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Abstract

Social media services such as Twitter offer an
immense volume of real-world linguistic data.
We explore the use of Twitter to obtain authen-
tic user-generated text in low-resource lan-
guages such as Nepali, Urdu, and Ukrainian.
Automatic language identification (LID) can
be used to extract language-specific data from
Twitter, but it is unclear how well LID per-
forms on short, informal texts in low-resource
languages. We address this question by an-
notating and releasing a large collection of
tweets in nine languages, focusing on confus-
able languages using the Cyrillic, Arabic, and
Devanagari scripts. This is the first publicly-
available collection of LID-annotated tweets
in non-Latin scripts, and should become a
standard evaluation set for LID systems. We
also advance the state-of-the-art by evaluat-
ing new, highly-accurate LID systems, trained
both on our new corpus and on standard ma-
terials only. Both types of systems achieve
a huge performance improvement over the
existing state-of-the-art, correctly classifying
around 98% of our gold standard tweets. We
provide a detailed analysis showing how the
accuracy of our systems vary along certain di-
mensions, such as the tweet-length and the
amount of in- and out-of-domain training data.

1 Introduction

Twitter is an online social-networking service that
lets users send and receive short texts calledtweets.
Twitter is enormously popular; more than 50 mil-
lion users log in daily and billions of tweets are sent
each month.1 Tweets are publicly-available by de-

1http://mashable.com/2011/09/08/
Twitter-has-100-million-active-users/

fault and thus provide an enormous and growing free
resource of authentic, unedited text by ordinary peo-
ple. Researchers have used Twitter to study how hu-
man language varies by time zone (Kiciman, 2010),
census area (Eisenstein et al., 2011), gender (Burger
et al., 2011), and ethnicity (Fink et al., 2012). Twit-
ter also provides a wealth of user dialog, and a vari-
ety of dialog acts have been observed (Ritter et al.,
2010) and predicted (Ritter et al., 2011).

Of course, working with Twitter is not all roses
and rainbows. Twitter is a difficult domain because
unlike, for example, news articles, tweets are short
(limited to 140 characters), vary widely in style,
and contain many spelling and grammatical errors.
Moreover, unlike articles written by a particular
news organization, a corpus constructed from Twit-
ter will contain tweets in many different languages.

This latter point is particularly troubling because
the majority of language-processing technology is
predicated on knowing which language is being pro-
cessed. We are pursuing a long-term effort to build
social media collections in a variety of low-resource
languages, and we need robust language identifica-
tion (LID) technology. While LID is often viewed
as a solved problem (McNamee, 2005), recent re-
search has shown that LID can be made arbitrarily
difficult by choosing domains with (a) informal writ-
ing, (b) lots of languages to choose from, (c) very
short texts, and (d) unbalanced data (Hughes et al.,
2006; Baldwin and Lui, 2010). Twitter exhibits all
of these properties. While the problem of LID on
Twitter has been considered previously (Tromp and
Pechenizkiy, 2011; Carter et al., 2013), these studies
have only targeted five or six western European lan-
guages, and not the diversity of languages and writ-
ing systems that we would like to process.
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Our main contribution is the release of a large col-
lection of tweets in nine languages using the Cyril-
lic, Arabic, and Devanagari alphabets. We test dif-
ferent methods for obtaining tweets in a given tar-
get language (§2). We then use an online crowd-
sourcing platform to have these tweets annotated by
fluent speakers of that language (§3). We generate
over 18,000 triple-consensus tweets, providing the
first publicly-available collection of LID-annotated
tweets in non-Latin scripts. The annotated cor-
pus is available online at:http://apl.jhu.edu/

˜ paulmac/lid.html . We anticipate our multilin-
gual Twitter collection becoming a standard evalua-
tion set for LID systems.

We also implement two LID approaches and eval-
uate these approaches against state-of-the-art com-
petitors. §4.1 describes a discriminative classifier
that leverages both the tweet text and the tweet meta-
data (such as the user name, location, and landing
pages for shortened URLs).§4.2 describes an effi-
cient tool based on compression language models.
Both types of systems achieve a huge improvement
over existing state-of-the-art approaches, including
the Google Compact Language Detector (part of the
Chrome browser), and a recent LID system from
Lui and Baldwin (2011). Finally, we provide further
analysis of our systems in this unique domain, show-
ing how accuracy varies with the tweet-length and
the amount of in-domain and out-of-domain train-
ing data. In addition to the datasets, we are releasing
our compression language model tool for public use.

2 Acquiring Language-Specific Tweets

We use two strategies to collect tweets in specific
languages: (§2.1) we collect tweets by users who
follow language-specific Twitter sources, and (§2.2)
we use the Twitter API to collect tweets from users
who are likely to speak the target language.

2.1 Followers of Language-SpecificSources

Our first method is called theSources method and
involves a three-stage process. First, Twittersources
for the target language are manually identified.
Sources are Twitter users or feeds who: (a) tweet
in the target language, (b) have a large number of
followers, and (c) act as hubs (i.e., have a high
followers-to-following ratio). Twitter sources are

typically news or media outlets (e.g. BBC News),
celebrities, politicians, governmental organizations,
but they may just be prominent bloggers or tweeters.

Once sources are identified, we use the Twitter
API (dev.twitter.com ) to query each source for
its list of followers. We then query the user data for
the followers in batches of 100 tweets. For users
whose data is public, a wealth of information is
returned, including the total number of tweets and
their most recent tweet. For users who had tweeted
above a minimum number of times. and whose
most-recent-tweet tweet was in the character set for
the target language, we obtained their most recent
100-200 tweets and added them to our collection.2

While we have used the above approach to ac-
quire data in a number of different languages, for the
purposes of our annotated corpus (§3), we select the
subsets of users who exclusively follow sources in
one of our nine target languages (Table 1). We also
filter tweets that do not contain at least one charac-
ter in the target’s corresponding writing system (we
plan to addressromanized tweets in future work).

2.2 Direct Twitter-API Collection

While we are most interested in users who follow
news articles, we also tested other methods for ob-
taining language-specific tweets. First, we used the
Twitter API to collect tweets from locations where
we expected to get some number of tweets in the tar-
get language. We call this method theTwit-API col-
lection method. To geolocate our tweets, the Twit-
ter API’s geotag method allowed us to collect tweets
within a specified radius of a given set of coordi-
nates in latitude and longitude. To gather a sam-
ple of tweets in our target languages, we queried
for tweets from cities with populations of at least
200,000 where speakers of the target language are
prominent (e.g., Karachi, Pakistan for Urdu; Tehran,
Iran for Farsi; etc.). We collected tweets within a ra-
dius of 25 miles of the geocoordinates. We also used
the Search API to persistently poll for tweets from
users identified by Twitter as being in the queried
location. For Urdu, we also relied on the language-

2Tromp and Pechenizkiy (2011) also manually identified
language-specific Twitter feeds, but they use tweets from these
sources directly as gold standard data, while we target the users
who simply follow such sources. We expect our approach to
obtain more-authentic and less-edited user language.

66



identification code returned by the API for each
tweet; we filter all our geolocated Urdu tweets that
are not marked as Urdu.

We also obtained tweets through an information-
retrieval approach that has been used elsewhere for
creating minority language corpora (Ghani et al.,
2001). We computed the 25 most frequentunique
words in a number of different languages (that is,
words that do not occur in the vocabularies of other
languages). Unfortunately, we found no way toen-
force that the Twitter API return only tweets con-
taining one or more of our search terms (e.g., re-
turned tweets for Urdu were often in Arabic and did
not contain our Urdu search terms). There is a lack
of documentation on what characters are supported
by the search API; it could be that the API cannot
handle certain of our terms. We thus leave further
investigation of this method for future work.

3 Annotating Tweets by Language

The general LID task is to take as input some piece
of text, and to produce as output a prediction of what
language the text is written in. Our annotation and
prediction systems operate at the level of individual
tweets. An alternative would have been to assume
that each user only tweets in a single language, and
to make predictions on an aggregation of multiple
tweets. We operate on individual tweets mainly be-
cause (A) we would like to quantify how often users
switch between languages and (B) we are also inter-
ested in domains and cases where only tweet-sized
amounts of text are available. When we do have
multiple tweets per user, we can always aggregate
the scores on individual predictions (§6 has some ex-
perimental results using prediction aggregation).

Our human annotation therefore also focuses on
validating the language of individual tweets. Tweets
verified by three independent annotators are ac-
cepted into our final gold-standard data.

3.1 Amazon Mechanical Turk

To access annotators with fluency in each language,
we crowdsourced the annotation using Amazon Me-
chanical Turk (mturk.com ). AMT is an online la-
bor marketplace that allowsrequesters to post tasks
for completion by paid humanworkers. Crowd-
sourcing via AMT has been shown to provide high-

quality data for a variety of NLP tasks (Snow et al.,
2008; Callison-Burch and Dredze, 2010), including
multilingual annotation efforts in translation (Zaidan
and Callison-Burch, 2011b), dialect identification
(Zaidan and Callison-Burch, 2011a), and building
bilingual lexicons (Irvine and Klementiev, 2010).

3.2 Annotation Task

From the tweets obtained in§2, we took a random
sample in each target language, and posted these
tweets for annotation on AMT. Each tweet in the
sample was assigned to a particular AMT job; each
job comprised the annotation of 20 tweets. The job
description requested workers that are fluent in the
target language and gave an example of valid and
invalid tweets in that language. The job instructions
asked workers to mark whether each tweet was writ-
ten for speakers of the target language. If the tweet
combines multiple languages, workers were asked
to mark as the target language if “most of the text is
in [that language] excluding URLs, hash-tags, etc.”
Jobs were presented to workers as HTML pages with
three buttons alongside each tweet for validating the
language. For example, for Nepali, a Worker can
mark that a tweet is ‘Nepali’, ‘Not Nepali’, or ‘Not
sure.’ We paid $0.05 per job and requested that each
job be completed by three workers.

3.3 Quality Control

To ensure high annotation quality, we follow our
established practices in only allowing our tasks to
be completed by workers who have previously com-
pleted at least 50 jobs on AMT, and who have had at
least 85% of their jobs approved. Our jobs also dis-
play each tweet as an image; this prevents workers
from pasting the tweet into existing online language
processing services (like Google Translate).

We also havecontrol tweets in each job to allow
us to evaluate worker performance. Apositive con-
trol is a tweet known to be in the target language;
a negative control is a tweet known to be in a dif-
ferent language. Between three to six of the twenty
tweets in each job were controls. The controls are
taken from the sources used in ourSources method
(§2.1); e.g., our Urdu controls come from sources
like BBC Urdu’s Twitter feed. To further validate
the controls, we also applied our open-domain LID
system (§4.2) and filtered any Source tweets whose
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Language Method Purity Gold Tweets
Arabic Sources 100% 1174
Farsi Sources 100% 2512
Urdu Sources 55.4% 1076
Arabic Twit-API 99.9% 1254
Farsi Twit-API 99.7% 2366
Urdu Twit-API 61.0% 1313
Hindi Sources 97.5% 1214
Nepali Sources 97.3% 1681
Marathi Sources 91.4% 1157
Russian Sources 99.8% 2005
Bulgarian Sources 92.2% 1886
Ukrainian Sources 14.3% 631

Table 1: Statistics of the Annotated Multilingual Twitter
Corpus: 18,269 total tweets in nine languages.

predicted language was not the expected language.
Our negative controls are validated tweets in a lan-
guage that uses the same alphabet as the target (e.g.,
our negative controls for Ukrainian were taken from
our LID-validated Russian and Bulgarian sources).

We collect aggregate statistics for each Worker
over the control tweets of all their completed jobs.
We conservatively discard any annotations by work-
ers who get below 80% accuracy on either the posi-
tive or negative control tweets.

3.4 Dataset Statistics

Table 1 gives the number of triple-validated ‘Gold’
tweets in each language, grouped into those using
the Arabic, Devanagari and Cyrillic writing sys-
tems. The Arabic data is further divided into tweets
acquired using theSources andTwit-API methods.
Table 1 also gives thePurity of the acquired re-
sults; that is, the percentage of acquired tweets that
were indeed in the target language. ThePurity
is calculated as the number of triple-verified gold
tweets divided by the total number of tweets where
the three annotators agreed in the annotation (thus
triply-marked either Yes, No, or Not sure).

For major languages (e.g. Arabic and Russian),
we can accurately obtain tweets in the target lan-
guage, perhaps obviating the need for LID. For the
Urdu sets, however, a large percentage of tweets are
not in Urdu, and thus neither collection method is
reliable. An LID tool is needed to validate the data.
A native Arabic speaker verified that most of our
invalid Urdu tweets were Arabic. Ukrainian is the
most glaringly impure language that we collected,

with less than 15% of our intended tweets actually
in Ukrainian. Russian is widely spoken in Ukraine
and seems to be the dominant language on Twitter,
but more analysis is required. Finally, Marathi and
Bulgarian also have significant impurities.

The complete annotation of all nine languages
cost only around $350 USD. While not insignificant,
this was a small expense relative to the total human
effort we are expending on this project. Scaling our
approach to hundreds of languages would only cost
on the order of a few thousand dollars, and we are
investigating whether such an effort could be sup-
ported by enough fluent AMT workers.

4 Language Identification Systems

We now describe the systems we implemented
and/or tested on our annotated data. All the ap-
proaches aresupervised learners, trained from a col-
lection of language-annotated texts. At test time, the
systems choose an output language based on the in-
formation they have derived from the annotated data.

4.1 LogR: Discriminative LID

We first adopt a discriminative approach to LID.
Each tweet to be classified has its relevant informa-
tion encoded in a feature vector,x̄. The annotated
training data can be represented asN pairs of la-
bels and feature vectors:{(y1, x̄1), ..., (yN , x̄N )}.
To train our model, we use (regularized) logistic re-
gression (a.k.a. maximum entropy) since it has been
shown to perform well on a range of NLP tasks
and its probabilistic outputs are useful for down-
stream processing (such as aggregating predictions
over multiple tweets). In multi-class logistic regres-
sion, the probability of each class takes the form of
exponential functions over features:

p(y = k|x̄) =
exp(w̄k · x̄)

∑
j exp(w̄j · x̄)

For LID, the classifier predicts the languagek that
has the highest probability (this is also the class with
highest weighted combination of features,w̄k · x̄).
The training procedure tunes the weights to optimize
for correct predictions on training data, subject to a
tunable L2-regularization penalty on the weight vec-
tor norm. For our experiments, we train and test our
logistic regression classifier (LogR) using the effi-
cient LIBL INEAR package (Fan et al., 2008).
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We use two types of features in our classifier:

Character Features encode the character
N-grams in the input text; characters are the
standard information source for most LID systems
(Cavnar and Trenkle, 1994; Baldwin and Lui, 2010).
We have a unique feature for each unique N-gram in
our training data. N-grams of up-to-four characters
were optimal on development data. Each feature
value is the (smoothed) log-count of how often
the corresponding N-gram occurs in that instance.
Prior to extracting the N-grams, we preprocess each
tweet to remove URLs, hash-tags, user mentions,
punctuation and we normalize all digits to 0.

Meta features encode user-provided information
beyond the tweet text. Similar information has pre-
viously been used to improve the accuracy of LID
classifiers on European-language tweets (Carter et
al., 2013). We have features for the tokens in
the Twitter user name, the screen name, and self-
reported user location. We also have features for
prefixes of these tokens, and flags for whether the
name and location are in the Latin script. Our meta
features also include features for the hash-tags, user-
mentions, and URLs in the tweet. We provide fea-
tures for the protocol (e.g. http), hostname, and top-
level domain (e.g..com ) of each link in a tweet. For
shortened URLs (e.g. viabit.ly ), we query the
URL server to obtain the final link destination, and
provide the URL features for this destination link.

4.2 PPM: Compression-Based LID

Our next tool uses compression language models,
which have been proposed for a variety of NLP
tasks including authorship attribution (Pavelec et al.,
2009), text classification (Teahan, 2000; Frank et al.,
2000), spam filtering (Bratko et al., 2006), and LID
(Benedetto et al., 2002). Our method is based on the
prediction by partial matching (PPM) family of al-
gorithms and we use the PPM-A variant (Cleary et
al., 1984). The algorithm processes a string and de-
termines the number of bits required to encode each
character using a variable-length context. It requires
only a single parameter, the maximal order,n; we
usen = 5 for the experiments in this paper. Given
training data for a number of languages, the method
seeks to minimize cross-entropy and thus selects the

Language Wikip. All
Arabic 372 MB 1058 MB
Farsi 229 MB 798 MB
Urdu 30 MB 50 MB
Hindi 235 MB 518 MB
Nepali 31 MB 31 MB
Marathi 32 MB 66 MB
Russian 563 MB 564 MB
Bulgarian 301 MB 518 MB
Ukrainian 461 MB 463 MB

Table 2: Size of otherPPM training materials.

language which would most compactly encode the
text we are attempting to classify.

We train this method both on our Twitter data and
on large collections of other material. These ma-
terials include corpora obtained from news sources,
Wikipedia, and government bodies. For our ex-
periments we divide these materials into two sets:
(1) just Wikipedia and (2) all sources, including
Wikipedia. Table 2 gives the sizes of these sets.

4.3 Comparison Systems

We compare our two new systems with the best-
available commercial and academic software.

TextCat: TextCat3 is a widely-used stand-alone
LID program. Is is an implementation of the
N-gram-based algorithm of Cavnar and Trenkle
(1994), and supports identification in “about 69 lan-
guages” in its downloadable form. Unfortunately,
the available models do not support all of our target
languages, nor are they compatible with the standard
UTF-8 Unicode character encoding. We therefore
modified the code to process UTF-8 characters and
re-trained the system on our Twitter data (§5).

Google CLD: Google’s Chrome browser includes
a tool for language-detection (the GoogleCompact
Language Detector), and this tool is included as a li-
brary within Chrome’s open-source code. Mike Mc-
Candless ported this library to its own open source
project.4 The CLD tool makes predictions using text
4-grams. It is designed for detecting the language
of web pages, and can take meta-data hints from the
domain of the webpage and/or the declared webpage

3http://odur.let.rug.nl/vannoord/TextCat/
4http://code.google.com/p/

chromium-compact-language-detector/
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Dataset Train Development Test
Arabic 2254 1171 1191
Devanagari 2099 991 962
Cyrillic 2243 1133 1146

Table 3: Number of tweets used in experiments, by writ-
ing system/classification task

encoding, but it also works on stand-alone text.5 We
use it in its original, unmodified form. While there
are few details in the source code itself, the train-
ing data for this approach was apparently obtained
through Google’s internal data collections.

Lui and Baldwin ’11: Lui and Baldwin (2011) re-
cently released a stand-alone LID tool, which they
call langid.py .6 They compared this system to
state-of-the-art LID methods and found it “to be
faster whilst maintaining competitive accuracy.” We
use this system with its provided models only, as
the softwarereadme notes “training a model for
langid.py is a non-trivial process, due to the large
amount of computations required.” The sources of
the provided models are described in Lui and Bald-
win (2011). Although many languages are sup-
ported, we restrict the system to only choose be-
tween our data’s target languages (§5).

5 Experiments

The nine languages in our annotated data use one of
three different writing systems: Arabic, Devanagari,
or Cyrillic. We therefore define three classification
tasks, each choosing between three languages that
have the same writing system. We divide our an-
notated corpus into training, development and test
data for these experiments (Table 3). For the Ara-
bic data, we merge the tweets obtained via our two
collection methods (§2); for Devanagari/Cyrillic, all
tweets are obtained using theSources method. We
ensure that tweets by a unique Twitteruser occur
in at mostonly one of the sets. The proportion of
each language in each set is roughly the same as the
proportions of gold tweets in Table 1. All of our
Twitter-trained systems learn their models from this
training data, while all hyperparameter tuning (such

5Google once offered an online language-detection API, but
this service is now deprecated; moreover, it was rate-limited and
not licensed for research use (Lui and Baldwin, 2011).

6https://github.com/saffsd/langid.py

System Arab. Devan. Cyrill.

Trained on Twitter Corpus:
LogR: meta 79.8 74.7 82.0
LogR: chars 97.1 96.2 96.1
LogR: chars+meta 97.4 96.9 98.3
PPM 97.1 95.3 95.8
TextCat 96.3 89.1 90.3
Open-Domain: Trained on Other Materials:
Google CLD 90.5 N/A 91.4
Lui and Baldwin ’11 91.4 78.4 88.8
PPM (Wikip.) 97.6 95.8 95.7
PPM (All) 97.6 97.1 95.8
Trained on both Twitter and Other Materials:
PPM (Wikip.+Twit) 97.9 97.0 95.9
PPM (All+Twit) 97.6 97.9 96.0

Table 4: LID accuracy (%) of different systems on held-
out tweets. High LID accuracy on tweets is obtainable,
whether training in or out-of-domain.

as tuning the regularization parameter of theLogR
classifier) is done on the development set. Our eval-
uation metric isAccuracy: what proportion of tweets
in each held-out test set are predicted correctly.

6 Results

For systems trained on the Twitter data, both our
LogR andPPM system strongly outperformTextCat,
showing the effectiveness of our implemented ap-
proaches (Table 4). Meta features improveLogR
on each task. For systems trained on external data,
PPM strongly outperforms other systems, making
fewer than half the errors on each task. We also
trainedPPM on both the relatively small number of
Twitter training samples and the much larger number
of other materials. The combined system is as good
or better than the separate models on each task.

We get more insight into our systems by seeing
how they perform as we vary the amount of train-
ing data. Figure 1 shows that with only a few hun-
dred annotated tweets, theLogR system gets over
90% accuracy, while performance seems to plateau
shortly afterwards. A similar story holds as we
vary the amount of out-of-domain training data for
the PPM system; performance improves fairly lin-
early as exponentially more training data is used, but
eventually begins to level off. Not only isPPM an
effective system, it can leverage a lot of training ma-
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Figure 1: The more training data the better, but accuracy
levels off: learning curve forLogR-chars (note log-scale).
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Figure 2: Accuracy ofPPM classifier using varying
amounts of Wikipedia training text (also on log-scale).

terials in order to obtain its high accuracy.
In Figure 3, we show how the accuracy of our sys-

tems varies over tweets grouped into bins by their
length. Performance on short tweets is much worse
than those closer to 140 characters in length.

We also examined aggregating predictions over
multiple tweets by the same user. We extracted all
users with≥4 tweets in the Devanagari test set (87
users in total). We then averaged the predictions of
theLogR system on random subsets of a user’s test
tweets, making a single decision for all tweets in a
subset. We report the mean accuracy of running this
approach 100 times with random subsets of 1, 2, 3,
and all 4 tweets used in the prediction. Even with
only 2 tweets per user, aggregating predictions can
reduce relative error by almost 60% (Table 5).

Encouraged by the accuracy of our systems on an-
notated data, we used ourPPM system to analyze
a large number of un-annotated tweets. We trained
PPM models for 128 languages using data that in-
cludes Wikipedia (February 2012), news (e.g., BBC
News, Voice of America), and standard corpora such
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Figure 3: The longer the tweet, the better: mean accuracy
of LogR by average length of tweet, with tweets grouped
into five bins by length in characters.

Number of Tweets 1 2 3 4
Accuracy 97.0 98.7 98.8 98.9

Table 5: The benefits of aggregating predictions by user:
Mean accuracy ofLogR-chars as you make predictions
on multiple Devanagari tweets at a time

as Europarl, JRC-Acquis, and various LDC releases.
We then made predictions in the TREC Tweets2011
Corpus.7

We observed 65 languages in roughly 10 million
tweets. We calculated two other proportions using
auxiliary data:8 (1) the proportion ofWikipedia arti-
cles written in each language, and (2) the proportion
of speakers that speak each language. We use these
proportions to measure a language’s relative repre-
sentation on Twitter: we divide the tweet-proportion
by the Wikipedia and speaker proportions. Table 6
shows some of the most over-represented Twitter
languages compared to Wikipedia. E.g., Indonesian
is predicted to be 9.9 times more relatively com-
mon on Twitter than Wikipedia. Note these are pre-
dictions only; some English tweets may be falsely
marked as other languages due to English impurities
in our training sources. Nevertheless, the good rep-
resentation of languages with otherwise scarce elec-
tronic resources shows the potential of using Twitter
to build language-specific social media collections.

7http://trec.nist.gov/data/tweets/ This corpus, de-
veloped for the TREC Microblog track (Soboroff et al., 2012), contains
a two-week Twitter sample from early 2011. We processed all tweets
that were obtained with a “200” response code using thetwitter-corpus-
tools package.

8From http://meta.wikimedia.org/wiki/List_of_
Wikipedias_by_speakers_per_article
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Language Num. % of Tweets/ Tweets/
Tweets Tot. Wikip. Speakers

Indonesian 1055 9.0 9.9 3.1
Thai 238 2.0 5.7 1.9
Japanese 2295 19.6 5.0 8.8
Korean 446 3.8 4.0 3.2
Swahili 46 0.4 3.4 0.4
Portuguese 1331 11.4 3.2 2.8
Marathi 58 0.5 2.9 0.4
Malayalam 30 0.3 2.2 0.4
Nepali 23 0.2 2.1 0.8
Macedonian 61 0.5 1.9 13.9
Bengali 25 0.2 1.9 0.1
Turkish 174 1.5 1.7 1.1
Arabic 162 1.4 1.6 0.3
Chinese 346 3.0 1.4 0.2
Spanish 696 5.9 1.4 0.7
Telugu 39 0.3 1.4 0.3
Croatian 79 0.7 1.3 6.1
English 2616 22.3 1.2 2.1

Table 6: Number of tweets (1000s) and % of total for lan-
guages that appear to be over-represented on Twitter (vs.
proportion of Wikipedia and proportion of all speakers).

7 Related Work

Researchers have tackled language identification us-
ing statistical approaches since the early 1990s.
Cavnar and Trenkle (1994) framed LID as a text
categorization problem and made their influential
TextCat tool publicly-available. The related problem
of identifying the language used in speech signals
has also been well-studied; for speaker LID, both
phonetic and sequential information may be help-
ful (Berkling et al., 1994; Zissman, 1996). Insights
from LID have also been applied to related problems
such as dialect determination (Zaidan and Callison-
Burch, 2011a) and identifying the native language
of non-native speakers (Koppel et al., 2005).

Recently, LID has received renewed interest as a
mechanism to help extract language-specific corpora
from the growing body of linguistic materials on the
web (Xia et al., 2009; Baldwin and Lui, 2010). Work
along these lines has found LID to be far from a
solved problem (Hughes et al., 2006; Baldwin and
Lui, 2010; Lui and Baldwin, 2011); the web in gen-
eral has exactly the uneven mix of style, languages,
and lengths-of-text that make the real problem quite
difficult. New application areas have also arisen,
each with their own unique challenges, such as LID

for search engine queries (Gottron and Lipka, 2010),
or person names (Bhargava and Kondrak, 2010).

The multilinguality of Twitter has led to the de-
velopment of ways to ensure language purity. Rit-
ter et al. (2010) use “a simple function-word-driven
filter. . . to remove non-English [Twitter] conversa-
tions,” but it’s unclear how much non-English sur-
vives the filtering and how much English is lost.
Tromp and Pechenizkiy (2011) and Carter et al.
(2013) perform Twitter LID, but only targeting six
common European languages. We focus on low-
resource languages, where training data is scarce.
Our data and systems could enable better LID
for services likeindigenoustweets.com , which
aims to “strengthen minority languages through so-
cial media.”

8 Conclusions

Language identification is a key technology for ex-
tracting authentic, language-specific user-generated
text from social media. We addressed a previously
unexplored issue: LID performance on Twitter text
in low-resource languages. We have created and
made available a large corpus of human-annotated
tweets in nine languages and three non-Latin writ-
ing systems, and presented two systems that can pre-
dict tweet language with very high accuracy.9 While
challenging, LID on Twitter is perhaps not as diffi-
cult as first thought (Carter et al., 2013), although
performance depends on the amount of training data,
the length of the tweet, and whether we aggregate
information across multiple tweets by the same user.
Our next step will be to develop a similar approach
to handleromanized text. We also plan to develop
tools for identifyingcode-switching (switching lan-
guages) within a tweet.
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