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Charles University in Prague, Faculty of Mathematics and Physics

Institute of Formal and Applied Linguistics
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Abstract

This paper describes a system for unsuper-
vised dependency parsing based on Gibbs
sampling algorithm. The novel approach in-
troduces a fertility model and reducibility
model, which assumes that dependent words
can be removed from a sentence without vio-
lating its syntactic correctness.

1 Introduction

One of the traditional linguistic criteria for recog-
nizing dependency relations (including their head-
dependent orientation) is that stepwise deletion of
dependent elements within a sentence preserves
its syntactic correctness (Lopatková et al., 2005;
Kübler et al., 2009; Gerdes and Kahane, 2011).1 If a
word can be removed from a sentence without dam-
aging it, then it is likely to be dependent on some
other (still present) word.

Our approach allows to utilize information from
very large corpora. While the computationally de-
manding sampling procedure can be applied only
on limited data, the unrepeated precomputation of
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GA201/09/H057 (Res Informatica), MSM0021620838,
GAUK 116310, and by the European Commission’s 7th
Framework Program (FP7) under grant agreement n◦ 247762
(FAUST).

1Of course, all the above works had to respond to the noto-
rious fact that there are many language phenomena precluding
the ideal (word by word) sentence reducibility (e.g. in the case
of prepositional groups, or in the case of subjects in English fi-
nite clauses). However, we borrow only the very core of the
reducibility idea.

statistics for reducibility estimates can easily exploit
much larger data.

2 Precomputing PoS tag reducibility scores

We call a word (or a sequence of words) in a sen-
tence reducible, if the sentence after removing the
word remains grammatically correct. Although we
cannot automatically recognize grammaticality of
such newly created sentence, we can search for it
in a large corpus. If we find it, we assume the word
was reducible in the original sentence. It is obvi-
ous that the number of such reducible sequences of
words found in a corpus is relatively low. However,
it is sufficient for determining reducibility scores at
least for individual types of words (part-of-speech
tags).2

Assume a PoS n-gram g = [t1, . . . , tn]. We go
through the corpus and search for all its occurrences.
For each such occurrence, we remove the respec-
tive words from the current sentence and check in
the corpus whether the rest of the sentence occurs at
least once elsewhere in the corpus.3 If so, then such
occurrence of PoS n-gram is reducible, otherwise it
is not. We denote the number of such reducible oc-
currences of PoS n-gram g by r(g). The number of
all its occurrences is c(g). The relative reducibility

2Although we search for reducible sequences of word forms
in the corpus, we compute reducibility scores for sequences of
part-of-speech tags. This requires to have the corpus morpho-
logically disambiguated.

3We do not take into account sentences with less then 10
words, because they could be nominal (without any verb) and
might influence the reducibility scores of verbs.
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unigrams R bigrams R trigrams R
VB 0.04 VBN IN 0.00 IN DT JJ 0.00
TO 0.07 IN DT 0.02 JJ NN IN 0.00
IN 0.11 NN IN 0.04 NN IN NNP 0.00
VBD 0.12 NNS IN 0.05 VBN IN DT 0.00
CC 0.13 JJ NNS 0.07 JJ NN . 0.00
VBZ 0.16 NN . 0.08 DT JJ NN 0.04
NN 0.22 DT NNP 0.09 DT NNP NNP 0.05
VBN 0.24 DT NN 0.09 NNS IN DT 0.14
. 0.32 NN , 0.11 NNP NNP . 0.15
NNS 0.38 DT JJ 0.13 NN IN DT 0.23
DT 0.43 JJ NN 0.14 NNP NNP , 0.46
NNP 0.78 NNP . 0.15 IN DT NNP 0.55
JJ 0.84 NN NN 0.22 DT NN IN 0.59
RB 2.07 IN NN 0.67 NNP NNP NNP 0.64
, 3.77 NNP NNP 0.76 IN DT NN 0.80
CD 55.6 IN NNP 1.81 IN NNP NNP 4.27

Table 1: Reducibility scores of the most frequent PoS tag
English n-grams.

R(g) of a PoS n-gram g is then computed as

R(g) =
1

N

r(g) + σ1

c(g) + σ2
, (1)

where the normalization constant N , which ex-
presses relative reducibility over all the PoS n-grams
(denoted by G), causes the scores are concentrated
around the value 1.

N =

∑
g∈G(r(g) + σ1)∑
g∈G(c(g) + σ2)

(2)

Smoothing constants σ1 and σ2, which prevent re-
ducibility scores from being equal to zero, are set as
follows: 4

σ1 =

∑
g∈G r(g)∑
g∈G c(g)

, σ2 = 1 (3)

Table 1 shows reducibility scores of the most fre-
quent English PoS n-grams. If we consider only uni-
grams, we can see that the scores for verbs are often
among the lowest. Verbs are followed by preposi-
tions and nouns, and the scores for adjectives and ad-
verbs are very high for all three examined languages.
That is desired, because the reducible unigrams will
more likely become leaves in dependency trees.

3 Dependency Models

We introduce a new generative model that is differ-
ent from the widely used Dependency Model with

4This setting causes that even if a given PoS n-gram is
not reducible anywhere in the corpus, its reducibility score is
1/(c(g) + 1).

Valence (DMV).5 Our generative model introduces
fertility of a node. For a given head, we first gener-
ate the number of its left and right children (fertility
model) and then we fill these positions by generat-
ing its individual dependents (edge model). If a zero
fertility is generated, the head becomes a leaf.

Besides the fertility model and the edge model,
we use two more models (subtree model and dis-
tance model), which force the generated trees to
have more desired shape.

3.1 Fertility model
We express a fertility of a node by a pair of num-
bers: the number of its left dependents and the num-
ber of its right dependents.6 Fertility is conditioned
by part-of-speech tag of the node and it is computed
following the Chinese restaurant process.7 The for-
mula for computing probability of fertility fi of a
word on the position i in the corpus is as follows:

Pf (fi|ti) =
c−i(“ti, fi”) + αP0(fi)

c−i(“ti”) + α
, (4)

where ti is part-of-speech tag of the word on the po-
sition i, c−i(“ti, fi”) stands for the count of words
with PoS tag ti and fertility fi in the history, and
P0 is a prior probability for the given fertility which
depends on the total number of node dependents de-
noted by |fi| (the sum of numbers of left and right
dependents):

P0(fi) =
1

2|fi|+1
(5)

This prior probability has a nice property: for a
given number of nodes, the product of fertility prob-
abilities over all the nodes is equal for all possi-
ble dependency trees. This ensures balance of this
model during inference.

5In DMV (Klein and Manning, 2004) and in the extended
model EVG (Headden III et al., 2009), there is a STOP sign in-
dicating that no more dependents in a given direction will be
generated. Given a certain head, all its dependents in left di-
rection are generated first, then the STOP sign in that direction,
then all its right dependents and then STOP in the other direc-
tion. This process continues recursively for all generated de-
pendents.

6For example, fertility “1-3” means that the node has one
left and three right dependents, fertility “0-0” indicates that it is
a leaf.

7If a specific fertility has been frequent for a given PoS tag
in the past, it is more likely to be generated again.
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Besides the basic fertility model, we introduce
also an extended fertility model, which uses fre-
quency of a given word form for generating number
of children. We assume that the most frequent words
are mostly function words (e.g. determiners, prepo-
sitions, auxiliary verbs, conjunctions). Such words
tend to have a stable number of children, for exam-
ple (i) some function words are exclusively leaves,
(ii) prepositions have just one child, and (iii) attach-
ment of auxiliary verbs depends on the annotation
style, but number of their children is also not very
variable. The higher the frequency of a word form,
the higher probability mass is concentrated on one
specific number of children and the lower Dirichlet
hyperparameter α in Equation 4 is needed. The ex-
tended fertility is described by equation

P ′f (fi|ti, wi) =
c−i(“ti, fi”) + αe

F (wi)
P0(fi)

c−i(“ti”) + αe
F (wi)

, (6)

where F (wi) is a frequency of the word wi, which
is computed as a number of words wi in our corpus
divided by number of all words.

3.2 Edge model
After the fertility (number of left and right depen-
dents) is generated, the individual slots are filled us-
ing the edge model. A part-of-speech tag of each de-
pendent is conditioned by part-of-speech tag of the
head and the edge direction (position of the depen-
dent related to the head).8

Similarly as for the fertility model, we employ
Chinese restaurant process to assign probabilities of
individual dependent.

Pe(tj |ti, dj) =
c−i(“ti, tj , dj”) + β

c−i(“ti, dj”) + β|T |
, (7)

where ti and tj are the part-of-speech tags of the
head and the generated dependent respectively; dj is
a direction of edge between the words i and j, which
can have two values: left and right. c−i(“ti, tj , dj”)
stands for the count of edges ti ← tj with the direc-
tion dj in the history, |T | is a number of unique tags
in the corpus and β is a Dirichlet hyperparameter.

8For the edge model purposes, the PoS tag of the technical
root is set to ‘<root>’ and it is in the zero-th position in the
sentence, so the head word of the sentence is always its right
dependent.

3.3 Distance model
Distance model is an auxiliary model that prevents
the resulting trees from being too flat.9 This sim-
ple model says that shorter edges are more probable
than longer ones. We define probability of a distance
between a word and its parent as its inverse value,10

which is then normalized by the normalization con-
stant εd.

Pd(i, j) =
1

εd

(
1

|i− j|

)γ
(8)

The hyperparameter γ determines the weight of this
model.

3.4 Subtree model
The subtree model uses the reducibility measure. It
plays an important role since it forces the reducible
words to be leaves and reducible n-grams to be sub-
trees. Words with low reducibility are forced to-
wards the root of the tree. We define desc(i) as a
sequence of tags [tl, . . . , tr] that corresponds to all
the descendants of the word wi including wi, i.e. the
whole subtree of wi. The probability of such sub-
tree is proportional to its reducibility R(desc(i)).
The hyperparameter δ determines the weight of the
model; εs is a normalization constant.

Ps(i) =
1

εs
R(desc(i))δ (9)

3.5 Probability of the whole treebank
We want to maximize the probability of the whole
generated treebank, which is computed as follows:

Ptreebank =
n∏
i=1

(P ′f (fi|ti, wi) (10)

Pe(ti|tπ(i), di) (11)

Pd(i, π(i)) (12)

Ps(i)), (13)

where π(i) denotes the parent of the word on the
position i. We multiply the probabilities of fertil-
ity, edge, distance from parent, and subtree over all

9Ideally, the distance model would not be needed, but exper-
iments showed that it helps to infer better trees.

10Distance between any word and the technical root of the
dependency tree was set to 10. Since each technical root has
only one dependent, this value does not affect the model.
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The   dog   was   in   the   park  .

(((The) dog) was (in ((the) park)) (.))

Figure 1: Arrow and bracketing notation of a projective
dependency tree.

words (nodes) in the corpus. The extended fertility
model P ′f can be substituted by its basic variant Pf .

4 Sampling algorithm

For stochastic searching for the most probable de-
pendency trees, we employ Gibbs sampling, a stan-
dard Markov Chain Monte Carlo technique (Gilks et
al., 1996). In each iteration, we loop over all words
in the corpus in a random order and change the de-
pendencies in their neighborhood (a small change
described in Section 4.2). In the end, “average” trees
based on the whole sampling are built.

4.1 Initialization

Before the sampling starts, we initialize the projec-
tive trees randomly in a way that for each sentence,
we choose randomly one word as the head and attach
all other words to it.11

4.2 Small Change Operator

We use the bracketing notation for illustrating the
small change operator. Each projective dependency
tree consisting of n words can be expressed by n
pairs of brackets. Each bracket pair belongs to one
node and delimits its descendants from the rest of
the sentence. Furthermore, each bracketed segment
contains just one word that is not embedded deeper;
this node is the segment head. An example of this
notation is in Figure 1.

The small change is then very simple. We remove
one pair of brackets and add another, so that the con-
ditions defined above are not violated. An example
of such change is in Figure 2.

From the perspective of dependency structures,
the small change can be described as follows:

11More elaborated methods for generating random trees con-
verges to similar results. Therefore we conclude that the choice
of the initialization mechanism is not so important here.

(((The) dog) was  in ((the) park)  (.))

(((The) dog) was  in ((the) park)  (.))
(((The) dog) was  in ((the) park)  (.))
(((The) dog) was  in ((the) park)  (.))

(
(
(

)
)

)

(((The) dog) was  in ((the) park)  (.))
(((The) dog) was  in ((the) park)  (.))(

(
)

)

Figure 2: An example of small change in a projective
tree. The bracket (in the park) is removed and there are
five possibilities how to replace it.

1. Pick a random non-root word w (the word in in
our example) and find its parent p (the word was).

2. Find all other children of w and p (the words
dog, park, and .) and denote this set by C.

3. Choose the new head out of w and p. Mark the
new head as g and the second candidate as d. Attach
d to g.

4. Select a neighborhood D adjacent to the word
d as a continuous subset of C and attach all words
from D to d. D may be also empty.

5. Attach the remaining words from C that were
not in D to the new head g.

4.3 Building “average” trees

The “burn-in” period is set to 10 iterations. After
this period, we begin to count how many times an
edge occurs at a particular location in the corpus.
This counts are collected over the whole corpus with
the collection-rate 0.01.12

When the sampling is finished, the final depen-
dency trees are built using such edges that belonged
to the most frequent ones during the sampling. We
employ the maximum spanning tree (MST) algo-
rithm (Chu and Liu, 1965) to find them.13 Tree pro-
jectivity is not guaranteed by the MST algorithm.

5 Experiments

We evaluated our parser on 10 treebanks included in
the WILS shared-task data. Similarly to some previ-
ous papers on unsupervised parsing (Gillenwater et
al., 2011; Spitkovsky et al., 2011), the tuning exper-
iments were performed on English only. We used

12After each small change is made, the edges from the whole
corpus are collected with a probability 0.01.

13The weights of edges needed in MST algorithm correspond
to the number of times they were present during the sampling.
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language tokens (mil.) language tokens (mil.)
Arabic 19.7 English 85.0
Basque 14.1 Portuguese 31.7
Czech 20.3 Slovenian 13.7
Danish 15.9 Swedish 19.2
Dutch 27.1

Table 2: Wikipedia texts statistics

English development data for checking functional-
ity of the individual models and for optimizing hy-
perparameter values. The best configuration of the
parser achieved on English was then used for pars-
ing all other languages. This simulates the situation
in which we have only one treebank (English) on
which we can tune our parser and we want to parse
other languages for which we have no manually an-
notated treebanks.

5.1 Data

For each experiment, we need two kinds of data: a
smaller treebank, which is used for sampling and
for evaluation, and a large corpus, from which we
compute n-gram reducibility scores. The induction
of dependency trees and evaluation is done only on
WILS testing data.

For obtaining reducibility scores, we used
Wikipedia articles downloaded by Majliš and
Žabokrtský (2012). Their statistics across languages
are showed in Table 2. To make them useful, the
necessary preprocessing steps must have been done.
The texts were first automatically segmented and to-
kenized14 and then they were part-of-speech tagged
by TnT tagger (Brants, 2000), which was trained on
the respective WILS training data. The quality of
such tagging is not very high, since we do not use
any lexicons15 or pretrained models. However, it is
sufficient for obtaining good reducibility scores.

5.2 Setting the hyperparameters

The applicability of individual models and their pa-
rameters were tested on English development data

14The segmentation to sentences and tokenization was per-
formed using the TectoMT framework (Popel and Žabokrtský,
2010).

15Using lexicons or another pretrained models for tagging
means using other sources of human annotated data, which is
not allowed if we want to compare our results with others.

and full part-of-speech tags. The four hyperparame-
ters α (fertility model), β (edge model), γ (distance
model), and δ (subtree model), were set by a grid
search algorithm, which found the following opti-
mal values:

αe = 0.01, β = 1, γ = 1.5, δ = 1

5.3 Results
The best setting from the experiments on English
is now used for evaluating our parser across all
WILS treebanks. Besides using the standard part-of-
speech tags (POS), the experiments were done also
on coarse tags (CPOS) and universal tags (UPOS).
From results presented in Table 3, it is obvious that
our systems outperforms all the given baselines con-
sidering the average scores across all the testing lan-
guages. However, it is important to note that we
used an additional source of information, namely
large unannotated corpora for computing reducibil-
ity scores, while the baseline system (Gillenwater et
al., 2011) use only the WILS datasets.

6 Conclusions and Future Work

We have described a novel unsupervised depen-
dency parsing system employing new features, such
as reducibility or fertility. The reducibility scores are
extracted from a large corpus, and the computation-
ally demanding inference is then done on smaller
data.

In future work, we would like to estimate the
hyperparameters automatically, for example by the
Metropolis-Hastings technique (Gilks et al., 1996).
Furthermore, we would like to add lexicalized mod-
els and automatically induced word classes instead
of the PoS tags designed by humans. Finally, we
would like to move towards deeper syntactic struc-
tures, where the tree would be formed only by con-
tent words and the function words would be treated
in a different way.
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