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Abstract

In this paper, we look at the problem of robust
detection of a very productive class of Asian
style emoticons, known as facemarks or kao-
moji. We demonstrate the frequency and pro-
ductivity of these sequences in social media
such as Twitter. Previous approaches to detec-
tion and analysis of kaomoji have placed lim-
its on the range of phenomena that could be
detected with their method, and have looked
at largely monolingual evaluation sets (e.g.,
Japanese blogs). We find that these emoticons
occur broadly in many languages, hence our
approach is language agnostic. Rather than
relying on regular expressions over a prede-
fined set of likely tokens, we build weighted
context-free grammars that reward graphical
affinity and symmetry within whatever sym-
bols are used to construct the emoticon.

1 Introduction

Informal text genres, such as email, SMS or social
media messages, lack some of the modes used in
spoken language to communicate affect – prosody
or laughter, for example. Affect can be provided
within such genres through the use of text format-
ting (e.g., capitalization for emphasis) or through the
use of extra-linguistic sequences such as the widely
used smiling, winking ;) emoticon. These sorts of
vertical face representations via ASCII punctuation
sequences are widely used in European languages,
but in Asian informal text genres another class of
emoticons is popular, involving a broader symbol set
and with a horizontal facial orientation. These go by
the name of facemarks or kaomoji. Figure 1 presents
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57577928942305280: Use of "ake" for "a que" in Spanish
57577937330913280: Example of tricky-to-tokenize tweet (irregular 
spacing): Sigan @TodoBiebs tiene la mejor informacion de Bieber,y 
es completamente cierta.Ellas son geniales. #LEGOO :) <3
57651140510224384: great English abbreviations and use of Unicode: 
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@enahoanagha Sha? M sad:-(
57581074657718272: You dnt never answer yo phone!
57583914226683904: IHate When Ppl Have Attitudes Wit Mee For No 
Reason. <---- repetition and also "With"->"Wit", "People"->"Ppl"
57850097320460289: Good example of shortening: @China_DollCris u 
lucky smh I'm going str8 thru !!
57610065699549184 <--- using Cyrillic characters to write in 
Spanish/portugese...

57577987641573376: hashtags used as parts of speech; also note "2" 
instead of "to"
57592260870668288: awareness of spelling issues
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57746992926949376 (breve with combining lower line, makes a nice 
tear effect)
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Figure 1: Some representative kaomoji emoticons

several examples of these sequences, including both
relatively common kaomoji as well as more exotic
and complex creations.

This class of emoticon is far more varied and pro-
ductive than the sideways European style emoticons,
and even lists of on the order of ten thousand emoti-
cons will fail to cover all instances in even a mod-
est sized sample of text. This relative productiv-
ity is due to several factors, including the horizon-
tal orientation, which allows for more flexibility in
configuring features both within the face and sur-
rounding the face (e.g., arms) than the vertical ori-
entation. Another important factor underlying kao-
moji productivity is historical in nature. kaomoji
were developed and popularized in Japan and other
Asian countries whose scripts have always required
multibyte character encodings, and whose users of
electronic communication systems have significant
experience working with characters beyond those
found in the standard ASCII set.

Linguistic symbols from various scripts can be
appropriated into the kaomoji for their resemblence
to facial features, such as a winking eye, and au-
thors of kaomoji sometimes use advanced Unicode
techniques to decorate glyphs with elaborate com-
binations of diacritic marks. For example, the kao-
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moji in the top righthand corner of Figure 1, includes
an Arabic letter, and Thai vowel diacritics. Accu-
rate detection of these tokens – and other common
sequences of extra-linguistic symbol sequences – is
important for normalization of social media text for
downstream applications.

At the most basic level, the complex and unpre-
dictable combinations of characters found within
many kaomoji (often including punctuation and
whitespace, as well as irregularly-used Unicode
combining characters) can seriously confound sen-
tence and word segmentation algorithms that at-
tempt to operate on kaomoji-rich text; since segmen-
tation is typically the first step in any text process-
ing pipeline, issues here can cause a wide variety
of problems downstream. Accurately removing or
normalizing such sequences before attempting seg-
mentation can ensure that existing NLP tools are
able to effectively work with and analyze kaomoji-
including text.

At a higher level, the inclusion of a particular
kaomoji in a text represents a conscious decision
on the part of the text’s author, and fully interpret-
ing the text necessarily involves a degree of inter-
pretation of the kaomoji that they chose to include.
European-style emoticons form a relatively closed
set and are often fairly straightforward to interpret
(both in terms of computational, as well as human,
effort); kaomoji, on the other hand, are far more di-
verse, and interpretation is rarely simple.

In this paper, we present preliminary work on
defining robust models for detecting kaomoji in so-
cial media text. Prior work on detecting and classi-
fying these extra-linguistic sequences has relied on
the presence of fixed attested patterns (see discus-
sion in Section 2) for detection, and regular expres-
sions for segmentation. While such approaches can
capture the most common kaomoji and simple vari-
ants of them, the productive and creative nature of
the phenomenon results in a non-negligible out-of-
vocabulary problem. In this paper, we approach the
problem by examining a broader class of possible
sequences (see Section 4.2) for symmetry using a
robust probabilistic context-free grammar with rule
probabilities proportional to the symmetry or affin-
ity of matched terminal items in the rule. Our PCFG
is robust in the sense that every candidate sequence
is guaranteed to have a valid parse. We use the re-

sulting Viterbi best parse to provide a score to the
candidate sequence – reranking our high recall list
to achieve, via thresholds, high precision. In addi-
tion, we investigate unsupervised model adaptation,
by incorporating Viterbi-best parses from a small set
of attested kaomoji scraped from websites; and in-
ducing grammars with a larger non-terminal set cor-
responding to regions of the face.

We present bootstrapping experiments for deriv-
ing highly functional, language independent models
for detecting kaomoji in text, on multilingual Twit-
ter data. Our approach can be used as part of a
stand-alone detection model, or as input into semi-
automatic kaomoji lexicon development. Before de-
scribing our approach, we will first present prior
work on this class of emoticon.

2 Prior Work

Nakamura et al. (2003) presented a natural language
dialogue system that learned a model for generat-
ing kaomoji face marks within Japanese chat. They
trained a neural net to produce parts of the emoti-
con – mouth, eyes, arms and “optional things” as
observed in real world data. They relied on a hand-
constructed inventory of observed parts within each
of the above classes, and stitched together predicted
parts into a complete kaomoji using simple tem-
plates.

Tanaka et al. (2005) presented a finite-state
chunking approach for detecting kaomoji in
Japanese on-line bulletin boards using SVMs with
simple features derived from a 7 character window.
Training was performed on kaomoji dictionaries
found online. They achieved precision and recall in
the mid-80s on their test set, which was a significant
recall improvement (17% absolute) and modest
precision improvement (1.5%) over exact match
within the dictionaries. They note certain kinds of
errors, e.g., “(Thu)” which demonstrate that their
chunking models are (unsurprisingly) not capturing
the typical symmetry of kaomoji. In addition, they
perform classification of the kaomoji into 6 rough
categories (happy, sad, angry, etc.), achieving high
performance (90% accuracy) using a string kernel
within an SVM classifier.

Ptaszynski et al. (2010) present work on a large
database of kaomoji, which makes use of an analy-
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sis of the gestures conveyed by the emoticons and
their relation to a theory of non-verbal expressions.
They created an extensive (approximately 10,000
entry) lexicon with 10 emotion classes, and used
this database as the basis of both emoticon extrac-
tion from text and emotion classification. To detect
an emoticon in text, their system (named ‘CAO’)
looked for three symbols in a row from a vocabulary
of the 455 most frequent symbols in their database.
Their approach led to a 2.4% false negative rate
when evaluated on 1,000 sentences extracted from
Japanese blogs. Once detected, the system extracts
the emoticon from the string using a gradual relax-
ation from exact match to approximate match, with
various regular expressions depending on specific
partial match criteria. A similar deterministic al-
gorithm based on sequenced relaxation from exact
match was used to assign affect to the emoticon.

Our work focuses on the emoticon detection
stage, and differs from the above systems in a num-
ber of ways. First, while kaomoji were popularized
in Asia, and are most prevalent in Asian languages,
they not only found in messages in those languages.
In Twitter, which is massively multilingual, we find
kaomoji with some frequency in many languages,
including European languages such as English and
Portuguese, Semitic languages and a range of Asian
languages. Our intent is to have a language inde-
pendent algorithm that looks for such sequences in
any message. Further, while we make use of online
dictionaries as development data, we appreciate the
productivity of the phenomenon and do not want to
restrict the emoticons that we detect to those con-
sisting of pre-observed characters. Hence we focus
instead on characteristics of kaomoji that have been
ignored in the above models: the frequent symmetry
of the strings. We make use of context-free mod-
els, built in such a way as to guarantee a parse for
any candidate sequence, which permits exploration
of a much broader space of potential candidates than
the prior approaches, using very general models and
limited assumptions about the key components of
the emoticons.

3 Data

Our starting resources consisted of a large, multi-
lingual corpus of Twitter data as well as a smaller

collection of kaomoji scraped from Internet sources.
Our Twitter corpus consists of approximately 80
million messages collected using Twitter’s “Stream-
ing API” over a 50-day period from June through
August 2011. The corpus is extremely linguistically
diverse; human review of a small sample identified
messages written in >30 languages. The messages
themselves exhibit a wide variety of phenomena, in-
cluding substantial use of different types of Inter-
net slang and written dialect, as well as numerous
forms of non-linguistic content such as emoticons
and “ASCII art.”

We took a two-pronged approach to developing
a set of “gold-standard” kaomoji. Our first ap-
proach involved manually “scraping” real-world ex-
amples from the Internet. Using a series of hand-
written scripts, we harvested 9,193 examples from
several human-curated Internet websites devoted to
collecting and exhibiting kaomoji. Many of these
consisted of several discrete sub-units, typically in-
cluding at least one “face” element along with a
small amount of additional content. For example,
consider the following kaomoji, which appeared in
this exact form eight times in our Twitter corpus:
ヾ(*・ω・)ノ゜+.゜★ィェィ☆゜+.゜ヾ
(・ω・*)ノ 9

ヾ(!" " ฺ )ฺノぉはよぉ～#ฺ 8

ヾ(。 ฺ∀ ฺ)ノ♫♬ 9

ヾ(･ω･`;)ﾉぁゎゎ 52
ヾ（≧∇≦）〃 5

且_(・_・ ) 1

（/TДT)/あうぅ････ 4

（´･ω・）ぅｩ･･･誰もきてくれなぃょｩ･･･ 1
（◎ー◎；） 1

（＾ｖ＾） 426

（＿´ω｀） 1

＼(＠＾０＾＠)/やったぁ♪ 1

＼（⌒∇⌒）／おはよ～！！！ 4
ｱﾘ(●´･ω･)(●´_ _)ｶﾞﾄ♪ 10

ｳﾄｳﾄ(〃´｀)～ｏ○◯･･･ 1

ｳﾙｳﾙ(T-T)ヾ(^^ )ﾖｼﾖｼ 2

ｷｬﾝUo･∇･oUｷｬﾝ 1

ｷﾀｧ━ﾟ+.(○・艸)(艸・●)ﾟ+.━!! 1

. Note that, in this case, the
“face” is followed by a small amount of hiragana,
and that the message concludes with a dingbat in the
form of a “heart” symbol.1

Of these 9,193 scraped examples, we observed
≈3,700 to appear at least once in our corpus of
Twitter messages, and ≈2,500 more than twice.
The most common kaomoji occurred with frequen-
cies in the low hundreds of thousands, although the
frequency with which individual kaomoji appeared
roughly followed a power-law distribution, meaning
that there were a small number that occurred with
great frequency and a much larger number that only
appeared rarely.

From this scraped corpus, we attempted to iden-
tify a subset that consisted solely of “faces” to serve
as a high-precision training set. After observing
that nearly all of the faces involved a small number
of characters bracketed one of a small set of natu-
ral grouping characters (parentheses, “curly braces,”

1Note as well that this kaomoji includes not only a wide va-
riety of symbols, but that some of those symbols are themselves
modified using combining diacritic marks. This is a common
practice in modern kaomoji, and one that complicates analysis.
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etc.), we extracted approximately 6,000 substrings
matching a very simple regular expression pattern.
This approach missed many kaomoji, and of the
examples that it did detect, many were incom-
plete (in that they were missing any extra-bracketed
content— arms, ears, whiskers, etc.) However, the
contents of this “just faces” sub-corpus offered de-
cent coverage of many of the core kaomoji phenom-
ena in a relatively noise-free manner. As such, we
found it to be useful as “seed” data for the grammar
adaptation described in section 4.4.

In addition to our “scraped” kaomoji corpus, we
constructed a smaller corpus of examples drawn di-
rectly from our Twitter corpus. The kaomoji phe-
nomenon is complex enough that capturing it in its
totality is difficult. However, it is possible to capture
a subset of kaomoji by looking for regions of per-
fect lexical symmetry. This approach will capture
many of the more regularly-formed and simple kao-
moji (for example, ˆ(-_-)ˆ), although it will miss
many valid kaomoji. Using this approach, we iden-
tied 3,580 symmetrical candidate sequences; most
of these were indeed kaomoji, although there were
several false positives (for example, symmetrical se-
quences of repeated periods, question marks, etc.).
Using simple regular expressions, we were able to
remove 289 such false positives.

Interestingly, there was very little overlap be-
tween the corpus scraped from the Web and the sym-
metry corpus. A total of 39 kaomoji appeared in ex-
actly the same form in both sets. We noted, however,
that the kaomoji harvested from the Web tended to
be longer and more elaborate than those identified
from our Twitter corpus using the symmetry heuris-
tic (Mann-Whitney U, p < 0.001), and as previously
discussed, the Web kaomoji often contained one or
more face elements. Thus we expanded our defi-
nition of overlap, and counted sequences from the
symmetrical corpus that were substrings of scraped
kaomoji. Using this criterion, we identified 177 pos-
sibly intersecting kaomoji. The fact that so few indi-
vidual examples occurred in both corpora illustrates
the extremely productive nature of the phenomenon.

4 Methods

4.1 Graphical similarity
The use of particular characters in kaomoji is ul-
timately based on their graphical appearance. For

Figure 2: Ten example character pairs with imperfect
(but very high) symmetry identified by our algorithm.
Columns are: score, hex code point 1, hex code point
2, glyph 1, glyph 2.

example, good face delimiters frequently include
mated brackets or parentheses, since these elements
naturally look as if they delimit material. Further-
more, there are many characters which are not tech-
nically “paired,” but look roughly more-or-less sym-
metrical. For example, the Arabic-Indic digits! ̯ "and

! ̯ " are commonly used as bracketing delimiters, for
example: ! ̯ ". These characters can serve both as
“arms” as well as “ears.”

Besides bracketing, symmetry plays an additional
role in kaomoji construction. Glyphs that make good
“eyes” are often round; “noses” are often symmet-
ric about their central axis. Therefore a measure of
graphical similarity between characters is desirable.

To that end, we developed a very simple measure
of similarity. From online sources, we downloaded
a sample glyph for each code point in the Unicode
Basic Multilingual Plane, and extracted a bitmap for
each. In comparing two glyphs we first scale them
to have the same aspect ratio if necessary, and we
then compute the proportion of shared pixels be-
tween them, with a perfect match being 1 and the
worst match being 0. We can thus compute whether
two glyphs look similar; whether one glyph is a good
mirror image of the other (by comparing glyph A
with the mirror image of glyph B); and whether a
glyph is (vertically) symmetric (by computing the
similarity of the glyph and its vertical mirror image).

The method, while clearly simple-minded,
nonetheless produces plausible results, as seen in
Figure 2, which shows the best 10 candidates for
mirror image character pairs. We also calculate
the same score without flipping the image verti-
cally, which is also used to score possible symbol
matches, as detailed in Section 4.3.
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4.2 Candidate extraction

We perform candidate kaomoji extraction via a very
simple hidden Markov model, which segments all
strings of Unicode graphemes into contiguous re-
gions that are either primarily linguistic (mainly
language encoding symbols2) or primarily non-
linguistic (mainly punctuation, or other symbols).
Our candidate emoticons, then, are this extensive
list of mainly non-linguistic symbol sequences. This
is a high recall approach, returning most sequences
that contain valid emoticons, but quite low precision,
since it includes many other sequences as well (ex-
tended runs of punctuation, etc.).

The simple HMM consists of 2 states: call them
A (mainly linguistic) and @ (mainly non-linguistic).
Since there are two emitted symbol classes (linguis-
tic L and non-linguistic N ), each HMM state must
have two emission probabilities, one for its domi-
nant symbol class (L in A and N in @) and one
for the other symbol class. Non-linguistic symbols
occur quite often in linguistic sequences, as punc-
tuation for example. However, sequences of, say,
3 or more in a row are not particularly frequent.
Similarly, linguistic symbols occur often in kaomoji,
though not often in sequences of, say, 3 or more.
Hence, to segment into contiguous sequences of a
certain number in a row, the probability of transition
from state A to state @ or vice versa must be signif-
icantly lower than the probability of emitting one or
two N from A states or L from @ states. We thus
have an 8 parameter HMM (four transition and four
emission probabilities) that was coarsely parameter-
ized to have the above properties, and used it to ex-
tract candidate non-linguistic sequences for evalua-
tion by our PCFG model.

Note that this approach does have the limitation
that it will trim off some linguistic symbols that oc-
cur on the periphery of an emoticon. Future versions
of this part of the system will address this issue by
extending the HMM. For this paper, we made use of
a slightly modified version of this simple HMM for
candidate extraction. The modifications involved the
addition of a special input state for whitespace and
full-stop punctuation, which helped prevent certain
very common classes of false-positive.

2Defined as a character having the Unicode “letter” charac-
ter property.

rule score rule score
X→ a X b S(a,b) X→ a b S(a,b)
X→ a X ε X→ X a ε
X→ a δ X→ X X γ

Table 1: Rule schemata for producing PCFG

4.3 Baseline grammar induction
We perform a separate PCFG induction for ev-
ery candidate emoticon sequence, based on a small
set of rule templates methods for assigning rule
weights. By inducing small, example-specific
PCFGs, we ensure that every example has a valid
parse, without growing the grammar to the point that
the grammar constant would seriously impact parser
efficiency.

Table 1 shows the rule schemata that we used for
this paper. The resulting PCFG would have a single
non-terminal (X) and the variables a and b would be
instantiated with terminal items taken from the can-
didate sequence. Each instantiated rule receives a
probability proportional to the assigned score. For
the rules that “pair” symbols a and b, a score is as-
signed in two ways, call them S1(a, b) and S2(a, b)
(they will be defined in a moment). Then S(a, b) =
max(S1(a, b) and S2(a, b)). If S(a, b) < θ, for some
threshold θ,3 then no rule is generated. S1 is the
graphical similarity of the first symbol with the verti-
cal mirror image of the second symbol, calculated as
presented in Section 4.1. This will give a high score
for things like balanced parentheses. S2 is the graph-
ical similarity of the first symbol with the second
symbol (not vertically flipped), which gives high
scores to the same or similar symbols. This permits
matches for, say, eyes that are not symmetric due to
an orientation of the face, e.g.,

! ̯ "

(!#!). The other pa-
rameters (ε, δ and γ) are included to allow for, but
penalize, unmatched symbols in the sequence.

All possible rules for a given sequence are instan-
tiated using these templates, by placing each symbol
in the a slot with all subsequent symbols in the b slot
and scoring, as well as creating all rules with just a
alone for that symbol. For example, if we are given
the kaomoji (o o;) specific rules would be created
if the similarity scores were above threshold. For the
second symbol ‘o’, the algorithm would evaluate the

3For this paper, θ was chosen to be 0.7.
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similarity between ‘o’ and each of the four symbols
to its right , o, ; and ).

The resulting PCFG is normalized by summing
the score for each rule and normalizing by the score.
The grammar is then transformed to a weakly equiv-
alent CNF by binarizing the ternary rules and in-
troducing preterminal non-terminals. This grammar
is then provided to the parser4, which returns the
Viterbi best parse of the candidate emoticon along
with its probability. The score is then converted to
an approximate perplexity by dividing the negative
log probability by the number of unique symbols in
the sequence and taking the exponential.

4.4 Grammar enhancement and adaptation

The baseline grammar induction approach outlined
in the previous section can be improved in a cou-
ple of ways, without sacrificing the robustness of the
approach. One way is through grammar adaptation
based on automatic parses of attested kaomoji. The
other is by increasing the number of non-terminals
in the grammar, according to a prior understanding
of their typical (canonical) structure. We shall dis-
cuss each in turn.

Given a small corpus of attested emoticons (in our
case, the “just faces” sub-corpus described in sec-
tion 3), we can apply the parser above to those ex-
amples, and extract the Viterbi best parses into an
automatically created treebank. From that treebank,
we extract counts of rule productions and use these
rule counts to inform our grammar estimation. The
benefit of this approach is that we will obtain addi-
tional probability mass for frequently observed con-
structions in that corpus, thus preferring commonly
associated pairs within the grammar. Of course, the
corpus only has a small fraction of the possible sym-
bols that we hope to cover in our robust approach, so
we want to incorporate this information in a way that
does not limit the kinds of sequences we can parse.

We can accomplish this by using simple Maxi-
mum a Posteriori (MAP) adaptation of the grammar
(Bacchiani et al., 2006). In this scenario, we will
first use our baseline method of grammar induction,
using the schemata shown in Table 1. The scores
derived in that process then serve as prior counts

4We used the BUBS parser (Bodenstab et al., 2011).
http://code.google.com/p/bubs-parser/

for the rules in the grammar, ensuring that all of
these rules continue to receive probability mass. We
then add in the counts for each of the rules from the
treebank. Many of the rules may have been unob-
served in the corpus, in which case they receive no
additional counts; observed rules, however, will re-
ceive extra weight proportional to their frequency in
that corpus. Note that these additional weights can
be scaled according to a given parameter. After in-
corporating these additional counts, the grammar is
normalized and parsing is performed as before. Of
course, this process can be iterated – a new auto-
matic treebank can be produced based on an adapted
grammar, and so on.

In addition to grammar adaptation, we can en-
rich our grammars by increasing the non-terminal
sets. To do this, we created a nested hierarchy
of “regions” of the emoticons, with constraints re-
lated to the canonical composition of the faces,
e.g., eyes are inside of faces, noses/mouths between
eyes, etc. These non-terminals replace our generic
non-terminal X in the rule schemata. For the cur-
rent paper, we included the following five “region”
non-terminals: ITEM, OUT, FACE, EYES, NM. The
non-terminal ITEM is intended as a top-most non-
terminal to allow multiple emoticons in a single se-
quence, via an ITEM → ITEM ITEM production.
None of the others non-terminals have repeating pro-
ductions of that sort – so this replaces the X→ X X
production from Table 1.

Every production (other than ITEM → ITEM
ITEM) has zero or one non-terminals on the right-
hand side. In our new schemata, non-terminals on
the left-hand side can only have non-terminals on the
right-hand side at the same or lower levels. This en-
forces the nesting constraint, i.e., that eyes are inside
of the face. Levels can be omitted however – e.g.,
eyes but no explicit face delimiter – hence we can
“skip” a level using unary projections, e.g., FACE→
EYES. Those will come with a “skip level” weight.
Categories can also rewrite to the same level (with a
“stay level” weight) or rewrite to the next level af-
ter emitting symbols (with a “move to next level”
weight).

To encode a preference to move to the next level
rather than to stay at the same level, we assign a
weight of 1 to moving to the next level and a weight
of 0.5 to staying at the same level. The “skip”
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rule score
ITEM → ITEM ITEM γ
ITEM → OUT γ
OUT → a OUT b S(a,b) + 0.5
OUT → a OUT ε + 0.5
OUT → OUT a ε + 0.5
OUT → a FACE b S(a,b) + 1
OUT → a FACE ε +1
OUT → FACE a ε +1
OUT → FACE 0.5

FACE → a FACE b S(a,b) + 0.5
FACE → a FACE ε + 0.5
FACE → FACE a ε + 0.5
FACE → a EYES b S(a,b) + 1
FACE → a EYES ε +1
FACE → EYES a ε +1
FACE → EYES 0.1
EYES → a EYES b S(a,b) + 0.5
EYES → a EYES ε + 0.5
EYES → EYES a ε + 0.5
EYES → a NM b S(a,b) + 1
EYES → a NM ε +1
EYES → NM a ε +1
EYES → NM 0.1
EYES → a b S(a,b) + 1

NM → a NM ε
NM → NM a ε
NM → a δ

Table 2: Rule schemata for expanded non-terminal set

weights depend on the level, e.g., skipping OUT
should be cheap (weight of 0.5), while skipping
the others more expensive (weight of 0.1). These
weights are like counts, and are added to the similar-
ity counts when deriving the probability of the rule.
Finally, there is a rule in the schemata in Table 1 with
a pair of symbols and no middle non-terminal. This
is most appropriate for eyes, hence will only be gen-
erated at that level. Similarly, the single symbol on
the right-hand side is for the NM (nose/mouth) re-
gion. Table 2 presents our expanded rule schemata.

Note that the grammar generated with this ex-
panded set of non-terminals is robust, just as the ear-
lier grammar is, in that every sequence is guaranteed
to have a parse. Further, it can be adapted using the
same methods presented earlier in this section.

5 Experimental Results

Using the candidate extraction methodology de-
scribed in section 4.2, we extracted 1.6 million dis-
tinct candidates from our corpus of 80 million Twit-
ter messages (candidates often appeared in multi-
ple messages). These candidates included genuine
emoticons, as well as extended strings of punc-
tuation and other “noisy” chunks of text. Gen-
uine kaomoji were often picked up with some
amount of leading or trailing punctuation, for exam-
ple: “..\(´▽`)/”; other times, kaomoji beginning
with linguistic characters were truncated: (^˛*)ʃ.

We provided these candidates to our parser un-
der four different conditions, each one producing
1.5 million parse trees: the single non-terminal ap-
proach described in section 4.3 or the enhanced mul-
tiple non-terminal approach described in section 4.4,
both with and without training via the Maximum A
Posteriori approach described in section 4.4.

Using the weighted-inside-score method de-
scribed in section 4.3, we produced a ranked list
of candidate emoticons from each condition’s out-
put. “Well-scoring” candidates were ones for which
the parser was able to construct a low-cost parse.
We evaluated our approach in two ways. The first
way examined precision— how many of the best-
scoring candidate sequences actually contained kao-
moji? Manually reviewing all 1.6 million candidates
was not feasible, so we evaluated this aspect of our
system’s performance on a small subset of its out-
put. Computational considerations forced us to pro-
cess our large corpus in parallel, meaning that our set
of 1.6 million candidate kaomoji was already parti-
tioned into 160 sets of≈10,000 candidates each. We
manually reviewed the top 1,000 sorted results from
one of these partitions, and flagged any entries that
did not contain or consist of a face-like kaomoji. The
results of each condition are presented in table 3.

The second evaluation approach we will exam-
ine looks at how our method compares with the
trigram-based approach described by (Yamada et al.,
2007) (as described by (Ptaszynski et al., 2010)).
We trained both smoothed and unsmoothed lan-
guage models 5 on the “just faces” sub-corpus used
for the A Posteriori grammar enhancement, and
computed perplexity measurements for the same
set ≈10,000 candidates used previously. Table 3
presents these results; clearly, a smoothed trigram
model can achieve good results. The unsmoothed
model at first glance seems to have performed very
well; note, however, that only approximately 600
(out of nearly 10,000) candidates were “matched”
by the unsmoothed model (i.e., they did not contain
any OOV symbols and therefore had finite perplex-
ity scores), yielding a very small but high-precision
set of emoticons.

Looking at precision, the model-based ap-
proaches outperformed our grammar approach. It

5Using the OpenGrm ngram language modeling toolkit.
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Condition P@1000 MAP
Single Nonterm, Untrained 0.662 0.605
Single Nonterm, Trained 0.80 0.945
Multiple Nonterm, Untrained 0.795 0.932
Multiple Nonterm, Trained 0.885 0.875
Unsmoothed 3-gram 0.888 0.985
Smoothed 3-gram 0.905 0.956
Mixed, Single Nonterm, Untrained 0.662 0.902
Mixed, Single Nonterm, Trained 0.804 0.984
Mixed, Multiple Nonterm, Untrained 0.789 0.932
Mixed, Multiple Nonterm, Trained 0.878 0.977

Table 3: Experimental Results.

should be noted, however, that the trigram approach
was much less tolerant of certain non-standard for-
mulations involving novel characters or irregular
formulations ((˘!˘)

／(＾o＾)＼

(•˘o˘•)

and

(˘!˘)

／(＾o＾)＼

(•˘o˘•)

are examples of kao-
moji that our grammar-based approach ranked more
highly than did the trigram approach). The two
approaches also had different failure profiles. The
grammar approach’s false positives tended to be
symmetrical sequences of punctuation, whereas the
language models’ were more variable. Were we to
review a larger selection of candidates, we believe
that the structure-capturing nature of the grammar
approach would enable it to outperform the more
simplistic approach.

We also attempted a hybrid “mixed” approach in
which we used the language models to re-rank the
top 1,000 “best” candidates from our parser’s output.
This generally resulted in improved performance,
and for some conditions the improvement was sub-
stantial. Future work will explore this approach in
greater detail and over larger amounts of data.

6 Discussion

We describe an almost entirely unsupervised ap-
proach to detecting kaomoji in irregular, real-world
text. In its baseline state, our system is able to ac-
curately identify a large number of examples using
a very simple set of templates, and can distinguish
kaomoji from other non-linguistic content (punctu-
ation, etc.). Using minimal supervision, we were
able to effect a dramatic increase in our system’s
performance. Visual comparison of the “untrained”
results with the “trained” results was instructive.
The untrained systems’ results were very heavily in-
fluenced by their template rules’ strong preference
for visual symmetry. Many instances of symmet-
rical punctuation sequences (e.g., ..?..) ended
up being ranked more highly than even fairly sim-

ple kaomoji, and in the absence of other informa-
tion, the length of the input strings also played a too-
important role in their rankings.

The MAP-ehanced systems’ results, on the other
hand, retained their strong preference for symme-
try, but were also influenced by the patterns and
characters present in their training data. For ex-
ample, two of the top-ranked “false positives” from
the enhanced system were the sequences >,< and
= =, both of which (while symmetrical) also con-
tain characters often seen in kaomoji. By using more
structurally diverse training data, we expect further
improvements in this area. Also, our system cur-
rently relies on a very small number of relatively
simplistic grammar templates; expanding these to
encode additional structure may also help.

Due to our current scoring mechanism, our parser
is biased against certain categories of kaomoji. Par-
ticularly poorly-scored are complex creations such
as (((| ̲̅̅● ̲̅|̅ ̲̅̅=̲̅̅| ̲̅̅● ̲̅|̅))). In this example, the large number
of combining characters and lack of obvious nest-
ing therein confounded our templates and produced
expensive parse trees. Future work will involve im-
proved handling of such cases, either by modified
parsing schemes or additional templates.

One other area of future work is to match par-
ticular kaomoji, or fragments of kaomoji (e.g. par-
ticular eyes), to particular affective states, or other
features of the text. Some motifs are already well
known: for example, there is wide use of TT, or the
similar-looking Korean hangeul vowel yu, to repre-
sent crying eyes. We propose to do this initially by
computing the association between particular kao-
moji and words in the text. Such associations may
yield more than just information on the likely af-
fect associated with a kaomoji. So, for example,
using pointwise mutual information as a measure
of association, we found that in our Twitter corpus,
(*ˆ_ˆ*) seems to be highly associated with tweets
about Korean pop music, *-* with Brazilian post-

ings, and with Indonesian postings. Such
associations presumably reflect cultural preferences,
and could prove useful in identifying the provenance
of a message even if more conventional linguistic
techniques fail.

63



References
Michiel Bacchiani, Michael Riley, Brian Roark, and

Richard Sproat. 2006. MAP adaptation of stochas-
tic grammars. Computer Speech and Language,
20(1):41–68.

Nathan Bodenstab, Aaron Dunlop, Keith Hall, and Brian
Roark. 2011. Adaptive beam-width prediction for ef-
ficient cyk parsing. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguis-
tics, pages 440–449.

Junpei Nakamura, Takeshi Ikeda, Nobuo Inui, and
Yoshiyuki Kotani. 2003. Learning face mark for nat-
ural language dialogue system. In Proc. Conf. IEEE
Int’l Conf. Natural Language Processing and Knowl-
edge Eng, pages 180–185.

Michal Ptaszynski, Jacek Maciejewski, Pawel Dybala,
Rafal Rzepka, and Kenji Araki. 2010. Cao: A fully
automatic emoticon analysis system based on theory
of kinesics. IEEE Transactions on Affective Comput-
ing, 1:46–59.

Yuki Tanaka, Hiroya Takamura, and Manabu Okumura.
2005. Extraction and classification of facemarks with
kernel methods. In Proc. 10th Int’l Conf. Intelligent
User Interfaces.

T. Yamada, S. Tsuchiya, S. Kuroiwa, and F. Ren. 2007.
Classification of facemarks using n-gram. In Inter-
national Conference on Natural Language Processing
and Knowledge Engineering, pages 322–327.

64


