categories. This ev-
idence will be discussed in section 3.

I should stress that the learner proposed here is not
designed to be a model of “performance.” It makes
a number of simplifying assumptions and does not
include parameters that are fitted to match the be-
havioral data. The main goal of the model is to pre-
dict the differences in subjective complexity of cate-
gories as a function of their logical structure and the
presence/absence of negative examples.

2 Learning one versus many categories

Compare the task of learning a phonological in-
ventory with the task of learning an inventory of
morph-meaning pairs (as in learning an inflectional
paradigm). The first task can be viewed as divid-
ing the set of sounds into attested and non-attested
(“accidental gaps”). At first glance, the second task
can be analogously viewed as dividing the set of
stimuli defined by morpho-syntactic features plus
an n-ry feature (for n distinct morphs) into pos-
sible vs. impossible combinations of morphs and
meanings. However, treating morphs as feature val-
ues leads to the possibility of paradigms in which
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Neutral (AND/ORn)
f1 f1

f2 A B
f2 B B

Biased
ANDb ORb
f1 f1

f2 A ¬A
f2 ¬A ¬A

f1 f1
f2 ¬A A
f2 A A

Table 1: Three AND/OR conditions in Gottwald’s study

different morphs are used with exactly the same
set of features as well as paradigms with “acciden-
tal gaps,” combinations of morpho-syntactic feature
values that are impossible in a language. In fact,
however, morphs tend to partition the space of pos-
sible instances so that no instance is associated with
more than one morph. That is, true free variation
is really rare (Kroch, 1994). Secondly, system-wide
rather than lexical “accidental gaps” are also rare in
morphology (Sims, 1996). Therefore, I construe the
classification problem in both cases as learning a set
of non-overlapping Boolean formulas correspond-
ing to categories. This set can consist of just one
formula, corresponding to learning a single category
boundary, or it can consist of multiple formulas that
partition the feature space, corresponding to learn-
ing non-overlapping categories each associated with
a different label.

3 Effects of labeling on category
complexity

A study by Gottwald (1971) found interesting dif-
ferences in the subjective complexity of learning
patterns in figure 1 depending on whether the data
was presented to subjects as learning a single cat-
egory (stimuli were labeled A vs. ¬A) or whether
it was presented as learning two distinct categories
(the same stimuli were labeled A vs. B). Follow-
ing this study, I refer to learning a single category as
“biased labeling” (abbreviated b) and learning sev-
eral categories as “neutral labeling” (abbreviated n).
Observe that since the AND/OR category divides the
stimuli into unequal sets, it has two different biased
versions: one biased towards AND and one biased
towards OR (as demonstrated in table 1). The order
of category complexity found by Gottwald was

AFFn, AFFb> ANDb> AND/ORn> ORb, XORb
> XORn

These results show that for the XOR category the
neutral labeling was harder than biased labeling. On
the other hand, for the AND/OR category the neutral
labeling was of intermediate difficulty, and, interest-
ingly, easier than ORb. This is interesting because
it goes against an expectation that learning two cat-
egories should be harder than learning one category.
Pertsova (2012) partially replicated the above find-
ing with morphological stimuli (where null vs. overt
marking was the analog of biased vs. neutral label-
ing). Certain results from this study will be high-
lighted later.

4 The learning algorithm

This proposal is intended to explain the complex-
ity differences found in learning categories in the
lab and in the real world (as evinced by typologi-
cal facts). I focus on two factors that affect category
complexity, the logical structure of a category and
the learning mode. The learning mode refers to bi-
ased vs. neutral labeling, or, to put it differently,
to the difference between learning a single category
and learning a partition of a feature space into sev-
eral categories. The effect of the learning mode on
category complexity is derived from the following
two assumptions: (i) the algorithm only responds to
negative instances when they contradict the current
grammar, and (ii) a collection of instances can only
be referred to if it is associated with a positive label.
The first assumption is motivated by observations of
Bruner et. al (1956) that subjects seemed to rely less
on negative evidence than on positive evidence even
in cases when such evidence was very informative.
The second assumption corresponds to a common
sentiment that having a linguistic label for a cate-
gory aids in learning (Xu, 2002).

4.1 Some definitions

For a finite nonempty set of features F , we define
the set of instances over these features, I(F ), as fol-
lows. LetRf be a set of feature values for a feature f
(e.g., Rheight = {high,mid, low}). Each instance i
is a conjunction of feature values given by the func-
tions f → Rf for all features f ∈ F . A category
is a set of instances that can be described by some
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non-contradictory Boolean formula φ.1 Namely, φ
describes a set of instances X if and only if it is log-
ically equivalent to the disjunction of all instances
in X . For instance, in the world with three binary
features p, q, w, the formula p ∧ q describes the set
of instances {{pqw}, {pqw̄}} (where each instance
is represented as a set). We will say that a formula
ψ subsumes a formula φ if and only if the set of in-
stances that ψ describes is a superset of the set of
instances that φ describes. An empty conjunction ∅
describes the set of all instances.

The goal of the learner is to learn a set of Boolean
formulas describing the distribution of positive la-
bels (in the neutral mode all labels are positive, in
the biased mode there is one positive label and one
negative label). A formula describing the distribu-
tion of a label l is encoded as a set of entries of the
form eli (an i-th entry for label l). The distribution
of l is given by el1 ∨ . . . ∨ eln , the disjunction of n
formulas corresponding to entries for l. Each entry
eli consists of two components: a maximal conjunc-
tion φmax and an (optional) list of other formulas
EX (for exceptions). A particular entry e with two
components, e[φmax] and e[EX] = {φ1 . . . φn}, de-
fines the formula e[φmax] ∧ ¬(φ1 ∨ φ2 ∨ . . . ∨ φn).
e[φmax] can intuitively be thought of as a rule of
thumb for a particular label and EX as a list of ex-
ceptions to that rule. In the neutral mode exceptions
are pointers to other entries or, more precisely, for-
mulas encoded by those entries. In the biased mode
they are formulas corresponding to instances (i.e.,
conjunctions of feature values for all features). The
algorithm knows which mode it is in because the bi-
ased mode contains negative labels while the neutral
mode does not. Finally, an instance i is consistent
with an entry e if and only if the conjunction en-
coded by i logically implies the formula encoded by
e. For example, an instance {pqw} is consistent with
an entry encoding the formula {p}.

Note that while this grammar can describe arbi-
trarily complex patterns/partitions, each entry in the
neutral learning mode can only describe what lin-
guistics often refer to as “elsewhere” patterns (more
precisely Type II patterns in the sense of Pertsova
(2011)). And the e[φmax] component of each entry

1The set of Boolean formulas is obtained by closing the set
of feature values under the operations of conjunction, negation,
and disjunction.

by definition can only describe conjunctions. There
are additional restrictions on the above grammar: (i)
the exceptions cannot have a wider distribution than
“the rule of thumb” (i.e., an entry el cannot corre-
spond to a formula that does not pick out any in-
stances), (ii) no loops in the statement of exceptions
is possible: that is, if an entry A is listed as an ex-
ception to the entry B, then B cannot also be an ex-
ception for A (a more complicated example of a loop
involves a longer chain of entries).

When learning a single category, there is only
one entry in the grammar. In this case arbitrarily
complex categories are encoded as a complement of
some conjunction with respect to a number of other
conjunctions (corresponding to instances).

4.2 General description

The general organization of the algorithm is as fol-
lows. Initially, each positive label is assumed to cor-
respond to a single grammatical entry, and the φmax

component of this entry is computed incrementally
through an intersective generalization strategy that
extracts features invariant across all instances used
with the same label. When the grammar overgener-
alizes by predicting two different labels for at least
one instance, exceptions are introduced. The pro-
cess of exception listing can also lead to overgener-
alizations if exceptions are pointers to other entries
in the grammar. When these overgeneralizations are
detected the algorithm creates another entry for the
same label. This latter process can be viewed as
positing homophonous entries when learning form-
meaning mappings, or as creating multiple “clus-
ters” for a single category as in the prototype model
SUSTAIN (Love et al., 2004), and it corresponds to
explicitly positing a disjunctive rule. Note that if
exceptions are not formulas for other labels, but in-
dividual instances, then exception listing does not
lead to overgeneralization and no sub-entries are in-
troduced. Thus, when learning a single category the
learner generalizes by using an intersective strategy,
and then lists exceptions one-by-one as they are dis-
covered in form of negative evidence.

The problem of learning Boolean formulas is
known to be hard (Dalmau, 1999). However, it is
plausible that human learners employ an algorithm
that is not generally efficient, but can easily han-
dle certain restricted types of formulas under certain
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simple distributions of data. (Subclasses of Boolean
formulas are efficiently learnable in various learning
frameworks (Kearns et al., 1994).) If the learning al-
gorithm can easily learn certain patterns (providing
an explanation for what patterns and distributions
count as simple), we do not need to require that it
be in general efficient.

4.3 Detailed description

First I describe how the grammar is updated in re-
sponse to the data. The update routine uses a strat-
egy that in word-learning literature is called cross-
situational inference. This strategy incrementally fil-
ters out features that change from one instance to
the next and keeps only those features that remain
invariant across the instances that have the same la-
bel. Obviously, this strategy leads to overgeneral-
izations, but not if the category being learned is an
affirmation or conjunction. This is because affirma-
tions and conjunctions are defined by a single set of
feature values which are shared by all instances of a
category (for proof see Pertsova (2007) p. 122). Af-
ter the entry for a given label has been updated, the
algorithm checks whether this entry subsumes or is
subsumed by any other entry. If so, this means that
there is at least one instance for which several labels
are predicted to occur (there is competition among
the entries). The algorithm tries to resolve competi-
tion by listing more specific entries as exceptions to
the more general ones.2 However there are cases in
which this strategy will either not resolve the com-
petition, or not resolve it correctly. In particular,
the intermediate entries that are in competition may
be such that neither subsumes the other. Or after
updating the entries using the intersective strategy
one entry may be subsumed by another based on the
instances that have been seen so far, but not if we
take the whole set of instances into account. These
cases are detected when the predictions of the cur-
rent grammar go against an observed stimulus (step
11 in the function “Update” below). Finally, excep-
tion listing fails if it would lead to a “loop” (see sec-

2This idea is familiar in linguistics from at least the times of
Pānini. In Distributed Morphology, it is referred to as the Subset
Principle for vocabulary insertion (Halle and Marantz, 1993).
Similar principles are assumed in rule-ordering systems and in
OT (i.e., more specific rules/constraints are typically ordered
before the more general ones).

tion 4.1). The XOR pattern is an example of a simple
pattern that will lead to a loop at some point during
learning. In general this happens whenever the dis-
tribution of the two labels are intertwined in such a
way that neither can be stated as a complement of
the invariant features of the other.

The following function is used to add an excep-
tion:

AddException(expEntry, ruleEntry):
1. if adding expEntry to ruleEntry[EX] leads

to a loop then FAIL
2. else add expEntry to ruleEntry[EX]

The routine below is called within the main func-
tion (presented later); it is used to update the gram-
mar in response to an observed instance x with the
label li (the index of the label is decided in the main
function).

Update
Input: G (current grammar); x (an observed in-

stance), li (a label for this instance)
Output: newG

1: newG← G
2: if ∃eli ∈ newG then
3: eli [φmax]← eli [φmax] ∩ x
4: else
5: add the entry eli to newG with values

eli [φmax] = x; eli [EX] = {}.
6: for all el′j ∈ newG (el′j 6= eli) do
7: if el′j subsumes eli then
8: AddException(eli , el′j )
9: else if eli subsumes el′j then

10: AddException(el′j , eli)
11: if ∃el′j ∈ newG (l′ 6= l) such that x is consistent

with el′j then
12: AddException(eli , el′j )

Before turning to the main function of the algo-
rithm, it is important to note that because a grammar
may contain several different entries for a single la-
bel, this creates ambiguity for the learner. Namely,
in case a grammar contains more than one entry for
some label, say two A labels, the learner has to de-
cide after observing a datum (x,A), which entry to
update, eA1 or eA2 . I assume that in such cases the
learner selects the entry that is most similar to the
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current instance, where similarity is calculated as the
number of features shared between x and eAi [φmax]
(although other metrics of similarity could be ex-
plored).

Finally, I would like to note that the value of an
entry el(x) can change even if the algorithm has not
updated this entry. This is because the value of some
other entry that is listed as an exception in el(x)
may change. This is one of the factors contributing
to the difference between the neutral and the biased
learning modes: if exceptions themselves are entries
for other labels, the process of exception listing be-
comes generalizing.

Main
Input: an instance-label pair (x, l), previous hy-

pothesis G (initially set to an empty set)
Output: newG (new hypothesis)

1: set E to the list of existing entries for the label l
in G

2: k ← |E|
3: if E 6= {} then
4: set elcurr to eli ∈ E that is most similar to x
5: E ← E − elcurr

6: else
7: curr ← k + 1
8: if l is positive and (¬∃elcurr ∈ G or x is not

consistent with elcurr ) then
9: if update(G, x, lcurr) fails then

10: goto step 3
11: else
12: newG← update(G, x, lcurr)
13: else if l is negative and there is an entry e in G

consistent with x (positive label was expected)
then

14: add x to e[EX] and minimize e[EX] to get
newG

Notice that the loop triggered when update fails
is guaranteed to terminate because when the list of
all entries for a label l is exhausted, a new entry is
introduced and this entry is guaranteed not to cause
update to fail.

This learner will succeed (in the limit) on most
presentations of the data, but it may fail to converge
on certain patterns if the crucial piece of evidence
needed to resolve competition is seen very early on
and then never again (it is likely that a human learner
would also not converge in such a case).

This algorithm can be additionally augmented by
a procedure similar to the selective attention mech-
anism incorporated into several psychological mod-
els of categorization to capture the fact that certain
hard problems become easy if a subject can ignore
irrelevant features from the outset (Nosofsky et al.,
1994a). One (not very efficient, but easy) way to
incorporate selective attention into the above algo-
rithm is as follows. Initially set the number of rel-
evant features k to 1. Generate all subsets of F of
length k, select one such subset Fk and apply the
above learning algorithm assuming that the feature
space is Fk. When processing a particular instance,
ignore all of its features except those that are in Fk.
If we discover two instances that have the same as-
signment of features in Fk but that appear with two
different labels, this means that the selected set of
features is not sufficient (recall that free variation is
ruled out). Therefore, when this happens we can
start over with a new Fk. If all sets of length k
have been exhausted, increase k to k + 1 and re-
peat. As a result of this change, patterns definable
by smaller number of features would generally be
easier to learn than those definable by larger number
of features.

5 Predictions of the model for learning
Boolean connectives

We can evaluate predictions of this algorithm with
respect to category complexity in terms of the pro-
portion of errors it predicts during learning, and in
terms of the computational load, roughly measured
as the number of required runs through the main
loop of the algorithm. Recall that a single data-point
may require several such runs if the update routine
fails and a new sub-category has to be created.

Below, I discuss how the predictions of this al-
gorithm compare to the subjective complexity rank-
ing found in Gottwald’s experiment. First, consider
the relative complexity order in the neutral learning
mode: AFF > AND/OR > XOR.

In terms of errors, the AFF pattern is predicted
to be learned without errors by the above algorithm
(since the intersective strategy does not overgener-
alize when learning conjunctive patterns). When
learning an AND/OR pattern certain orders of data
presentation will lead to an intermediate overgener-
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alization of the label associated with the disjunctive
category to the rest of the instances. This will hap-
pen if the OR part of the pattern is processed before
the AND part. When learning an XOR pattern, the
learner is guaranteed to overgeneralize one of the
labels on any presentation of the data. Let’s walk
through the learning of the XOR pattern, repeated
below for convenience.

f1 f1
f2 A B
f2 B A

Suppose for simplicity that the space of features
includes only f1 and f2, and that the first two ex-
amples that the learner observes are (A, {f1, f2})
and (A, {f1, f2}). After intersecting {f1, f2}
and {f1, f2} the learner will overgeneralize A
to the whole paradigm. If the next example is
(B, {f1, f2}), the learner will partially correct this
overgeneralization by assuming thatA occurs every-
where except where B does (i.e., except {f1, f2}).
But it will continue to incorrectly predict A in the
remaining fourth cell that has not been seen yet.
When B is observed in that cell, the learner will at-
tempt to update the entry for B through the inter-
section but this attempt will fail (because the en-
try for B will subsume the entry for A, but we
can’t list A as an exception for B since B is al-
ready listed as an exception for A). Therefore, a
new sub-entry for B, {f1, f2}, will be introduced
and listed as another exception for A. Thus, the fi-
nal grammar will contain entries corresponding to
these formulas: B : (f1 ∧ f2) ∨ (f1 ∧ f2) and
A : ¬((f1 ∧ f2) ∨ (f1 ∧ f2)).

Overall the error pattern predicted by the learner
is consistent with the order AFF > AND/OR >
XOR.

I now turn to a different measure of complexity
based on the number of computational steps needed
to learn a pattern (where a single step is equated to a
single run of the main function). Note that the speed
of learning a particular pattern depends not only on
the learning algorithm but also on the distribution of
the data. Here I will consider two possible proba-
bility distributions which are often used in catego-
rization experiments. In both distributions the stim-
uli is organized in blocks. In the first one (which
I call “instance balanced”) each block contains all
possible instances repeated once; in the second dis-

tribution (“label balanced”) each block contains all
possible instances with the minimum number of rep-
etitions to insure equal numbers of each label. The
distributions differ only for those patterns that have
an unequal number of positive/negative labels (e.g.,
AND/OR). Let us now look at the minimum and
maximum number of runs through the main loop of
the algorithm required for convergence for each type
of pattern. The minimum is computed by finding the
shortest sequence of data that leads to convergence
and counting the number of runs on this data. The
maximum is computed analogously by finding the
longest sequence of data. The table below summa-
rizes min. and max. number of runs for the feature
space with 3 binary features (8 possible instances)
and for two distributions.

Min Max Max
(instance) (label)

AFF 4 7 7
AND/OR 4 8 11
XOR 7 9 9

Table 2: Complexity in the neutral mode

The difference between AFF and AND/OR in
the number of runs to convergence is more obvi-
ous for the label balanced distribution. On the other
hand, the difference between AND/OR and XOR is
clearer for the instance balanced distribution. This
difference is not expected to be large for the label
balanced distribution, which is not consistent with
Gottwald’s experiment in which the stimuli were
label balanced, and neutral XOR was significantly
more difficult to learn than any other condition.

We now turn to the biased learning mode. Here,
the observed order of difficulty was: AFFb>ANDb
> ORb, XORb. In terms of errors, both AFFb and
ANDb are predicted to be learned with no errors
since both are conjunctive categories. ORb is pre-
dicted to involve a temporary overgeneralization of
the positive label to the negative contexts. The same
is true for XORb except that the proportion of errors
will be higher than for ORb (since the latter category
has fewer negative instances).

The minimum and maximum number of runs re-
quired to converge on the biased categories for two
types of distributions (instance balanced and label
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balanced) is given below. Notice that the minimum
numbers are lower than in the previous table because
in the biased mode some categories can be learned
from positive examples alone.

Min Max Max
(instance) (label)

AFFb 2 7 7
ANDb 2 8 8
ORb 4 16 22
XORb 6 16 16

Table 3: Complexity in the biased mode

The difference between affirmation and conjunc-
tion is not very large which is not surprising (both
are conjunctive categories). Again we see that the
two types of distributions give us slightly different
predictions. While ANDb seems to be learned faster
than ORb in both distributions, it is not clear whether
and to what extent ORb and XORb are on average
different from each other in the label balanced dis-
tribution. Recall that Gottwald found no significant
difference between ORb and XORb (in fact numer-
ically ORb was harder than XORb). Interestingly,
in a morphological analogue of Gottwald’s study in
which the number of instances rather than labels was
balanced, I found the opposite difference: ORb was
easier to learn than XORb (the number of people to
reach learning criterion was 8 vs. 4 correspondingly)
although the difference in error rates on the testing
trials was not significant (Pertsova, 2012). More
testing is needed to confirm whether the relative dif-
ficulty of these two categories is reliably affected by
the type of distribution as predicted by the learner.3

Finally, we look at the effect of labeling within
each condition. In the AFF condition, Gottwald
found no significant difference between neutral la-
beling and biased labeling. This could be due to
the fact that subjects were already almost at ceiling

3Another possible reason for the fact that Gottwald did not
find a difference between ORb and XORb is this: if selective at-
tention is used during learning, it will take longer for the learner
to realize that ORb requires the use of two features compared to
XORb especially when the number of positive and negative ex-
amples are balanced. In particular, a one feature analysis of
ORb can explain 5/6 of the data with label balanced stimuli,
while a one feature analysis of XORb can only explain 1/2 of
the data, so it will be quickly abandoned.

in learning this pattern (median number of trials to
convergence for both conditions was ≤ 5). In the
AND/OR condition, Gottwald observed the interest-
ing order ANDb > AND/OR > ORb. This order
is also predicted by the current algorithm. Namely,
the neutral category AND/OR is predicted to be
harder than ANDb because (1) ANDb requires less
computational resources (2) on some distributions
of data overgeneralization will occur when learn-
ing an AND/OR pattern but not an ANDb category.
The AND/OR > ORb order is also predicted and is
particularly pronounced for label balanced distribu-
tion. Since two labels are available when learning
the AND/OR pattern, the AND portion of the pat-
tern can be learned quickly and subsequently listed
as an exception for the OR portion (which becomes
the“elsewhere” case). On the other hand, when
learning the ORb category, the conjunctive part of
the pattern is initially ignored because it is not as-
sociated with a label. The learner only starts paying
attention to negative instances when it overgeneral-
izes. For a similar reason, the biased XOR category
is predicted to be harder to learn than the neutral
XOR category. This latter prediction is not consis-
tent with Gottwald’s finding, who found XORn not
just harder than other categories but virtually impos-
sible to learn: 6 out of 8 subjects in this condition
failed to learn it after more than 256 trials. In con-
trast to this result (and in line with the predictions
of the present learner), Pertsova (2012) found that
the neutral XOR condition was learned by 8 out of
12 subjects on less than 64 trials compared to only 4
out of 12 subjects in the biased XOR condition.

To conclude this section, almost all complexity
rankings discussed in this paper are predicted by the
proposed algorithm. This includes the difficult to
model AND > OR ranking which obtains in the bi-
ased learning mode. The only exception is the neu-
tral XOR pattern, which was really difficult to learn
in Gottwald’s non-linguistic experiment (but not in
Pertsova’s morphological experiment), and which is
not predicted to be more difficult than biased XOR.
Further empirical testing is needed to clarify the ef-
fect of labeling within the XOR condition.
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Figure 3: Shepard et. al. hierarchy

6 Other predictions

Another well-studied hierarchy of category com-
plexity is the hierarchy of symmetric patterns (4 pos-
itive and 4 negative instances) in the space of three
binary features originally established by Shepard et.
al (1961). These patterns are shown in figure 3 us-
ing cubes to represent the three dimensional feature
space.

Most studies find the following order of complex-
ity for the Shepad patterns: I > II > III, IV, V > VI
(Shepard et al., 1961; Nosofsky et al., 1994a; Love,
2002; Smith et al., 2004). However, a few studies
find different rankings for some of these patterns. In
particular, Love (2002) finds IV > II with a switch
to unsupervised training procedure. Nosofsky and
Palmeri (1996) find the numerical order I> IV> III
> V > II > VI with intergral stimulus dimensions
(feature values that are difficult to pay selective at-
tention to independent of other features, e.g., hue,
brightness, saturation). More recently Moreton and
Persova (2012) also found the order IV > III > V,
VI (as well as I > II, III, > VI) in an unsupervised
phonotactics learning experiment.

So, one might wonder what predictions does the
present learner make with respect to these patterns.
We already know that it predicts Type I (affirmation)
to be easier than all other types. For the rest of the
patterns the predictions in terms of speed of acquisi-
tion are II > III > IV, V > VI in the neutral learning
mode (similar to the typical findings). In the biased
learning mode, patterns II through VI are predicted
to be learned roughly at the same speed (since all re-
quire listing four exceptions). If selective attention
is used, Type II will be the second easiest to learn
after Type I because it can be stated using only two
features. However, based on the error rates, the order
of difficulty is predicted to be I > IV > III > V >
II > VI (similar to the order found by Nosofsky and
Palmeri (1996)). No errors are ever made with Type

I. The proportion of errors in other patterns depends
on how closely the positive examples cluster to each
other. For instance, when learning a Type VI pattern
(in the biased mode) the learner’s grammar will be
correct on 6 out of 8 instances after seeing any two
positive examples (the same is not true for any other
pattern, although it is almost true for III). After see-
ing the next instance (depending on what it is and
on the previous input) the accuracy of the grammar
will either stay the same, go up to 7/8, or go down to
1/2. But the latter event has the lowest probability.
Note that this learner predicts non-monotonic behav-
ior: it is possible that a later grammar is less accurate
than the previous grammar. So, for a non-monotonic
learner the predictions based on the speed of acqui-
sition and accuracy do not necessarily coincide.

There are many differences across the categoriza-
tion experiments that may be responsible for the dif-
ferent rankings. More work is needed to control for
such differences and to pin down the sources for dif-
ferent complexity results found with the patterns in
figure 3.

7 Summary

The current proposal presents a unified account for
learning a single category and a set of categories par-
titioning the stimuli space. It is consistent with many
predictions about subjective complexity rankings of
simple categories, including the ranking AND >
OR, not predicted by most categorization models,
and the difference between the biased and the neu-
tral learning modes not previously modeled to my
knowledge.
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