
NAACL-HLT Workshop on the Induction of Linguistic Structure, pages 90–95,
Montréal, Canada, June 3-8, 2012. c©2012 Association for Computational Linguistics

Induction of Linguistic Structure with Combinatory Categorial Grammars

Yonatan Bisk and Julia Hockenmaier
Department of Computer Science

University of Illinois at Urbana-Champaign
201 N Goodwin Ave. Urbana IL, 61801
{bisk1,juliahmr}@illinois.edu

Abstract

Our system consists of a simple, EM-based
induction algorithm (Bisk and Hockenmaier,
2012), which induces a language-specific
Combinatory Categorial grammar (CCG) and
lexicon based on a small number of linguistic
principles, e.g. that verbs may be the roots of
sentences and can take nouns as arguments.

1 Introduction

Much of the recent work on grammar induction has
focused on the development of sophisticated statisti-
cal models that incorporate expressive priors (Cohen
and Smith, 2010) or linguistic universals (Naseem et
al., 2010; Boonkwan and Steedman, 2011) that have
all been shown to be very helpful. But, with some
notable exceptions, such as (Cohn et al., 2011),
the question of what underlying linguistic represen-
tation to use has received considerably less atten-
tion. Our induction algorithm is based on Com-
binatory Categorial Grammar (Steedman, 2000), a
linguistically expressive, lexicalized grammar for-
malism which associates words with rich syntactic
categories that capture language-specific facts about
basic word order and subcategorization. While
Boonkwan and Steedman (2011) have shown that
linguists can easily devise a language-specific in-
ventory of such categories that allows a parser to
achieve high performance in the absence of anno-
tated training data, our algorithm automatically dis-
covers the set of categories it requires to parse the
sentences in the training data.

2 Combinatory Categorial Grammar
(CCG)

The set of CCG categories is built recursively from
two atomic types, S (sentence) and N (noun). Com-
plex types are of the form X/Y or X\Y, and repre-
sent functions which combine with an argument of
type Y to yield a constituent of type X as result. The
slash indicates whether the Y precedes (\) or follows
(/) the functor. An English lexicon should contain
categories such as S\N and (S\N)/N for verbs: both
transitive and intransitive verbs subcategorize for a
preceding subject, and the transitive verb addition-
ally takes an object to its right. In this manner,
the argument slots of lexical categories also define
word-word dependencies between heads and their
arguments (Clark and Hockenmaier, 2002; Hocken-
maier and Steedman, 2007). Modifiers are gener-
ally of the form X|X: in English, pre-nominal adjec-
tives are N/N, whereas adverbs may be (N/N)/(N/N),
S/S, or S\S, and prepositions can have categories
such as (N\N)/N or (S\S)/N. That is, CCG assumes
that the direction of the corresponding dependency
goes from the modifier to the head. This discrep-
ancy between CCG and most other analyses can eas-
ily be removed under the assumption that all cate-
gories of the form X|X are modifiers whose depen-
dencies should be reversed when comparing against
other frameworks.

Adjacent constituents can be combined according
to a small, universal set of combinatory rules. For
the purposes of this work we restrict ourselves to
function application and B1 composition:

X/Y Y ⇒ X (>)
90

Y X\Y ⇒ X (<)
X/Y Y|iZ ⇒ X|iZ (B1

>)
Y|iZ X\Y ⇒ X|iZ (B1

<)

Here the slash variable |i can be instantiated with
either the forward or backward slash.

These rules allow derivations (parses) such as:

The man ate quickly
DT NNS VBD RB

N/N N S\N S\S
> <B

N S\N
<

S

CCG also has unary type-raising rules of the form

X ⇒ T/(T\X) (>T)
X ⇒ T\(T/X) (<T)

We only allow nouns to be type-raised, and impose
the restriction that the argument T\N (or T/N) of the
type-raised category has to already be present in the
lexicon of the language.

This restricted set of combinatory rules provides
sufficient power for reasonable parse accuracy but
does not allow us to capture non-projective (cross-
ing) dependencies.

Coordination is handled by a ternary rule

X conj X ⇒ X (>)

which we binarize as:

X X[conj] ⇒ X (< &)
conj X ⇒ X[conj] (> &)

Punctuation, when present, can be absorbed by
rules of the form

X Pct ⇒ X (< p)
Pct X ⇒ X (> p)

The iterative combination of these categories re-
sulting in S or N is considered a successful parse. In
order to avoid spurious ambiguities, we restrict our
derivations to be normal-form (Hockenmaier and
Bisk, 2010).

3 An algorithm for unsupervised CCG
induction

We now describe our induction algorithm, which
consists of two stages: category induction (creation
of the grammar), followed by parameter estimation
for the probability model.

3.1 Category induction
We assume there are two atomic categories, N (nouns
or noun phrases) and S (sentences), a special con-
junction category conj, and a special start symbol
TOP. We assume that all strings we encounter are
either nouns or sentences:

N⇒ TOP S⇒ TOP

We also assume that we can group POS-tags into
four groups: nominal tags, verbal tags, conjunctions,
and others. This allows us to create an initial lexicon
L(0), which only contains entries for atomic cate-
gories, e.g. for the English Penn Treebank tag set
(Marcus et al., 1993):

N : {NN,NNS,NNP,PRP,DT}
S : {MD,VB,VBZ,VBG,VBN,VBD}

conj : {CC}

We force any string that contains one or more verbs
(besides VBG in English), to be parsed with the S⇒
TOP rule.

Since the initial lexicon would only allow us
to parse single word utterances (or coordinations
thereof), we need to induce complex functor cat-
egories. The lexicon entries for atomic categories
remain, but all POS-tags, including nouns and con-
junctions, will be able to acquire complex categories
during induction. We impose the following con-
straints on the lexical categories we induce:

1. Nouns (N) do not take any arguments.

2. The heads of sentences (S|...) and modifiers
(X|X, (X|X)|(X|X)) may take N or S as arguments.

3. Sentences (S) may only take nouns (N) as argu-
ments.
(We assume S\S and S/S are modifiers).

4. Modifiers (X/X or X\X) can be modified
by categories of the form (X/X)|(X/X) or
(X\X)|(X\X).

5. The maximal arity of any lexical category is 3.

6. Since (S\N)/N is completely equivalent to
(S/N)\N, we only allow the former category.

Induction is an iterative process. At each stage,
we aim to parse all sentences Si in our training cor-
pus D = {S1,, SD} with the current lexicon

91

L(t). In order to parse a sentence S = w0...wn, all
words wi ∈ S need to have lexical categories that al-
low a complete parse (resulting in a constituent TOP
that spans the entire sentence). Initially, only some
words will have lexical categories:

The man ate quickly
DT NNS VBD RB
- N S -

We assume that any word may modify adjacent con-
stituents:

The man ate quickly
DT NNS VBD RB
N/N N, S/S S, N\N S\S

We also assume that any word that previously had
a category other than N (which we postulate does
not take any arguments) can take any adjacent non-
modifier category as argument, leading us here to
introduce S\N for the verb:

The man ate quickly
DT NNS VBD RB
N/N N, S/S S, N\N, S\N S\S

With these categories, we obtain the correct parse:

The man ate quickly
DT NNS VBD RB

N/N N S\N S\S
> <B

N S\N
<

S

We then update the lexicon with all new tag-category
pairs that have been found, excluding those that did
not lead to a successful parse:

N/N : {DT} S\N : {VBD,VBZ} S\S : {RB,NNS,IN}

The first stage of induction can only introduce func-
tors of arity 1, but many words, such as prepositions
or transitive verbs, require more complex categories,
leading us to complete, but incorrect parses such as

The man eats with friends
DT NNS VBZ IN NNS

N/N N S\N S\S S\S
> <B

N S\N
<B

S\N
<

S

During the second iteration, we can discover addi-
tional simple, as well as more complex, categories.
We now discover transitive verb categories:

The man ate chips
DT NNS VBD NNS

N/N N (S\N)/N N
> >

N S\N
<

S

The second stage also introduces a large number
of complex modifiers of the form (X/X)|(X/X) or
(X\X)|(X\X), e.g.:

The man ate very quickly
DT NNS VBD RB RB
N/N, N, S/S S, N\N, S\S, S\S,

(S/S)/(S/S) (N\N)/(N\N) S\N (S\S)/(S\S) (S\S)\(S\S)
(N/N)\(N/N) (S/S)\(S/S) (N\N)\(N\N)

(S\S)/(S\S)

The final induction step takes adjacent constituents
that can be derived from the existing lexicon into
account. This allows us to induce (S\S)/N for IN,
since we can combine a and friend to N.

3.2 Parameter estimation

After constructing the lexicon, we parse the training
corpus, and use the Inside-Outside algorithm (Lari
and Young, 1991), a variant of the Expectation-
Maximization algorithm for probabilistic context-
free grammars, to estimate model parameters. We
use the baseline model of Hockenmaier and Steed-
man (2002), which is a simple generative model that
is equivalent to an unlexicalized PCFG. In a CFG,
the set of terminals and non-terminals is disjoint, but
in CCG, not every category can be lexical. Since
this model is also the basis of a lexicalized model
that captures dependencies, it distinguishes between
lexical expansions (which produce words), unary ex-
pansions (which are the result of type-raising or the
TOP rules), binary expansions where the head is the
left child, and binary expansions whose head is the
right child. Each tree is generated top-down from the
start category TOP. For each (parent) node, first its
expansion type exp ∈ {Lex, Unary, Left, Right} is
generated. Based on the expansion type, the model
then produces either the word w, or the category of
the head child (H), and, possibly the category of the
non-head sister category (S):

92

Lexical pe(exp=Lex | P)× pw(w | P, exp=Lex)

Unary pe(exp=Unary | P)× pH(H | P, exp=Unary)

Left pe(exp=Left | P)× pH(H | P, exp=Left)

× pS(S | P, H, exp=Left)

Right pe(exp=Right | P)× pH(H | P, exp=Right)

× pS(S | P, H, exp=Right)

3.3 Dependency generation

We use the following regime for generating depen-
dencies from the resulting CCG derivations:

1. Arguments Y are dependents of their heads X|Y

2. Modifiers X|X are dependents of their heads X

or X|Y.

3. The head of the entire string is a dependent of
the root node (0)

4. Following the CoNLL-07 shared task represen-
tation (Johansson and Nugues, 2007), we ana-
lyze coordinations (X1 conj X2) as creating a
dependency from the first conjunct, X1, to the
conjunction conj, and from conj to the sec-
ond conjunct X2.

In the case of parse failures we return a right-
branching dependency tree.

3.4 Training details

The data provided includes fine, coarse and univer-
sal part-of-speech tags. Additionally, the data was
split into train, test and development sets though the
organizers encouraged merging the data for train-
ing. Finally, while punctuation was present, it was
not evaluated but potentially provided an additional
source of signal during training and test. We chose
from among these options and maximum sentence
length based on performance on the development
set. We primarily focused on training with shorter
sentences but grew the dataset if necessary or if, as
is the case in Arabic, there was very little short sen-
tence data. Our final training settings were:

Language Tags Max Len Punc
Arabic Fine 40 X
Basque Coarse 20
Childes Fine 20 X
Czech Fine 10
Danish Fine 20 X
Dutch Fine 10 X
Slovene Fine 10 X
Swedish Fine 15
PTB Fine 10
Portuguese Fine 10

In the case of Czech, we only trained on the test-
set because the data set was so large and the results
from randomly downsampling the merged dataset
were equivalent to simply using the previously de-
fined test-set.

3.5 Future directions

Since our current system is so simple, there is ample
space for future work. We plan to investigate the
effect of more complex statistical models and priors
that have been shown to be helpful in dependency
grammar-based systems. We also wish to relax the
assumption that we know in advance which part-of-
speech tags are nouns, verbs, or conjunctions.

4 Final observations regarding evaluation

Although the analysis of constructions involving ba-
sic head-argument and head-modifier dependencies
is generally uncontroversial, many common con-
structions allow a number of plausible analyses.
This makes it very difficult to evaluate and compare
different unsupervised approaches for grammar in-
duction. The corpora used in this workshop also
assume different conventions for a number of con-
structions. Figure 1 shows the three different types
of analysis for coordination adopted by the corpora
used in this shared task (as well as the standard
CCG analysis). The numbers to the side indicate
for each corpus what percentage of our system’s er-
ror rate is due to missed dependencies within coor-
dinated structures (i.e between a conjunction and a
conjunct, or between two conjuncts). It is important
to note that the way in which we extract dependen-
cies from coordinations is somewhat arbitrary (and
completely independent of the underlying probabil-
ity model, which currently captures no explicit de-

93

WILS-12

Ar 25.5%

WILS-12

Eu 22.6%

WILS-12

Childes 7.7%

WILS-12

Cz 21.4%

WILS-12 Da 13.1%WILS-12
Nl 15.3%

WILS-12

PTB 18.1%

WILS-12

Sl 17.2%

WILS-12

Sv 11.1%

WILS-12 & CoNLL-07

Pt 7.8%

Standard CCG

Figure 1: Different analyses of coordination in the
various corpora used in this shared task. Our sys-
tem adopts the CoNLL-07 convention, instead of the
standard CCG analysis. For the development set of
each corpus, we also indicate what percentage of the
errors our system makes is due to missed coordina-
tion dependencies.

pendencies). These systematic differences of anal-
ysis are also reflected in our final results. The only
exception is the Childes corpus, where coordination
is significantly rarer.

However, this is a general problem. There are
many other constructions for which no agreed-upon
standard exists. For example, the Wall Street Journal
data used in this shared task assumes a dependency
between the verb of the main clause and the verb of
a subordinate clause, whereas the CoNLL-07 anal-
ysis stipulates a dependency between the main verb
and the subordinating conjunction:

(a) CoNLL-07

(b) WILS-12

We therefore believe that much further work is

required to address the problems surrounding eval-
uation and comparison of unsupervised induction
systems adequately. Even if the community can-
not agree on a single gold standard, systems should
not be penalized for producing one kind of linguisti-
cally plausible analysis over another. The systematic
divergences that arise with coordination for our ap-
proach are relatively easy to fix, since we only need
to change the way in which we read off dependen-
cies. But this points to a deeper underlying problem
that affects the entire field.

Acknowledgements

This research is supported by the National Science
Foundation through CAREER award 1053856 and
award 0803603.

References

Yonatan Bisk and Julia Hockenmaier. 2012. Simple Ro-
bust Grammar Induction with Combinatory Categorial
Grammars. In Association for the Advancement of Ar-
tificial Intelligence.

Prachya Boonkwan and Mark Steedman. 2011. Gram-
mar Induction from Text Using Small Syntactic Pro-
totypes. In International Joint Conference on Natural
Language Processing, pages 438–446, November.

Stephen Clark and Julia Hockenmaier. 2002. Evaluating
a wide-coverage CCG parser. In Proceedings of the
LREC Beyond PARSEVAL workshop, page 2002, Las
Palmas, Spain.

S. B. Cohen and N. A. Smith. 2010. Covariance in unsu-
pervised learning of probabilistic grammars. Journal
of Machine Learning Research, 11:3017–3051.

Trevor Cohn, Phil Blunsom, and Sharon Goldwater.
2011. Inducing tree-substitution grammars. Jour-
nal of Machine Learning Research, pages 3053–3096,
November.

Julia Hockenmaier and Yonatan Bisk. 2010. Normal-
form parsing for Combinatory Categorial Grammars
with generalized composition and type-raising. In
COLING.

Julia Hockenmaier and Mark Steedman. 2002. Gen-
erative models for statistical parsing with Combina-
tory Categorial Grammar. In Association for Compu-
tational Linguistics, pages 335–342.

Julia Hockenmaier and Mark Steedman. 2007. CCG-
bank: a corpus of CCG derivations and dependency
structures extracted from the Penn Treebank. Compu-
tational Linguistics, pages 355–396, January.

94

Richard Johansson and Pierre Nugues. 2007. Extended
constituent-to-dependency conversion for english. In
Proceedings of NODALIDA 2007, Tartu, Estonia.

K Lari and S Young. 1991. Applications of stochastic
context-free grammars using the inside-outside algo-
rithm. Computer speech & language, 5(3):237–257,
January.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: the Penn Treebank. Computational
Linguistics, 19(2):313–330.

Tahira Naseem, Harr Chen, Regina Barzilay, and Mark
Johnson. 2010. Using universal linguistic knowledge
to guide grammar induction. In Empirical Methods in
Natural Language Processing, pages 1234–1244, Oc-
tober.

Mark Steedman. 2000. The syntactic process. MIT
Press, January.

95

