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Introduction

The 2012 Workshop on Cognitive Modeling and Computational Linguistics is the third workshop in this
series and stands in the tradition of a number of related workshops that apply computational modeling
to questions of cognitive, linguistic nature: the workshop on Psychocomputational Models of Human
Language Acquisition, the Workshop on Production of Referring Expressions, or the Incremental
Parsing workshop (ACL 2004). In short, CMCL aims to provide a venue for high-quality work in
computational psycholinguistics.

This year, we have received 22 submissions and accepted 10 after careful review. One of those has been
withdrawn. We thank all submitting authors as well as the dedicated program committee for making
this happen.

Roger Levy and David Reitter
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Alessandra Zarcone, Jason Utt and Sebastian Padó . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

A Computational Model of Memory, Attention, and Word Learning
Aida Nematzadeh, Afsaneh Fazly and Suzanne Stevenson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

vii





Workshop Program

(9:30 AM) Acquisition and Representation

Modeling the Acquisition of Mental State Verbs
Libby Barak, Afsaneh Fazly and Suzanne Stevenson

Semi-supervised learning for automatic conceptual property extraction
Colin Kelly, Barry Devereux and Anna Korhonen

(11:30 AM) Structure and Processing I

Why long words take longer to read: the role of uncertainty about word length
Klinton Bicknell and Roger Levy

Minimal Dependency Length in Realization Ranking
Michael White and Rajakrishnan Rajkumar

(2 PM) Structure and Processing II

Fractal Unfolding: A Metamorphic Approach to Learning to Parse Recursive Struc-
ture
Whitney Tabor, Pyeong Whan Cho and Emily Szkudlarek

Connectionist-Inspired Incremental PCFG Parsing
Marten van Schijndel, Andy Exley and William Schuler

Sequential vs. Hierarchical Syntactic Models of Human Incremental Sentence Pro-
cessing
Victoria Fossum and Roger Levy

(4 PM) Memory

Modeling covert event retrieval in logical metonymy: probabilistic and distribu-
tional accounts
Alessandra Zarcone, Jason Utt and Sebastian Padó
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Modeling the Acquisition of Mental State Verbs

Libby Barak, Afsaneh Fazly, and Suzanne Stevenson
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Toronto, Canada

{libbyb,afsaneh,suzanne}@cs.toronto.edu

Abstract

Children acquire mental state verbs (MSVs)
much later than other, lower-frequency, words.
One factor proposed to contribute to this de-
lay is that children must learn various seman-
tic and syntactic cues that draw attention to the
difficult-to-observe mental content of a scene.
We develop a novel computational approach
that enables us to explore the role of such cues,
and show that our model can replicate aspects
of the developmental trajectory of MSV acqui-
sition.

1 Introduction

Mental State Verbs (MSVs), such as think, know,
and want, are very frequent in child-directed lan-
guage, yet children use them productively much
later than lower-frequency action verbs, such as fall
and throw (Johnson and Wellman, 1980; Shatz et al.,
1983). Psycholinguistic theories have suggested that
there is a delay in the acquisition of MSVs because
they require certain cognitive and/or linguistic skills
that are not available during the early stages of lan-
guage development. For example, MSVs typically
occur with a sentential complement (SC) that refers
to the propositional content of the mental state, as in
He thinks Mom went home. Children have to reach a
stage of syntactic development that includes some
facility with SCs in order to fully acquire MSVs.
However, even at 3–5 years old, children are able to
process SCs only imperfectly (e.g., Asplin, 2002).

Even when children are able to produce SCs with
other verbs (such as verbs of communication, as in
He said Mom went home), there is a lag before they

productively use MSVs referring to actual mental
content (Diessel and Tomasello, 2001).1 Psycholin-
guists have suggested that young children lack the
conceptual ability to conceive that others have men-
tal states separate from their own (Bartsch and Well-
man, 1995; Gopnik and Meltzoff, 1997), further de-
laying the acquisition of MSVs.

Another factor suggested to contribute to the dif-
ficulty of acquiring MSVs is their informational re-
quirements (Gleitman et al., 2005; Papafragou et al.,
2007). Children learn word meanings by figuring
out which aspects of an observed scene are referred
to by a particular word (Quine, 1960). MSVs of-
ten refer to aspects of the world that are not directly
observable (i.e., the beliefs and desires of another
entity). Thus, in addition to the above-mentioned
challenges posed by children’s developing linguis-
tic/conceptual abilities, children may simply have
difficulty in identifying the relevant mental content
necessary to learning MSVs.

In particular, Papafragou et al. (2007) [PCG] have
shown that even given adequate conceptual and lin-
guistic abilities (as in adults) the mental events in a
scene (the actors’ internal states) are not attended
to as much as the actions, unless there are cues
that heighten the salience of the mental content.
PCG further demonstrate that children’s sensitivity
to such cues lags behind that of adults, suggesting an
additional factor in the acquisition of MSVs which

1Researchers have noted that children use MSVs in fixed
phrases, in a performative use or as a pragmatic marker, well be-
fore they use them to refer to actual mental content (e.g., Diessel
and Tomasello, 2001; Shatz et al., 1983). Here by “acquisition
of MSVs”, we are specifically referring to children learning us-
ages that genuinely refer to mental content.
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is the developmental change in how strongly such
cues are associated with the relevant mental content.

We develop a computational model of MSV ac-
quisition (the first, to our knowledge) to further il-
luminate these issues. We extend an existing model
of verb argument structure acquisition (Alishahi and
Stevenson, 2008) to enable the representation and
processing of mental state semantics and syntax.
We simulate the developmental change proposed by
PCG through a gradually increasing ability in the
model to appropriately attend to the mental content
of a scene. In addition, we suggest that even when
the learner’s semantic representation is biased to-
wards the action content, the learner attends to the
observed SC syntax in an MSV utterance. This is
especially important to account for the pattern of er-
rors in child data. Our model thus extends the ac-
count of PCG to show that a probabilistic interplay
of the semantic and syntactic features of a partial and
somewhat erroneous perception of the input, com-
bined with a growing ability to attend to cues indica-
tive of mental content, can help to account for chil-
dren’s developmental trajectory in learning MSVs.

2 Background and Our Approach

To investigate the linguistic and contextual cues that
could help in learning MSVs, PCG use a procedure
called the Human Simulation Paradigm (originally
proposed by Gillette et al., 1999). In this paradigm,
subjects are put in situations intended to simulate
various word learning conditions of young children.
E.g., in one condition, adults watch silent videos of
caregivers interacting with children, and are asked
to predict the verb uttered by the caregiver. In an-
other condition, subjects hear a sentence containing
a nonce verb (e.g., gorp) after watching the video,
and are asked what gorp might mean.

We focus on two factors investigated by PCG in
the performance of adults and children in identifying
MSVs. The first factor they investigated involved
the syntactic frame used when subjects were given a
sentence with a nonce verb. PCG hypothesized that
an SC frame would be a cue to mental content (and
an MSV), since the SC refers to propositional con-
tent. The second factor PCG examined was whether
the video described a “true belief” or a “false be-
lief” scene: A true belief scene shows an ordinary

situation which unfolds as the character in the scene
expects — e.g., a little boy takes food to his grand-
mother, and she is there in the house as expected.
The corresponding false belief scene has an unex-
pected outcome for the character — in this case, an-
other character has replaced the grandmother in her
bed. Here the hypothesis was that such false belief
scenes would heighten the salience of mental activ-
ity in the scene and lead to greater belief verb re-
sponses in describing them.

PCG’s results showed that both adults and chil-
dren were sensitive to both the scene and syntax
cues, but children’s ability to draw on such cues was
inferior to that of adults. They thus propose that the
difference between children and adults is that chil-
dren have not yet formed as strong an association
as adults between the cues and the mental content
of a scene as required to match the performance of
adults. Nonetheless, their results suggest that the
participating children had the conceptual and lin-
guistic abilities required for MSVs, since they were
able to produce them under conditions with suffi-
ciently strong cues.

We simulate PCG’s experiments using a novel
computational approach. Following PCG, we as-
sume that even when a learner is able to perceive
the general semantic and syntactic properties of a
belief scene and associated utterance, they may not
attend to the mental content in every situation, and
that this ability improves over time. We model a de-
velopmental change in a learner’s attention to mental
content: At early stages, corresponding to the state
of young children, the learner largely focuses on the
action aspects of a belief scene, even in the presence
of an utterance using an MSV. Over time, the learner
gradually increases in the ability to attend appropri-
ately to the mental aspects of such a scene and ut-
terance, until adult-like competence is achieved in
associating the available cues with mental content.

Importantly, our work extends the proposal of
PCG by bringing in evidence from other relevant
studies on children’s ability to process SCs. More
specifically, we suggest that when children hear a
sentence like I think Mom went home, they recog-
nize (and record) the existence of an SC, while at
the same time they focus on the action semantics
as the main (most salient) event. In other words,
we assume that children’s imperfect syntactic abil-

2



ities are at least sufficient to recognize the SC us-
age (Nelson et al., 1989; Asplin, 2002). However,
their attention is mostly directed towards the action
expressed in the embedded complement, either be-
cause mental content is less easily observable than
action (Papafragou et al., 2007), or due to the lin-
guistic saliency of the embedded clause (Diessel and
Tomasello, 2001; Dehe and Wichmann, 2010). As
mentioned above, we model this misrepresentation
by considering the possibility of not attending to
mental content in a belief scene. Specifically, we
assume that (i) the model is very likely to overlook
the mental content at earlier stages (corresponding to
children’s observed behaviour); and (ii) as the model
‘ages’ (i.e., receives more input), its attentional abil-
ities improve and thus the model is more likely to
focus on the mental content as the main proposition.
Our results suggest that these changes to the model
lead to a match between our model’s behaviour and
PCG’s differential results for children and adults.

3 The Computational Model

A number of computational models have examined
the role of interacting syntactic and semantic cues
in the acquisition of verb argument structure (e.g.,
Niyogi, 2002; Buttery, 2006; Alishahi and Steven-
son, 2008; Perfors et al., 2010; Parisien and Steven-
son, 2011). However, to our knowledge no com-
putational model has addressed the developmental
trajectory in the acquisition of MSVs. Here we ex-
tend the verb argument structure acquisition model
of Alishahi and Stevenson (2008) to enable it to ac-
count for MSV acquisition. Specifically, we use
their core Bayesian learning algorithm, but modify
the input processing component to reflect a develop-
mental change in attention to the mental state con-
tent of an MSV usage and its consequent represen-
tation, as noted above.

We use this model for the following reasons: (i) it
focuses on argument structure learning, and the in-
terplay between syntax and semantics, which are key
to MSV acquisition; (ii) it is probabilistic and hence
can naturally capture gradient responses to different
cues; and (iii) it is incremental, which allows us to
investigate changes in behaviour over time. We first
give an overview of the original model, and then ex-
plain our extensions.

3.1 Model Overview

The input to the model is a sequence of utterances
(what the child hears), each paired with a scene
(what the child perceives); see Table 1 for an ex-
ample. First, the frame extraction component of
the model extracts from the input pair a frame—
a collection of features. We use features that in-
clude both semantic properties (‘event primitives’
and ‘event participants’) and syntactic properties
(‘syntactic pattern’ and ‘verb count’). See Table 2
for examples of two possible frames extracted from
the pair in Table 1. Second, the learning component
of the model incrementally clusters the extracted
frames one by one. These clusters correspond to
constructions that reflect probabilistic associations
of semantic and syntactic features across similar us-
ages, such as an agentive intransitive or causative
transitive. The model can use these associations to
simulate various language tasks as the prediction of
a missing feature given others. For example, to sim-
ulate the human simulation paradigm setting, we can
use the model to predict a missing verb on the basis
of the available semantic and syntactic information
(as in Alishahi and Pyykkon̈en, 2011).

3.2 Algorithm for Learning Constructions

The model clusters the input frames into construc-
tions on the basis of their overall similarity in the
values of their features. Importantly, the model
learns these constructions incrementally, consider-
ing the possibility of creating a new construction for
a given frame if the frame is not sufficiently similar
to any of the existing constructions. Formally, the
model finds the best construction (including a new
one) for a given frame F as in:

BestConstruction(F ) = argmax
k∈Constructions

P (k|F )

(1)
where k ranges over all existing constructions and a
new one. Using Bayes rule:

P (k|F ) =
P (k)P (F |k)

P (F )
∝ P (k)P (F |k) (2)

The prior probability of each construction P (k) is
estimated as the proportion of observed frames that
are in k, assigning a higher prior to constructions
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Think[state,consider,cogitate](I[experiencer,preceiver,considerer ],Go[physical,act,move](MOM[agent,actor,change],HOME[location,destination]))
I think Mom went home.

Table 1: A sample Scene–Utterance input pair.

(a) Interpretation#1 (mental event is attended to) (b) Interpretation#2 (mental event not attended to)
main predicate think main predicate go
other predicate go other predicate think
event primitives { state, consider , cogitate } event primitives { physical , act ,move}
event participants { experiencer , perceiver , considerer} event participants { agent , actor , change}

{ preposition, action, perceivable} { location, destination}
syntactic pattern arg1 verb arg-S syntactic pattern arg1 verb arg-S
verb count 2 verb count 2

Table 2: Two frames extracted from the scene–utterance pair in Table 1. The bottom left and right panels of the table
describe the two possible interpretations given the input pair. (a) Interpretation#1 assumes that the mental event is the
focus of attention. Here think is interpreted as the main predicate, which the event primitives and participants refer
to. (b) Interpretation#2 assumes that attention is mostly directed to the physical action in the scene, and thus go is
taken to be the main predicate, which also determines the extracted event primitives and participants. Note that for
both interpretations, the learner is assumed to perceive the utterance in full, thus both verbs are heard in the context
of the sentential complement syntax (i.e., syntactic pattern with SC and 2 verbs), without fully extracting the syntactic
relations between the clauses.

that are more entrenched (i.e., observed more fre-
quently). The likelihood P (F |k) is estimated based
on the values of features in F and the frames in k:

P (F |k) =
∏

i∈frameFeatures

Pi(j|k) (3)

where i refers to the ith feature of F and j refers
to its value. The conditional probability of a feature
i to have the value j in construction k, Pi(j|k), is
calculated with a smoothed version of:

Pi(j|k) =
counti(j, k)

nk
(4)

where counti(j, k) reflects the number of times fea-
ture i has the value j in construction k, and nk is the
number of frames in k. We have two types of fea-
tures: single-valued and set-valued. The result of the
counti operator for a single-valued feature is based
on exact match to the value j, while the result for a
set-valued feature is based on the degree of overlap
between the compared sets, as in the original model.

3.3 Modeling Developmental Changes in
Attending to Mental Content

We extend the model above to account for the in-
crease in the ability to attend to cues associated with
MSVs, as observed by PCG. In addition, we pro-
pose that children’s representation of this situation

includes the observed syntax of the MSV. That is,
children do not simply ignore the MSV usage, focus-
ing only on the action expressed in its complement
— they must also note that this action semantics oc-
curs in the context of an SC usage.

To adapt the model in these ways, we change
the frame extraction component to allow two pos-
sible interpretations for a mental event input. First,
to reflect PCG’s proposal, we incorporate a mecha-
nism into the model’s frame-extraction process that
takes into account the probability of attending to
mental content. Specifically, we assume that when
presented with an input pair containing an MSV,
as in Table 1, a learner attends to the perceptu-
ally salient action/state expressed in the comple-
ment (here Go) with probability p, and to the non-
perceptually salient mental event expressed in the
main verb (here Think) with probability 1− p. This
probability p is a function over time, correspond-
ing to the observed developmental progression. At
very early stages, p will be high (close to 1), sim-
ulating the much greater saliency of physical ac-
tions compared to mental events for younger chil-
dren. With subsequent input, p will decrease, giv-
ing more and more attention to the mental content
of a scene with a mental event, gradually approach-
ing adult-like abilities.
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We adopt the following function for p:

p =
1

δ · t+ 1
, 0 < δ � 1 (5)

where t is the current time, expressed as the total
number of scene–utterance pairs observed thus far
by the model, and the parameter δ is set to a small
value to assign a high probability to the physical ac-
tion interpretation of the scene in the initial stages of
learning (when t is small).

We must specify the precise make-up of the
frames that correspond to the two possible inter-
pretations considered with probability p and 1 − p.
PCG state only that children and adults differen-
tially attend to the action vs. mental content of the
scene. We operationalize this by forming two pos-
sible frames in response to an MSV usage. We pro-
pose that one of the frames (with probability 1−p) is
the interpretation of the mental content usage, as in
Table 2(a). However, we extend the account of PCG
by proposing that the other frame considered is not
simply a standard representation of an action scene–
utterance pair. Rather, we suggest that the interpre-
tation of an MSV scene–utterance pair that focuses
on the action semantics does so within the context of
the SC syntax, given the assumed stage of linguistic
abilities of the learner. This leads to the frame (with
probability p) as in Table 2(b), which represents the
action semantics within a two-verb construction as-
sociated with the SC syntax.

4 Experimental Setup

4.1 Input Data
We generate artificial corpora for our simulations,
since we do not have access to sufficient data of ac-
tual utterances paired with scene representations. In
order to create naturalistic data that resembles what
children are exposed to, we follow the approach of
Alishahi and Stevenson (2008) to build an input-
generation lexicon that has the distributional prop-
erties of actual child-directed speech (CDS). Their
original lexicon contains only high-frequency phys-
ical action verbs that appear in limited syntactic pat-
terns. Our expanded lexicon also includes mental
state, perception, and communication verbs, all of
which can appear with SCs.

We extracted our verbs and their distributional
properties from the child-directed speech of 8

children in the CHILDES database (MacWhinney,
2000).2 We selected 28 verbs from different se-
mantic classes and different frequency ranges: 12
physical action verbs taken from the original model
(come, go, fall, eat, play, get, give, take, make, look,
put, sit), 6 perception and communication verbs
(see, hear, watch, say, tell, ask), 5 belief verbs (think,
know, guess, bet, believe), and 5 desire verbs (want,
wish, like, mind, need). For each verb, we manually
analyzed a random sample of 100 CDS usages (or
all usages if fewer than 100) to extract distributional
information about its argument structures.

We construct the input-generation lexicon by list-
ing each of the 28 verbs (i.e. the ‘main predicate’),
along with its overall frequency, as well as the fre-
quency with which it appears with each argument
structure. Each entry contains values of the syn-
tactic and semantic features (see Table 2 for ex-
amples), including ‘event primitives’, ‘event partic-
ipants’, ‘syntactic pattern’, and ‘verb count’. By
including these features, we assume that a learner
is capable of understanding basic syntactic proper-
ties of an utterance, including word syntactic cat-
egories (e.g., noun and verb), word order, and the
appearance of SCs (e.g., Nelson et al., 1989). We
also assume that a learner has the ability to perceive
and conceptualize the general semantic properties
of events — including mental, perceptual, commu-
nicative, and physical actions — as well as those
of the event participants. Values for the semantic
features (the event primitives and event participants)
are taken from Alishahi and Stevenson (2008) for
the action verbs, and from several sources including
VerbNet (Kipper et al., 2008) and Dowty (1991) for
the additional verbs.

For each simulation in our experiments (explained
below), we use the input-generation lexicon to
automatically generate an input corpus of scene–
utterance pairs that reflects the observed frequency
distribution in CDS.3 For an input utterance that
contains an MSV, we randomly pick one of the ac-
tion verbs as the verb appearing within the sentential
complement (the ‘other predicate’).

2Corpora of Brown (1973); Suppes (1974); Kuczaj (1977);
Bloom et al. (1974); Sachs (1983); Lieven et al. (2009).

3The model does not use the input-generation lexicon in
learning.
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4.2 Setup of Simulations
We perform simulations by training the model on
a randomly generated input corpus, and examin-
ing changes in its performance over time with pe-
riodic tests. Specifically, we perform simulations of
the verb identification task in the human simulation
paradigm as follows: At each test point, we present
the model with a partial test frame with missing
predicate (verb) values, and different amounts of in-
formation for the other features. The tests corre-
spond to the scenarios in the original experiments of
PCG, where each scenario is represented by a partial
frame as follows:

1. scene-only scenario: Corresponds to subjects
watching a silent video depicting either an Ac-
tion or a Belief scene. Our test frame includes
values for the semantic features (event primi-
tives and event participants) corresponding to
the scene type, but no syntactic features.

2. syntax-only scenario: Corresponds to subjects
hearing either an SC or a non-SC utterance.
The test frame includes the corresponding syn-
tactic pattern and verb count of the utterance
type heard, but no semantic features.

3. syntax & scene scenario: Corresponds to sub-
jects watching a silent video (with Action or
Belief content), and hearing an associated (non-
SC or SC) utterance. The test frame includes all
the relevant syntactic and semantic features.

We perform 100 simulations, each on 15000
randomly-generated training frames, and examine
the type of verbs that the model predicts in response
to test frames for the three scenarios. For each
scenario and each simulation, we generate a test
frame by including the relevant feature values of a
randomly-selected physical action or belief verb us-
age from the input-generation lexicon.

PCG code the individual verb responses of their
human subjects into various verb classes. To analo-
gously code our model’s response to each test frame,
we estimate the likelihood of each of two verb
groups, Belief and Action,4 by summing over the

4The Action verbs include action, communication, and per-
ception verbs, as in PCG. Verbs from the desire group are not
considered here, also as in PCG.

Figure 1: Likelihood of Belief verb prediction given Ac-
tion or Belief input.

likelihood of all the verbs in that group. In the re-
sults below, these likelihood scores are averaged for
each test point over the 100 simulations.

When our model is presented with a test frame
containing a Belief scene, we assume that the model
(like a language learner) may not attend to the men-
tal content, resulting in one of the two interpreta-
tions described in Section 3.3 (see Table 2). We thus
calculate the verb class likelihoods using a weighted
average of the verbs predicted under the two inter-
pretations. Following PCG, we test our model with
two types of Belief scenes: True Belief and False
Belief, with the latter having a higher level of be-
lief saliency. We model the difference between these
two scene types as a difference in the probabilities
of perceiving the two interpretations, with a higher
probability for the belief interpretation given a False
Belief test frame. In the experiments presented here,
we set this probability to 80% for False Belief, and
to 60% (just above chance) for True Belief. (Un-
like in training, where we assume a change over time
in the probability of a belief interpretation, for each
presentation of the test frame we use the same prob-
abilities of the two interpretations.)

5 Experimental Results

We present two sets of results: In Section 5.1, we
examine the role of syntactic and semantic cues in
MSV identification, by comparing the likelihoods
of the model’s Belief verb predictions across the
three scenarios. Here we test the model after pro-
cessing 15000 input frames, simulating an adult-like
behaviour (as in PCG). At this stage, we present
the model with an Action test frame (Action scene
and/or Transitive syntax), or a Belief test frame
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(False Belief scene and/or SC syntax). In Sec-
tion 5.2, we look into the role of semantic cues
that enhance belief saliency, by comparing the like-
lihoods of Belief vs. Action verb predictions in the
syntax & scene scenario. The test frames depict ei-
ther a True Belief or a False Belief scene, paired with
an SC utterance. Here, we test our model periodi-
cally to examine the developmental pattern of MSV
identification, comparing our results with the differ-
ence in the behaviour of children and adults in PCG.

5.1 Linguistic Cues for Belief Verb Prediction

The left side of Figure 1 presents the results of PCG
(for adult subjects); the right side shows the likeli-
hood of Belief verb prediction by our model. Simi-
lar to the results of PCG, our model’s likelihood of
Belief verb prediction is extremely low when given
an Action test frame (Action scene and/or Transi-
tive syntax), whereas it is much higher when the
model is presented with a Belief test frame (False
Belief scene and/or SC syntax). Moreover, as in
PCG, when the model is tested with Belief content,
the lowest likelihood is for the scene-only scenario
and the highest is for the syntax & scene scenario.

PCG found, somewhat surprisingly, that the
syntax-only scenario was more informative for MSV
prediction than the scene-only scenario. Our results
replicate this finding, which we believe is due to the
way our Bayesian clustering groups verb usages to-
gether. Non-SC usages of MSVs are often grouped
with action verbs that frequently appear with non-
SC syntax, and this results in constructions with
mixed (action and belief) semantics. When using
MSV semantic features to make the verb predic-
tion, the action verbs get a higher likelihood based
on such mixed constructions. However, the frequent
usage of MSVs with SC results in entrenched con-
structions of mostly MSVs. Although other verbs,
such as see and say, may also be used with SC syn-
tax, they are grouped with verbs such as watch and
tell into constructions with mixed (SC and non-SC)
syntax. When given SC syntax in verb prediction,
the more coherent MSV constructions result in a
high likelihood of predicting Belief verbs.

5.2 Belief Saliency in Verb Prediction

Figure 2(a) shows the PCG results, for children
and adults, and for True Belief and False Belief.

(a)

(b)

(c)

Figure 2: Verb class likelihood: (a) PCG results for
adults and children (aged 3;7–5;9); (b) Model’s results
given True Belief; (c) Model’s results given False Belief.

Figures 2(b) and (c) present the likelihoods of the
model’s Belief vs. Action verb prediction, over time,
for True and False Belief situations (True/False Be-
lief scene and SC syntax), respectively. We first
compare the responses of our model at the final stage
of training to those of adults in PCG. At this stage,
the model’s verb predictions (for both True and False
Belief) follow a similar trend to that of adult sub-
jects in PCG. The likelihood of Belief verbs is much
higher than the likelihood of Action verbs given a
False Belief situation. Moreover, the likelihood of
Belief verbs is higher given a False Belief situation,
compared to a True Belief situation.

Next, we compare the developmental pattern of
Belief/Action verb predictions in the model with the
difference in behaviour of children and adults in
PCG. We focus on the model’s responses after pro-
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cessing about 3000 input pairs, as it corresponds to
the trends observed for the children in PCG. At this
stage, the likelihood of Belief verbs is lower than
that of Action verbs for the True Belief situation,
but the pattern is reversed for False Belief; a pattern
similar to children’s behaviour in PCG (see Figure
2(a)). As in PCG, the likelihood of Belief verb pre-
dictions in our model is higher than that of Action
verbs for the False Belief situation, in both “child”
and “adult” stages, with a larger difference as the
model ‘ages’ (i.e., processes more input). For the
True Belief situation also the pattern is similar to
that of PCG: Belief verbs are less likely than Action
verbs to be predicted at early stages, but as the model
receives more input, the likelihood of Belief verbs
becomes slightly higher than that of Action verbs.

PCG’s hypothesis of greater attention to the action
content of a scene implicitly implies that children
focus on the action semantics and syntax of the em-
bedded SC of a Belief verb. We have suggested in-
stead that the focus is on the action semantics within
the context of the SC syntax of the MSV. To directly
evaluate the necessity of our latter assumption, we
performed a simulation using both action syntax and
semantics to represent the physical interpretation of
the belief scene. Specifically, the syntactic features
in this representation were non-SC structure with
only one verb. Based on these settings, the model
predicted high likelihood for the Belief verbs from a
very early stage, not showing the same delayed ac-
quisition pattern exhibited by PCG’s results. This
result suggests that the SC syntax plays an impor-
tant role in MSV acquisition.

6 Discussion

Various studies have considered why mental state
verbs (MSVs) appear relatively late in children’s
productions (e.g., Shatz et al., 1983; Bartsch and
Wellman, 1995). The Human Simulation Paradigm
has revealed that adult participants tend to focus on
the physical action cues of a scene (Gleitman et al.,
2005). PCG’s results further show that cues empha-
sizing mental content lead to a significant increase
in MSV responses in such tasks. Moreover, they
show that a sentential complement (SC) structure is
a stronger cue to an MSV than the semantic cues
emphasizing mental content.

In this paper we adapt a computational Bayesian
model to analyze such semantic and syntactic cues
in the ability of children to identify them. We sim-
ulate an attentional mechanism of the growing sen-
sitivity to mental content in a scene into the model.
We show that both the ability to observe the obscure
mental content and the ability to recognize the use of
an SC structure are essential to replicate PCG’s ob-
servations. Moreover, our results predict the strong
association of MSVs to the SC syntax, for the first
time (to our knowledge) in a computational model.

Children often use verbs other than MSVs in ex-
perimental settings in which MSVs would be the ap-
propriate or correct verb choice (Asplin, 2002; Kidd
et al., 2006; Papafragou et al., 2007). Our model
presents similar variability in verb choice. One un-
derlying cause of this behaviour in the model is its
association of action semantics to SC syntax, due to
the tendency to observe the physical cues in a scene
associated with an utterance using an MSV with an
SC. Preliminary results (not reported here) imply
that the association of perception and communica-
tion verbs that frequently appear with SC contribute
to this pattern of verb choice (see de Villiers, 2005,
for theoretical support). Our results require further
work to fully understand this behaviour.

Finally, our model will facilitate future work in re-
gards to the performative usage of MSVs, in which
MSVs do not indicate mental content, but rather di-
rect the conversation. Several studies (e.g., Diessel
and Tomasello, 2001; Howard et al., 2008), have re-
ferred to the role performative use likely plays in
MSV acquisition, since the first MSV usages by
children are performative. The semantic properties
MSVs take in performative usages is not currently
represented in our lexicon. However, the physical
interpretation of the mental scene that we have used
in our experiments here is similar to the performa-
tive usage: i.e., the main perceived action and the
observed syntactic structure are the same. At the
moment, our results imply that the association of
MSVs with their genuine mental meaning is delayed
by interpretations of the mental scene which over-
look the mental content. In the future, we aim to in-
corporate the semantic representation of performa-
tive usages to better analyze their effect on MSV ac-
quisition.
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Abstract

For a given concrete noun concept, humans
are usually able to cite properties (e.g.,ele-
phant is animal, car has wheels) of that con-
cept; cognitive psychologists have theorised
that such properties are fundamental to un-
derstanding the abstract mental representation
of concepts in the brain. Consequently, the
ability to automatically extract such properties
would be of enormous benefit to the field of
experimental psychology. This paper investi-
gates the use of semi-supervised learning and
support vector machines to automatically ex-
tract concept-relation-feature triples from two
large corpora (Wikipedia and UKWAC) for
concrete noun concepts. Previous approaches
have relied on manually-generated rules and
hand-crafted resources such as WordNet; our
method requires neither yet achieves bet-
ter performance than these prior approaches,
measured both by comparison with a property
norm-derived gold standard as well as direct
human evaluation. Our technique performs
particularly well on extracting features rele-
vant to a given concept, and suggests a number
of promising areas for future focus.

1 Introduction
The representation of concrete concepts (e.g.,car,

banana, spanner) in the human brain has long been
an important area of investigation for cognitive psy-
chologists. Recent theories of this mental repre-
sentation have proposed a componential, property-
based and distributed model of conceptual knowl-
edge (e.g., Farah and McClelland (1991), Randall et
al. (2004), Tyler et al. (2000)).

In order to empirically test these cognitive the-
ories, researchers have moved towards employing
real-world knowledge in their experiments. This
knowledge has usually been procured from human-

derived lists of properties taken from property norm-
ing studies (Garrard et al., 2001; McRae et al.,
2005). In such studies, human participants are
asked to describe and note properties of a given
concept (e.g.,has shell for turtle). Synonymous
responses are grouped together as a single prop-
erty and those meeting a certain minimum response-
frequency threshold are taken as valid properties.
The most wide-ranging study to date was that con-
ducted by McRae et al. (2005): some sample prop-
erties from this set are in Table 1.

As others have noted (Murphy, 2002; McRae et
al., 2005), property norming studies are prone to a
number of deficiencies. One such weakness is the
incongruity of shared properties across even highly-
related concepts: human respondents exhibit a lack
of consistency when listing properties that are com-
mon to many similar concepts. For example, while
has legs is listed as a property ofcrocodile in the
McRae norms, it is absent as a property ofalliga-
tor. A related issue is the non-comprehensive nature
of the generated norms – although they may cover
the most salient properties for a given concept, they
are unlikely to comprise all of a concept’s properties
(e.g.,has heart does not appear as a property of any
of the 92 animal concepts).

Our research aims to use NLP techniques to cre-
ate a system able to emulate the output of such
studies, and overcome some of the aforementioned
weaknesses. Our proposed system begins by search-
ing dependency-parsed corpora for those sentences
containing concept and feature terms which are
also found in a McRae norm-derived training set
of properties. For these sentences, the system
generates grammatical relation/part-of-speech struc-
tural attributes and applies support vector machines
(SVMs) to learn sets of attributes likely to indicate
the instantiation of a property in a sentence. These
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turtle bowl

has a shell 25 is round 19
lays eggs 16 used for eating 12
swims 15 used for soup 11
is green 14 used for food 11
lives in water 14 used for liquids 10
is slow 13 used for eating cereal 10
an animal 11 made of plastic 8
walks 10 used for holding things 7
walks slowly 10 is curved 7
has 4 legs 9 found in kitchens 7

Table 1: Top ten properties from McRae norms with pro-
duction frequencies forturtle andbowl.

learned patterns of salient attributes are finally ap-
plied to a corpus to derive new properties for unseen
concepts.

Our task is a challenging one: the properties we
seek are extremely diverse in their form. They range
from the simple (e.g.,banana is yellow) to the com-
plex (e.g.,bayonet found at the end of a gun). Al-
though the properties can broadly be divided into
a number of categories (encyclopedic, taxonomic,
functional, etc) there is not a great deal of regular-
ity in the nature of the properties a given noun will
likely possess: it is highly concept-dependent.

Furthermore, we hope to derive these properties
from corpora, with the assumption that these prop-
erties will manifest themselves therein. Indeed, An-
drews et al. (2005) discuss a theory of human knowl-
edge which relies on a combination of both dis-
tributional (i.e., derived from spoken and written
language) and experiential data (i.e., that derived
from our interactions with the real world), claiming
that the necessary contribution of each data-type for
a comprehensive human semantic representation is
non-trivial. Finally, there are difficulties associated
with evaluating our system’s output directly against
a set of human-generated property norms: we dis-
cuss these in further detail later.

Given their provenance, the properties found in
property norms are free-form. To simplify our task
we apply a more rigid representation to the proper-
ties we already have and to those we aim to seek. We
delineate each property into aconcept relation fea-

ture triple (see Section 2.2) and our task becomes
one of finding validrelation feature pairs given a par-
ticularconcept. This recoding renders our task more
well-defined and makes evaluation of our method

reptile1

NNS

include2VBP

species0IN

of3IN

turtle5

NN

dobj

five1

DT

ncmod ncmod

dobj

marine0NNP

ncmod ncsubj

Figure 1: C&C-derived GR-POS graph for the sentence
Marine reptiles include five species of turtle.

more comparable to previous and related work.
Having framed our task in this way, there is an

obvious parallel with relation extraction: both ne-
cessitate the selection/classification of relationships
between individual entities (in our case, between
concept and feature). Hearst (1992) was the first
to propose a pattern-based approach to this task us-
ing lexico-syntactic patterns to automatically extract
hyponyms and this technique has frequently been
used for ontology learning. For example, Pantel and
Pennacchiotti (2008) linked instantiations of a set of
semantic relations into existing semantic ontologies
and Davidov et al. (2007) employed seed concepts
from a given semantic class to discover relations
shared by concepts in that class.

Our task is more complex than classic relation ex-
traction for two main reasons: 1) the relations which
we aim to extract are not limited to a small set of
just a few well-defined relations (e.g.,is-a andpart-
of) nor to the relations of a specific semantic class
(e.g.,capital-is for countries). Indeed the relations
can be as many and diverse as the concepts them-
selves (e.g., each concept could possess a unique
and distinguishing relation and feature). 2) We are
attempting to simultaneously extract two pieces of
information: features of the concept and those fea-
tures’ defining relationship with the concept, but
only those relations and features which would be
classified as ‘common-sense’, something which is
easy for humans to recognise but difficult (if not im-
possible) to describe rigorously or formally.

There has recently been work on the automatic ex-
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traction of binary relations that scale to a web cor-
pus, for example the ReVerb (Etzioni et al., 2011)
and WOE (Wu and Weld, 2010) systems. These
systems are designed to extract legitimate relations
from a given sentence. In contrast, our aim is to cap-
ture more general relationships which are ‘common-
sense’; just because an extracted relation is correct
in a given context does not automatically make it
true in general. Previous reasoned approaches to our
task have taken their lead from Hearst and her suc-
cessors, employing manually-created rulesets to ex-
tract such properties from corpora (e.g., Baroni et al.
(2009), Devereux et al. (2010), and our comparison
system (Kelly et al., 2010)). Baroni et al. extract re-
lational information in the form of ‘type-sketches’,
which give an approximate, implicit description of
the relationship whereas we are aiming to extract
explicit relations between the target concept and its
corresponding features. Devereux et al. and Kelly
et al. have attempted this, but both employ WordNet
(Fellbaum, 1998) to extract semantic relatedness in-
formation.

We use semi-supervised learning as it offers a
flexible technique of harnessing small amounts of
labelled data to derive information from unlabelled
datasets/corpora and allows us to guide the extrac-
tion towards our desired ‘common-sense’ output.
We chose SVMs as they have been used for a va-
riety of tasks in NLP (e.g., Joachims et al. (1998),
Giménez and Marquez (2004)). We will demon-
strate that our system’s performance exceeds that of
Kelly et al. (2010) and Etzioni et al. (2011). It is, as
far as we are aware, the first work to employ semi-
supervised learning for this task.

2 Method
We will use SVMs to learn lexico-syntactic pat-

terns in our corpora corresponding to known prop-
erties in order to find new ones. Training an SVM
requires a labelled training set. To generate this
set we harness our already-known concepts/features
(and their relationships) from the McRae norms to
find instantiations of said relationships within our
corpora. We use parsed sentence information from
our corpora to create a set of attributes describing
each relationship, our learning patterns. In doing
so, we are assuming that across sentences in our
corpora containing a concept/feature pair found in

the McRae norms, there will be a set of consistent
lexico-syntactic patterns which indicate the same re-
lationship as that linking the pair in the norms.

Thus we iterate over our chosen corpora, parsing
each concept-containing sentence to yield grammat-
ical relation (GR) and part-of-speech (POS) infor-
mation from which we can create a GR-POS graph
relating the two. Then for each triple, we find any/all
paths through the graph which link theconcept to its
feature and use the correspondingrelation to label
this path. We collect descriptive information about
the path in the form of attributes describing it (e.g.,
path nodes, labels, length) to create a training pattern
specific to thatconcept relation feature triple and
sentence. It is these lists of attributes (and theirrela-
tion labels) which we employ as the labelled training
set and as input for our SVM.

2.1 Corpora
We employ two corpora for our experiments:

Wikipedia and the UKWAC corpus (Ferraresi et al.,
2008). These are both publicly available and web-
based: the former a source of encyclopedic infor-
mation and the latter a source of general text. Our
Wikipedia corpus is based on a Sep 2009 version
of English-language Wikipedia and contains around
1.84 million articles (>1bn words). Our UKWAC
corpus is an English-language corpus (>2bn words)
obtained by crawling the.uk internet domain.

2.2 Training data
Our experiments use a British-English version of

the McRae norms (see Taylor et al. (2011) for de-
tails). We needed to recode the free-form McRae
properties into relation-classes and features which
would be usable for our learning algorithm. As
we will be matching the features from these prop-
erties with individual words in the training corpus
it was essential that the features we generated con-
tained only one lemmatised word. In contrast, the
relations were merely labels for the relationship de-
scribed (they did not need to occur in the sentences
we were training from) and therefore needed only
to be single-string relations. This allowed preposi-
tional verbs as distinct relations, something which
has not been attempted in previous work yet can be
semantically significant (e.g., the relationsused-in,
used-for andused-by have dissimilar meanings).

We applied the following sequential multi-step
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process to our set of free-form properties to distill
them to triples of the formconcept relation feature,
whererelation can be a multi-word string andfeature
is a single word:

1. Translation of implicit properties to their correct re-
lations (e.g.,pig an animal→ pig is an animal).

2. Removal of indefinite and definite articles.

3. Behavioural properties become “does” properties
(e.g.,turtle beh eats→ turtle does eats).

4. Negative properties given their own relation classes
(e.g.,turkey does cannot fly→ turkey doesnt fly).

5. All numbers are translated to named cardinals (e.g.,
spider has 8 legs→ spider has eight legs).

6. Some of the norms already contained synonymous
terms: these were split into separate triples for each
synonym (e.g.,pepper tastes hot/spicy→ pepper
tastes hotandpepper tastes spicy).

7. Prepositional verbs were translated to one-word,
hyphenated strings (e.g.,made of→ made-of).

8. Properties with present participles as the penulti-
mate word were split into one including the verb as
the feature and one including it in the relation (e.g.,
envelope used for sending letters→ envelope used-
for-sending lettersandenvelope used-for sending).

9. Any remaining multi-word properties were split
with the first term after the concept acting as the
relation (e.g.,bull has ring in its nose→ bull has
ring, bull has in, bull has itsandbull has nose).

10. All remaining stop-words were removed; properties
ending in stop-words (e.g.,bull has inandbull has
its) were removed completely.

This yielded 7,518 property-triples with 254 distinct
relations and an average of 14.7 triples per concept.

2.3 Parsing
We parsed both corpora using the C&C parser

(Clark and Curran, 2007) as we employ both GR
and POS information in our learning method. To ac-
celerate this stage, we process only sentences con-
taining a form (e.g., singular/plural) of one of our
training/testing concepts. We lemmatise each word
using the WordNet NLTK lemmatiser (Bird, 2006).
Parsing our corpora yields around 10Gb and 12Gb
of data for UKWAC and Wikipedia respectively.

The C&C dependency parse output contains, for
a given sentence, a set of GRs forming an acyclic
graph whose nodes correspond to words from the
sentence, with each node also labelled with the POS
of that word. Thus the GR-POS graph interrelates all

lexical, POS and GR information for the entire sen-
tence. It is therefore possible to construct a GR-POS
graph rooted at our target term (the concept in ques-
tion), with POS-labelled words as nodes, and edges
labelled with GRs linking the nodes to one another.
An example graph can be seen in Figure 1.

2.4 Support vector machines
We use SVMs (Cortes and Vapnik, 1995) for our

experiments as they have been widely used in NLP
and their properties are well-understood, showing
good performance on classification tasks (Meyer et
al., 2003). In their canonical form, SVMs are non-
probabilistic binary linear classifiers which take a set
of input data and predict, for each given input, which
of two possible classes it corresponds to.

There are more than two possible relation-labels
to learn for our input patterns, so ours is a multi-class
classification task. For our experiments we use the
SVM Light Multiclass (v. 2.20) software (Joachims,
1999) which applies the fixed-point SVM algorithm
described by Crammer and Singer (2002) to solve
multi-class problem instances. Joachims’ software
has been widely used to implement SVMs (Vinok-
ourov et al., 2003; Godbole et al., 2002).

2.5 Attribute selection
Previous techniques for our task have made use of

lexical, syntactic and semantic information. We are
deliberately avoiding the use of manually-created
semantic resources, so we rely only on lexical and
syntactic attributes for our learning stage (i.e., the
GR-POS paths described earlier).

A table of all the categories of attributes we ex-
tract for each GR-POS path are in Table 2.4, together
with attributes from the path linkingturtle andreptile

in our example sentence (see Figure 1).
We ran our experiments with two vector-types

which we call our ‘verb-augmented’ and our ‘non-
augmented’ vector-types. The sets are identical ex-
cept the verb-augmented vector-type will also con-
tain an additional attribute category containing an
attribute for every instance of a relation verb (i.e.,
a verb which is found in our training set of relations,
e.g.,become, cause, taste, use, haveand so on) in
the lexical path. We do this to ascertain whether this
additional verb-information might be more informa-
tive to our system when learning relations (which
tend to be composed of verbs).
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Attribute category Example attribute(s)

GR path-length LEN
lemmatised anchor node LEM=turtle
POS of anchor node POS=NN
GR path labels GR1=dobjR
from anchor GR2=ncmodR
(indexed) GR3=dobjR

GR4=ncsubjN
GR path labels GR1=ncsubjR
from target GR2=dobjN
(indexed) GR3=ncmodN

GR4=dobjN
POS of path nodes POS1=IN
from anchor POS2=NNS
(indexed) POS3=VBP

POS4=NNS
POS of path nodes POS1=NNS
from target POS2=VBP
(indexed) POS3=NNS

POS4=IN
lemmatised path nodes LEM=include
(bag of words) LEM=species

LEM=of
POS of all path nodes POS=IN
(set) POS=NNS

POS=VBP
Relation verbs N/A
GR path labels GR=dobjR
(set) GR=ncmodN

GR=ncsubjN
lemmatised target node LEM=reptile
POS of target node POS=NNS

Table 2: An example vector for an instance of the
relation-labelis. The attributes are distinguished from
one another by their attribute category. Relation verbs
only appear in the verb-augmented vector-type and no
such verbs appear in our example sentence, so this cat-
egory of attribute is empty. All attributes in the table will
receive the value1.0 except theLEN attribute which will
have the value0.2 (the reciprocal of the path length, 5).

We considered allocating a ‘no-rel’ relation la-
bel to those sets of attributes corresponding to paths
through the GR-POS graph which didnot link the
concept to a feature found in our training data;
however our initial experiments indicated the SVM
model would assign every pattern we tested to the
‘no-rel’ relation. Therefore we used only positive
instances in our training pattern data.

We cycle through all training concepts/features,
finding sentences containing both. For each such
sentence, our system generates the attributes from
the GR-POS path linking the concept to the fea-
ture (the linking-path) to create a pattern for that
pair, in the form of a relation-labelled vector con-

taining real-valued attributes. The system assigns
1.0 to all attributes occurring in a given path
and theLEN value receives the reciprocal of the
path-length.1 Each linking-path is collected into a
relation-labelled, sparse vector in this manner. In
the larger UKWAC corpus this corresponds to over
29 million unique attributes across all found linking-
paths (this figure corresponds to the dimensionality
of our vectors). We then pass all vectors to the learn-
ing module2 of SVM Light to generate a learned
model across all training concepts.

2.6 Extracting candidate patterns
Having trained our model, we must now find po-

tential features and relations for our test concepts
in our corpora. We again only examine sentences
which contain at least one of our test concepts. Fur-
thermore, to avoid a combinatorial explosion of pos-
sible paths rooted at those concepts we only permit
as candidates those paths whose anchor node is a
singular or plural noun and whose target node is ei-
ther a singular/plural noun or adjective. This filter-
ing corresponds to choosing patterns containing one
of the three most frequent anchor node POS tags
(NN, NNS andNNP) and target node POS tags (NN,
JJ andNNS) found during our training stage. These
candidate patterns constitute 92.6% and 87.7% of
all the vectors, respectively, from our training set
of patterns (on the UKWAC corpus). This pattern
pre-selection allows us to immediately ignore paths
which, despite being rooted at a test concept, are un-
likely to contain property norm-like information.

2.7 Generating and ranking triples
We next classified our test concepts’ candidate

patterns using the learned model. SVM Light as-
signs each pattern a relation-class from the training
set and outputs the values of the decision functions
from the learned model when applied to that par-
ticular pattern. The sign of these values indicates
the binary decision function choice, and their mag-
nitude acts as a measure of confidence. We wanted
those vectors which the model was most confident
in across all decision functions, so we took the sum
of the absolute values of the decision values to gen-
erate a pattern score for each vector/relation-label.

1All other possible attributes are assigned the value0.0.
2Using a regularisation parameter (C) value of 1.0 and de-

fault parameters otherwise.
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Vector-type Corpus βLL βPMI βSVM Prec. Recall F

Ignoring relation.

Non-augmented
Wikipedia 0.3 0.00 1.00 0.2214 0.3197 0.2564
UKWAC 0.10 0.05 0.60 0.2279 0.3330 0.2664
UKWAC-Wikipedia 0.35 0.00 0.75 0.2422 0.3533 0.2829

Verb-augmented
Wikipedia 0.20 0.00 0.65 0.2217 0.3202 0.2568
UKWAC 0.30 0.00 0.95 0.2326 0.3400 0.2720
UKWAC-Wikipedia 0.40 0.05 1.00 0.2444 0.3577 0.2859

With relation.

Non-augmented
Wikipedia 0.05 0.00 1.00 0.1199 0.1732 0.1394
UKWAC 0.05 0.00 1.00 0.1126 0.1633 0.1312
UKWAC-Wikipedia 0.05 0.00 0.65 0.1241 0.1808 0.1449

Verb-augmented
Wikipedia 0.05 0.00 1.00 0.1215 0.1747 0.1410
UKWAC 0.05 0.00 1.00 0.1190 0.1724 0.1387
UKWAC-Wikipedia 0.05 0.00 0.70 0.1281 0.1860 0.1494

Table 3: Parameter estimation both with and without relation, using our augmented and non-augmented vector-types
and across our two corpora and the combined corpora set.

From these patterns we derived an output set of
triples where the concept and feature of a triple cor-
responded to the anchor and target nodes of its pat-
tern and the relation corresponded to the pattern’s
relation-label. Identical triples from differing pat-
terns had their pattern scores summed to give a final
‘SVM score’ for that triple.

2.8 Calculating triple scores

A brief qualitative evaluation of our system’s out-
put indicates that although the higher-ranked (by
SVM score) features and relations were, for the most
part, quite sensible, there were some obvious output
errors (e.g., non-dictionary strings or verbs appear-
ing as features). Therefore we restricted our fea-
tures to those which appear as nouns or adjectives in
WordNet and excluded features containing an NLTK
(Bird, 2006) corpus stop-word. Despite these exclu-
sions, some general (and therefore less informative)
relation/feature combinations (e.g.,is good, is new)
were still ranking highly. To mitigate this, we ex-
tract both log-likelihood (LL) and pointwise mutual
information (PMI) scores for each concept/feature
pair to assess the relative saliency of each extracted
feature, with a view to downweighting common but
less interesting features. To speed up this and later
stages, we calculate both statistics for the top 1,000
triples extracted for each concept only.

PMI was proposed by Church and Hanks (1990)
to estimate word association. We will use it to mea-
sure the strength of association between a concept
and its feature. We hope that emphasising concept-
feature pairs with high mutual information will ren-
der our triples more relevant/informative.

We also employ the LL measure across our set of
concept-feature pairs. Proposed by Dunning (1993),
LL is a measure of the distribution of linguistic phe-
nomena in texts and has been used to contrast the
relative corpus frequencies of words. Our aim is to
highlight features which are particularly distinctive
for a given concept, and hence likely to be features
of that concept alone.

We calculate an overall score for a triple,t, by a
weighted combination of the triple’s SVM, PMI and
LL scores using the following formula:

score(t) = βPMI·PMI(t)+βLL ·LL(t)+βSVM·SVM(t)

where the PMI, SVM and LL scores are normalised
so they are in the range [0, 1]. The relativeβ weights
thus give an estimate of the three measures’ impor-
tance relative to one another and allows us to gauge
which combination of these scores is optimal.

2.9 Datasets
We also wanted to ascertain the extent to which

the output from both our corpora could be combined
to improve results, balancing the encyclopedic but
somewhat specific nature of Wikipedia with the gen-
erality and breadth of the UKWAC corpus. We com-
bined the output by summing individual SVM scores
of each triple from both corpora to yield a combined
SVM score. PMI and LL scores were then calcu-
lated as usual from this combined set of triples.

3 Experimental Evaluation
3.1 Evaluation methodology

We employ ten-fold cross-validation to ascertain
optimal SVM, LL and PMIβ parameters for our fi-
nal system. We exclude 44 concepts from our set of
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Relation Prec. Recall F

Kelly et al.
Without 0.1943 0.3896 0.2592
With 0.1102 0.2210 0.1471

ReVerb
Without 0.1142 0.2258 0.1514
With 0.0431 0.0864 0.0576

Our method
Without 0.2417 0.4847 0.3225
With 0.1238 0.2493 0.1654

Table 4: Our best scores on the ESSLLI set compared to
Kelly et al. (2010) and the ReVerb system (Etzioni et al.,
2011). Our results are from the verb-augmented vector-
type, using the combined UKWAC-Wikipedia corpus and
using theβ parameters highlighted in Table 3.

510 to use in our final system testing and split the
remaining 466 concepts randomly and evenly into
10 folds. We apply the training steps above to nine
of the folds, generating predictions for the single
held-out fold. We repeat this for all ten folds, yield-
ing relations and features with SVM, LL and PMI
scores for our full set of 466 training concepts on
the UKWAC, Wikipedia and combined corpora.

We varied theβ values from our scoring equa-
tion in the range [0,1] (interval 0.05) and com-
pared the top twenty triples for each concept directly
against the held-out training set. The best F-scores
and their correspondingβ values (evaluating on full
triples and concept-feature pairs alone) are in Ta-
ble 3. We can see that our best results employ the
verb-augmented vector-type and the combined cor-
pus, with a best F-score of 0.2859 when ignoring
the relation term and 0.1494 when including it in the
evaluation. The main difference between these two
results is the relative contribution of the reweighting
factors: the SVM score is the most important over-
all, but the LL and PMI scores come into play when
evaluating without the relation. This could be ex-
plained by the fact that the PMI and LL scores do
not use any relation terms in their calculations.

3.2 Quantitative evaluation
The unseen subset of the McRae norms is a set

of human-generated common-sense properties with
which our extracted properties can be compared.
However, an issue with the McRae norms is that
semantically identical properties can be represented
by lexically different triples. This problem was ac-
knowledged by Baroni et al. (2008) who created
a synonym-expanded set of properties for 44 con-
cepts (selected evenly across six semantic classes;
the 44 concepts we excluded for testing) to par-

Judge Judge
turtle A B bowl A B

is green c c is large p p
is small c c used for food c c
is species c c used for mixing c c
is marine c c used for storing food c c
used for sea r r used for storing soup r r
is animal c c is ceramic c c
is many p c is small p p
has shell c c used for storing cereal r r
is large c p used for storing spoon r r
is reptile c c used for storing sugar p c

Table 5: Our judges’ assessments of the correctness of the
top ten relation/feature pairs for two concepts extracted
from our best system.

tially solve it. This expansion set comprises the con-
cepts’ top ten properties from the McRae norms with
semi-automatically generated synonyms for each of
the ten distinct features. For example, the triple
turtle has shell was expanded to also includetur-
tle has shield andturtle has carapace.

We use the two best systems (i.e., including and
excluding the relation; highlighted in Table 3) to
generate two sets of top twenty output triples for
our 44 concepts. We then calculate precision, re-
call and F-scores for each against our synonym-
expanded set.3 Using this expanded set allows us
to compare our work with that of Kelly et al. (2010).
We also compare with the top twenty output of the
Reverb system Etzioni et al. (2011) using their pub-
licly available relations derived from the ClueWeb09
corpus, employing their normalized triples ranked
by frequency. All sets of results are in Table 4. We
note that even though Kelly et al. optimised their
algorithm on the ESSLLI set to yield a theoretical
best-possible score—we are evaluating ‘blind’—our
performance still shows an advance on theirs: the
improvement on both sets when comparing the pop-
ulation of F-scores across all 44 concepts is statisti-
cally significant at the 0.5% level.4

3.3 Human evaluation
The above does not quite offer the full picture:

unlike the features, the relations are not synonym-
expanded. Furthermore, it is possible that there

3We note that we are incorporating an upper bound for pre-
cision of 0.500 by comparing with only the top ten properties.

4Pairedt-tests. ‘With relation’:t = 3.524, d.f.= 43, p =

0.0010. ‘Without relation’: t = 3.503, d.f.= 43, p = 0.0011.
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Relation A B κ Agreements

With
c / p 146 161

0.7421 261 (87%)
r / w 153 138

Without
c / p 226 235

0.5792 255 (85%)
r / w 74 65

Table 6: Inter-annotator agreement for our best system,
both including and excluding the relation.

are correct properties being generated which simply
don’t appear in the ESSLLI evaluation set.

In order to address these concerns, we also per-
formed a human evaluation on 15 of our concepts.5

We asked two native English-speaking judges to de-
cide whether a given triple wascorrect,6 plausible,7

wrong but related,8 or wrong.9 We executed the
human evaluation on our two best systems (as de-
scribed above). As there were shared triples and
concept-feature pairs across the two output sets,
each triple and pair was evaluated only once. The
judges were aware of the purposes of the study but
were blind to the source sets. Some example judge-
ments are in Table 5.

The agreement results across all 15 concepts to-
gether with theirκ coefficients (Cohen, 1960) are
in Table 6. In our evaluation we conflated thecor-
rect/plausible and wrong but related/wrong cate-
gories (see also Kelly et al. (2010) and Devereux et
al. (2010)). We did this because of the subjective na-
ture of the judgements, and because we are seeking
properties which are indeed correct or at least plausi-
ble. These results indicate that our system is extract-
ing correct or plausible triples 51.1% of the time (ris-
ing to 76.8% when considering features only). They
also demonstrate a marked discrepancy between the
results for our two evaluations, reflecting the neces-
sity of human evaluation when assessing our partic-
ular task.

4 Discussion
In this paper we have shown that semi-supervised

learning techniques can automatically learn lexico-

5The 44 evaluation concepts had been separated into super-
ordinate categories for unrelated psycholinguistic research and
we selected our 15 proportionally and at random from these su-
perordinate categories.

6A correct, valid, feature.
7A triple which is plausible but only in a specific set of cir-

cumstances or a feature which was correct but very general.
8The triple is incorrect but there existed some sort of rela-

tionship between the concept and relation and/or feature.
9When the triple is simply wrong.

syntactic patterns indicative of property norm-like
relations and features. Using these patterns, our
system can extract relevant and accurate properties
from any parsed corpus and allows for multi-word
relation labels, allowing greater semantic precision.

As already mentioned, the work of Baroni et
al. (2009) is relevant to our own. Their approach
achieves a precision score of 0.239 on the top ten
returned features evaluated against the ESSLLI set:
our best system offers precision of 0.370 on the same
evaluation. Moreover, Baroni et al. do not explicitly
derive relation terms. We better the performance of
a comparable system (Kelly et al., 2010), even when
evaluating against an unseen set of concepts, and our
system does not use manually-generated rules or se-
mantic information. Furthermore, human evaluation
shows over half of our extracted properties are cor-
rect/plausible.

For future work, we have already mentioned that
we are ignoring a large amount of potentially in-
structive training data, specifically those GR-POS
paths in our corpus which don’t terminate on one of
our training features, as well as those paths through
sentences containing one of our concepts but none
of our training features. It might therefore be worth-
while investigating the use of this “negative” infor-
mation. Another potential avenue for exploration
would be the expansion of the learning vector-types.
Although we already use a significant number of
learning attributes (an average of 37.9 per training
pattern), we could include more: there may be addi-
tional information not directly on the GR-POS path
linking a concept and feature (e.g., nodes adjacent
to said path) which might be indicative of their re-
lationship. We would also consider using active-
learning, introducing a feedback loop and human-
annotation to better distinguish between relations
which our algorithm tends to classify incorrectly.
For example, we could supplement input pattern
data with disambiguating POS-GR graphs, drawing
a distinction between valid and non-valid relations.

Finally, our system could also be evaluated in the
context of a psycholinguistic experiment. For exam-
ple, we could use our system output to predict con-
cept similarity by using our extracted triples to cre-
ate vector representations of each concept, calculat-
ing the distance between those vectors and compar-
ing these similarity ratings with human judgements.
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Abstract

Some of the most robust effects of linguis-
tic variables on eye movements in reading are
those of word length. Their leading explana-
tion states that they are caused by visual acu-
ity limitations on word recognition. However,
Bicknell (2011) presented data showing that a
model of eye movement control in reading that
includes visual acuity limitations and models
the process of word identification from visual
input (Bicknell & Levy, 2010) does not pro-
duce humanlike word length effects, provid-
ing evidence against the visual acuity account.
Here, we argue that uncertainty about word
length in early word identification can drive
word length effects. We present an extension
of Bicknell and Levy’s model that incorpo-
rates word length uncertainty, and show that it
produces more humanlike word length effects.

1 Introduction

Controlling the eyes while reading is a complex
task, and doing so efficiently requires rapid deci-
sions about when and where to move the eyes 3–
4 times per second. Research in psycholinguistics
has demonstrated that these decisions are sensitive
to a range of linguistic properties of the text be-
ing read, suggesting that the eye movement record
may be viewed as a detailed trace of the timecourse
of incremental comprehension. A number of cog-
nitive models of eye movement control in read-
ing have been proposed, the most well-known of
which are E-Z Reader (Reichle, Pollatsek, Fisher, &
Rayner, 1998; Reichle, Rayner, & Pollatsek, 2003)

and SWIFT (Engbert, Longtin, & Kliegl, 2002; En-
gbert, Nuthmann, Richter, & Kliegl, 2005). These
models capture a large range of the known proper-
ties of eye movements in reading, including effects
of the best-documented linguistic variables on eye
movements: the frequency, predictability, and length
of words.

Both models assume that word frequency, pre-
dictability, and length affect eye movements in read-
ing by affecting word recognition, yet neither one
models the process of identifying words from visual
information. Rather, each of these models directly
specifies the effects of these variables on exoge-
nous word processing functions, and the eye move-
ments the models produce are sensitive to these
functions’ output. Thus, this approach cannot an-
swer the question of why these linguistic variables
have the effects they do on eye movement behav-
ior. Recently, Bicknell and Levy (2010) presented a
model of eye movement control in reading that di-
rectly models the process of identifying the text from
visual input, and makes eye movements to max-
imize the efficiency of the identification process.
Bicknell and Levy (2012) demonstrated that this
rational model produces effects of word frequency
and predictability that qualitatively match those of
humans: words that are less frequent and less pre-
dictable receive more and longer fixations. Because
this model makes eye movements to maximize the
efficiency of the identification process, this result
gives an answer for the reason why these variables
should have the effects that they do on eye move-
ment behavior: a model that works to efficiently
identify the text makes more and longer fixations on
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words of lower frequency and predictability because
it needs more visual information to identify them.

Bicknell (2011) showed, however, that the ef-
fects of word length produced by the rational model
look quite different from those of human readers.
Because Bicknell and Levy’s (2010) model imple-
ments the main proposal for why word length effects
should arise, i.e., visual acuity limitations, the fact
that the model does not reproduce humanlike word
length effects suggests that our understanding of the
causes of word length effects may be incomplete.

In this paper, we argue that this result arose be-
cause of a simplifying assumption made in the ra-
tional model, namely, the assumption that the reader
has veridical knowledge about the number of char-
acters in a word being identified. We present an ex-
tension of Bicknell and Levy’s (2010) model which
does not make this simplifying assumption, and
show in two sets of simulations that effects of word
length produced by the extended model look more
like those of humans. We argue from these results
that uncertainty about word length is a necessary
component of a full understanding of word length
effects in reading.

2 Reasons for word length effects

The empirical effects of word length displayed by
human readers are simple to describe: longer words
receive more and longer fixations. The major rea-
son proposed in the literature on eye movements in
reading for this effect is that when fixating longer
words, the average visual acuity of all the letters in
the word will be lower than for shorter words, and
this poorer average acuity is taken to lead to longer
and more fixations. This intuition is built into the ex-
ogenous word processing functions in E-Z Reader
and SWIFT. Specifically, in both models, the word
processing rate slows as the average distance to the
fovea of all letters in the word increases, and this
specification of the effect of length on word process-
ing rates is enough to produce reasonable effects of
word length on eye movements: both models make
more and longer fixations on longer words – similar
to the pattern of humans – across a range of mea-
sures (Pollatsek, Reichle, & Rayner, 2006; Engbert
et al., 2005) including the duration of the first fixa-
tion on a word (first fixation duration), the duration

of all fixations on a word prior to leaving the word
(gaze duration), the rate at which a word is not fix-
ated prior to a fixation on a word beyond it (skip
rate), and the rate with which a word is fixated more
than once prior to a word beyond it (refixation rate).

There are, however, reasons to believe that this ac-
count may be incomplete. First, while it is the case
that the average visual acuity of all letters in a fixated
word must be lower for longer words, this is just be-
cause there are additional letters in the longer word.
While these additional letters pull down the aver-
age visual acuity of letters within the word, each ad-
ditional letter should still provide additional visual
information about the word’s identity, an argument
suggesting that longer words might require less – not
more – time to be identified. In fact, in SWIFT, the
exogenous word processing rate function slows as
both the average and the sum of the visual acuities of
the letters within the word decrease, but E-Z Reader
does not implement this idea in any way. Addi-
tionally, a factor absent from both E-Z Reader and
SWIFT, is that the visual neighborhoods of longer
words (at least in English) appear to be sparser,
when considering the number of words formed by
a single letter substitution (Balota, Cortese, Sergent-
Marshall, Spieler, & Yap, 2004), or the average or-
thographic Levenshtein distance of the most simi-
lar 20 words (Yarkoni, Balota, & Yap, 2008). Be-
cause reading words with more visual neighbors is
generally slower (Pollatsek, Perea, & Binder, 1999),
this argument gives another reason to expect longer
words to require less – not more – time to be read.

So while E-Z Reader and SWIFT produce rea-
sonable effects of word length on eye movement
measures (in which longer words receive more and
longer fixations) by assuming a particular effect of
visual acuity, it is less clear whether a visual acu-
ity account can yield reasonable word length effects
in a model that also includes the two opposing ef-
fects mentioned above. Determining how these dif-
ferent factors should interact to produce word length
effects requires a model of eye movements in read-
ing that models the process of word identification
from disambiguating visual input (Bicknell & Levy,
in press). The model presented by Bicknell and Levy
(2010) fits this description, and includes visual acu-
ity limitations (in fact, identical to the visual acuity
function in SWIFT). As already mentioned, how-
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ever, Bicknell (2011) showed that the model did
not yield a humanlike length effect. Instead, while
longer words were skipped less often and refixated
more (as for humans), fixation durations generally
fell with word length – the opposite of the pattern
shown by humans. This result suggests that visual
acuity limitations alone cannot explain the positive
effect of word length on fixation durations in the
presence of an opposing force such as the fact that
longer words have smaller visual neighborhoods.

We hypothesize that the reason for this pattern
of results relates to a simplifying assumption made
by Bicknell and Levy’s model. Specifically, while
visual input in the model yields noisy information
about the identities of letters, it gives veridical in-
formation about the number of letters in each word,
for reasons of computational convenience. There are
theoretical and empirical reasons to believe that this
simplifying assumption is incorrect, that early in the
word identification process human readers do have
substantial uncertainty about the number of letters
in a word, and further, that this may be especially
so for long words. For example, results with masked
priming have shown that recognition of a target word
is facilitated by a prime that is a proper subset of
the target’s letters (e.g., blcn–balcon; Peressotti &
Grainger, 1999; Grainger, Granier, Farioli, Van Ass-
che, & van Heuven, 2006), providing evidence that
words of different length have substantial similarity
in early processing. For these reasons, some recent
models of isolated word recognition (Gomez, Rat-
cliff, & Perea, 2008; Norris, Kinoshita, & van Cast-
eren, 2010) have suggested that readers have some
uncertainty about the number of letters in a word
early in processing.

If readers have uncertainty about the length of
words, we may expect that the amount of uncertainty
would grow proportionally to length, as uncertainty
is proportional to set size in other tasks of num-
ber estimation (Dehaene, 1997). This would agree
with the intuition that an 8-character word should
be more easily confused with a 9-character word
than a 3-character word with a 4-character word. In-
cluding uncertainty about word length that is larger
for longer words would have the effect of increas-
ing the number of visual neighbors for longer words
more than for shorter words, providing another rea-
son (in addition to visual acuity limitations) that

longer words may require more and longer fixations.

In the remainder of this paper, we describe an
extension of Bicknell and Levy’s (2010) model in
which visual input provides stochastic – rather than
veridical – information about the length of words,
yielding uncertainty about word length, and in which
the amount of uncertainty grows with length. We
then present two sets of simulations with this ex-
tended model demonstrating that it produces more
humanlike effects of word length, suggesting that
uncertainty about word length may be an important
component of a full understanding of the effects of
word length in reading.

3 A rational model of reading

In this section, we describe our extension of Bicknell
and Levy’s (2010) rational model of eye movement
control in reading. Except for the visual input sys-
tem, and a small change to the behavior policy to
allow for uncertainty about word length, the model
is identical to that described by Bicknell and Levy.
The reader is referred to that paper for further com-
putational details beyond what is described here.

In this model, the goal of reading is taken to be
efficient text identification. While it is clear that this
is not all that readers do – inferring the underly-
ing structural relationships among words in a sen-
tence and discourse relationships between sentences
that determine text meaning is a fundamental part of
most reading – all reader goals necessarily involve
identification of at least part of the text, so text iden-
tification is taken to be a reasonable first approxima-
tion. There are two sources of information relevant
to this goal: visual input and language knowledge,
which the model combines via Bayesian inference.
Specifically, it begins with a prior distribution over
possible identities of the text given by its language
model, and combines this with noisy visual input
about the text at the eyes’ position, giving the likeli-
hood term, to form a posterior distribution over the
identity of the text taking into account both the lan-
guage model and the visual input obtained thus far.
On the basis of the posterior distribution, the model
decides whether or not to move its eyes (and if so
where to move them to) and the cycle repeats.
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3.1 Formal problem of reading: Actions

The model assumes that on each of a series of
discrete timesteps, the model obtains visual input
around the current location of the eyes, and then
chooses between three actions: (a) continuing to fix-
ate the currently fixated position, (b) initiating a sac-
cade to a new position, or (c) stopping reading. If
the model chooses option (a), time simply advances,
and if it chooses option (c), then reading immedi-
ately ends. If a saccade is initiated (b), there is a lag
of two timesteps, representing the time required to
plan and execute a saccade, during which the model
again obtains visual input around the current posi-
tion, and then the eyes move toward the intended
target. Because of motor error, the actual landing po-
sition of the eyes is normally distributed around the
intended target with the standard deviation in char-
acters given by a linear function of the intended dis-
tance d (.87+ .084d; Engbert et al., 2005).1

3.2 Language knowledge

Following Bicknell and Levy (2010), we use very
simple probabilistic models of language knowledge:
word n-gram models (Jurafsky & Martin, 2009),
which encode the probability of each word condi-
tional on the n−1 previous words.

3.3 Formal model of visual input

Visual input in the model consists of noisy informa-
tion about the positions and identities of the charac-
ters in the text. Crucially, in this extended version
of the model, this includes noisy information about
the length of words. We begin with a visual acuity
function taken from Engbert et al. (2005). This func-
tion decreases exponentially with retinal eccentric-
ity ε , and decreases asymmetrically, falling off more
slowly to the right than the left.2 The model obtains
visual input from the 19 character positions with the
highest acuity ε ∈ [−7,12], which we refer to as
the perceptual span. In order to provide the model
with information about the current fixation position
within the text, the model also obtains veridical in-

1In the terminology of the literature, the model has only ran-
dom motor error (variance), not systematic error (bias). Follow-
ing Engbert and Krügel (2010), systematic error may arise from
Bayesian estimation of the best saccade distance.

2While we refer to this function as visual acuity, it is clear
from its asymmetric nature that it has an attentional component.

formation about the number of word boundaries to
the left of the perceptual span.

Visual information from the perceptual span con-
sists of stochastic information about the number of
characters in the region and their identities. We make
the simplifying assumption that the only characters
are letters and spaces. Formally, visual input on a
given timestep is represented as a string of symbols,
each element of which has two features. One fea-
ture denotes whether the symbol represents a space
([+SPACE]) or a letter ([−SPACE]), an important dis-
tinction because spaces indicate word boundaries.
Symbols that are [+SPACE] veridically indicate the
occurrence of a space, while [−SPACE] symbols pro-
vide noisy information about the letter’s identity.
The other feature attached to each symbol speci-
fies whether the character in the text that the symbol
was emitted from was being fixated ([+FIX]) or not
([−FIX]). The centrally fixated character has special
status so that the model can recover the eyes’ posi-
tion within the visual span.

This visual input string is generated by a pro-
cess of moving a marker from the beginning to the
end of the perceptual span, generally inserting a
symbol into the visual input string for each char-
acter it moves across (EMISSION). To provide only
noisy information about word length, however, this
process is not always one of EMISSION, but some-
times it inserts a symbol into the visual input string
that does not correspond to a character in the text
(INSERTION), and at other times it fails to insert
a symbol for a character in the text (SKIPPING).
Specifically, at each step of the process, a deci-
sion is first made about INSERTION, which occurs
with probability δ . If INSERTION occurs, then a
[−SPACE] identity for the character is chosen ac-
cording to a uniform distribution, and then noisy vi-
sual information about that character is generated in
the same way as for EMISSION (described below).
If a character is not inserted, and the marker has al-
ready moved past the last character in the perceptual
span, the process terminates. Otherwise, a decision
is made about whether to emit a symbol into the vi-
sual input string from the character at the marker’s
current position (EMISSION) or whether to skip out-
putting a symbol for that character (SKIPPING). In
either case, the marker is advanced to the next char-
acter position. If the character at the marker’s cur-
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Figure 1: The expectation for the posterior distribution
over the length of a word for actual lengths 1–10 after the
model has received 1, 2, or 3 timesteps of visual input
about the word, for two levels of length uncertainty: δ ∈
{.05, .1}. These calculations use as a prior distribution
the empirical distribution of word length in the BNC and
assume no information about letter identity.

rent position is [+SPACE] or [+FIX], then EMISSION

is always chosen, but if it is any other character, then
SKIPPING occurs with probability δ .

A [−SPACE] symbol (produced through EMIS-
SION or INSERTION) contains noisy information
about the identity of the letter that generated it, ob-
tained via sampling. Specifically, we represent each
letter as a 26-dimensional vector, where a single el-
ement is 1 and the others are zeros. Given this rep-
resentation, a [−SPACE] symbol contains a sample
from a 26-dimensional Gaussian with a mean equal
to the letter’s true identity and a diagonal covariance
matrix Σ(ε) = λ (ε)−1I, where λ (ε) is the visual
acuity at eccentricity ε . We scale the overall process-
ing rate by multiplying each rate by Λ, set to 8 for
the simulations reported here.

Allowing for INSERTION and SKIPPING means
that visual input yields noisy information about the
length of words, and this noise is such that uncer-
tainty is higher for longer words. Figure 1 gives a
visualization of this uncertainty. It shows the expec-
tation for the posterior distribution over the length
of a word for a range of actual word lengths, after
the model has received 1, 2, or 3 timesteps of visual
input about the word, at two levels of uncertainty.
This figure demonstrates two things: first, that there
is substantial uncertainty about word length even af-
ter three timesteps of visual input, and second, that
this uncertainty is larger for longer words.

(a) m = [.6, .7, .6, .4, .3, .6]: Keep fixating (3)
(b) m = [.6, .4, .9, .4, .3, .6]: Move back (to 2)
(c) m = [.6, .7, .9, .4, .3, .6]: Move forward (to 6)
(d) m = [.6, .7, .9, .8, .7, .7]: Stop reading

Figure 2: Values of m for a 6 character text under which
a model fixating position 3 would take each of its four
actions, if α = .7 and β = .5.

3.4 Inference about text identity

The model’s initial beliefs about the identity of
the text are given by the probability of each pos-
sible identity under the language model. On each
timestep, the model obtains a visual input string as
described above and calculates the likelihood of gen-
erating that string from each possible identity of the
text. The model then updates its beliefs about the
text via standard Bayesian inference: multiplying the
probability of each text identity under its prior be-
liefs by the likelihood of generating the visual input
string from that text identity and normalizing. We
compactly represent all of these distributions using
weighted finite-state transducers (Mohri, 1997) us-
ing the OpenFST library (Allauzen, Riley, Schalk-
wyk, Skut, & Mohri, 2007), and implement be-
lief update with transducer composition and weight
pushing.

3.5 Behavior policy

The model uses a simple policy with two parame-
ters, α and β , to decide between actions based on
the marginal probability m of the most likely char-
acter c in each position j,

m( j) = max
c

p(w j = c)

where w j indicates the character in the jth posi-
tion. A high value of m indicates relative confidence
about the character’s identity, and a low value rel-
ative uncertainty. Because our extension has uncer-
tainty about the absolute position of its eyes within
the text, each position j is now defined relative to the
centrally fixated character.

Figure 2 illustrates how the model decides among
four possible actions. If the value of m( j) for the cur-
rent position of the eyes is less than the parameter
α , the model continues fixating the current position
(2a). Otherwise, if the value of m( j) is less than the
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parameter β for some leftward position, the model
initiates a saccade to the closest such position (2b).
If no such positions exist to the left, the model initi-
ates a saccade to n characters past the closest posi-
tion to the right for which m( j) < α (2c).3 Finally,
if no such positions exist, the model stops reading
(2d). Intuitively, then, the model reads by making a
rightward sweep to bring its confidence in each char-
acter up to α , but pauses to move left to reread any
character whose confidence falls below β .

4 Simulation 1: full model

We now assess the effects of word length produced
by the extended version of the model. Following
Bicknell (2011), we use the model to simulate read-
ing of a modified version of the Schilling, Rayner,
and Chumbley (1998) corpus of typical sentences
used in reading experiments. We compare three lev-
els of length uncertainty: δ ∈ {0, .05, .1}. The first
of these (δ = 0) corresponds to Bicknell and Levy’s
(2010) model, which has no uncertainty about word
length. We predict that increasing the amount of
length uncertainty will make effects of word length
more like those of humans, and we compare the
model’s length effects to those of human readers of
the Schilling corpus.

4.1 Methods
4.1.1 Model parameters and language model

Following Bicknell (2011), the model’s language
knowledge was an unsmoothed bigram model using
a vocabulary set consisting of the 500 most frequent
words in the British National Corpus (BNC) as well
as all the words in the test corpus. Every bigram in
the BNC was counted for which both words were in
vocabulary, and – due to the intense computation re-
quired for exact inference – this set was trimmed by
removing rare bigrams that occur less than 200 times
(except for bigrams that occur in the test corpus), re-
sulting in a set of about 19,000 bigrams, from which
the bigram model was constructed.

4.1.2 Optimization of policy parameters
We set the parameters of the behavior policy

(α,β ) to values that maximize reading efficiency.
3The role of n is to ensure that the model does not center

its visual field on the first uncertain character. For the present
simulations, we did not optimize this parameter, but fixed n = 3.

We define reading efficiency E to be an interpolation
of speed and accuracy, E = (1−γ)L−γT , where L is
the log probability of the true identity of the text un-
der the model’s beliefs at the end of reading, T is the
number of timesteps before the model stopped read-
ing, and γ gives the relative value of speed. For the
present simulations, we use γ = .1, which produces
reasonably accurate reading. To find optimal values
of the policy parameters α and β for each model, we
use the PEGASUS method (Ng & Jordan, 2000) to
transform this stochastic optimization problem into
a deterministic one amenable to standard optimiza-
tion algorithms, and then use coordinate ascent.

4.1.3 Test corpus
We test the model on a corpus of 33 sentences

from the Schilling corpus slightly modified by
Bicknell and Levy (2010) so that every bigram oc-
curred in the BNC, ensuring that the results do not
depend on smoothing.

4.1.4 Analysis
With each model, we performed 50 stochastic

simulations of the reading of the corpus. For each
run, we calculated the four standard eye movement
measures mentioned above for each word in the cor-
pus: first fixation duration, gaze duration, skipping
probability, and refixation probability. We then av-
eraged each of these four measures across runs for
each word token in the corpus, yielding a single
mean value for each measure for each word.

Comparing the fixation duration measures to hu-
mans required converting the model’s timesteps into
milliseconds. We performed this scaling by multi-
plying the duration of each fixation by a conversion
factor set to be equal to the mean human gaze du-
ration divided by the mean model gaze duration for
words with frequencies higher than 1 in 100, mean-
ing that the model predictions exactly match the hu-
man mean for gaze durations on these words.

4.2 Results

Figure 3 presents the results for all four measures
of interest. Looking first at the model with no un-
certainty, we see that the results replicate those of
Bicknell (2011): while there is a monotonic effect
of word length on skip rates and refixation rates in
the same direction as humans, longer words receive
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Figure 3: Effects of word length in three version of the
full model with δ = 0 (red), δ = 0.05 (green), and δ =
0.1 (blue) on first fixation durations, gaze durations, skip
rates, and refixation rates compared with the empirical
human data for this corpus (purple). Estimates obtained
via loess smoothing and plotted with standard errors.

shorter fixations in the model, opposite to the pattern
found in human data. As predicted, adding length
uncertainty begins to reverse this effect: as uncer-
tainty is increased, the effect of word length on fixa-
tion durations becomes less negative.

However, while these results look more like those
of humans, there are still substantial differences. For
one, even for the model with the most uncertainty,
the effect of word length – while not negative – is
also not really positive. Second, the effect appears
rather non-monotonic. We hypothesize that these
two problems are related to the aggressive trimming
we performed of the model’s language model. By re-
moving low frequency words and bigrams, we artifi-
cially trimmed especially the visual neighborhoods
of long words, since frequency and length are nega-
tively correlated. This could have led to another in-
verse word length effect, which even adding more
length uncertainty was unable to fully overcome. In
effect, extending the visual neighborhoods of long
words (by adding length uncertainty) may not have
much effect if we have removed all the words that
would be in those extended neighborhoods. In ad-
dition, the aggressive trimming could have been re-
sponsible for the non-monotonicities apparent in the
model’s predictions. We performed another set of

simulations using a language model with substan-
tially less trimming to test these hypotheses.

5 Simulation 2: model without context

In this simulation, we used a unigram language
model instead of the bigram language model used
in Simulation 1. Since this model cannot make use
of linguistic context, it will not show as robust ef-
fects of linguistic variables such as word predictabil-
ity (Bicknell & Levy, 2012), but since here our fo-
cus is on effects of word length, this limitation is
unlikely to concern us. Crucially, because of the
model’s simpler structure, it allows for the use of
a substantially larger vocabulary than the bigram
model used in Simulation 1. In addition, using this
model avoids the problems mentioned above associ-
ated with trimming bigrams. We predicted that this
language model would allow us to obtain effects of
word length on fixation durations that were actu-
ally positive (rather than merely non-negative), and
that there would be fewer non-monotonicities in the
function.

5.1 Methods
Except the following, the methods were identical
to those of Simulation 1. We replaced the bigram
language model with a unigram language model.
Training was performed in the same manner, except
that instead of including only the most common 500
words in the BNC, we included all words that occur
at least 200 times (corresponding to a frequency of
2 per million; about 19,000 words). Because of the
greater computational complexity for the two mod-
els with non-zero δ , we performed only 20 simula-
tions of the reading of the corpus instead of 50.

5.2 Results
Figure 4 presents the results for all four measures
of interest. Looking at the model with no uncer-
tainty, we see already that the predictions are a sub-
stantially better fit to human data than was the full
model. The skipping and refixation rates look sub-
stantially more like the human curves. And while
the word length effect on first fixation duration is
still negative, it is already non-negative for gaze du-
ration. This supports our hypotheses that aggres-
sive trimming were partly responsible for the full
model’s negative word length effect.
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Figure 4: Effects of word length in three version of the
model without context (unigram model) with δ = 0 (red),
δ = 0.05 (green), and δ = 0.1 (blue) on first fixation dura-
tions, gaze durations, skip rates, and refixation rates com-
pared with the empirical human data for this corpus (pur-
ple). Estimates obtained via loess smoothing and plotted
with standard errors.

Moving on to the models with uncertainty, we see
that predictions are still in good agreement with hu-
mans for skip rates and refixation rates. More in-
terestingly, we see that adding length uncertainty
makes both durations measures relatively positive
functions of word length. While the overall size of
the effect is incorrect for first fixation durations, we
see striking similarities between the models predic-
tions and human data on both duration measures.
For first fixations, the human pattern is that dura-
tions go up from word lengths 1 to 2, down from 2
to 3 (presumably because of ‘the’), and then up to 5,
after which the function is relatively flat. That pat-
tern also holds for both models with uncertainty. For
gaze duration, both models more or less reproduce
the human pattern of a steadily-increasing function
throughout the range, and again match the human
function in dipping for word length 3. For gaze du-
rations, even the overall size of the effect produced
by the model is similar to that of humans. These
results confirm our original hypothesis that adding
length uncertainty would lead to more humanlike
word length effects. In addition, comparing the re-
sults of Simulation 2 with Simulation 1 reveals the
importance to this account of words having realis-

tic visual neighborhoods. When the visual neighbor-
hoods of (especially longer) words were trimmed to
be artificially sparse, adding length uncertainty did
not allow the model to recover the human pattern.

6 Conclusion

In this paper, we argued that the success of major
models of eye movements in reading to reproduce
the (positive) human effect of word length via acuity
limitations may be a result of not including oppos-
ing factors such as the negative correlation between
visual neighborhood size and word length. We de-
scribed the failure of the rational model presented
in Bicknell and Levy (2010) to obtain humanlike ef-
fects of word length, despite including all of these
factors, suggesting that our understanding of word
length effects in reading is incomplete. We proposed
a new reason for word length effects – uncertainty
about word length that is larger for longer words –
and noted that this reason was not implemented in
Bicknell and Levy’s model because of a simplifying
assumption. We presented an extension of the model
relaxing this assumption, in which readers obtain
noisy information about word length, and showed
through two sets of simulations that the new model
produces effects of word length that look more like
those of human readers. Interestingly, while adding
length uncertainty made both models more human-
like, it was only in Simulation 2 – in which words
had more realistic visual neighborhoods – that all
measures of the effect of word length on eye move-
ments showed the human pattern, underscoring the
importance of the structure of the language for this
account of word length effects.

We take these results as evidence that word length
effects cannot be completely explained through lim-
itations on visual acuity. Rather, they suggest that a
full understanding of the reasons underlying word
length effects on eye movements in reading should
include a notion of uncertainty about the number of
letters in a word, which grows with word length.
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Abstract

Comprehension and corpus studies have found
that the tendency to minimize dependency
length has a strong influence on constituent or-
dering choices. In this paper, we investigate
dependency length minimization in the con-
text of discriminative realization ranking, fo-
cusing on its potential to eliminate egregious
ordering errors as well as better match the dis-
tributional characteristics of sentence order-
ings in news text. We find that with a state-
of-the-art, comprehensive realization rank-
ing model, dependency length minimization
yields statistically significant improvements
in BLEU scores and significantly reduces
the number of heavy/light ordering errors.
Through distributional analyses, we also show
that with simpler ranking models, dependency
length minimization can go overboard, too of-
ten sacrificing canonical word order to shorten
dependencies, while richer models manage to
better counterbalance the dependency length
minimization preference against (sometimes)
competing canonical word order preferences.

1 Introduction

In this paper, we show that for the constituent or-
dering problem in surface realization, incorporating
insights from the minimal dependency length the-
ory of language production (Temperley, 2007) into a
discriminative realization ranking model yields sig-
nificant improvements upon a state-of-the-art base-
line. We demonstrate empirically using OpenCCG,
our CCG-based (Steedman, 2000) surface realiza-
tion system, the utility of a global feature encoding

the total dependency length of a given derivation.
Although other works in the realization literature
have used head-dependent distances in their mod-
els (Filippova and Strube, 2009; Velldal and Oepen,
2005; White and Rajkumar, 2009), to the best of our
knowledge, this paper is the first to use insights from
the minimal dependency theory directly and study
their effects, both qualitatively and quantitatively.

Table 1 shows examples of how the dependency
length feature affects the output in comparison to
a model with a rich set of discriminative syntac-
tic and dependency ordering features, but no fea-
tures directly targeting relative weight (see Table 3
for model details). In wsj 0015.7, the dependency
length models produce an exact match, while the
DEPORD model fails to shift the short temporal ad-
verbial next year next to the verb, leaving a con-
fusingly repetitive this year next year at the end of
the sentence. In wsj 0020.1, the dependency length
models produce a nearly exact match with just an
equally acceptable inversion of closely watching.
By contrast, the DEPORD model mistakenly shifts
the direct object South Korea, Taiwan and Saudia
Arabia to the end of the sentence where it is diffi-
cult to understand following two very long interven-
ing phrases. In wsj 0021.8, all the models mysteri-
ously put not in front of the auxiliary and leave out
the complementizer, but DEPORD also mistakenly
leaves before at the end of the verb phrase where
it is again apt to be interpreted as modifying the pre-
ceding verb. Finally, wsj 0014.2 shows a case where
DEPORD is nearly an exact match (except for a miss-
ing comma) but the dependency length models front
the PP on the 12-member board, where it is gram-
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wsj 0015.7 the exact amount of the refund will be determined next year
based on actual collections made until Dec. 31 of this year .

DEPLEN [same]
DEPORD the exact amount of the refund will be determined based on

actual collections made until Dec. 31 of this year next year .

wsj 0020.1 the U.S. , claiming some success in its trade diplomacy , removed South Korea , Taiwan and
Saudi Arabia from a list of countries it is closely watching for allegedly failing to honor
U.S. patents , copyrights and other intellectual-property rights .

DEPLEN the U.S. , claiming some success in its trade diplomacy , removed South Korea , Taiwan and
Saudi Arabia from a list of countries it is watching closely for allegedly failing to honor
U.S. patents , copyrights and other intellectual-property rights .

DEPORD the U.S. removed from a list of countries it is watching closely for allegedly failing to honor
U.S. patents , copyrights and other intellectual-property rights , claiming some success in its
trade diplomacy , South Korea , Taiwan and Saudi Arabia .

wsj 0021.8 but he has not said before that the country wants half the debt forgiven .
DEPLEN but he not has said before ∅ the country wants half the debt forgiven .
DEPORD but he not has said ∅ the country wants half the debt forgiven before .

wsj 0014.2 they succeed Daniel M. Rexinger , retired Circuit City executive vice president , and Robert R.
Glauber , U.S. Treasury undersecretary , on the 12-member board .

DEPORD they succeed Daniel M. Rexinger , retired Circuit City executive vice president , and Robert R.
Glauber , U.S. Treasury undersecretary ∅ on the 12-member board .

DEPLEN on the 12-member board they succeed Daniel M. Rexinger , retired Circuit City executive
vice president , and Robert R. Glauber , U.S. Treasury undersecretary .

wsj 0075.13 The Treasury also said it plans to sell [$ 10 billion] [in 36-day cash management bills]
DEPORD, DEPLEN [on Thursday].

Temperley (p.c.) [In 1976], [as a film student at the Purchase campus of the State University of New York],
Mr. Lane, shot ...

Table 1: Examples of Realized Output for Models with and without Dependency Length Feature (see Table 3 for
model details)

matical but rather marked (and not motivated in the
discourse context).

Cases like the final example above point to the
fact that dependency length is more of a prefer-
ence than an optimization objective, which must be
balanced against other order preferences at times.
A closer reading of Temperley’s (2007) study re-
veals that dependency length can sometimes run
counter to many canonical word order choices. A
case in point is the class of examples involving
pre-modifying adjunct sequences that precede both
the subject and the verb. Assuming that their par-
ent head is the main verb of the sentence, a long-
short sequence would minimize overall dependency
length. However, in 613 examples found in the Penn

Treebank, the average length of the first adjunct was
3.15 words while the second adjunct was 3.48 words
long, thus reflecting a short-long pattern (illustrated
in the Temperley p.c. example). Apart from these,
Hawkins (2001) shows that arguments are generally
located closer to the verb than adjuncts. Gildea and
Temperley (2007) also suggest that adverb place-
ment might involve cases which go against depen-
dency length minimization. An examination of 295
legitimate long-short post-verbal constituent orders
(counter to dependency length) from Section 00 of
the Penn Treebank revealed that temporal adverb
phrases are often involved in long-short orders, as
shown in wsj 0075.13 in Table 1. In our setup, the
preference to minimize dependency length can be
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balanced by features capturing preferences for alter-
nate choices (e.g. the argument-adjunct distinction
in the dependency ordering model). Via distribu-
tional analyses, we show that while simpler realiza-
tion ranking models can go overboard in minimizing
dependency length, richer models largely succeed in
overcoming this issue, while still taking advantage
of dependency length minimization to avoid egre-
gious ordering errors.

2 Background

2.1 Minimal Dependency Length

Comprehension and corpus studies (Gibson, 1998;
Gibson, 2000; Temperley, 2007) point to the ten-
dency of production and comprehension systems to
adhere to principles of dependency length minimiza-
tion. The idea of dependency length minimization
is based on Gibson’s (1998) Dependency Locality
Theory (DLT) of comprehension, which predicts
that longer dependencies are more difficult to pro-
cess. DLT predictions have been further validated
using comprehension studies involving eye-tracking
corpora (Demberg and Keller, 2008). DLT metrics
also correlate reasonably well with activation de-
cay over time expressed in computational models of
comprehension (Lewis et al., 2006; Lewis and Va-
sishth, 2005).

Extending these ideas from comprehension, Tem-
perley (2007) poses the question: Does language
production reflect a preference for shorter dependen-
cies as well so as to facilitate comprehension? By
means of a study of Penn Treebank data, Temperley
shows that English sentences do display a tendency
to minimize the sum of all their head-dependent
distances as illustrated by a variety of construc-
tions. Further, Gildea and Temperley (2007) re-
port that random linearizations have higher depen-
dency lengths compared to actual English, while an
“optimal” algorithm (from the perspective of de-
pendency length minimization), which places de-
pendents on either sides of a head in order of in-
creasing length, is closer to actual English. Tily
(2010) also applies insights from the above cited pa-
pers to show that dependency length constitutes a
significant pressure towards language change. For
head-final languages, dependency length minimiza-
tion results in the “long-short” constituent order-

ing in language production (Yamashita and Chang,
2001). More generally, Hawkins’s (1994; 2000) pro-
cessing domains, dependency length minimization
and end-weight effects in constituent ordering (Wa-
sow and Arnold, 2003) are all very closely related.
The dependency length hypothesis goes beyond the
predictions made by Hawkins’ Minimize Domains
principle in the case of English clauses with three
post-verbal adjuncts: Gibson’s DLT correctly pre-
dicts that the first constituent tends to be shorter than
the second, while Hawkins’ approach does not make
predictions about the relative orders of the first two
constituents.

However, it would be very reductive to consider
dependency length minimization as the sole factor
in language production. In fact, a large body of
prior work discusses a variety of other factors in-
volved in language production. These other prefer-
ences are either correlated with dependency length
or can override the minimal dependency length pref-
erence. Complexity (Wasow, 2002; Wasow and
Arnold, 2003), animacy (Snider and Zaenen, 2006;
Branigan et al., 2008), information status consid-
erations (Wasow and Arnold, 2003; Arnold et al.,
2000), the argument-adjunct distinction (Hawkins,
2001) and lexical bias (Wasow and Arnold, 2003;
Bresnan et al., 2007) are a few prominent factors.
More recently, Anttila et al. (2010) argued that the
principle of end weight can be revised by calculat-
ing weight in prosodic terms to provide more ex-
planatory power. As Temperley (2007) suggests,
a satisactory model should combine insights from
multiple approaches, a theme which we investigate
in this work by means of a rich feature set adapted
from the parsing and realization literature. Our fea-
ture design has been inspired by the conclusions of
the above-cited works pertaining to the role of de-
pendency length minimization in syntactic choice
in conjuction with other factors influencing con-
stituent order. However, going beyond Temper-
ley’s corpus study, we confirm the utility of incor-
porating a feature for minimizing dependency length
into machine-learned models with hundreds of thou-
sands of features found to be useful in previous pars-
ing and realization work, and investigate the extent
to which these features can counterbalance a de-
pendency length minimization preference in cases
where canonical word order considerations should
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prevail.

2.2 Surface Realization with Combinatory
Categorial Grammar (CCG)

CCG (Steedman, 2000) is a unification-based cat-
egorial grammar formalism defined almost en-
tirely in terms of lexical entries that encode sub-
categorization as well as syntactic features (e.g.
number and agreement). OpenCCG is a pars-
ing/generation library which includes a hybrid
symbolic-statistical chart realizer (White, 2006).
The input to the OpenCCG realizer is a semantic
graph, where each node has a lexical predication
and a set of semantic features; nodes are connected
via dependency relations. Internally, such graphs
are represented using Hybrid Logic Dependency
Semantics (HLDS), a dependency-based approach
to representing linguistic meaning (Baldridge and
Kruijff, 2002). Alternative realizations are ranked
using integrated n-gram or averaged perceptron
scoring models. In the experiments reported below,
the inputs are derived from the gold standard deriva-
tions in the CCGbank (Hockenmaier and Steedman,
2007), and the outputs are the highest-scoring re-
alizations found during the realizer’s chart-based
search.1

3 Feature Design

In the realm of paraphrasing using tree lineariza-
tion, Kempen and Harbusch (2004) explore features
which have later been appropriated into classifica-
tion approaches for surface realization (Filippova
and Strube, 2007). Prominent features include in-
formation status, animacy and phrase length. In the
case of ranking models for surface realization, by far
the most comprehensive experiments involving lin-
guistically motivated features are reported in work
of Cahill for German realization ranking (Cahill et
al., 2007; Cahill and Riester, 2009). Apart from
language model and Lexical Functional Grammar
(LFG) c-structure and f -structure based features,
Cahill also designed and incorporated features mod-
eling information status considerations.

The feature sets explored in this paper ex-
tend those in previous work on realization ranking

1The realizer can also be run using inputs derived from
OpenCCG’s parser, though informal experiments suggest that
parse errors tend to decrease generation quality.

with OpenCCG using averaged perceptron models
(White and Rajkumar, 2009; Rajkumar et al., 2009;
Rajkumar and White, 2010) to include more com-
prehensive ordering features. The feature classes
are listed below, where DEPLEN, HOCKENMAIER

and DEPORD are novel, and the rest are as in ear-
lier OpenCCG models. The inclusion of the DE-
PORD features is intended to yield a model with a
similarly rich set of ordering features as Cahill and
Forster’s (2009) realization ranking model for Ger-
man.

DEPLEN The total of the length between all heads
and dependents for a realization, where length
is in intervening words2 excluding punctuation.
For length purposes, collapsed named entities
were counted as a single word in the experi-
ments reported here.

NGRAMS The log probabilities of the word se-
quence scored using three different n-gram
models: a trigram word model, a trigram
word model with named entity classes replac-
ing words, and a trigram model over POS tags
and supertags.

HOCKENMAIER As an extra component of the
generative baseline, a reimplementation of
Hockenmaier’s (2003) generative syntactic
model.

DISCRIMINATIVE NGRAMS Sequences from each
of the n-gram models as indicator features in
the perceptron model.

AGREEMENT Indicator features for subject-verb
and animacy agreement as well as balanced
punctuation.

C&C NF BASE The features from Clark & Cur-
ran’s (2007) normal form model, minus the dis-
tance features.

C&C NF DISTANCE The distance features from
the C&C normal form model.

2We also experimented with two other definitions of depen-
dency length described in the literature, namely (1) counting
only nouns and verbs to approximate counting by discourse ref-
erents (Gibson, 1998) and (2) omitting function words to ap-
proximate prosodic weight (Anttila et al., 2010); however, re-
alization ranking accuracy was slightly worse than counting all
non-punctuation words.
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Feature Type Example
HeadBroadPos + Rel + Precedes + HeadWord + DepWord 〈VB, Arg0, dep, wants, he〉

. . . + HeadWord + DepPOS 〈VB, Arg0, dep, wants, PRP〉

. . . + HeadPOS + DepWord 〈VB, Arg0, dep, VBZ, he〉

. . . + HeadWord + DepPOS 〈VB, Arg0, dep, VBZ, PRP〉
HeadBroadPos + Side + DepWord1 + DepWord2 〈NN, left, an, important〉

. . . + DepWord1 + DepPOS2 〈NN, left, an, JJ〉

. . . + DepPOS1 + DepWord2 〈NN, left, DT, important〉
. . . + DepPOS1 + DepPOS2 〈NN, left, DT, JJ〉

. . . + Rel1 + Rel2 〈NN, left, Det, Mod〉

Table 2: Basic head-dependent and sibling dependent ordering features

DEPORD Several classes of features for ordering
heads and dependents as well as sibling depen-
dents on the same side of the head. The ba-
sic features—using words, POS tags and de-
pendency relations, grouped by the broad POS
tag of the head—are shown in Table 2. There
are also similar features using words and a
word class (instead of words and POS tags),
where the class is either the named entity class,
COLOR for color words, PRO for pronouns,
one of 60-odd suffixes culled from the web, or
HYPHEN or CAP for hyphenated or capital-
ized words. Additionally, there are features for
detecting definiteness of an NP or PP (where
the definiteness value is used in place of the
POS tag).

4 Evaluation

4.1 Experimental Conditions

We followed the averaged perceptron training proce-
dure of White and Rajkumar (2009) with a couple of
updates. First, as noted earlier, we used a reimple-
mentation of Hockenmaier’s (2003) generative syn-
tactic model as an extra component of our genera-
tive baseline; and second, only five epochs of train-
ing were used, which was found to work as well as
using additional epochs on the development set. As
in the earlier work, the models were trained on the
standard training sections (02–21) of an enhanced
version of the CCGbank, using a lexico-grammar
extracted from these sections.

The models tested in the experiments reported be-
low are summarized in Table 3. The three groups
of models are designed to test the impact of the
dependency length feature when added to feature

sets of increasing complexity. In more detail,
the GLOBAL and DEPLEN-GLOBAL models contain
dense features on entire derivations; their values
are the log probabilities of the three n-gram mod-
els used in the earlier work along with the Hock-
enmaier model (and the dependency length fea-
ture, in DEPLEN-GLOBAL). The second group is
centered on DEPORD-NODIST, which contains all
features except the dependency length feature and
the distance features in Clark & Curran’s normal
form model, which may indirectly capture some de-
pendency length minimization preferences (365,287
features in all). In addition to DEPLEN-NODIST

(366,094 features)—where the dependency length
feature is added—this group also contains DEPORD-
NONF (269,249), which is designed to test (as a side
comparison) whether the Clark & Curran normal
form base features are still useful even when used
in conjunction with the new dependency ordering
features. In the final group, DEPORD-NF contains
all the 431,226 features examined in this paper ex-
cept the dependency length feature, while DEPLEN

contains all the features including the dependency
length feature (total 428,775 features). Note that the
weight of the total dependency length feature was
negative in each case, as expected.

4.2 BLEU Results

Following the usual practice in the realization rank-
ing, we evaluate our results quantitatively using ex-
act matches and BLEU (Papineni et al., 2002), a cor-
pus similarity metric developed for MT evaluation.
Realization results for the development and test sec-
tions appear in Table 4. For all three model groups,
the dependency length feature yields significant in-
creases in BLEU scores, even in comparison to the
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Model Dep Ngram Hocken- Discr Agree- C&C NF C&C NF Dep
Len Mods maier Ngrams ment Base Dist Ord

GLOBAL N Y Y N N N N N
DEPLEN-GLOBAL Y Y Y N N N N N
DEPORD-NONF N Y Y Y Y N N Y
DEPORD-NODIST N Y Y Y Y Y N Y
DEPLEN-NODIST Y Y Y Y Y Y N Y
DEPORD-NF N Y Y Y Y Y Y Y
DEPLEN Y Y Y Y Y Y Y Y

Table 3: Legend for Experimental Conditions

Model % Exact BLEU Signif
Sect 00
GLOBAL 33.03 0.8292 -
DEPLEN-GLOBAL 34.73 0.8345 ***
DEPORD-NONF 42.33 0.8534 **
DEPORD-NODIST 43.12 0.8560 -
DEPLEN-NODIST 43.87 0.8587 ***
DEPORD-NF 43.44 0.8590 -
DEPLEN 44.56 0.8610 **

Sect 23
GLOBAL 34.75 0.8302 -
DEPLEN-GLOBAL 34.70 0.8330 ***
DEPORD-NODIST 41.42 0.8561 -
DEPLEN-NODIST 42.95 0.8603 ***
DEPORD-NF 41.32 0.8577 -
DEPLEN 42.05 0.8596 **

Table 4: Development (Section 00) & Test (Section 23)
Set Results—exact match percentage and BLEU scores,
along with statistical significance of BLEU compared to
the unmarked model in each group (* = p < 0.1, ** =
p < 0.05, *** = p < 0.01); significant within-group
winners (at p < 0.05) are shown in bold

model (DEPORD-NF) containing Clark & Curran’s
distance features in addition to the new dependency
ordering features (as well as all other features but
total dependency length). The second group addi-
tionally shows that the Clark & Curran normal form
base features do indeed have a significant impact on
BLEU scores even when used with the new depen-
dency ordering model, as DEPORD-NONF is signif-
icantly worse than DEPORD-NODIST (the impact of
the distance features is evident in the increases from
the second group to the third group). As with the dev
set, the dependency length feature yielded a signif-
icant increase in BLEU scores for each comparison

on the test set also.
For each group, the statistical significance of the

difference in BLEU scores between a model and the
unmarked model (-) is determined by bootstrap re-
sampling (Koehn, 2004).3 Note that although the
differences in BLEU scores are small, they end
up being statistically significant because the mod-
els frequently yield the same top scoring realiza-
tion, and reliably deliver improvements in the cases
where they differ. In particular, note that DEPLEN

and DEPORD-NF agree on the best realization 81%
of the time, while DEPLEN-NODIST and DEPORD-
NODIST have 78.1% agreement, and DEPLEN-
GLOBAL and GLOBAL show 77.4% agreement; by
comparison, DEPORD-NODIST and GLOBAL only
agree on the best realization 51.1% of the time. With
exact matches, the dependency length feature in-
creases the exact match percentage in each compar-
ison group, but the differences are not statistically
significant according to a χ-square test.

4.3 Detailed Analyses

The effect of the dependency length feature on the
distribution of dependency lengths is illustrated in
Table 5. The table shows the mean of the total de-
pendency length of each realized derivation com-
pared to the corresponding gold standard derivation,
as well as the number of derivations with greater and
lower dependency length. According to paired t-
tests, the mean dependency lengths for the DEPLEN-
NODIST and DEPLEN models do not differ signifi-
cantly from the gold standard. In contrast, the mean
dependency length of all the models that do not in-

3Kudos to Kevin Gimpel for making his resampling
scripts available from http://www.ark.cs.cmu.edu/
MT/paired_bootstrap_v13a.tar.gz.
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Model % DL % DL DL Signif
Lower Greater Mean

GOLD n.a. n.a. 41.02 -
GLOBAL 17.23 21.59 42.40 ***
DEPLEN-GLOBAL 24.37 12.81 40.29 ***
DEPORD-NONF 15.76 19.34 42.34 ***
DEPORD-NODIST 14.58 19.06 42.03 ***
DEPLEN-NODIST 17.75 14.82 40.87 n.s.
DEPORD-NF 14.96 17.65 41.58 ***
DEPLEN 16.28 14.78 40.97 n.s.

Table 5: Dependency Length Compared to Corpus—
percentage of realizations with dependency length less
than and greater than gold standard, along with mean
dependency length, whose significance is tested against
gold; 1671 development set (Section 00) complete real-
izations analyzed

Model %Short %Long %Eq %Sing
Long Short Const

GOLD 25.25 4.87 4.08 65.79
GLOBAL 23.15 7.86 3.94 65.04
DEPLEN-GLOBAL 24.58 5.57 4.09 65.76
DEPORD-NONF 23.13 6.61 4.03 66.23
DEPORD-NODIST 23.38 6.52 3.94 66.15
DEPLEN-NODIST 24.03 5.38 4.01 66.58
DEPORD-NF 23.74 5.92 3.96 66.40
DEPLEN 24.36 5.36 4.07 66.21

Table 6: Distribution of various kinds of post-verbal con-
stituents in the development set (Section 00); 4692 gold
cases considered

clude the dependency length feature does differ sig-
nificantly (p < 0.001) from the gold standard. Ad-
ditionally, all these models have more realizations
with dependency length greater than the gold stan-
dard, in comparison to the dependency length min-
imizing models; this shows the efficacy of the de-
pendency length feature in approximating the gold
standard. Interestingly, the DEPLEN-GLOBAL model
significantly undershoots the gold standard on mean
dependency length, and has the most skewed dis-
tribution of sentences with greater vs. lesser depen-
dency length than the gold standard.

Apart from studying dependency length directly,
we also looked at one of the attested effects of de-
pendency length minimization, viz. the tendency to
prefer short-long post-verbal constituents in produc-
tion (Temperley, 2007). The relative lengths of ad-
jacent post-verbal constituents were computed and

Model % Light % Heavy Signif
Heavy Light

GOLD 8.60 0.36 -
GLOBAL 7.73 2.02 ***
DEPLEN-GLOBAL 8.35 0.75 **
DEPORD-NONF 7.98 1.15 ***
DEPORD-NODIST 8.04 1.12 ***
DEPLEN-NODIST 8.23 0.45 n.s.
DEPORD-NF 8.26 0.71 **
DEPLEN 8.36 0.51 n.s.

Table 7: Distribution of heavy unequal constituents
(length difference > 5) in Section 00; 4692 gold cases
considered and significance tested against the gold stan-
dard using a χ-square test

their distribution is shown in Table 6. While cal-
culating length, punctuation marks were excluded.
Four kinds of constituents were found in the post-
verbal domain. For every verb, apart from single
constituents and equal length constituents, short-
long and long-short sequences were also observed.
Table 6 demonstrates that for both the gold standard
corpus as well as the realizer models, short-long
constituents were more frequent than long-short or
equal length constituents. This follows the trend re-
ported by previous corpus studies of English (Tem-
perley, 2007; Wasow and Arnold, 2003). The figures
reported here show the tendency of the DEPLEN*
models to be closer to the gold standard than the
other models, especially in the case of short-long
constituents.

We also performed an analysis of relative con-
stituent lengths focusing on light-heavy and heavy-
light cases; specifically, we examined unequal
length constituent sequences where the length dif-
ference of the constituents was greater than 5, and
the shorter constituent was under 5 words. Table 7
shows the results. Using a χ-square test, the distri-
bution of heavy unequal length constituent counts in
the DEPLEN-NODIST and DEPLEN models does not
significantly differ from that of the gold standard. In
contrast, for all the other models, the counts do dif-
fer significantly from the gold standard.

4.4 Interim Discussion

The experiments show a consistent positive effect of
the dependency length feature in improving BLEU
scores and achieving a better match with the corpus
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Model % Preferred % Agr Signif
GLOBAL 22 - -
DEPLEN-GLOBAL 78 84 ***
DEPORD-NODIST 24 - -
DEPLEN-NODIST 76 92 ***
DEPORD-NF 26 - -
DEPLEN 74 96 ***

Table 8: Targeted Human Evaluation—percentage of re-
alizations preferred by two human judges in a 2AFC test
among the 25 development set sentences with the great-
est differences in dependency length, with a binomial test
for significance

distributions of dependency length and short/long
constituent orders. The results in Table 7 are partic-
ulary encouraging, as they show that minimizing de-
pendency length reduces the number of realizations
in which a heavy constituent precedes a light one
down to essentially the level of the corpus, thereby
eliminating many realizations that can be expected
to have egregious errors like those shown in the in-
troduction.

Intriguingly, there is some evidence that a nega-
tively weighted total dependency length feature can
go too far in minimizing dependency length, in the
absence of other informative features to counterbal-
ance it. In particular, the DEPLEN-GLOBAL model in
Table 5 has significantly lower dependency length
than the corpus, but in the richer models with dis-
criminative synactic and dependency ordering fea-
tures, there are no significant differences. It may still
be though that additional features are necessary to
counteract the tendency towards dependency length
minimization, for example to ensure that initial con-
stituents play their intended role in establishing and
continuing topics in discourse, as also observed in
the introduction.

4.5 Targeted Human Evaluation
To determine whether heavy-light ordering differ-
ences often represent ordering errors, including
egregious ones such as those in Table 1, we con-
ducted a targeted human evaluation on examples of
this kind. Specifically, for each of the DEPLEN*
models and their corresponding models without the
dependency length feature, we chose the 25 sen-
tences from the development section whose real-
izations exhibited the greatest difference in depen-

dency length between sibling constituents appear-
ing in opposite orders, and asked two judges (not
the authors) to choose which of the two realiza-
tions best expressed the meaning of the reference
sentence in a grammatical and fluent way, with the
choice forced (2AFC). Table 8 shows the results.
Agreement between the judges was high, with only
one disagreement on the realizations from the DE-
PLEN and DEPORD-NF models (involving an accept-
able paraphrase), and only four disagreements on the
DEPLEN-GLOBAL and GLOBAL realizations. Pool-
ing the judgments, the preference for the DEPLEN*
models was well above the chance level of 50% ac-
cording to a binomial test (p < 0.001 in each case).
Inspecting the data ourselves, we found that many
of the items did indeed involve egregious ordering
errors that the DEPLEN* models managed to avoid.

5 Conclusions

In this paper, we investigated dependency length
minimization in the context of realization ranking,
focusing on its potential to eliminate egregious or-
dering errors as well as better match the distribu-
tional characteristics of sentence orderings in news
text. When added to a state-of-the-art, comprehen-
sive realization ranking model, we showed that in-
cluding a dense, global feature for minimizing to-
tal dependency length yields statistically significant
improvements in BLEU scores and significantly re-
duces the number of egregious heavy-light ordering
errors. Going beyond the BLEU metric, we also
conducted a targeted human evaluation to confirm
the utility of the dependency length feature in mod-
els of varying richness. Interestingly, even with the
richest model, in some cases we found that the de-
pendency length feature still appears to go too far in
minimizing dependency length, suggesting that fur-
ther counter-balancing features—especially ones for
the sentence-initial position (Filippova and Strube,
2009)—warrant investigation in future work.
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Abstract

We describe a computational framework for
language learning and parsing in which dy-
namical systems navigate on fractal sets. We
explore the predictions of the framework in
an artificial grammar task in which humans
and recurrent neural networks are trained on
a language with recursive structure. The re-
sults provide evidence for the claim of the
dynamical systems models that grammatical
systems continuously metamorphose during
learning. The present perspective permits
structural comparison between the recursive
representations in symbolic and neural net-
work models.

1 Introduction

Some loci in the phrase structure systems of natural
languages appear to employ center embedding re-
cursion (Chomsky, 1957), or at least an approxima-
tion of it (Christiansen and Chater, 1999). For exam-
ple, one can embed a clause within a clause in En-
glish, using the object-extracted relative clause con-
struction (e.g., the dog that the goat chased barked.).
But such recursion does not appear in every phrase
and may not appear in every language (Everett,
2005). Therefore, the system that learns natural lan-
guages must have a way of recognizing recursion
when it occurs. We are interested in the problem,

∗This material is based on work supported by the Na-
tional Science Foundation Grant No. 1059662. We thank the
members of SOLAB who helped run the experiment: Olivia
Harold, Milod Kazerounian, Emily Pakstis, Bo Powers, Kevin
Semataska.

How does a language learner, seeing only a finite
amount of data, decide on an unbounded recursive
interpretation?

Here, we use the term “finite state” to refer to a
system that can only be in a finite number of states.
We use the term “recursion” to refer to situations in
which multiple embeddings require the use of an un-
bounded symbol memory to keep track of unfinished
dependencies.1 We focus here on the case of center-
embedding recursion, which can be generated by a
context free grammar (one symbol on the left of each
rule, finitely many symbols on the right) or a push-
down automaton (stack memory + finite state con-
troller) but not by a finite state device (Hopcroft and
Ullman, 1979).

One natural approach to the recursion recognition
problem, recently explored by Perfors et al. (2011),
involves Bayesian grammar selection. Perfors et
al.’s model considered a range of grammars, in-
cluding both finite state and context free grammars.
Their system, parameterized by data from English-
speaking children in the Childes Database selected
a context free grammar. Several features of this ap-
proach are notable: (i) There is a rich set of struc-
tural assumptions (the grammars in the pool of can-
didates). (ii) Because many plausible grammars
generate overlapping data sets, a complexity ranking
is also assumed and the system operates under Oc-
cam’s Razor: prefer simpler grammars. (iii) Gram-
mar selection and on-line parsing are treated as sep-

1This is a narrow construal of the term “recursion”. Some-
times the term is used for any situation in which a rule can be
applied arbitrarily many times in the generation of a single sen-
tence, including finite-state cases.
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arate problems in that the system is evaluated for
coverage of the observed sentences, but the partic-
ular method of parsing plays no role in the selection
process.

Here, we focus on a contrasting approach: recur-
rent neural network models discover the structure of
grammatical systems by sequentially processing the
corpus data, attempting to predict after each word,
what word will come next (Elman, 1990; Elman,
1991). With respect to the properties mentioned
above, the neural network approach has some ad-
vantages: (i) Formal analyses of some of the net-
works and related systems (Moore, 1998; Siegel-
mann, 1999; Tabor, 2009b) indicate that these mod-
els make even richer structural assumptions than the
Bayesian approach: if the networks have infinite
precision, then some of them recognize all string
languages, including non-computable ones. For a
long while, theorists of cognition have adopted the
view that positing a restrictive hypothesis space is
desirable—otherwise a theory of structure would
seem to have little substance. However, if one offers
a hypothesis about the organization of the hypoth-
esis space, and a principle that specifies the way a
learning organism navigates in the space, then the
theory can still make strong, testable predictions.
We suggest that assuming a very general function
class is preferable to presupposing arbitrary gram-
mar or class restrictions. (ii) The recurrent networks
do not employ an independently defined complexity
metric. Instead, the learning process successively
breaks symmetries in the initially unbiased weight
set, driven by asymmetries in the data. The result is
a bias toward simplicity. We see this as an advantage
in that the simplicity preference stems from the form
of the architecture and learning mechanism. (iii)
Word-by-word parsing and grammar selection occur
as part of a single process—the network updates its
weights every time it processes a word and this re-
sults in the formation of a parsing system. We see
this as an advantage in that the moment-to-moment
interaction of the system with data resembles the cir-
cumstances of a learning child.

On the other hand, there has long been a seri-
ous difficulty with the network approach: the net-
work dynamics and solutions have been very opaque
to analysis. Although the systems sometimes learn
well and capture data effectively, they are not sci-

entifically very revealing unless we can interpret
them. The Bayesian grammar-selection approach is
much stronger in this regard: the formal properties
of the grammars employed are well understood and
the selection process is well-grounded in statistical
theory—e.g., Griffiths et al. (2010).

Here, we take advantage of recent formal results
indicating how recurrent neural networks can en-
code abstract recursive structure (Moore, 1998; Pol-
lack, 1987; Siegelmann, 1999; Tabor, 2000) An es-
sential insight is that the network can use a spatial
recursive structure, a fractal, to encode the tempo-
ral recursive structure of a symbol sequence. When
the network is trained on short sentences exhibit-
ing a few levels of embedding, it tends to general-
ize to higher levels of embedding, suggesting that
it is not merely shaping itself to the training data,
but discovers an abstract principle (Rodriguez et al.,
1999; Rodriguez, 2001; Tabor, 2003; Wiles and El-
man, 1995). During the course of learning, the frac-
tal comes into being gradually in such a way that
lower-order finite-state approximations to the recur-
sion develop before higher-order structure does—a
complexity cline phenomenon (Tabor, 2003).

We examined human and neural network learning
of a recursive language with an artificial grammar
paradigm, the Box Prediction paradigm. Whereas
our previous investigations of this task (Cho et
al., 2011) focused on counting recursion languages
(only a single stack symbol is required to track the
recursive dependencies), we provide evidence here
for mirror recursion learning by a few participants
(multiple stack symbols required). We show how
the theory of fractal grammars can be used to hand
wire a network that processes the recursive language
of our task. We then provide evidence that a Sim-
ple Recurrent Network (Elman, 1990; Elman, 1991),
trained on the same task, also develops a fractal en-
coding. Moreover, the network shows evidence of a
embodying a complexity-cline—similarly complex
grammars are adjacent in the parameter space. An
individual differences analysis indicates that a simi-
lar pattern arises in the humans. We conclude that
the network encodings can be formally related to
symbolic recursive models, but are different in that
learning occurs by continuous grammar metamor-
phosis.
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2 The Box Prediction paradigm

Human participants sat in front of a computer screen
on which five black outlines of boxes were displayed
(Figure 1). When the participant clicked on the
screen, one of the boxes changed color. The task
was to indicate, by clicking on it, which box would
change color next on each trial. The sequence of
color changes corresponded to the structure of sen-
tences generated by the center-embedding grammar
in Table 1a. The sentences can be divided into em-
bedding level classes. Level n sentences have (n-
1) center-embedded clauses (Table 1b). There were
three, distinct phases of the color-change sequence:
during the first 60 trials, participants saw only Level
1 sentences. From trials 61 to 410, Level 2 sentences
were introduced with increasing frequency. We re-
fer to these two phases of presentation together as
the “Training Phase”. Starting at Trial 411, Level
3 sentences were included, along with more Level
1 and Level 2 sentences. We refer to the trials
from 411 to 553, the end of the experiment, as the
“Test Phase”. Other than by their structural differ-
ences, these phases were not distinguished for the
participants: the participants experienced them as
one, long sequence of 553 trials. We introduced
the deeper levels of embedding gradually because
of evidence from the language acquisition litera-
ture (Newport, 1990), from the connectionist liter-
ature (Elman, 1993), and from the artificial gram-
mar learning literature (Cho et al., 2011; Lai and
Poletiek, 2011) that “starting small” facilitates learn-
ing of complex syntactic structures. Following stan-
dard terminology, we call the trials in which boxes
1 and 4 change colors “push” trials (because in a
natural implementation of the grammar with a push-
down automaton, the automaton pushes a symbol
onto the stack at these trials). We call the trials in
which boxes 2, 3, and 5 change color “pop” trials.
The push trials were fairly unpredictable: the choice
of whether to push 1 or 4 was approximately uni-
formly distributed throughout the experiment, and
the choice about whether to embed was fairly ran-
dom within the constraints of the “starting small”
scheme described above. Because we did not want
participants to have to guess at these nondeterminis-
tic events, we made the 1 and 4 boxes turn blue or
green whenever they occurred and told the partici-

Figure 1: Structure of the display for the Box Prediction
Task. The numerals were not present in the screen display
shown to the participants.

pants that they did not need to predict blue or green
boxes. On the other hand, we wanted them to predict
the pop trials whenever they occurred. Therefore,
we colored boxes 2, 3, and 5 a shade of red when-
ever they occurred and told the participants that they
should try to predict all boxes that turned a shade of
red. When two of the same symbol occurred in a row
(e.g., 1 1 2 2 5), we shifted the shade of the color of
the repeated element so that participants would no-
tice the change. To reinforce this visual feedback,
a beep sounded on any trial in which a participant
failed to predict a box that changed to a shade of red.
Box 5 has a different structural status than the other
boxes: it marks the ends of sentences. We included
box 5, placing it in the center of the visual array, and
making it smaller than the other boxes, to make the
task easier relative to a pilot version in which Box 5
was absent.

2.1 Simulation Experiment

We employed Michal Cernansky’s implementa-
tion of Elman (1990)’s Simple Recurrent Network
(http://www2.fiit.stuba.sk/c̃ernans/main/download.html).
The network had five input units, five output units
and ten hidden units. Activations changed as
specified in (1) and weights changed according to
(2).
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a. Root → S 5
S → 1 S 2
S → 1 2
S → 4 S 3
S → 4 3

b. Level 1 Level 2 Level 3
1 2 5 1 1 2 2 5 1 1 1 2 2 2 5
4 3 5 1 4 3 2 5 1 1 4 3 2 2 5

4 1 2 3 5 1 4 1 2 3 2 5
4 4 3 3 5 2 4 4 3 3 2 5

. . .

Table 1: a. Grammar 1: a recursive grammar for gen-
erating the color change sequence employed in the ex-
periment. “Root” is the initial node of every sentence
generation process. Null stands for the empty string. b.
Examples of Level 1, 2, and 3 sentences generated by
Grammar 1.

~h(t) = f(Whh · ~h(t− 1) + Whi · ~s(t) +~bh)

~o(t) = f(Woh · ~h(t) +~bo)
f(x) = 1

1+e−x

(1)

∆wij ∝ −
∂E

∂wij
(2)

Here, ~s(t) is the vector of input unit activations at
time step t, Whi are the weights from input to hid-
den units, Whh are the recurrent hidden connec-
tions, and Woh connect hidden to output.

On each trial, the input to the network was an in-
dexical bit vector corresponding to one of the five
sentence symbols. The task of the network was to
predict, on its output layer, what symbol would oc-
cur next at each point. The sequence of symbols was
modeled on the sequence presented to the human
participants as follows: the human sequence was
divided into 14 nearly equal-length segments, each
with a whole number of sentences (the first 11 seg-
ments corresponded to the Training Phase and the
last 3 to the Test Phase). Each segment contained
approximately ten sentences. For each segment, 400
sentences were sampled randomly according to the
distribution of types found in the segment. These
groups of 400 were concatenated end to end to form
the training sequence for the network (a total of
22398 trials).

The error gradient of equation (2) was ap-
proximated using Backpropagation Through
Time (Rumelhart et al., 1986) with eight time steps
unfolded. To simulate the absence of negative
feedback on push trials in the human experiment,
the network error signal on push trials was set to
zero. The constant of proportionality in equation 2
(the “learning rate”) was set to 0.4.

3 Fractal Encoding of Recursive Structure
in Neural Ensembles

In the past several decades, a number of re-
searchers (Moore, 1998; Pollack, 1987; Siegel-
mann, 1996; Siegelmann and Sontag, 1994; Ta-
bor, 2000) have developed devices for symbol pro-
cessing which compute on finite-dimensional com-
plete metric spaces (distance is defined, no points
are “missing”— (Bryant, 1985)), like the neural net-
works considered here. A common strategy in all
of these proposals is the use of spatially recursive
sets—i.e., fractals—to encode the temporal recur-
sive structure in symbol sequences. For example,
Tabor (2000) defines a Dynamical Automaton (or
DA), M , as in (3).

M = (H,F, P,Σ, IM, x0, FR) (3)

Here, H is a complete metric space (Bryant, 1985;
Barnsley, 1993). F is a finite list of functions fi :
H → H , P is a partition of the metric space, Σ is
a finite symbol alphabet, IM is an Input Map—that
is, a function from symbols in Σ and compartments
in P to functions in F . The input to the machine is
a finite string of symbols. The machine starts at x0

and invokes functions corresponding the symbols in
the input in the order in which they occur. If, when
the last symbol has been presented, the system is in
the region FR ⊆ H , then the DA accepts the string.

Table 3 specifies DA 1, a dynamical automa-
ton that recognizes (and generates) the language of
Grammar 1. A good way of understanding the prin-
ciple underlying this mechanism is to note that a
pushdown automaton (PDA) (Hopcroft and Ullman,
1979) for processing this language must employ a
stack alphabet with one symbol for tracking“1” and
another for tracking “4”. (See Table 3). If DA 1 is to
successfully process the same language, it must dis-
tinguish at least the states that PDA 1 distinguishes
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(PDA 1 is minimal in this sense). DA 1 does this by
executing state transitions analogous to the push and
pop operations of the PDA, arriving in its final re-
gion when the PDA is in an accepting state. Figure 3
shows the correspondence between machine states
of PDA 1 and points in the metric space H that un-
derlies DA 1’s language recognition capability. This
figure makes it clear that DA 1 is structurally equiv-
alent to PDA 1.

The computing framework discussed here is very
general. One can construct a fractal grammar that
generates any context free language (Tabor, 2000).
In fact, similar mechanisms recognize and generate
not only all computable languages but all languages
of strings drawn from a finite alphabet (Moore,
1998; Siegelmann, 1999; Siegelmann and Sontag,
1994). Wiles & Elman (1995) and Rodriguez (2001)
showed that an SRN trained on a counting recur-
sion language (anbn) uses a fractal principle to keep
track of the embeddings and generalizes to deeper
levels of embedding than those found in its training
set. (Tabor et al., 2003) showed that a gradient de-
scent mechanism operating in the parameter space
of a fractal grammar model discovered close ap-
proximations of several mirror recursion languages.
These findings suggest that the fractal solutions are
stable equilibria (“attractors”) of recurrent network
gradient descent learning processes (Tabor, 2011).
This observation argues against a widespread belief
about neural networks that they are blank slate ar-
chitectures, only performing “associative process-
ing” without structural generalization (Fodor and
Pylyshyn, 1988). It suggests a close relationship be-
tween the classical theory of computation and neural
network models even though the two frameworks are
not equivalent (Siegelmann, 1999; Tabor, 2009a) .

The results of Tabor (2003) indicate that network
learning proceeds along a complexity cline: sen-
tences with lower levels of embedding are correctly
processed before sentences with higher levels of em-
bedding. This indicates that there are proximity
relationships in the network parameter space: pa-
rameterizations that parse successively deeper lev-
els of embedding are adjacent to each other. In the
next section, we investigate the outcome of the SRN
learning experiment with the Box Prediction train-
ing data, first testing for evidence that the network
forms a fractal code, then testing for a proximity ef-

M = (Q,Σ,Γ, δ, q0, Z0, F )
Q = {q1, q2, q3}
Σ = {1, 2, 3, 4, 5}, Γ = {B,O, F}
q0 = q3, Z0 = B, F = B

δ(q3, 1, B) = (q1, OB), δ(q3, 4, B) = (q1, FB)
δ(q1, 1, O) = (q1, OO), δ(q1, 4, O) = (q1, FO)
δ(q1, 1, F ) = (q1, OF ), δ(q1, 4, F ) = (q1, FF )
δ(q1, 2, O) = (q2, ε), δ(q2, 2, O) = (q2, ε)
δ(q1, 3, F ) = (q2, ε), δ(q2, 3, F ) = (q2, ε)
δ(q2, 5, B) = (q3, B)

Table 3: PDA 1. A Pushdown Automaton for processing
the language of Grammar 1. ”O” is pushed on ”1”. ”F”
is pushed on ”4”.

fect consistent with the complexity cline prediction.

4 Results: Simple Recurrent Network Box
Prediction

We trained 71 networks, corresponding to the 71 hu-
man participants on the sequence described above in
Section 2. The networks all used the same archi-
tecture, but differed in the values of their random
initial weights and the precise ordering of the train-
ing sentences (although all used the same progres-
sive scheme described above). To approximate the
observed variation in human performance, each net-
work also had gaussian noise with constant variance
added to the weights with each new word input. The
variance values were sampled from the uniform dis-
tribution on [0,4]. This range was chosen to pro-
duce a mean (57%) and standard deviation (20%)
similar to that of the humans at the end of training
(M = 51%, SD = 21%).

Unlike some of the humans, none of the networks
generalized immediately to Level 3 sentences on the
first try. Nevertheless, several of them learned to
parse the Level 3 sentences with very few errors by
the end of the “Test Phase”. To determine accuracy
of a deterministic transition, we normalized the net-
work output vector by dividing all the outputs by the
sum of the outputs. If the highest normalized acti-
vation was on the correct transition, we counted the
transition as accurate. When tested on all eight types
of Level 3 sentences, the top 4 networks made 1, 3,
3, and 3 errors among the 56 transitions in this sen-
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Compartment Symbol Function

h1 > 0 & h2 > 0 1 ~h←
[

1
2 0
0 1

2

]
~h+

(
1
0

)

h1 > 0 & h2 > 0 4 ~h←
[

1
2 0
0 1

2

]
~h+

(
0
0

)

h1 > 1 2 ~h←
[
−2 0
0 −2

]
~h+

(
2
0

)

0 < h1 < 1 3 ~h←
[
−2 0
0 −2

]
~h+

(
0
0

)

h1 < −1 2 ~h←
[

2 0
0 2

]
~h+

(
2
0

)

−1 < h1 & h1 < 1 3 ~h←
[

2 0
0 2

]
~h+

(
0
0

)

h1 = −1 & h2 = −1 5 ~h←
[
−1 0
0 −1

]
~h+

(
0
0

)

Table 2: Input Map for DA 1. The automaton starts at the point, (1, 1). It’s Final Region is also (1, 1).

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 
B

OB

OOB
OOOB

OOB

OB

B

FOOB

OOB

OB

B

OB

B

FOB
OFOB

FOB

OB

B

FFOB

FOB

OB

B

OB

BB

FB

OFB
OOFB

OFB

FB

B

FOFB

OFB

FB

B

FB

B

FFB
OFFB

FFB

FB

B

FFFB

FFB

FB

B

FB

BB

q3
q1
q2

Figure 2: Correspondence between states of DA 1 and
PDA stack states.

tence set.
We hypothesized that the networks were approx-

imating a fractal grammar with the same qualita-
tive structure as that of DA 1, possibly in more than
two dimensions. We sought two kinds of evidence:
“linear separability” and “branching structure”. For
“linear separability”, we asked if the SRN states cor-
responding to a particular point in DA 1 (state of

PDA 1) were clustered so as to be linearly sepa-
rable from SRN states corresponding to a different
point. Two sets A and B of points in a vector space
of dimension n are linearly separable if there is an
n − 1 dimensional hyperplane in the space with all
the points of A on one side of it and all the points
of B on the other. In fractal grammar parsing, pair-
wise linear separability suffices to distinguish the
machine states (Tabor, 2000). Among the cases
where more than one sample point corresponded to
the same PDA state, an average of 17.6/22 were pair-
wise linearly separable from the other groups. In six
of the networks, all the multi-element clusters were
pairwise linearly separable. This finding lends sup-
port to the claim that the networks approximate frac-
tal grammars.

For “branching structure”, we asked if the deploy-
ment of these (largely) linearly separable clusters
corresponded to the branching structure of the frac-
tal of DA 1. In particular, for each cluster corre-
sponding to a DA 1/PDA 1 state with more than one
symbol on the stack in PDA 1, we considered all the
clusters with one-fewer symbols on the stack. We
asked if the nearest cluster with one fewer symbols
on the stack corresponded to the nearest one-fewer
stack symbol point in DA 1. In Level 1 to and 3 sen-
tences, there are 20 such states to consider. Across
networks, the average rate of unexpected proxim-
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ity relationships was 3.5/20 (SD = 1.7). The best
networks we observed under this training method
(noise reduced to 0) generated only 1 unexpected
proximity relationship. These results also indicate
a close correspondence between the organization of
the network and fractal grammars.

Up to this point, the evidence we have been pre-
senting has supported a formal correspondence be-
tween SRNs and fractal grammars. In the final
part of this section, we consider one prediction of
the network approach that is not obviously pre-
dicted by symbolic grammar mixture accounts like
the Bayesian model discussed in the introduction.

Tabor (2003) shows how a fractal for process-
ing another recursive language (similar to the lan-
guage of Grammar 1) arises by gradual metamor-
phosis of (Stage I) a single point into (Stage II) a line
of points, then into (Stage III) an infinite lattice, then
into (Stage IV) a fractal with overlapping branches
and finally into (Stage V) the fully-formed fractal
that very closely captures the recursive embedding
structure. During Stage IV, the system correctly pro-
cesses shallow levels of embedding but fails to pro-
cess deeper levels of embedding. As the metamor-
phosis progresses, this Fractal Learning Neural Net-
work (FLNN) becomes able to process deeper and
deeper levels at an accelerating rate such that, after
finite time, it reaches a point where it is effectively
processing all levels, indicating a continuous com-
plexity cline in parameter space. An empirical im-
plication is that a network that has mastered n lev-
els of embedding, for n a natural number, will more
easily (with less weight change) master n+1 levels
of embedding than one that has mastered fewer than
n.

To see if the SRN’s complexity cline predictions
are in line with those of the FLNNs, we correlated
the network’s performance at the end of the Training
Phase with its performance in the Test Phase. For
this purpose, we defined the training performance as
the mean prediction accuracy across all predictable
transitions of Level 1 and 2 sentences in the fourth
quarter of the training phase. The Test Phase per-
formance was defined in two different ways. It was
defined as the mean accuracy across novel but pre-
dictable transitions (a) in all Level 3 sentences in
the test phase or (b) only in the first instances of
four different Level 3 sentences. We used the sec-

ond measure because the networks and humans con-
tinue to learn in the Test Phase: correlation of train-
ing performance with measure (a) might stem from
learning facility alone; correlation with (b) indicates
generalization ability. Both tests showed signifi-
cant correlation (a: r(69) = 0.98, p < .0001; b:
r(69) = 53, p < .0001). These results are consis-
tent with the claim that the SRN induces a complex-
ity cline similar to that induced by the fractal learn-
ing networks..

To consider how well this prediction distin-
guishes the fractal learning framework from other
approaches to grammar learning, we now consider
the Bayesian grammar selection model of (Perfors et
al., 2011). We consider this case, which is naturally
related to our focus, as a first step toward developing
concrete approaches within the Bayesian framework
that could address the issues raised by the Box Pre-
diction findings.

Perfors et al.’s model is also concerned with the
induction of recursive grammatical systems from
language data. They presented samples from the
Childes Database (MacWhinney, 2000) to their
model over 6 stages, where each stage sampled the
corpus more thoroughly than the last. This sampling
method generally caused each stage to have heavier
sampling of deeper recursive structures than the pre-
vious stage because the deeper recursive structures
are less frequent in the master corpus. The Bayesian
model selects finite-state grammars during the ear-
lier stages and then prefers recursive grammars dur-
ing the later stages. This shift occurs because, as the
sampling goes deeper, the finite state systems need
to employ many additional productions to handle the
burgeoning variety of collocations, while the recur-
sive grammars can handle them with few rules, so
the model’s anti-complexity bias causes it to prefer
the recursive grammars (Perfors et al., p. 320). It
seems likely that a version of their model, applied
to the training data in our experiment, would se-
lect finite-state grammars during the Training Phase
and the switch to a recursive grammar in the Test
Phase. Perfors et al. did not consider the question
of individual differences. We can think of one way
that the basic correlational finding reported for the
SRNs would obtain in the Bayesian system (finding
(a) above): if the perception of the stimuli by some
models was noisier than that of others, then one ex-
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pects the general correlation between Training and
Test performance to obtain: the noise interferes sim-
ilarly with both phases so correlated accuracy is ob-
served. It is not as clear to us that the Bayesian sys-
tem will predict finding (b), which shows that first-
try performance on novel structures is better for peo-
ple who show better Training performance.2 There
does not appear to be a proximity relationship be-
tween grammars in Perfors et al.’s model as there is
in the network models. Thus, if it predicts this effect,
then it would have to do so for a different reason, a
point worthy of further research.

5 Results: Human Box Prediction

Seventy-one undergraduate students in the Univer-
sity of Connecticut participated in the experiment
for course credit. The range of human performance
was substantial. The mean correct performance on
37 predictable trials during the last 100 trials of
training was 51% (SD = 21%). Despite this overall
low rate of performance at test, there was a subset
of people who learned the training grammar well by
the end of training.

Twelve of the 71 participants, scored over 80%
correct on the pop trials within the last 100 train-
ing trials. 80% is the level of correct performance
that a particular finite-state device we refer to as the
“Simple Markov Model” would yield during these
100 trials. The Simple Markov Model predicts 2 af-
ter 1, 3 after 2, 4 after 3, and 1 after 4. The two top
scorers among these twelve generalized perfectly to
each first instance of the four Level 3 types in the
test phase. If, contrary to our hypothesis, all 12 were
using finite state mechanisms, and they guessed ran-
domly on novel transitions, the chances of observing
2 or more perfect scorers would be 0.9% (p = .009).
We take this as evidence that the two strongest gen-
eralizers developed a representation closely approx-
imating a recursive system.

Performance at the end of training correlated with
accuracy on 24 novel transitions in Level 3 sentences
at test (r(69) = 0.72, p < .0001). This corresponds
to test (a) of the SRN Results section above, suggest-
ing some kind of grammar proximity model. Re-
garding (b), accuracy on the 8 novel transitions in

2This is not single-trial learning. It is immediate generaliza-
tion to unseen cases.

the 4 first instances of novel Level 3 sentences also
correlated with the performance at the end of train-
ing, r(69) = 0.57, p < .0001. These results lend
some empirical support to the complexity cline pre-
dictions of the fractal model.

6 General Discussion

We studied the learning of recursion by training
Simple Recurrent Networks (SRNs) and humans
in an artificial grammar task. We described met-
ric space computing models that navigate on frac-
tal sets and noted a complexity cline phenomenon
in learning (learning of lower embeddings facilitates
the learning of higher ones). Previous work in this
area has focused on counting recursion languages.
Here, we explored learning of a mirror recursion lan-
guage. We showed that the SRN hidden unit repre-
sentations had clustering and branching structure ap-
proximating the predictions of the fractal grammar
model. They also showed evidence of the complex-
ity cline. The human learning results on the same
language provided evidence that at least a few peo-
ple inferred a recursive principle for the mirror re-
cursion language. The complexity cline prediction
was also borne out by the human data: not only did
performance on lower levels of embedding correlate
with performance on higher levels of embedding,
but it predicted generalization behavior, suggesting
that the representation continuously metamorphoses
from a finite-state system into an infinite state sys-
tem.

We identified one closely related Bayesian gram-
mar induction model (Perfors et al., 2011) which
seems well positioned to make similar, but probably
not the same, predictions about phenomenon of infi-
nite state language learning. We suggest that further
exploration of the relationship between the Bayesian
models and the recurrent neural network models will
be helpful. A novel claim of the present work is
that they it is possible to compare recurrent neural
network models and symbolic structure models on
the same terms. We suggest that further examination
of this relationship may be helpful in addressing the
challenging problems of complex language learning.
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Abstract

Probabilistic context-free grammars (PCFGs)

are a popular cognitive model of syntax (Ju-

rafsky, 1996). These can be formulated to

be sensitive to human working memory con-

straints by application of a right-corner trans-

form (Schuler, 2009). One side-effect of the

transform is that it guarantees at most a sin-

gle expansion (push) and at most a single re-

duction (pop) during a syntactic parse. The

primary finding of this paper is that this prop-

erty of right-corner parsing can be exploited to

obtain a dramatic reduction in the number of

random variables in a probabilistic sequence

model parser. This yields a simpler structure

that more closely resembles existing simple

recurrent network models of sentence compre-

hension.

1 Introduction

There may be a benefit to using insights from human

cognitive modelling in parsing. Evidence for in-

cremental processing can be seen in garden pathing

(Bever, 1970), close shadowing (Marslen-Wilson,

1975), and eyetracking studies (Tanenhaus et al.,

1995; Allopenna et al., 1998; Altmann and Kamide,

1999), which show humans begin attempting to pro-

cess a sentence immediately upon receiving lin-

guistic input. In the cognitive science community,

this incremental interaction has often been mod-

elled using recurrent neural networks (Elman, 1991;

Mayberry and Miikkulainen, 2003), which utilize

a hidden context with a severely bounded repre-

sentational capacity (a fixed number of continuous

units or dimensions), similar to models of activation-

based memory in the prefrontal cortex (Botvinick,

2007), with the interesting possibility that the dis-

tributed behavior of neural columns (Horton and

Adams, 2005) may directly implement continuous

dimensions of recurrent hidden units. This paper

presents a refinement of a factored probabilistic se-

quence model of comprehension (Schuler, 2009) in

the direction of a recurrent neural network model

and presents some observed efficiencies due to this

refinement.

This paper will adopt an incremental probabilis-

tic context-free grammar (PCFG) parser (Schuler,

2009) that uses a right-corner variant of the left-

corner parsing strategy (Aho and Ullman, 1972)

coupled with strict memory bounds, as a model of

human-like parsing. Syntax can readily be approxi-

mated using simple PCFGs (Hale, 2001; Levy, 2008;

Demberg and Keller, 2008), which can be easily

tuned (Petrov and Klein, 2007). This paper will

show that this representation can be streamlined to

exploit the fact that a right-corner parse guarantees

at most one expansion and at most one reduction can

take place after each word is seen (see Section 2.2).

The primary finding of this paper is that this prop-

erty of right-corner parsing can be exploited to ob-

tain a dramatic reduction in the number of random

variables in a probabilistic sequence model parser

(Schuler, 2009) yielding a simpler structure that

more closely resembles connectionist models such

as TRACE (McClelland and Elman, 1986), Short-

list (Norris, 1994; Norris and McQueen, 2008), or

recurrent models (Elman, 1991; Mayberry and Mi-

ikkulainen, 2003) which posit functional units only

for cognitively-motivated entities.

The rest of this paper is structured as follows:

Section 2 gives the formal background of the right-

corner parser transform and probabilistic sequence
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model parsing. The simplification of this model is

described in Section 3. A discussion of the interplay

between cognitive theory and computational mod-

elling in the resulting model may be found in Sec-

tion 4. Finally, Section 5 demonstrates that such

factoring also yields large benefits in the speed of

probabilistic sequence model parsing.

2 Background

2.1 Notation

Throughout this paper, PCFG rules are defined over

syntactic categories subscripted with abstract tree

addresses (cηι). These addresses describe a node’s

location as a path from a given ancestor node. A 0
on this path represents a leftward branch and a 1 a

rightward branch. Positions within a tree are repre-

sented by subscripted η and ι so that cη0 is the left

child of cη and cη1 is the right child of cη. The set of

syntactic categories in the grammar is denoted by C.

Finally, JφK denotes an indicator probability which

is 1 if φ and 0 otherwise.

2.2 Right-Corner Parsing

Parsers such as that of Schuler (2009) model hierar-

chically deferred processes in working memory us-

ing a coarse analogy to a pushdown store indexed

by an embedding depth d (to a maximum depth D).

To make efficient use of this store, a CFG G must

be transformed using a right-corner transform into

another CFG G′ with no right recursion. Given an

optionally arc-eager attachment strategy, this allows

the parser to clear completed parse constituents from

the set of incomplete constituents in working mem-

ory much earlier than with a conventional syntactic

structure. The right-corner transform operates de-

terministically over a CFG following three mapping

rules:

cη → cη0 cη1 ∈ G

cη/cη1 → cη0 ∈ G′
(1)

cηι → cηι0 cηι1 ∈ G, cη ∈ C

cη/cηι1 → cη/cηι cηι0 ∈ G′
(2)

cηι → xηι ∈ G, cη ∈ C

cη → cη/cηι cηι ∈ G′
(3)

A bottom-up incremental parsing strategy com-

bined with the way the right-corner transform pulls

each subtree into a left-expanding hierarchy ensures

at most a single expansion (push) will occur at

any given observation. That is, each new observa-

tion will be the leftmost leaf of a right-expanding

subtree. Additionally, by reducing multiply right-

branching subtrees to single rightward branches, the

transform also ensures that at most a single reduc-

tion (pop) will take place at any given observation.

Schuler et al. (2010) show near complete cover-

age of the Wall Street Journal portion of the Penn

Treebank (Marcus et al., 1993) can be achieved with

a right-corner incremental parsing strategy using no

more than four incomplete contituents (deferred pro-

cesses), in line with recent estimates of human work-

ing memory capacity (Cowan, 2001).

Section 3 will show that, in addition to being de-

sirable for bounded working memory restrictions,

the single expansion/reduction guarantee reduces

the search space between words to only two decision

points — whether to expand and whether to reduce.

This allows rapid processing of each candidate parse

within a sequence modelling framework.

2.3 Model Formulation

This transform is then extended to PCFGs and inte-

grated into a sequence model parser. Training on

an annotated corpus yields the probability of any

given syntactic state executing an expansion (creat-

ing a syntactic subtree) or a reduction (completing

a syntactic subtree) to transition from every suffi-

ciently probable (in this sense active) hypothesis in

the working memory store.

The probability of the most likely sequence of

store states q̂1..D1..T can then be defined as the prod-

uct of nonterminal θQ, preterminal θP,d, and termi-

nal θX factors:

q̂1..D1..T
def
= argmax

q1..D
1..T

T
∏

t=1

PθQ
(q1..Dt | q1..Dt−1 pt−1)

· PθP,d′
(pt | b

d′

t ) · PθX
(xt | pt) (4)

where all incomplete constituents qd
t are factored

into active ad
t and awaited bd

t components:

qd
t
def
= ad

t /bd
t (5)

and d′ determines the deepest non-empty incomplete

constituent of q1..Dt :
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d′
def
= max{d | qd

t 6= ‘–’} (6)

The preterminal model θP,d denotes the expecta-

tion of a subtree containing a given preterminal, ex-

pressed in terms of side- and depth-specific gram-

mar rules PθGs,d
(cη → cη0 cη1) and expected counts

of left progeny categories EθG∗,d
(cη

∗

→ cηι ...) (see
Appendix A):

PθP,d
(cηι | cη)

def
= EθG∗,d

(cη
∗

→ cηι ...)

·
∑

xηι

PθGL,d
(cηι → xηι) (7)

and the terminal model θX is simply:

PθX
(xη | cη)

def
=

PθG
(cη → xη)

∑

xη
PθG

(cη → xη)
(8)

The Schuler (2009) nonterminal model θQ is

computed from a depth-specific store element

model θQ,d and a large final state model θF,d:

PθQ
(q1..Dt | q1..Dt−1 pt−1)

def
=

∑

f1..D
t

D
∏

d=1

PθF,d
(fd

t | f
d+1
t qd

t−1 qd−1
t−1 )

· PθQ,d
(qd

t | f
d+1
t fd

t qd
t−1 qd−1

t ) (9)

After each time step t and depth d, θQ generates

a set of final states to generate a new incomplete

constituent qd
t . These final states fd

t are factored

into categories cfd
t
and boolean variables (0 or 1)

encoding whether a reduction has taken place at

depth d and time step t. The depth-specific final state
model θF,d gives the probability of generating a final

state fd
t from the preceding qd

t and qd−1
t which is the

probability of executing a reduction or consolidation

of those incomplete constituents:

PθF,d
(fd

t | f
d+1
t qd

t−1 qd−1
t−1 )

def
=

{

if fd+1
t = ‘–’ : Jfd

t = 0K

if fd+1
t 6= ‘–’ : PθF,d,R

(fd
t | q

d
t−1 qd−1

t−1 )
(10)

With these depth-specific fd
t in hand, the model can

calculate the probabilities of each possible qd
t for

each d and t based largely on the probability of tran-
sitions (θQ,d,T ) and expansions (θQ,d,E) from the in-

complete constituents at the previous time step:

PθQ,d
(qd

t | f
d+1
t fd

t qd
t−1 qd−1

t−1 )
def
=







if fd+1
t = ‘–’, fd

t = ‘–’ : Jqd
t = qd

t−1K

if fd+1
t 6= ‘–’, fd

t = ‘–’ : PθQ,d,T
(qd

t | f
d+1
t fd

t qd
t−1 qd−1

t )

if fd+1
t 6= ‘–’, fd

t 6= ‘–’ : PθQ,d,E
(qd

t | q
d−1
t )

(11)

This model is shown graphically in Figure 1.

The probability distributions over reductions

(θF,d,R), transitions (θQ,d,T ) and expansions

(θQ,d,E) are then defined, also in terms of side- and

depth-specific grammar rules PθGs,d
(cη → cη0 cη1)

and expected counts of left progeny cate-

gories EθG∗,d
(cη

∗

→ cηι ...) (see Appendix A):

PθQ,d,T
(qd

t | f
d+1
t fd

t qd
t−1q

d−1
t )

def
=

{

if fd
t 6= ‘–’: PθQ,d,A

(qd
t | q

d−1
t fd

t )

if fd
t = ‘–’: PθQ,d,B

(qd
t | q

d
t−1f

d+1
t )

(12)

PθF,d,R
(fd

t | f
d+1
t qd

t−1q
d−1
t−1 )

def
=

{

if c
fd+1

t
6=xt : Jf

d
t = ‘–’K

if c
fd+1

t
=xt : PθF,d,R

(fd
t | q

d
t−1q

d−1
t−1 )

(13)

PθQ,d,E
(cηι/c′ηι | /cη)

def
=

EθG∗,d
(cη

∗

→ cηι ...) · Jxηι = c′ηι = cηιK (14)

The subcomponent models are obtained by ap-

plying the transform rules to all possible trees pro-

portionately to their probabilities and marginalizing

over all constituents that are not used in the models:

• for active transitions (from Transform Rule 1):

PθQ,d,A
(cηι/cηι1 | /cη cηι0)

def
=

EθG∗,d
(cη

∗

→ cηι ...) · PθGL,d
(cηι → cηι0 cηι1)

EθG∗,d
(cη

+
→ cηι0 ...)

(15)
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Figure 1: Schuler (2009) Sequence Model

• for awaited transitions (Transform Rule 2):

PθQ,d,B
(cη/cηι1 | c

′

η/cηι cηι0)
def
=

Jcη = c′ηK ·
PθGR,d

(cηι → cηι0 cηι1)

EθG∗,d
(cηι

0
→ cηι0 ...)

(16)

• for reductions (from Transform Rule 3):

PθF,d,R
(cηι,1 | /cη c′ηι/ )

def
=

Jcηι = c′ηιK ·
EθG∗,d

(cη
0
→ cηι ...)

EθG∗,d
(cη

∗

→ cηι ...)
(17)

PθF,d,R
(cηι,0 | /cη c′ηι/ )

def
=

Jcηι = c′ηιK ·
EθG∗,d

(cη
+
→ cηι ...)

EθG∗,d
(cη

∗

→ cηι ...)
(18)

3 Simplified Model

As seen in the previous section, the right-corner

parser of Schuler (2009) makes the center embed-

ding depth explicit and each memory store element

is modelled as a combination of an active and an

awaited component. Each input can therefore either

increase (during an expansion) or decrease (during

a reduction) the store of incomplete constituents or

it can alter the active or awaited component of the

deepest incomplete constituent (the affectable ele-

ment). Alterations of the awaited component of the

affectable element can be thought of as the expan-

sion and immediate reduction of a syntactic con-

stituent. The grammar models transitions in the ac-

tive component implicitly, so these are conceptual-

ized as consisting of neither an expansion nor a re-

duction.

Removing some of the variables in this model re-

sults in one that looks much more like a neural net-

work (McClelland and Elman, 1986; Elman, 1991;

Norris, 1994; Norris and McQueen, 2008) in that

all remaining variables have cognitive correllates —

in particular, they correspond to incomplete con-

stituents in working memory—while still maintain-

ing the ability to explicitly represent phrase struc-

ture. This section will demonstrate how it is possi-

ble to exploit this to obtain a large reduction in the

number of modelled random variables.

In the Schuler (2009) sequence model, eight ran-

dom variables are used to model the hidden states

at each time step (see Figure 1). Half of these vari-

ables are joint consisting of two further (active and

awaited) constituent variables, while the other half

are merely over intermediate final states. Although

the entire store is carried from time step to time

step, only one memory element is affectable at any

one time, and this element may be reduced zero or
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one times (using an intermediate final state), and ex-

panded zero or one times (using an incomplete con-

stituent state), yielding four possible combinations.

This means the model only actually needs one of its

intermediate final states.

The transition model θQ can therefore be simpli-

fied with terms θF,d for the probability of expand-

ing the incomplete constituent at d, and terms θA,d

and θB,d for reducing the resulting constituent

(defining the active and awaited components of

a new incomplete constituent), along with terms

for copying incomplete constituents above this af-

fectable element, and for emptying the elements be-

low it:

PθQ
(q1..Dt | q1..Dt−1 pt−1)

def
=PθF,d′

(‘+’ | bd′

t−1 pt−1) · PθA,d′
(‘–’ | bd′−1

t−1 ad′

t−1)

· Jad′−1
t =ad′−1

t−1 K · PθB,d′−1
(bd′−1

t | bd′−1
t−1 ad′

t−1)

· Jq1..d
′
−2

t =q1..d
′
−2

t−1 K · Jqd′..D
t = ‘–’K

+PθF,d′
(‘+’ | bd′

t−1 pt−1) · PθA,d′
(ad′

t | bd′−1
t−1 ad′

t−1)

· PθB,d′
(bd′

t | ad′

t ad′+1
t−1 )

· Jq1..d
′
−1

t =q1..d
′
−1

t−1 K · Jqd′+1..D
t = ‘–’K

+PθF,d′
(‘–’ | bd′

t−1 pt−1) · PθA,d′
(‘–’ | bd′

t−1 pt−1)

· Jad′

t =ad′

t−1K · PθB,d′
(bd′

t | bd′

t−1 pt−1)

· Jq1..d
′
−1

t =q1..d
′
−1

t−1 K · Jqd′+1..D
t = ‘–’K

+PθF,d′
(‘–’ | bd′

t−1 pt−1) · PθA,d′
(ad′+1

t | bd′

t−1 pt−1)

· PθB,d′
(bd′+1

t | ad′+1
t pt−1)

· Jq1..d
′

t =q1..d
′

t−1 K · Jqd′+2..D
t = ‘–’K (19)

The first element of the sum in Equation 19 com-

putes the probability of a reduction with no expan-

sion (decreasing d′). The second corresponds to the

probability of a store undergoing neither an expan-

sion nor a reduction (a transition to a new active con-

stituent at the same embedding depth). In the third

is the probability of an expansion and a reduction

(a transition among awaited constituents at the same

embedding depth). Finally, the last term yields the

probability of an expansion without a reduction (in-

creasing d′).
From Equation 19 it may be seen that the unaf-

fected store elements of each time step are main-

tained sans change as guaranteed by the single-

reduction feature of the right-corner parser. This re-

sults in a large representational economy by mak-

ing the majority of store state decisions determinis-

tic. This representational economy will later trans-

late into computational efficiencies (see section 5).

In this sense, cognitive modelling contributes to a

practical speed increase.

Since the bulk of the state remains the same,

the recognizer can access the affectable variable

and operate solely over the transition possibili-

ties from that variable to calculate the distribu-

tion over store states for the next time step to ex-

plore. Reflecting this change, the hidden states

now model a single final-state variable (f) for

results of the expansion decision, and the af-

fectable variable resulting from the reduction de-

cision (both its active (a) and awaited (b) cate-

gories), as well as the preterminal state (p) defined
in the previous section. These models are again ex-

pressed in terms of side- and depth-specific grammar

rules PθGs,d
(cη → cη0 cη1) and expected counts of

left progeny categories EθG∗,d
(cη

∗

→ cηι ...) (see
Appendix A).

Expansion probabilities are modelled as a binary

decision depending on whether or not the awaited

component of the affectable variable cη is likely to

expand immediately into an anticipated pretermi-

nal cηι (resulting in a non-empty final state: ‘+’) or

if intervening embeddings are necessary given the

affectable active component (yielding no final state:

‘–’):

PθF,d
(f | cη cηι)

def
=



















if f= ‘+’ :
EθG∗,d

(cη
0
→cηι ...)

EθG∗,d
(cη

∗

→cηι ...)

if f= ‘–’ :
EθG∗,d

(cη
+
→cηι ...)

EθG∗,d
(cη

∗

→cηι ...)

(20)

The active component category cηι is defined as de-

pending on the category of the awaited component

above it cη and its left-hand child cηι0:

PθA,d
(cηι | cη cηι0)

def
=

EθG∗,d
(cη

1
→cηι0 ...)

EθG∗,d
(cη

+
→cηι0 ...)

· Jcηι= ‘–’K

+
EθG∗,d

(cη
+
→cηι ...)·PθGL,d

(cηι→cηι0 ...)

EθG∗,d
(cη

+
→cηι0 ...)

(21)

The awaited component category cη1 is defined as
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depending on the category of its parent cη and the

preceding sibling cη0:

PθB,d
(cη1 | cη cη0)

def
=

PθGR,d
(cη→cη0 cη1)

EθG∗,d
(cη

1
→cη0 ...)

(22)

Both of these make sense given the manner in which

the right-corner parser shifts dependencies to the left

down the tree in order to obtain incremental infor-

mation about upcoming constituents.

3.1 Graphical Representation

In order to be represented graphically, the working

memory store θQ is factored into a single expansion

term θF and a product of depth-specific reduction

terms θQ,d:

PθQ
(q1..Dt | q1..Dt−1 pt−1)

def
=

∑

ft

PθF
(ft | q

1..D
t−1 )

·

D
∏

d=1

PθQ,d
(qd

t | q
1..D
t−1 pt−1 ft qd+1

t ) (23)

and the depth-specific reduction model θQ,d is fac-

tored into individual decisions over each random

variable:

PθQ,d
(qd

t | q
1..D
t−1 pt−1 ft qd+1

t )
def
=



































































if qd+1
t = ‘–’, ft 6= ‘–’, d=d′−1 :

Jad
t =ad

t−1K · PθB,d
(bd

t | b
d
t−1 ad+1

t−1 )

if qd+1
t = ‘–’, ft 6= ‘–’, d=d′ :

PθA,d
(ad

t | b
d−1
t−1 ad

t−1) · PθB,d
(bd

t | a
d
t ad

t−1)

if qd+1
t = ‘–’, ft= ‘–’, d=d′ :

Jad
t =ad

t−1K · PθB,d
(bd

t | b
d
t−1 pt−1)

if qd+1
t = ‘–’, ft= ‘–’, d=d′+1 :

PθA,d
(ad

t | b
d−1
t−1 pt−1) · PθB,d

(bd
t | a

d
t pt−1)

if qd+1
t 6= ‘–’ : Jqd

t =qd
t−1K

otherwise : Jqd
t = ‘–’K

(24)

This dependency structure is represented graphically

in Figure 2.

The first conditional in Equation 24 checks

whether the input causes a reduction but no expan-

sion (completing a subtree parse). In this case, d′ is
reduced from the previous t, and the relevant qd

t−1 is

copied to qd
t except the awaited constituent is altered

to reflect the completion of its preceding awaited

subtree. In the second case, the parser makes an

active transition as it completes a left subtree and

begins exploring the right subtree. The third case

is similar to the first except it transitions between

two like depths (awaited transition), and depends on

the preterminal just seen to contrive a new subtree

to explore. In the fourth case, d′ is incremented as

another incomplete constituent opens up in working

memory. The final two cases simply update the un-

affected store states to reflect their previous states at

time t− 1.

4 Discussion

This factoring of redundant hidden states out of the

Schuler (2009) probabilistic sequence model shows

that cognitive modelling can more closely approx-

imate a simple recurrent network model of lan-

guage processing (Elman, 1991). Probabilistic se-

quence model parsers have previously been mod-

elled with random variables over incomplete con-

stituents (Schuler, 2009). In the current implementa-

tion, each variable can be thought of as a bank of ar-

tificial neurons. These artificial neurons inhibit one

another through the process of normalization. Con-

versely, they activate artificial neurons at subsequent

time steps by contributing probability mass through

the transformed grammar. This point was made by

Norris and McQueen (2008) with respect to lexical

access; this model extends it to parsing.

Recurrent networks can parse simple sentences

but run into problems when running over more com-

plex datasets. This limitation comes from the unsu-

pervised methods typically used to train them, which

have difficulty scaling to sufficiently large training

sets for more complex constructions. The approach

described in this paper uses a hidden context simi-

lar to that of a recurrent network to inform the pro-

gression of the parse, except that the context is in

terms of random variables with distributions over a

set of explicit syntactic categories. By framing the

variable domains in a linguistically-motivated fash-

ion, the problem of acquisition can be divested from

the problem of processing. This paper then uses the

semi-supervised grammar training of Petrov et al.

(2006) in order to develop a simple, accurate model

for broad-coverage parsing independent of scale.
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Figure 2: Parse using Simplified Model

Like Schuler (2009), the incremental parser dis-

cussed here operates in O(n) time where n is the

length of the input. Further, by its incremental na-

ture, this parser is able to run continuously on a

stream of input, which allows any other processes

dependent on the input (such as discourse integra-

tion) to run in parallel regardless of the length of the

input.

5 Computational Benefit

Due to the decreased number of decisions required

by this simplified model, it is substantially faster

than previous similar models. To test this speed in-

crease, the simplified model was compared with that

of Schuler (2009). Both parsers used a grammar that

had undergone 5 iterations of the Petrov et al. (2006)

split-merge-smooth algorithm as found to be opti-

mal by Petrov and Klein (2007), and both used a

beam-width of 500 elements. Sections 02-21 of the

Wall Street Journal Treebank were used in training

the grammar induction for both parsers according to

Petrov et al. (2006), and Section 23 was used for

evaluation. No tuning was done as part of the trans-

form to a sequence model. Speed results can be seen

in Table 1. While the speed is not state-of-the-art in

the field of parsing at large, it does break new ground

for factored sequence model parsers.

To test the accuracy of this parser, it was com-

pared using varying beam-widths to the Petrov and

Klein (2007) and Roark (2001) parsers. With the

exception of the Roark (2001) parser, all parsers

used 5 iterations of the Petrov et al. (2006) split-

System Sec/Sent

Schuler 2009 74

Current Model 12

Table 1: Speed comparison with an unfactored proba-

bilistic sequence model using a beam-width of 500 ele-

ments

System P R F

Roark 2001 86.6 86.5 86.5

Current Model (500) 86.6 87.3 87.0

Current Model (2000) 87.8 87.8 87.8

Current Model (5000) 87.8 87.8 87.8

Petrov Klein (Binary) 88.1 87.8 88.0

Petrov Klein (+Unary) 88.3 88.6 88.5

Table 2: Accuracy comparison with state-of-the-art mod-

els. Numbers in parentheses are number of parallel acti-

vated hypotheses

merge-smooth algorithm, and the training and test-

ing datasets remained the same. These results may

be seen in Table 2. Note that the Petrov and Klein

(2007) parser allows unary branching within the

phrase structure, which is not well-defined under the

right-corner transform. To obtain a fair comparison,

it was also run with strict binarization. The cur-

rent approach achieves comparable accuracy to the

Petrov and Klein (2007) parser assuming a strictly

binary-branching phrase structure.
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6 Conclusion

The primary goal of this paper was to demonstrate

that a cognitively-motivated factoring of an exist-

ing probabilistic sequence model parser (Schuler,

2009) is not only more attractive from a modelling

perspective but also more efficient. Such factor-

ing yields a much slimmer model where every vari-

able has cognitive correlates to working memory el-

ements. This also renders several transition prob-

abilities deterministic and the ensuing representa-

tional economy leads to a 5-fold increase in pars-

ing speed. The results shown here suggest cognitive

modelling can lead to computational benefits.
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A Grammar Formulation

Given D memory elements indexed by d (see Sec-

tion 2.2) and a PCFG θG, the probability θ
(k)
Ts,d of a

tree rooted at a left or right sibling s ∈ {L, R} of

category cη ∈ C requiring d ∈ 1..D memory ele-

ments is defined recursively over paths of increasing

length k:

P
θ
(0)
Ts,d

(1 | cη)
def
= 0 (25)

P
θ
(k)
TL,d

(1 | cη)
def
=

∑

xη

PθG
(cη → xη)

+
∑

cη0,cη1

PθG
(cη → cη0 cη1)

· P
θ
(k−1)
TL,d

(1 | cη0) · Pθ
(k−1)
TR,d

(1 | cη1)

(26)

P
θ
(k)
TR,d

(1 | cη)
def
=

∑

xη

PθG
(cη → xη)

+
∑

cη0,cη1

PθG
(cη → cη0 cη1)

· P
θ
(k−1)
TL,d+1

(1 | cη0) · Pθ
(k−1)
TR,d

(1 | cη1)

(27)

Note that the center embedding depth d increases

only for left children of right children. This is be-

cause in a binary branching structure, center embed-

dings manifest as zigzags. Since the model is also

sensitive to the depth d of each decomposition, the

side- and depth-specific probabilities of θGL,d and

θGR,d are defined as follows:

PθGL,d
(cη → xη)

def
=

PθG
(cη → xη)

P
θ
(∞)
TL,d

(1 | cη)
(28)

PθGR,d
(cη → xη)

def
=

PθG
(cη → xη)

P
θ
(∞)
TR,d

(1 | cη)
(29)

PθGL,d
(cη → cη0 cη1)

def
= PθG

(cη → cη0 cη1)

· P
θ
(∞)
TL,d

(1 | cη0) · Pθ
(∞)
TR,d

(1 | cη1)

· P
θ
(∞)
TL,d

(1 | cη)
−1 (30)

PθGR,d
(cη → cη0 cη1)

def
= PθG

(cη → cη0 cη1)

· P
θ
(∞)
TL,d+1

(1 | cη0) · Pθ
(∞)
TR,d

(1 | cη1)

· P
θ
(∞)
TR,d

(1 | cη)
−1 (31)

The model will also need an expected count

EθG∗,d
(cη

∗

→ cηι ...) of the given child constituent

cηι dominating a prefix of constituent cη. Expected

versions of these counts may later be used to derive

probabilities of memory store state transitions (see

Sections 2.3, 3).

EθG∗,d
(cη

0
→ cη ...)

def
=

∑

xη

PθGR,d
(cη → xη)

(32)

EθG∗,d
(cη

1
→ cη0 ...)

def
=

∑

cη1

PθGR,d
(cη → cη0 cη1)

(33)

EθG∗,d
(cη

k
→ cηι0 ...)

def
=

∑

cηι

EθG∗,d
(cη

k−1
→ cηι ...)

·
∑

cηι1

PθGL,d
(cηι → cηι0 cηι1)

(34)

EθG∗,d
(cη

∗

→ cηι ...)
def
=

∞
∑

k=0

EθG∗,d
(cη

k
→ cηι ...)

(35)

EθG∗,d
(cη

+
→ cηι ...)

def
=

∞
∑

k=1

EθG∗,d
(cη

k
→ cηι ...)

(36)

Equation 32 gives the probability of a constituent

appearing as an observation, and Equation 33 gives

the probability of a constituent appearing as a left
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child. Equation 34 extends the previous two equa-

tions to account for a constituent appearing at an ar-

bitrarily deep embedded path of length k. Taking

the sum of all k path lengths (as in Equation 35)

allows the model to account for constituents any-

where in the left progeny of the dominated subtree.

Similarly, Equation 36 gives the expectation that the

constituent is non-immediately dominated by cη. In

practice the infinite sum is estimated to some con-

stant K using value iteration (Bellman, 1957).
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Abstract

Experimental evidence demonstrates that syn-
tactic structure influences human online sen-
tence processing behavior. Despite this ev-
idence, open questions remain: which type
of syntactic structure best explains observed
behavior–hierarchical or sequential, and lexi-
calized or unlexicalized? Recently, Frank and
Bod (2011) find that unlexicalized sequen-
tial models predict reading times better than
unlexicalized hierarchical models, relative to
a baseline prediction model that takes word-
level factors into account. They conclude that
the human parser is insensitive to hierarchi-
cal syntactic structure. We investigate these
claims and find a picture more complicated
than the one they present. First, we show that
incorporating additional lexical n-gram prob-
abilities estimated from several different cor-
pora into the baseline model of Frank and Bod
(2011) eliminates all differences in accuracy
between those unlexicalized sequential and hi-
erarchical models. Second, we show that lexi-
calizing the hierarchical models used in Frank
and Bod (2011) significantly improves pre-
diction accuracy relative to the unlexicalized
versions. Third, we show that using state-
of-the-art lexicalized hierarchical models fur-
ther improves prediction accuracy. Our results
demonstrate that the claim of Frank and Bod
(2011) that sequential models predict reading
times better than hierarchical models is pre-
mature, and also that lexicalization matters for
prediction accuracy.

1 Introduction

Various factors influence human reading times dur-
ing online sentence processing, including word-level
factors such as word length, unigram and bigram
probabilities, and position in the sentence. Yet word-
level factors cannot explain many observed process-
ing phenomena; ample experimental evidence ex-
ists for the influence of syntax on human behav-
ior during online sentence processing, beyond what
can be predicted using word-level factors alone.
Examples include the English subject/object rela-
tive clause asymmetry (Gibson et al., 2005; King
and Just, 1991) and anti-locality effects in German
(Konieczny, 2000; Konieczny and Döring, 2003),
Hindi (Vasishth and Lewis, 2006), and Japanese
(Nakatani and Gibson, 2008). Levy (2008) shows
that these processing phenomena can be explained
by surprisal theory under a hierarchical probabilis-
tic context-free grammar (PCFG). Other evidence
of syntactic expectation in sentence processing in-
cludes the facilitation of processing at “or” follow-
ing “either” (Staub and Clifton, 2006); expectations
of heavy noun phrase shifts (Staub et al., 2006); el-
lipsis processing (Lau et al., 2006); and syntactic
priming (Sturt et al., 2010).

Experimental evidence for the influence of syn-
tax on human behavior is not limited to experiments
carefully designed to isolate a particular processing
phenomenon. Several broad-coverage experimental
studies have shown that surprisal under hierarchi-
cal syntactic models predicts human processing dif-
ficulty on large corpora of naturally occurring text,
even after word-level factors have been taken into
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account (Boston et al., 2008; Demberg and Keller,
2008; Roark et al., 2009).

Despite this evidence, in recent work Frank and
Bod (2011) challenge the notion that hierarchical
syntactic structure is strictly necessary to predict
reading times. They compare per-word surprisal
predictions from unlexicalized hierarchical and se-
quential models of syntactic structure along two
axes: linguistic accuracy (how well the model pre-
dicts the test corpus) andpsychological accuracy
(how well the model predicts observed reading times
on the test corpus). They find that, while hierar-
chical phrase-structure grammars (PSG’s) achieve
better linguistic accuracy, sequential echo state net-
works (ESN’s) achieve better psychological accu-
racy on the English Dundee corpus (Kennedy and
Pynte, 2005). Frank and Bod (2011) do not in-
clude lexicalized syntactic models in the compar-
ison on the grounds that, once word-level factors
have been included as control predictors in the read-
ing times model, lexicalized syntactic models do not
predict reading times better than unlexicalized syn-
tactic models (Demberg and Keller, 2008). Based on
the results of their comparisons between unlexical-
ized models, they conclude that the human parser is
insensitive to hierarchical syntactic structure.

In light of the existing evidence that hierarchical
syntax influences human sentence processing, the
claim of Frank and Bod (2011) is surprising. In this
work, we investigate this claim, and find a picture
more complicated than the one they present. We
first replicate the results of Frank and Bod (2011)
using the dataset provided by the authors, verifying
that we obtain the same linguistic and psychologi-
cal accuracies reported by the authors. We then ex-
tend their work in several ways. First, we repeat
their comparisons using additional, more robustly
estimated lexical n-gram probabilities as control pre-
dictors in the baseline model.1 We show that when
these additional lexical n-gram probabilities are used
as control predictors, any differences in psycholog-
ical accuracy between the hierarchical and sequen-
tial models used in Frank and Bod (2011) vanish.
Second, while they restrict their comparisons to un-

1By robustly estimated, we mean that these probabilities
are estimated from larger corpora and use a better smoothing
method (Kneser-Ney) than the lexical n-grams of Frank and
Bod (2011).

lexicalized models over part-of-speech (POS) tags,
we investigate the lexicalized versions of each hi-
erarchical model, and show that lexicalization sig-
nificantly improves psychological accuracy. Third,
while they explore only a subset of the PSG’s im-
plemented under the incremental parser of Roark
(2001), we explore a state-of-the-art lexicalized hi-
erarchical model that conditions on richer contexts,
and show that this model performs still better. Our
findings demonstrate that Frank and Bod (2011)’s
strong claim that sequential models predict reading
times better than hierarchical models is premature,
and also that lexicalization improves the psycholog-
ical accuracy of hierarchical models.

2 Related Work

Several broad-coverage experimental studies
demonstrate that surprisal under a hierarchical syn-
tactic model predicts human processing difficulty
on a corpus of naturally occurring text, even after
word-level factors have been taken into account.
Under surprisal theory (Hale, 2001; Levy, 2008),
processing difficulty at wordwi is proportional to
reading time atwi, which in turn is proportional to
the surprisal ofwi in the context in which it is ob-
served: surprisal(wi) = −log(pr(wi|context)).
Typically, context ≈ w1...wi−1. Comput-
ing surprisal(wi) thus reduces to computing
−log(pr(wi|w1...wi− 1)). Henceforth, we refer
to this original formulation of surprisal astotal
surprisal.

Boston et al. (2008) show that surprisal estimates
from a lexicalized dependency parser (Nivre, 2006)
and an unlexicalized PCFG are significant predic-
tors of reading times on the German Potsdam Cor-
pus. Demberg and Keller (2008) propose to isolate
syntactic surprisal from total surprisal by replacing
each word with its POS tag, then calculating sur-
prisal as usual under the incremental probabilistic
phrase-structure parser of Roark (2001). (Following
Roark et al. (2009), we hereafter refer to this type of
surprisal asPOS surprisal.) They find that only POS
surprisal, not total surprisal, is a significant predictor
of reading time predictions on the English Dundee
corpus.

Demberg and Keller (2008)’s definition of POS
surprisal introduces two constraints. First, by omit-
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ting lexical information from the conditioning con-
text, they ignore differences among words within a
syntactic category that can influence syntactic ex-
pectations about upcoming material. Second, by re-
placing words with their most likely POS tags, they
treat POS tags as veridical, observed input rather
than marginalizing over all possible latent POS tag
sequences consistent with the observed words.

Roark et al. (2009) propose a more principled way
of decomposing total surprisal into its syntactic and
lexical components, defining the syntactic surprisal
of wi as:

−log

∑
D:yield(D)=w1...wi

pr(D minus last step)
∑

D:yield(D)=w1...wi−1
pr(D)

and the lexical surprisal ofwi as:

−log

∑
D:yield(D)=w1...wi

pr(D)
∑

D:yield(D)=w1...wi
pr(D minus last step)

where D is the set of derivations in the parser’s
beam at any given point;D : yield(D) = w1...wi

is the set of all derivations inD consistent with
w1...wi; andD minus last step includes all steps
in the derivationexcept for the last step, in whichwi

is generated by conditioning upon all previous steps
of D (includingti).

Roark et al. (2009) show that syntactic surprisal
produces more accurate reading time predictions on
an English corpus than POS surprisal, and that de-
composing total surprisal into its syntactic and lex-
ical components produces more accurate reading
time predictions than total surprisal taken as a single
quantity. In this work, we compare not only differ-
ent types of syntactic models, but also different mea-
sures of surprisal under each of those models (total,
POS, syntactic-only, and lexical-only).

3 Models

Estimating surprisal(wi) amounts to calculating
−log(pr(wi|w1...wi−1)). Language models differ
in the way they estimate the conditional proba-
bility of the eventwi given the observed context
w1...wi−1. In the traditional formulation of surprisal
under a hierarchical model, the eventwi is condi-
tioned not only on theobserved contextw1...wi−1

but also on thelatent context consisting of the syn-
tactic treesT whose yield isw1...wi−1; computing

pr(wi|w1...wi−1) therefore requires marginalizing
over all possible latent contextsT . In this formu-
lation of surprisal, the context includes lexical infor-
mation (w1...wi−1) as well as syntactic information
(T : yield(T ) = w1...wi−1), and the predicted event
itself (wi) contains lexical information.

Other formulations of surprisal are also possible,
in which the event, observed context, and latent con-
text are otherwise defined. In this work, we classify
syntactic models as follows:lexicalized models in-
clude lexical information in the context, in the pre-
dicted event, or both;unlexicalized models include
lexical information neither in the context nor in the
predicted event;hierarchical models induce a latent
context of trees compatible with the input;sequen-
tial models either induce no latent context at all,
or induce a latent sequence of POS tags compati-
ble with the input. Table 1 summarizes the syntactic
models and various formulations of surprisal used in
this work.

Following Frank and Bod (2011), we consider one
type of hierarchical model (PSG’s) and two types of
sequential models (Markov models and ESN’s).

3.1 Phrase-Structure Grammars

PSG’s consists of rules expanding a parent node into
children nodes in the syntactic tree, with associ-
ated probabilities. Frank and Bod (2011) use PSG’s
that generate POS tag sequences, not words. Under
such grammars, the prefix probability of a tag se-
quencet is the sum of the probabilities of all trees
T : yield(T ) = t1...ti, where the probability of
each treeT is the product of the probabilities of the
rules used in the derivation ofT .

Vanilla PCFG’s, a special case of PSG’s in which
the probability of a rule depends only on the identity
of the parent node, achieve sub-optimal parsing ac-
curacy relative to grammars in which the probability
of each rule depends on a richer context (Charniak,
1996; Johnson, 1998; Klein and Manning, 2003).
To this end, Frank and Bod (2011) explore several
variants of PSG’s conditioned on successively richer
contexts, including ancestor models (which condi-
tion rule expansions on ancestor nodes from 1-4
levels up in the tree) and ancestor+sibling models
(which condition rule expansions on the ancestor’s
left sibling as well). Both sets of grammars also con-
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Authors Model Surprisal Observed Latent Predicted
Context Context Event

Boston et al. (2008) Hier. POS ti....ti−1 TreesT with yield t1...ti−1 ti
Demberg and Keller (2008)
Roark et al. (2009)
Frank and Bod (2011)
This Work
Demberg and Keller (2008) Hier. Total w1...wi−1 TreesT with yield t1...ti−1 wi

Roark et al. (2009)
This Work
Roark et al. (2009) Hier. Syntactic- w1...wi−1 TreesT with yield w1...wi−1 ti
This Work Only
Roark et al. (2009) Hier. Lexical- w1...wi−1 TreesT with yield w1...wi−1; ti wi

This Work Only

Frank and Bod (2011) Seq. POS ti....ti−1 – ti
This Work
– Seq. Total w1...wi−1 t1...ti−1 with yield w1...wi−1 wi

Table 1: Contexts and events used to produce surprisal measures under various probabilistic syntactic models.T refers
to trees;t refers to POS tags; andw refers to words.

dition rule expansions on the current head node2.

In addition to the grammars over POS tag se-
quences used by Frank and Bod (2011), we evalu-
ate PSG’s over word sequences. We also include
the state-of-the-art Berkeley grammar (Petrov and
Klein, 2007) in our comparison. Syntactic cate-
gories in the Berkeley grammar are automatically
split into fine-grained subcategories to improve the
likelihood of the training corpus under the model.
This increased expressivity allows the parser to
achieve state-of-the-art automatic parsing accuracy,
but increases grammar size considerably.3

3.2 Markov Models

Frank and Bod (2011) use Markov models over
POS tag sequences, where the prefix probability
of a sequencet is

∏
i pr(ti|ti−n+1, ti−n+2...ti−1).

They use three types of smoothing: additive, Good-
Turing, and Witten-Bell, and explore values ofn

from 1 to 3.

2or rightmost child node, if the head node is not yet avail-
able(Roark, 2001).

3To make parsing with the Berkeley grammar tractable un-
der the prefix probability parser, we prune away all rules with
probability less than10−4.

3.3 Echo State Networks

Unlike Markov models, ESN’s (J̈ager, 2001) can
capture long-distance dependencies. ESN’s are a
type of recurrent neural network (Elman, 1991) in
which only the weights from the hidden layer to the
output layer are trained; the weights from the input
layer to the hidden layer and from the hidden layer
to itself are set randomly and do not change. In re-
current networks, the activation of the hidden layer
at tagti depends not only on the activation of the in-
put layer at tagti, but also on the activation of the
hidden layer at tagti−1, which in turn depends on
the activation of the hidden layer at tagti−2, and so
forth. The activation of the output layer at tagti is
therefore a function of all previous input symbols
t1...ti−1 in the sequence. The prefix probability of
a sequencet under this model is

∏
i pr(ti|t1...ti−1),

wherepr(ti|t1...ti−1) is the normalized activation of
the output layer at tagti. Frank and Bod (2011) eval-
uate ESN’s with 100, 200...600 hidden nodes.

4 Methods

We use two incremental parsers to calculate sur-
prisals under the hierarchical models. For the PSG’s
available under the Roark et al. (2009) parser, we
use that parser to calculate approximate prefix prob-
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abilities using beam search. For the Berkeley gram-
mar, we use a probabilistic Earley parser modified
by Levy4 to calculate exact prefix probabilities us-
ing the algorithm of Stolcke (1995). We evaluate
each hierarchical model under each type of surprisal
(POS, total, lexical-only, and syntactic-only), where
possible.

4.1 Data Sets

Each syntactic model is trained on sections 2-21 of
the Wall Street Journal (WSJ) portion of the Penn
Treebank (Marcus et al., 1994), and tested on the
Dundee Corpus (Kennedy and Pynte, 2005), which
contains reading time measures for 10 subjects over
a corpus of 2,391 sentences of naturally occurring
text. Gold-standard POS tags for the Dundee cor-
pus are obtained automatically using the Brill tagger
(Brill, 1995).

Frank and Bod (2011) exclude subject/word pairs
from evaluation if any of the following conditions
hold true: “the word was not fixated, was presented
as the first or last on a line, was attached to punc-
tuation, contained more than one capital letter, or
contained a non-letter (this included clitics)”. This
leaves 191,380 subject/word pairs in the data set
published by Frank and Bod (2011). Because we
consider lexicalized hierarchical models in addition
to unlexicalized ones, we additionally exclude sub-
ject/word pairs where the word is “unknown” to the
model.5 This leaves us with a total of 148,829 sub-
ject/word pairs; all of our reported results refer to
this data set.

4.2 Evaluation

Following Frank and Bod (2011), we compare the
per-word surprisal predictions from hierarchical and
sequential models of syntactic structure along two
axes: linguistic accuracy (how well the model ex-
plains the test corpus) and psychological accuracy
(how well the model explains observed reading
times on the test corpus).

4The prefix parser is available at:
www.http://idiom.ucsd.edu/ rlevy/prefixprobabilityparser.html

5We consider words appearing fewer than 5 times in the
training data to be unknown.

4.2.1 Linguistic Accuracy

Each model provides surprisal estimates
surprisal(wi). The linguistic accuracy over
the test corpus is1

n

∑n
i=1 surprisal(wi), wheren

is the number of words in the test corpus.

4.2.2 Psychological Accuracy

We add each model’s per-word surprisal predic-
tions to a linear mixed-effects model of first-pass
reading times, then measure the improvement in
reading time predictions (according to the de-
viance information criterion) relative to a baseline
model; the resulting decrease in deviance is the
psychological accuracy of the language model.
Using thelmer package for linear mixed-effects
models in R (Baayen et al., 2008), we first fit a
baseline model to first-pass readings times over
the test corpus. Each baseline model contains
the following control predictors for each sub-
ject/word pair:sentpos (position of the word in
the sentence),nrchar (number of characters in
the word), prevnonfix (whether the previous
word was fixated by the subject),nextnonfix
(whether the next word was fixated by the subject),
logwordprob (log(pr(wi))), logforwprob
(log(pr(wi|wi−1))), and logbackprob
(log(pr(wi|wi+1))). When fitting each base-
line model, we include all control predictors; all
significant two-way interactions between them
(|t| ≥ 1.96); by-subject and by-word intercepts;
and a by-subject random slope for the predictor that
shows the most significant effect (nrchar).6

We evaluate the statistical significance of the dif-
ference in psychological accuracy between two pre-
dictors using a nested model comparison. If the
model containing both predictors performs signifi-
cantly better than the model containing only the first
predictor under aχ2 test (p ≤ 0.05), then the sec-
ond predictor accounts for variance in reading times
above and beyond the first predictor, and vice versa.

6In accordance with the methods of Frank and Bod (2011),
“Surprisal was not included as a by-subject random slope be-
cause of the possibility that participants’ sensitivity to surprisal
varies more strongly for some sets of surprisal estimates than
for others, making the comparisons between language models
unreliable. Since subject variability is not currently of interest,
it is safer to leave out random surprisal effects.”
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5 Results

We first replicate the results of Frank and Bod
(2011) by obtaining POS surprisal values directly
from the authors’ published dataset for each syntac-
tic model, then evaluating the psychological accu-
racy of each of those models relative to the baseline
model defined above.7

Baseline Model with Additional Lexical N-grams
Next, we explore the impact of the lexical n-gram
probabilities used as control predictors upon psy-
chological accuracy. Frank and Bod (2011) state
that they compute lexical unigram and bigram prob-
abilities via linear interpolation between estimates
from the British National Corpus and the Dundee
corpus itself (p.c.); upon inspection, we find that the
bigram probabilities released in their published data
set (which are consistent with their published exper-
imental results) more closely resemble probabilities
estimated from the Dundee corpus alone. Because of
the small size of the Dundee corpus, lexical bigrams
from this corpus alone are unlikely to be representa-
tive of a human’s language experience.

We augment the lexical bigram probabilities used
in the baseline model of Frank and Bod (2011)
with additional lexical unigram and bigrams esti-
mated using the SRILM toolkit (Stolcke, 2002) with
Kneser-Ney smoothing from three corpora: sec-
tions 2-21 of the WSJ portion of the Penn Tree-
bank, the Brown corpus, and the British National
corpus. We include these additional predictors and
all two-way interactions between them in the base-
line model. Figure 1 shows that the relative differ-
ences in psychological accuracy between unlexical-
ized hierarchical and sequential models vanish under
this stronger baseline condition.8

Unlexicalized Hierarchical Models We then cal-
culate POS surprisal values under each of the ances-
tor (a1-a4) and the ancestor+sibling (s1-s4) hierar-
chical models ourselves, using the parser of Roark

7The only difference between our results and the original
results in Figure 2 of Frank and Bod (2011) is that we evaluate
accuracy over a subset of the subject/items pairs used in Frank
and Bod (2011) (see Section 4.1 for details).

8The psychological accuracies of the best sequential model
(e4) and the best hierarchical model (s3) used in Frank and Bod
(2011) relative to the stronger baseline with additional lexical
n-grams are not significantly different, according to aχ

2 test.

et al. (2009). We also calculate POS surprisal un-
der the Berkeley grammar (b) using the Levy prefix
probability parser. Figure 2 shows the accuracies of
these models.9

Lexicalized Hierarchical Models Next, we lex-
icalize the hierarchical models. Figure 3 shows
the results of computing total surprisal under
each lexicalized hierarchical model (a1-a4T, s1-s4T,
and bT). The lexicalized models improve signifi-
cantly upon their unlexicalized counterparts (χ2 =
7.52 to 12.47, p ≤ 0.01) in all cases; by con-
trast, the unlexicalized models improve signifi-
cantly upon their lexicalized counterparts (χ2 =
4.05 to 5.92, p ≤ 0.05) only in some cases (s1-
s4). Each lexicalized model improves significantly
upon e4, the best unlexicalized model of Frank
and Bod (2011) (χ2 = 6.96 to 23.45, p ≤ 0.01),
though e4 also achieves a smaller but still signifi-
cant improvement upon each of the lexicalized mod-
els (χ2 = 4.49 to 7.58, p ≤ 0.05). The lexical-
ized Berkeley grammar (bT) achieves the highest
linguistic and psychological accuracy; the improve-
ment of bT upon e4 is substantial and significant
(χ2(1) = 23.45, p ≤ 0.001), while the improve-
ment of e4 upon bT is small but still significant
(χ2(1) = 4.50, p ≤ 0.1). Estimated coefficients
for surprisal estimates under each lexicalized hierar-
chical model are shown in Table 2.10

Decomposing Total Surprisal Figure 3 shows the
results of decomposing total surprisal (a1-a4T, s1-
s4T) into its lexical and syntactic components, then
entering both components as predictors into the
mixed-effects model (a1-a4LS, s1-s4LS).11 For each
grammar, the psychological accuracy of the surprisal
estimates is slightly higher when both lexical and
syntactic surprisal are entered as predictors, though
the differences are not statistically significant.

9Our POS surprisal estimates have slightly worse linguistic
accuracy but slightly better psychological accuracy than Frank
and Bod (2011); these differences are likely due to differences
in beam settings and in the subset of the WSJ used as training
data.

10Each surprisal estimate predicts reading times in the ex-
pected (positive) direction.

11Decomposing surprisal into its lexical and syntactic com-
ponents is possible with the Levy prefix probability parser as
well, but requires modifications to the parser; the Roark et al.
(2009) parser computes these quantities explicitly by default.
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Figure 1: Psychological vs. linguistic accuracy of POS sur-
prisal estimates from unlexicalized sequential and hierar-
chical models of Frank and Bod (2011) relative to baseline
system of Frank and Bod (2011) (shown above dotted line),
and relative to a baseline system including additional lex-
ical unigrams and bigrams (shown below dotted line). In-
corporating additional lexical n-grams into baseline system
virtually eliminates all differences in psychological accu-
racy among models.

Figure 2: Psychological vs. linguistic accuracy of POS
surprisal estimates from unlexicalized hierarchical models
used in this work, relative to a baseline system with ad-
ditional lexical unigrams and bigrams. Horizontal line in-
dicates most psychologically accurate model of Frank and
Bod (2011) for ease of comparison.

POS vs. Syntactic-only Surprisal Figures 2 and
4 show the results of computing POS surprisal (a1-
a4, s1-s4) and syntactic-only surprisal (a1-a4S, s1-
s4S), respectively, under each of the Roark gram-
mars. While syntactic surprisal achieves slightly
higher psychological accuracy than POS surprisal
for each model, the difference is statistically signifi-
cant in only one case (s1).

6 Discussion

In the presence of additional lexical n-gram control
predictors, all gaps in performance between the un-
lexicalized sequential and hierarchical models used
in Frank and Bod (2011) vanish (Figure 1). Frank
and Bod (2011) do not include lexicalized hierarchi-
cal models in their study; our results indicate that
lexicalizing hierarchical models improves their psy-
chological accuracy significantly compared to the
unlexicalized versions. Overall, the lexicalized hier-
archical model with the highest linguistic accuracy

(Berkeley) also achieves the highest psychological
accuracy.

Decomposing total surprisal into its lexical- and
syntactic-only components improves psychological
accuracy, but this improvement is not statistically
significant. Computing syntactic-only surprisal in-
stead of POS surprisal improves psychological accu-
racy, but this improvement is statistically significant
in only one case (s1).

7 Conclusion and Future Work

Frank and Bod (2011) claim that sequential unlexi-
calized syntactic models predict reading times bet-
ter than hierarchical unlexicalized syntactic models,
and conclude that the human parser is insensitive
to hierarchical syntactic structure. We find that the
picture is more complicated than this. We show,
first, that the gap in psychological accuracy between
the unlexicalized hierarchical and sequential models
of Frank and Bod (2011) vanishes when additional,
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Figure 3: Psychological vs. linguistic accuracy of lexi-
cal+syntactic (LS) and total (T) surprisal estimates from
lexicalized hierarchical models used in this work, relative
to baseline system with additional lexical unigrams and bi-
grams as control predictors. Decomposing total surprisal
into lexical-only and syntactic-components improves psy-
chological accuracy. Horizontal line indicates most psy-
chologically accurate model of (Frank and Bod, 2011).

Figure 4: Psychological vs. linguistic accuracy of lexical-
only (L) and syntactic-only (S) surprisal estimates from
lexicalized hierarchical models used in this work, relative
to baseline system with additional lexical unigrams and bi-
grams as control predictors. On its own, syntactic-only sur-
prisal predicts reading times better than lexical-only sur-
prisal. Horizontal line indicates most psychologically ac-
curate model of (Frank and Bod, 2011).

Surprisal Coef. |t| Surprisal Coef. |t|

a1LS 0.82 2.61 a1T 1.30 2.98
a2LS 1.01 3.24 a2T 1.38 3.19
a3LS 1.14 3.65 a3T 1.56 3.60
a4LS 1.17 3.76 a4T 1.56 3.64
s1LS 1.38 4.43 s1T 1.71 4.00
s2LS 1.37 4.44 s2T 1.75 4.16
s3LS 1.20 3.90 s3T 1.64 3.91
s4LS 1.21 3.97 s4T 1.62 3.89
bT 3.15 5.34

Table 2: Estimated coefficients and|t|-values for sur-
prisal estimates shown in Figure 3. Coefficients are es-
timated by adding each surprisal estimate, one at a time,
to the baseline model of reading times used in Figure 3.

robustly estimated lexical n-gram probabilities are
incorporated as control predictors into the baseline
model of reading times. Next, we show that lexical-
izing hierarchical grammars improves psychological
accuracy significantly. Finally, we show that using
better lexicalized hierarchical models improves psy-

chological accuracy still further. Our results demon-
strate that the claim of Frank and Bod (2011) that
sequential models predict reading times better than
hierarchical models is premature, and that further in-
vestigation is required.

In future work, we plan to incorporate lexical in-
formation into the sequential syntactic models used
in Frank and Bod (2011) so that we can compare
the hierarchical lexicalized models described here
against sequential lexicalized models.
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Abstract
Logical metonymies (The student finished
the beer) represent a challenge to composi-
tionality since they involve semantic content
not overtly realized in the sentence (covert
events → drinking the beer). We present a
contrastive study of two classes of computa-
tional models for logical metonymy in German,
namely a probabilistic and a distributional,
similarity-based model. These are built using
the SDEWAC corpus and evaluated against a
dataset from a self-paced reading and a probe
recognition study for their sensitivity to the-
matic fit effects via their accuracy in predicting
the correct covert event in a metonymical con-
text. The similarity-based models allow for
better coverage while maintaining the accuracy
of the probabilistic models.

1 Introduction

Logical metonymies (The student finished the beer)
require the interpretation of a covert event which
is not overtly realized in the sentence (→ drinking
the beer). Logical metonymy has received much
attention as it raises issues that are relevant to both
theoretical as well as cognitive accounts of language.

On the theoretical side, logical metonymies consti-
tute a challenge for theories of compositionality (Par-
tee et al., 1993; Baggio et al., in press) since their in-
terpretation requires additional, inferred information.
There are two main accounts of logical metonymy:
According to the lexical account, a type clash be-
tween an event-subcategorizing verb (finish) and an
entity-denoting object (beer) triggers the recovery of
a covert event from complex lexical entries, such as

qualia structures (Pustejovsky, 1995). The pragmatic
account of logical metonymy suggests that covert
events are retrieved through post-lexical inferences
triggered by our world knowledge and communica-
tion principles (Fodor and Lepore, 1998; Cartson,
2002; De Almeida and Dwivedi, 2008).

On the experimental side, logical metonymy leads
to higher processing costs (Pylkkänen and McEl-
ree, 2006; Baggio et al., 2010). As to covert
event retrieval, it has been found that verbs cue
fillers with a high thematic fit for their argument
positions (e.g. arrest

agent−−−→ cop, (Ferretti et al.,
2001)) and that verbs and arguments combined cue
fillers with a high thematic fit for the remaining

argument slots (e.g. 〈journalist , check〉 patient−−−−→
spelling but 〈mechanic, check〉 patient−−−−→ car (Bick-
nell et al., 2010). The interpretation of logical
metonymy is also highly sensitive to context (e.g.
〈confectioner , begin, icing〉 covertevent−−−−−−−→ spread
but 〈child , begin, icing〉 covertevent−−−−−−−→ eat (Zarcone
and Padó, 2011; Zarcone et al., 2012). It thus pro-
vides an excellent test bed for cognitively plausible
computational models of language processing.

We evaluate two classes of computational mod-
els for logical metonymy. The classes represent the
two main current approaches in lexical semantics:
probabilistic and distributional models. Probabilistic
models view the interpretation as the assignment of
values to random variables. Their advantage is that
they provide a straightforward way to include con-
text, by simply including additional random variables.
However, practical estimation of complex models
typically involves independence assumptions, which
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may or may not be appropriate, and such models
only take first-order co-occurrence into account1. In
contrast, distributional models represent linguistic
entities as co-occurrence vectors and phrase interpre-
tation as a vector similarity maximization problem.
Distributional models typically do not require any
independence assumptions, and include second-order
co-occurrences. At the same time, how to integrate
context into the vector computation is essentially an
open research question (Mitchell and Lapata, 2010).

In this paper, we provide the first (to our knowl-
edge) distributional model of logical metonymy
by extending the context update of Lenci’s ECU
model (Lenci, 2011). We compare this model to
a previous probabilistic approach (Lapata and Las-
carides, 2003a; Lapata et al., 2003b). In contrast
to most experimental studies on logical metonymy,
which deal with English data (with the exception of
Lapata et al. (2003b)), we focus on German. We
estimate our models on a large web corpus and eval-
uate them on a psycholinguistic dataset (Zarcone
and Padó, 2011; Zarcone et al., 2012). The task
we use to evaluate our models is to distinguish
covert events with a high typicality / thematic fit
(e.g. The student finished the beer −→ drinking)
from low typicality / thematic fit covert events
(−→ brewing).

2 Probabilistic models of logical metonymy

Lapata et al. (2003b; 2003a) model the interpretation
of a logical metonymy (e.g. The student finished the
beer) as the joint distribution P (s, v, o, e) of the vari-
ables s (the subject, e.g. student), v (the metonymic
verb, e.g. finish), o (the object, e.g. beer), e (the
covert event, drinking).

This model requires independence assumptions
for estimation. We present two models with different
independence assumptions.

1This statement refers to the simple probabilistic models we
consider, which are estimated directly from corpus co-occurrence
frequencies. The situation is different for more complex prob-
abilistic models, for example generative models that introduce
latent variables, which can amount to clustering based on higher-
order co-occurrences, as in, e.g., Prescher et al. (2000).

2.1 The SOVp model

Lapata et al. develop a model which we will refer
to as the SOVp model.2 It assumes a generative pro-
cess which first generates the covert event e and then
generates all other variables based on the choice of e:

P (s, v, o, e) ≈ P (e) P (o|e) P (v|e) P (s|e)

They predict that the selected covert event ê for
a given context is the event which maximizes
P (s, v, o, e):

ê = arg max
e
P (e) P (o|e) P (v|e) P (s|e)

These distributions are estimated as follows:

P̂ (e) =
f(e)
N

, P̂ (o|e) =
f(e o←− o)
f(e o←− ·)

,

P̂ (v|e) =
f(v c←− e)
f(· c←− e)

, P̂ (s|e) =
f(e s←− s)
f(e s←− ·)

,

where N is the number of occurrences of full verbs
in the corpus; f(e) is the frequency of the verb e;
f(e o←− ·) and f(e s←− ·) are the frequencies of e
with a direct object and subject, respectively; and
f(e c←− ·) is number of times e is the complement of
another full verb.

2.2 The SOp model

In Lapata et al.’s covert event model, v, the
metonymic verb, was used to prime different choices
of e for the same object (begin book−→ writing;
enjoy book−→ reading). In our dataset (Sec. 4), we
keep v constant and consider e only as a function of
s and o. Thus, the second model we consider is the
SOp model which does not consider v:

P (s, v, o, e) ≈ P (s, o, e) ≈ P (e) P (o|e) P (s|e)

Again, the preferred interpretation ê is the one that
maximizes P (s, v, o, e):

ê = arg max
e
P (e) P (o|e) P (s|e)

2In Lapata et al. (2003b; 2003a), this model is called the
simplified model to distinguish it from a full model. Since the full
model performs worse, we do not include it into consideration
and use a more neutral name for the simplified model.
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3 Similarity-based models
3.1 Distributional semantics
Distributional or vector space semantics (Turney and
Pantel, 2010) is a framework for representing word
meaning. It builds on the Distributional Hypothe-
sis (Harris, 1954; Miller and Charles, 1991) which
states that words occurring in similar contexts are
semantically similar. In distributional models, the
meaning of a word is represented as a vector whose
dimensions represent features of its linguistic con-
text. These features can be chosen in different ways;
popular choices are simple words (Schütze, 1992) or
lexicalized dependency relations (Lin, 1998; Padó
and Lapata, 2007). Semantic similarity can then be
approximated by vector similarity using a wide range
of similarity metrics (Lee, 1999).

3.1.1 Distributional Memory
A recent multi-purpose framework in distribu-

tional semantics is Distributional Memory (DM, Ba-
roni and Lenci (2010)). DM does not immedi-
ately construct vectors for words. Instead, it ex-
tracts a three-dimensional tensor of weighted word-
link-word tuples each of which is mapped onto a
score by a function σ : 〈w1 l w2〉 → R+. For ex-
ample, 〈pencil obj use〉 has a higher weight than
〈elephant obj use〉. The set of links can be defined in
different ways, yielding various DM instances. Ba-
roni and Lenci present DepDM (mainly syntactic
links such as subj_tr ), LexDM (strongly lexicalized
links, e.g., such_as), or TypeDM (syntactic and lexi-
calized links).3

The benefit of the tensor-based representation is
that it is general, being applicable to many tasks.
Once a task is selected, a dedicated semantic space
for this task can be generated efficiently from the
tensor. For example, the word by link-word space
(W1 × LW2) contains vectors for the words w1

whose dimensions are labeled with 〈l, w2〉 pairs. The
word-word by link space (W1W2 × L) contains co-
occurrence vectors for word pairs 〈w1, w2〉 whose
dimensions are labeled with l.

3.2 Compositional Distributional Semantics
Probabilistic models can account for composition-
ality by estimating conditional probabilities. Com-

3l−1 is used to denote the inverse link of l (i.e., exchanging
the positions of w1 and w2).

positionality is less straightforward in a similarity-
based distributional model, because similarity-based
distributional models traditionally model meaning
at word level. Nevertheless, the last years have
seen a wave of distributional models which make
progress at building compositional representations
of higher-level structures such as noun-adjective or
verb-argument combinations (Mitchell and Lapata,
2010; Guevara, 2011; Reddy et al., 2011).

3.2.1 Expectation Composition and Update
Lenci (2011) presents a model to predict the degree

of thematic fit for verb-argument combinations: the
Expectation Composition and Update (ECU) model.
More specifically, the goal of ECU is explain how the
choice of a specific subject for a given verb impacts
the semantic expectation for possible objects. For
example, the verb draw alone might have fair, but not
very high, expectations for the two possible objects
landscape and card. When it is combined with the
subject painter, the resulting phrase painter draw the
expectation for the object landscape should increase,
while it should drop for card.

The idea behind ECU is to first compute the verb’s
own expectations for the object from a TypeDM
W1 × LW2 matrix and then update it with the sub-
ject’s expectations for the object, as mediated by the
TypeDM verb link type.4 More formally, the verb’s
expectations for the object are defined as

EXV (v) = λo. σ(
〈
v obj−1 o

〉
)

The subject’s expectations for the object are

EXS(s) = λo. σ(〈s verb o〉)

And the updated expectation is

EXSV (s, v) = λo.EXV (v)(o) ◦ EXS(s)(o)

where ◦ is a composition operation which Lenci in-
stantiates as sum and product, following common
practice in compositional distributional semantics
(Mitchell and Lapata, 2010). The product composi-
tion approximates a conjunction, promoting objects
that are strongly preferred by both verb and subject.
It is, however, also prone to sparsity problems as well

4In DM, verb directly connects the subject and the object of
transitive verb instances, e.g 〈marine verb gun〉.
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shortcomings of the scoring function σ. The sum
composition is more akin to a disjunction where it
suffices that an object is strongly preferred by either
the verb or the subject.

It would be possible to use these scores as direct
estimates of expectations, however, sinceEXSV con-
tains three lexical variables, sparsity is a major issue.
ECU thus introduces a distributional generalization
step. It only uses the updated expectations to identify
the 20 most expected nouns for the object position.
It then determines the prototype of the updated ex-
pectations as the centroid of their W1×LW2 vectors.
Now, the thematic fit for any noun can be computed
as the similarity of its vector to the prototype.

Lenci evaluates ECU against a dataset from Bick-
nell et al. (2010), where objects (e.g. spelling) are
matched with a high-typicality subject-verb combi-
nations (e.g. 〈journalist, check〉 - high thematic fit)
and with a low-typicality subject-verb combination
(e.g. 〈mechanic, check〉 - low thematic fit). ECU is
in fact able to correctly distinguish between the two
contexts differing in thematic fit with the object.

3.3 Cognitive relevance
Similarity-based models build upon the Distribu-
tional Hypothesis, which, in its strong version, is
a cognitive hypothesis about the form of semantic
representations (Lenci, 2008): the distributional be-
havior of a word reflects its semantic behavior but
is also a direct correlate of its semantic content at
the cognitive level. Also, similarity-based models
are highly compatible with known features of hu-
man cognition, such as graded category member-
ship (Rosch, 1975) or multiple sense activation (Erk,
2010). Their cognitive relevance for language has
been supported by studies of child lexical devel-
opment (Li et al., 2004), category-related deficits
(Vigliocco et al., 2004), selectional preferences (Erk,
2007), event types (Zarcone and Lenci, 2008) and
more (see Landauer et al. (2007) and Baroni and
Lenci (2010) for a review).

3.4 Modeling Logical Metonymy with ECU
3.4.1 Logical Metonymy as Thematic Fit

The hypothesis that we follow in this paper is that
the ECU model can also be used, with modifications,
to predict the interpretation of logical metonymy.
The underlying assumption is that the interpretation

of logical metonymy is essentially the recovery of
a covert event with a maximal thematic fit (high-
typicality) and can thus make use of ECU’s mech-
anisms to treat verb-argument composition. Strong
evidence for this assumption has been found in psy-
cholinguistic studies, which have established that
thematic fit dynamically affects processing, with on-
line updates of expectations for typical fillers during
the incremental processing of linguistic input (see
McRae and Matsuki (2009) for a review). Thus, we
can hope to transfer the benefits of similarity-based
models (notably, high coverage) to the interpretation
of logical metonymy.

3.4.2 Extending ECU
The ECU model nevertheless requires some modi-

fications to be applicable to logical metonymy. Both
the entity of interest and the knowledge sources
change. The entity of interest used to be the ob-
ject of the sentence; now it is the covert event, which
we will denote with e. As for knowledge sources,
there are three sources in logical metonymy. These
are (a), the subject (compare the author began the
beer and the reader began the book)); (b), the object
the reader began the book vs. the reader began the
sandwich); and (c), the metonymic verb (compare
Peter began the report vs. Peter enjoyed the report).

The basic equations of ECU can be applied to this
new scenario as follows. We first formulate three
basic equations that express the expectations of the
covert event given the subject, object, and metonymic
verb individually. They are all derived from direct de-
pendency relations in the DM tensor (e.g., the novel
metonymic verb–covert event relation from the ver-
bal complement relation):

EXS(s) = λe. σ(〈s subj e〉)
EXO(o) = λe. σ(〈o obj e〉)
EXV (v) = λe. σ(

〈
v comp−1 e

〉
)

To combine (or update) these basic expectations into
a final expectation, we propose two variants:

ECU SOV In this model, we compose all three
expectations:

EXSOV (s, v, o) = λe.EXS(s)(e) ◦
EXO(o)(e) ◦ EXV (v)(e)
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CE

high thematic fit low thematic fit

Der
The

Konditor
baker

begann,
started

die
the

Glasur
icing

aufzutragen.
to spread.

zu essen.
to eat.

Das
The

Kind
child

begann,
started

die
the

Glasur
icing

zu essen.
to eat.

aufzutragen.
to spread.

Table 1: Example materials for the self-paced reading and probe recognition studies

We will refer to this model as SOVΣ when the
composition function is sum, and as the SOVΠ model
when the composition function is product.

ECU SO Analogous to the SO probabilistic model,
this model abstracts away from the metonymic verb.
We assume most information about an event to be
determined by the subject and object:

EXSO(n, n′) = λe.EXS(n)(e) ◦ EXO(n′)(e)

After the update, the prototype computation proceeds
as defined in the original ECU.

We will refer to this model as SOΣ when the com-
position function is sum, and as the SOΠ model when
the composition function is product.

4 Experimental Setup

We evaluate the probabilistic models (Sec. 2) and the
similarity-based models (Sec. 3) on a dataset con-
structed from two German psycholinguistic studies
on logical metonymy. One study used self-paced
reading and the second one probe recognition.

Dataset The dataset we use is composed of 96 sen-
tences. There are 24 sets of four 〈s, v, o, e〉 tuples,
where s is the object, v the metonymic verb, o the
object and e the covert event. The materials are illus-
trated in Table 1. As can be seen, all tuples within
a set share the same metonymic verb and the same
object. Each of the two subject e is matched once
with a high-typicality covert event and once with a
low-typicality covert event. This results in 2 high-
typicality tuples and 2 low-typicality tuples in each
set. Typical events (e) were elicited by 20 partici-
pants given the corresponding object o, subjects were
elicited by 10 participants as the prototypical agents
subjects for each e, o combination.

The experiments yielded a main effect of typicality
on self-paced reading times (Zarcone and Padó, 2011)

and on probe recognition latencies (Zarcone et al.,
2012): typical events involved in logical metonymy
interpretation are read faster and take longer to be
rejected as probe words after sentences which evoke
them. The effect is seen early on (after the patient
position in the self-paced reading and at short ISI for
the probe recognition), suggesting that knowledge
of typical events is quickly integrated in processing
and that participants access a broader pool of knowl-
edge than what has traditionally been argued to be
in the lexical entries of nouns (Pustejovsky, 1995).
The finding is in agreement with results of psycholin-
guistic studies which challenge the very distinction
between world knowledge and linguistic knowledge
(Hagoort et al., 2004; McRae and Matsuki, 2009).

DM for German Since DM exists only for English,
we constructed a German analog using the 884M
word SDEWAC web corpus (Faaß et al., 2010) parsed
with the MATE German dependency parser (Bohnet,
2010).

From this corpus, we extract 55M instances of
simple syntactic relations (subj_tr, subj_intr, obj,
iobj, comp, nmod) and 104M instances of lexicalized
patterns such as noun–prep–noun e.g. 〈Recht auf
Auskunft〉 (〈right to information〉), or adj–noun-(of)-
noun such as 〈strittig Entscheidung Schiedsrichter〉
(〈contested decision referee〉). These lexicalized pat-
terns make our model roughly similar to the English
TypeDM model (Sec. 3.1.1).

As for σ, we used local mutual information (LMI)
as proposed by Baroni and Lenci (2010). The LMI
of a triple is defined as Ow1lw2 log(Ow1lw2/Ew1lw2),
where Ow1lw2 is the observed co-occurrence fre-
quency of the triple and Ew1lw2 its expected co-
occurrence frequency (under the assumption of inde-
pendence). Like standard MI, LMI measures the
informativity or surprisal of a co-occurrence, but
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weighs it by the observed frequency to avoid the
overestimation for low-probability events.

4.1 Task

We evaluate the models using a binary selection
task, similar to Lenci (2011). Given a triple 〈s, v, o〉
and a pair of covert events e, e′ (cf. rows in
Tab. 1), the task is to pick the high-typicality covert
event for the given triple: 〈Chauffeur, vermeiden,
Auto〉 → fahren/reparieren (〈driver, avoid, car〉 →
drive/repair). Since our dataset consists of 96 sen-
tences, we have 48 such contexts.

With the probabilistic models, we compare the
probabilities P (s, v, o, e) and P (s, v, o, e′) (ignoring
v in the SO model). Analogously, for the similarity-
based models, we compute the similarities of the
vectors for e and e′ to the prototype vectors for the ex-
pectations EXSOV (s, v, o) and predict the one with
higher similarity. For the simplified ECU SO model,
we use EXSO(s, o) as the point of comparison.

4.2 Baseline

Following the baseline choice in Lapata et al.
(2003b), we evaluated the probabilistic models
against a baseline (Bp) which, given a 〈s, v, o〉
triplet (e.g. 〈Chauffeur, vermeiden, Auto〉), scores
a “hit” if the P̂ (e|o) for the high-typicality e is
higher than the P̂ (e|o) for the low-typicality e. The
similarity-based models were evaluated against a
baseline (Bs) which, given an 〈s, v, o〉 triplet (e.g.
〈Chauffeur, vermeiden, Auto〉), makes a correct pre-
diction if the prototypical event vector for o has a
higher thematic fit (i.e. similarity) with the high-
typicality e than with the low-typicality e.

Since our dataset is counterbalanced – that is, each
covert event appears once as the high-typicality event
for a given object (with a congruent subject) and once
as the low-typicality event – the baseline predicts
the correct covert event in exactly 50% of the cases.
Note, however, that this is not a random baseline: the
choice of the covert event is made deterministically
on the basis of the input parameters.

4.3 Evaluation measures

We evaluate the output of the model with the stan-
dard measures coverage and accuracy. Coverage is
defined as the percentage of datapoints for which
a model can make a prediction. Lack of coverage

arises primarily from sparsity, that is, zero counts for
co-occurrences that are necessary in the estimation
of a model. Accuracy is computed on the covered
contexts only, as the ratio of correct predictions to
the number of predictions of the model. This allows
us to judge the quality of the model’s predictions
independent of its coverage.

We also consider a measure that combines cov-
erage and accuracy, Backoff Accuracy, defined as:
coverage×accuracy+((1−coverage)×0.5). Back-
off Accuracy emulates a backoff procedure: the
model’s predictions are adopted where they are avail-
able; for the remaining datapoints, it assumes base-
line performance (in the current setup, 50%). The
Backoff Accuracy of low-coverage models tends to
degrade towards baseline performance.

We determine the significance of differences be-
tween models with a χ2 test, applied to a 2×2 contin-
gency matrix containing the number of correct and
incorrect answers. Datapoints outside a model’s cov-
erage count half for each category, which corresponds
exactly to the definition of Backoff Accuracy.

5 Results

The results are shown in Table 2. Looking at the
probabilistic models, we find SOp yields better cov-
erage and better accuracy than SOVp (Lapata’s sim-
plified model). It is worth noting the large differ-
ence in coverage, namely .75 as opposed to .44: The
SOVp model is unable to make a prediction for more
than half of all contexts. This is due to the fact that
many 〈o, v〉 combinations are unattested in the cor-
pus. Even on those contexts for which the proba-
bilistic SOVp model can make a prediction, it is less
reliable than the more general SOp model (0.62 ver-
sus 0.75 accuracy). This indicates that, at least on our
dataset, the metonymic verb does not systematically
help to predict the covert event; it rather harms perfor-
mance by introducing noisy estimates. As the lower
half of the Table shows, the SOVp model does not
significantly outperform any other model (including
both baselines Bp and Bs).

The distributional models do not have such cover-
age issues. The main problematic combination for
the similarity model is 〈Pizzabote hassen Pizza〉 (i.e.
〈Pizza delivery man hate pizza〉) which is paired
with the covert events liefern (deliver) and backen
(bake). The computation of ECU predictions for
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Probabilistic Models Similarity-based Models

Bp SOVp SOp Bs SOVΣ SOVΠ SOΣ SOΠ

Accuracy 0.50 0.62 0.75 0.50 0.68 0.56 0.68 0.70
Coverage 1.00 0.44 0.75 1.00 0.98 0.94 0.98 0.98

Backoff Accuracy 0.50 0.55 0.69 0.50 0.68 0.56 0.68 0.70

Probabilistic Models Similarity-based Models

Bp SOVp SOp Bs SOVΣ SOVΠ SOΣ SOΠ

Bp

Pr
ob

.

SOVp -
SOp * -

Bs - - *
SOVΣ * - - *

Si
m

ila
ri

ty

SOVΠ - - - - -
SOΣ * - - * - -
SOΠ ** ∗† - ** - ∗† -

Table 2: Results (above) and significance levels for difference in backoff accuracy determined by χ2-test (below)
for all probabilistic and similarity-based models (**: p<0.01, *: p≤0.05, -: p>0.05). For ∗† (SOΠ − SOVp and
SOΠ − SOVΠ) p was just above 0.05 (p=0.053).

this combination requires corpus transitive corpus
constructions for Pizzabote, in the corpus it is only
attested once as the subject of the intransitive verb
kommen (come).

Among distributional models, the difference be-
tween SO and SOV is not as clear-cut as on the
probabilistic side. We observe an interaction with the
composition operation. Sum is less sensitive to com-
plexity of updating: for sum models, the inclusion
of the metonymic verb (SOVΣ vs. SOVΠ) does not
make any difference. On the side of the product mod-
els, there is a major difference similar to the one for
the probabilistic models: SOVΠ is the worst model
at near-baseline performance, and SOΠ is the best
one. This supports our interpretation from above that
the metonymic model introduces noisy expectations
which, in the product model, have the potential of
disrupting the update process.

Comparing the best models from the probabilistic
and similarity-based classes (SOp and SOΠ), we find
that both significantly outperform the baselines. This
shows that the subject contributes to the models with
a significant improvement over the baseline models,
which are only informed by the object. Their back-
off accuracies do not significantly differ from one
another, which is not surprising given the small size

of our dataset, however, the similarity-based model
outperforms the probabilistic model by 1% Backoff
Accuracy. The two models have substantially differ-
ent profiles: the accuracy of the probabilistic model
is 5% higher (0.70 vs. 0.75); at the same time, its
coverage is much lower. It covers only 75% of the
contexts, while the distributional model SOΠ covers
all but one (98%).

6 Discussion

As mentioned above, the main issue with the proba-
bilistic models is coverage. This is due to the reliance
of these models on first-order co-occurrence.

For example, probabilistic models cannot
assign a probability to any of the triples
〈Dieb/Juwelier schmuggeln/schleifen Diamant〉
(〈thief/jeweler smuggle/cut diamond〉), since the
subjects do not occur with either of the verbs in
corpus, even though Diamant does occur as the
object of both.

In contrast, the similarity-based models are able to
compute expectations for these triples from second-
order co-occurrences by taking into account other
verbs that co-occur with Diamant. The ECU model
is not punished by the extra context, as both Dieb and
Diamant are associated with the verbs: stehlen (steal),
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EXSO(〈Chauffeur, Auto〉) EXSO(〈Mechaniker, Auto〉)

fahren (drive) bauen (build)
parken (park) lassen (let/leave)
lassen (let/leave) besitzen (own)
geben (give) reparieren (repair)
sehen (see) brauchen (need)
bringen (bring) sehen (see)
steuern (steer) benutzen (use)
halten (keep/hold) stellen (put)

Table 3: Updated expectations in SOΠ for Chauffeur
(chauffeur), Mechaniker (mechanic) and Auto (car).

rauben (thieve), holen (get), entwenden (purloin),
erbeuten (snatch), verkaufen (sell), nehmen (take),
klauen (swipe). We also note that these are typical
events for a thief, which fits the intuition that Dieb is
more predictive of the event than Diamant.

For both 〈Chauffeur Auto〉 and 〈Mechaniker Auto〉
the probabilistic model predicts fahren due to the
high overall frequency of fahren.5 The distributional
model, however, takes the mutual information into
account and is thus able to determine events that
are more strongly associated with Mechaniker (e.g.
bauen, reparieren, etc.) while at the same time dis-
counting the uninformative verb fahren.

There are, however, items that all models have dif-
ficulty with. Three such cases are due to a frequency
disparity between the high and low-typicality event.
E.g. for 〈Lehrerin Klausur benoten/schreiben〉
(〈teacher exam grade/take〉), schreiben occurs much
more frequently than benoten. In the case
of 〈Schüler Geschichte lernen/schreiben〉 (〈student
story learn/write〉), none of the models or baselines
correctly assigned lernen. The probabilistic mod-
els are influenced by the very frequent Geschichte
schreiben which is part of an idiomatic expression (to
write history). On the other hand, the distributional
models judge the story and history sense of the word
to have the most informative events, e.g. erzählen
(tell), lesen (read), hören (hear), erfinden (invent),
and studieren (study), lehren (teach).

The baselines were able to correctly choose
auspacken (unwrap) over einpacken (wrap) for
〈Geburtstagskind Geschenk〉 (〈birthday-boy/girl
present〉) while the models were not. The prob-

5The combination Mechaniker fahren was seen once more
often than Mechaniker reparieren.

abilistic models lacked coverage and were not
able to make a prediction. For the distributional
models, while both auspacken and verpacken (wrap)
are highly associated with Geschenk, the most
strongly associated actions of Geburtstagskind are
extraordinarily diverse, e.g.: bekommen (receive),
sagen (say), auffuttern (eat up), herumkommandieren
(boss around), ausblasen (blow out). Neither of the
events of interest though were highly associated.

7 Future Work

We see a possible improvement in the choice of the
number of fillers, with which we construct the pro-
totype vectors. A smaller number might lead to less
noisy prototypes.

It has been shown (Bergsma et al., 2010) that the
meaning of the prefix verb can be accurately pre-
dicted using the stem’s vector, when compositional-
ity applies. We suspect covert events that are prefix
verbs to suffer from sparser representations than the
vectors of their stem. E.g., absaugen (vacuum off )
is much less frequent than the semantically nearly
identical saugen (vacuum). Thus, by leveraging the
richer representation of the stem, our distributional
models could more likely assign the correct event.

8 Conclusions

We have presented a contrastive study of two classes
of computational models, probabilistic and distribu-
tional similarity-based ones, for the prediction of
covert events for German logical metonymies.

We found that while both model classes models
outperform baselines which only take into account
information coming from the object, similarity-based
models rival and even outperform probabilistic mod-
els. The reason is that probabilistic models have to
rely on first-order co-occurrence information which
suffers from sparsity issues even in large web corpora.
This is particularly true for languages like German
that have a complex morphology, which tends to ag-
gravate sparsity (e.g., through compound nouns).

In contrast, similarity-based models can take ad-
vantage of higher-order co-occurrences. Provided
that some care is taken to identify reasonable vec-
tor composition strategies, they can maintain the ac-
curacy of probabilistic models while guaranteeing
higher coverage.
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Abstract

There is considerable evidence that people
generally learn items better when the presen-
tation of items is distributed over a period of
time (the spacing effect). We hypothesize that
both forgetting and attention to novelty play
a role in the spacing effect in word learning.
We build an incremental probabilistic compu-
tational model of word learning that incorpo-
rates a forgetting and attentional mechanism.
Our model accounts for experimental results
on children as well as several patterns ob-
served in adults.

1 Memory, Attention, and Word Learning

Learning the meaning of words is an important com-
ponent of language acquisition, and an extremely
challenging task faced by young children (e.g.,
Carey, 1978; Bloom, 2000). Much psycholinguis-
tic research has investigated the mechanisms under-
lying early word learning, and the factors that may
facilitate or hinder this process (e.g., Quine, 1960;
Markman and Wachtel, 1988; Golinkoff et al., 1992;
Carpenter et al., 1998). Computational modeling has
been critical in this endeavor, by giving precise ac-
counts of the possible processes and influences in-
volved (e.g., Siskind, 1996; Regier, 2005; Yu, 2005;
Fazly et al., 2010). However, computational models
of word learning have generally not given sufficient
attention to the broader interactions of language ac-
quisition with other aspects of cognition and cogni-
tive development.

Memory limitations and attentional mechanisms
are of particular interest, with recent computational
studies reconfirming their important role in aspects

of word learning. For example, Frank et al. (2010)
show that memory limitations are key to matching
human performance in a model of word segmenta-
tion, while Smith et al. (2010) further demonstrate
how attention plays a role in word learning by form-
ing the basis for abstracting over the input. But
much potential remains for computational modeling
to contribute to a better understanding of the role of
memory and attention in word learning.

One area where there is much experimental evi-
dence relevant to these interactions is in the investi-
gation of the spacing effect in learning (Ebbinghaus,
1885; Glenberg, 1979; Dempster, 1996; Cepeda
et al., 2006). The observation is that people gen-
erally show better learning when the presentations
of the target items to be learned are “spaced” — i.e.,
distributed over a period of time — instead of be-
ing “massed” — i.e., presented together one after
the other. Investigations of the spacing effect often
use a word learning task as the target learning event,
and such studies have looked at the performance of
adults as well as children (Glenberg, 1976; Pavlik
and Anderson, 2005; Vlach et al., 2008). While
this work involves controlled laboratory conditions,
the spacing effect is very robust across domains and
tasks (Dempster, 1989), suggesting that the underly-
ing cognitive processes likely play a role in natural
conditions of word learning as well.

Hypothesized explanations for the spacing effect
have included both memory limitations and atten-
tion. For example, many researchers assume that the
process of forgetting is responsible for the improved
performance in the spaced presentation: Because
participants forget more of what they have learned
in the longer interval, they learn more from sub-
sequent presentations (Melton, 1967; Jacoby, 1978;
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Cuddy and Jacoby, 1982). However, the precise re-
lation between forgetting and improved learning has
not been made clear. It has also been proposed that
subjects attend more to items in the spaced presen-
tation because accessing less recent (more novel)
items in memory requires more effort or attention
(Hintzman, 1974). However, the precise attentional
mechanism at work in the spacing experiments is not
completely understood.

While such proposals have been discussed for
many years, to our knowledge, there is as yet no de-
tailed computational model of the precise manner in
which forgetting and attention to novelty play a role
in the spacing effect. Moreover, while mathemat-
ical models of the effect help to clarify its proper-
ties (Pavlik and Anderson, 2005), it is very impor-
tant to situate these general cognitive mechanisms
within a model of word learning in order to under-
stand clearly how these various processes might in-
teract in the natural word learning setting.

We address this gap by considering memory con-
straints and attentional mechanisms in the context
of a computational model of word-meaning acquisi-
tion. Specifically, we change an existing probabilis-
tic incremental model of word learning (Fazly et al.,
2010) by integrating two new factors: (i) a forgetting
mechanism that causes the learned associations be-
tween words and meanings to decay over time; and
(ii) a mechanism that simulates the effects of atten-
tion to novelty on in-the-moment learning. The re-
sult is a more cognitively plausible word learning
model that includes a precise formulation of both
forgetting and attention to novelty. In simulations
using this new model, we show that a possible ex-
planation for the spacing effect is the interplay of
these two mechanisms, neither of which on its own
can account for the effect.

2 The Computational Model

We extend the model of Fazly et al. (2010) — hence-
forth referred to as FAS10 — by integrating new
functionality to capture forgetting and attention to
novelty. The model of FAS10 is an appropriate start-
ing point for our study because it is an incremen-
tal model of word learning that learns probabilis-
tic associations between words and their semantic
properties from naturalistic data. Nonetheless, the

model assumes equal attention to all words and ob-
jects present in the input, and, although incremental,
it has a perfect memory for the internal represen-
tation of each processed input. Hence, as we will
show, it is incapable of simulating the spacing ef-
fects observed in humans.

2.1 The FAS10 Model

The input to the model is a sequence of utterances (a
set of words), each paired with a scene representa-
tion (a set of semantic features, representing what is
perceived when the words are heard), as in:

Utterance: { she, drinks, milk }
Scene: { ANIMATE, PERSON, FEMALE, CONSUME,

DRINK, SUBSTANCE, FOOD, DAIRY-PRODUCT }

For each word, the model of FAS10 learns a proba-
bility distribution over all possible features, p(.|w),
called the meaning probability of the word. Before
processing any input, all features are equally likely
for a word, and the word’s meaning probability is
uniform over all features. At each time step t, an
input utterance–scene pair (similar to the above
example) is processed. For each word w and seman-
tic feature f in the input pair, an alignment score,
at(w| f ), is calculated that specifies how strongly
the w– f pair are associated at time t. The alignment
score in FAS10 uses the meaning probabilities of
all the words in the utterance, which reflect the
knowledge of the model of word meanings up to
that point, as in:

at(w|f ) =
pt−1(f |w)

∑
w′∈Ut

pt−1(f |w′)
(1)

where pt−1( f |w) is the probability of f being part of
the meaning of word w at time t−1.

In the FAS10 model, pt(.|w) is then updated for
all the words in the utterance, using the accumulated
evidence from all prior and current co-occurrences
of w– f pairs. Specifically, an association score is
defined between a word and a feature, assoct(w, f ),
which is a summation of all the alignments for that
w and f up to time t.1 This association score is then
normalized using a smoothed version of the follow-

1In FAS10, assoct(w, f ) = assoct−1(w, f )+at(w| f ).
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ing to yield pt( f |w):

pt( f |w) =
assoct( f , w)

∑
f ′∈M

assoct( f ′, w)
(2)

where M is the set of all observed features.
There are two observations to make about the

FAS10 model in the context of our desire to explore
attention and forgetting mechanisms in word learn-
ing. First, the calculation of alignments at(w| f ) in
Eqn. (1) treats all words equally, without special at-
tention to any particular item(s) in the input. Sec-
ond, the assoct( f ,w) term in Eqn. (2) encodes per-
fect memory of all calculated alignments since it is a
simple accumulated sum. These properties motivate
the changes to the formulation of the model that we
describe next.

2.2 Adding Attention to Novelty to the Model
As noted just above, the FAS10 model lacks any
mechanism to focus attention on certain words, as is
suggested by theories on the spacing effect (Hintz-
man, 1974). One robust observation in studies on
attention is that people attend to new items in a
learning scenario more than other items, leading to
improved learning of the novel items (e.g., Snyder
et al., 2008; MacPherson and Moore, 2010; Horst
et al., 2011). We thus model the effect of attention
to novelty when calculating alignments in our new
model: attention to a more novel word increases the
strength of its alignment with a feature — and con-
sequently the learned word–feature association —
compared to the alignment of a less novel word.

We modify the original alignment formulation of
FAS10 to incorporate a multiplicative novelty term
as follows (cf. Eqn. (1)):

at(w, f ) =
pt(f |w)

∑
w′∈Ut

pt(f |w′)
∗noveltyt(w) (3)

where noveltyt(w) specifies the degree of novelty of
a word as a simple inverse function of recency. That
is, we assume that the more recently a word has been
observed by the model, the less novel it appears to
the model. Given a word w at time t that was last
observed at time tlastw , we calculate noveltyt(w) as:

noveltyt(w) = 1− recency(t, tlastw) (4)

where recency(t, tlastw) is inversely proportional
to the difference between t and tlastw . We set
novelty(w) to be 1 for the first exposure of the word.

2.3 Adding a Forgetting Mechanism to the
Model

Given the observation above (see end of Section 2.1)
that assoct(w, f ) embeds perfect memory in the
FAS10 model, we add a forgetting mechanism by re-
formulating assoct(w, f ) to incorporate a decay over
time of the component alignments at(w| f ). In or-
der to take a cognitively plausible approach to calcu-
lating this function, we observe that assoct(w, f ) in
FAS10 serves a similar function to activation in the
ACT-R model of memory (Anderson and Lebiere,
1998). In ACT-R, activation of an item is the sum
of individual memory strengthenings for that item,
just as assoct(w, f ) is a sum of individual align-
ment strengths for the pair (w, f ). A crucial dif-
ference is that memory strengthenings in ACT-R
undergo decay. Specifically, activation of an item
m after t presentations is calculated as: act(m)t =
ln(∑t

t ′=1 1/(t−t ′)d), where t ′ is the time of each pre-
sentation, and d is a constant decay parameter.

We adapt this formulation for assoct(w, f ) with
the following changes: First, in the act formula, the
constant 1 in the numerator is the basic strength of
each presentation to memory. In our model, this
is not a constant but rather the strength of align-
ment, at(w| f ). Second, we assume that stronger
alignments should be more entrenched in memory
and thus decay more slowly than weaker alignments.
Thus, each alignment undergoes a decay which is
dependent on the strength of the alignment rather
than a constant decay d. We thus define assoct(w, f )
to be:

assoct( f ,w) = ln(
t

∑
t ′=1

at ′(w| f )

(t− t ′)dat′
) (5)

where the decay for each alignment dat′ is:

dat′ =
d

at ′(w| f )
(6)

where d is a constant parameter. Note that the dat′

decreases as at ′(w| f ) increases.
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apple: { FOOD:1, SOLID:.72, PRODUCE:.63,
EDIBLE-FRUIT:.32, PLANT-PART:.22,
PHYSICAL-ENTITY:.17, WHOLE:.06, · · · }

Figure 1: True meaning features & scores for apple.

3 Input Generation

The input data consists of a set of utterances paired
with their corresponding scene representations. The
utterances are taken from the child-directed speech
(CDS) portion of the Manchester corpus (Theakston
et al., 2001), from CHILDES (MacWhinney, 2000),
which includes transcripts of conversations with 12
British children, ages 1;8 to 3;0. Every utterance
is considered as a bag of lemmatized words. Half of
the data is used as the development set, and the other
half in the final experiments.

Because no manually-annotated semantic repre-
sentation is available for any such large corpus of
CDS, we use the approach of Nematzadeh et al.
(2012) to generate scene representations. For each
utterance a scene representation is generated artifi-
cially, by first creating an input-generation lexicon
that contains the true meaning (t(w)) of all the words
(w) in our corpus. The true meaning is a vector
of semantic features and their assigned scores (Fig-
ure 1). The semantic features for a word, depend-
ing on its part of speech, are chosen from different
sources such as WordNet.2 The score of each feature
is calculated automatically to give a higher value to
the more specific features (such as FRUIT for apple),
rather than more general features (like PHYSICAL-
ENTITY for apple).

To generate the scene representation S of an utter-
ance U, we probabilistically sample a subset of fea-
tures from the features in t(w) for each word w ∈U.
Thus, in each occurrence of w some of its features
are missing from the scene, resulting in an imper-
fect sampling. This imperfect sampling allows us to
simulate noise and uncertainty in the input, as well
as the uncertainty of a child in determining the rele-
vant meaning elements in a scene. The scene S is the
union of all the features sampled for all the words in
the utterance. We note that the input-generation lex-
icon is only used in creating input corpora that are
naturalistic (based on child-directed speech), and not
in the learning of the model.

2http://wordnet.princeton.edu

4 Experiments

First, we examine the overall word learning be-
haviour in our new model. Then we look at spacing
effects in the learning of novel words. In both these
experiments, we compare the behavior of our model
with the model of FAS10 to clearly illustrate the ef-
fects of forgetting and attention to novelty in the new
model. Next we turn to further experiments explor-
ing in more detail the interaction of forgetting and
attention to novelty in producing spacing effects.

4.1 Word Learning over Time
Generally, the model of FAS10 has increasing com-
prehension of words as it is exposed to more input
over time. In our model, we expect attention to nov-
elty to facilitate word learning, by focusing more
on newly observed words, whereas forgetting is ex-
pected to hinder learning. We need to see if the new
model is able to learn words effectively when sub-
ject to the combined effects of these two influences.

To measure how well a word w is learned in each
model, we compare its learned meaning l(w) (a vec-
tor holding the values of the meaning probability
p(.|w)) to its true meaning t(w) (see Section 3):

acq(w) = sim(l(w), t(w)) (7)

where sim is the cosine similarity between the two
meaning vectors, t(w) and l(w). The better the
model learns the meaning of w, the closer l(w)
would get to t(w), and the higher the value of sim
would become. To evaluate the overall behaviour of
a model, at each point in time, we average the acq
score of all the words that the model has seen.

We train each model on 10,000 input utterance–
scene pairs and compare their patterns of word learn-
ing over time (Figure 2).3 We can see that in the
original model, the average acq score is mostly in-
creasing over time before leveling off. Our model,
starts at a higher average acq score compared to
FAS10’s model, since the effect of attention to nov-
elty is stronger than the effect of forgetting in early
stages of training. There is a sharp decrease in the
acq scores after the early training stage, which then
levels off. The early decrease in acq scores oc-
curs because many of the words the model is ex-

3The constant decay parameter d in Eqn. (6) is set to 0.03 in
this experiment.
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Figure 2: Average acq score of the words over time, for
our model and FAS10’s model.

posed to early on are not learned very well initially,
and so forgetting occurs at a higher rate during that
stage. The model subsequently stabilizes, and the
acq scores level off although at a lower absolute
level than the FAS10 model. Note that when com-
paring these two models, we are interested in the
pattern of learning; in particular, we need to en-
sure that our new word learning model will even-
tually stabilize as expected. Our model stabilizes
at a lower average acq score since unlike FAS10’s
model, it does not implement a perfect memory.

4.2 The Spacing Effect in Novel Word
Learning

Vlach et al. (2008) performed an experiment to in-
vestigate the effect of presentation spacing in learn-
ing novel word–object pairs in three-year-old chil-
dren. Each pair was presented 3 times in each of
two settings, either consecutively (massed presenta-
tion), or with a short play interval between each pre-
sentation (spaced presentation). Children were then
asked to identify the correct object corresponding to
the novel word. The number of correct responses
was significantly higher when the pairs were in the
spaced presentation compared to the massed presen-
tation. This result clearly demonstrates the spacing
effect in novel word learning in children.

Experiments on the spacing effect in adults have
typically examined and compared different amounts
of time between the spaced presentations, which we
refer to as the spacing interval. Another important
parameter in such studies is the time period between
the last training trial and the test trial(s), which we

refer to as the retention interval (Glenberg, 1976;
Bahrick and Phelps, 1987; Pavlik and Anderson,
2005). Since the experiment of Vlach et al. (2008)
was designed for very young children, the proce-
dures were kept simple and did not vary these two
parameters. We design an experiment similar to that
of Vlach et al. (2008) to examine the effect of spac-
ing in our model, but extend it to also study the role
of various spacing and retention intervals, for com-
parison to earlier adult studies.

4.2.1 Experimental Setup
First, the model is trained on 100 utterance–scene

pairs to simulate the operation of normal word learn-
ing prior to the experiment.4 Then a randomly
picked novel word (nw) that did not appear in the
training trials is introduced to the model in 3 teach-
ing trials, similar to Vlach et al.’s (2008) experiment.
For each teaching trial, nw is added to a different ut-
terance, and its probabilistically-generated meaning
representation (see Section 3) is added to the corre-
sponding scene. We add nw to an utterance–scene
pair from our corpus to simulate the presentation of
the novel word during the natural interaction with
the child in the experimental setting.

The spacing interval between each of these 3
teaching trials is varied from 0 to 29 utterances, re-
sulting in 30 different simulations for each nw. For
example, when the spacing interval is 5, there are
5 utterances between each presentation of nw. A
spacing of 0 utterances yields the massed presenta-
tion. We run the experiment for 20 randomly-chosen
novel words to ensure that the pattern of the results
is not related to the meaning representation of a spe-
cific word.

For each spacing interval, we look at the acq score
of the novel word at two points in time, to simu-
late two retention intervals: One immediately after
the last presentation of the novel word (imm condi-
tion) and one at a later point in time (lat condition).
By looking at these two conditions, we can further
observe the effect of forgetting in our model, since
the decay in the model’s memory would be more se-
vere in the lat condition, compared to the imm con-
dition.5 The results reported here for each spacing

4In the experiments of Section 4.2.2 and Section 4.3, the
constant decay parameter d is equal to 0.04.

5Recall that each point of time in our model corresponds to
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Figure 3: Average acq score of novel words over spacing
intervals, in our model and FAS10’s model.

interval average the acq scores of all the novel words
at the corresponding points in time.

4.2.2 The Basic Spacing Effect Results
Figure 3 shows the results of the simulations in

our model and the FAS10 model. We assume that
very small spacing intervals (but greater than 0)
correspond to the spaced presentation in the Vlach
et al. (2008) experiments, while a spacing of 0 cor-
responds to the massed presentation. In the FAS10
model, the average acq score of words does not
change with spacing, and there is no difference be-
tween the imm and lat conditions, confirming that
this model fails to mimic the observed spacing ef-
fects. By contrast, in our model the average acq
score is greater in the small spacing intervals (1-
3) than in the massed presentation, mimicking the
Vlach et al. (2008) results on children. This happens
because a nw appears more novel with larger spacing
intervals between each of its presentations resulting
in stronger alignments.

We can see two other interesting patterns in our
model: First, the average acq score of words for all
spacing intervals is greater in the imm condition than
in the lat condition. This occurs because there is
more forgetting in the model over the longer reten-
tion interval of lat. Second, in both conditions the
average acq score initially increases from a massed
presentation to the smaller spacing intervals. How-
ever, at spacing intervals between about 3 and 5,

processing an input pair. The acq score in the imm condition is
calculated at time t, which is immediately after the last presen-
tation of nw. The lat condition corresponds to t +20.

the acq score begins to decrease as spacing intervals
grow larger. As explained earlier, the initial increase
in acq scores for small spacing intervals results from
novelty of the words in a spaced presentation. How-
ever, for bigger spacing intervals the effect of nov-
elty is swamped by the much greater degree of for-
getting after a bigger spacing interval.

Although Vlach et al. (2008) did not vary their
spacing and retention intervals, other spacing effect
studies on adults have done so. For example, Glen-
berg (1976) presented adults with word pairs to learn
under varying spacing intervals, and tested them af-
ter several different retention intervals (his experi-
ment 1). Our pattern of results in Figure 3 is in line
with his results. In particular, he found a nonmono-
tonic pattern of spacing similar to the pattern in our
model: learning of pairs was improved with increas-
ing spacing intervals up to a point, but there was a
decrease in performance for larger spacing intervals.
Also, the proportion of recalled pairs decreased for
longer retention intervals, similar to our lower per-
formance in the lat condition.

4.3 The Role of Forgetting and Attention
To fully understand the role as well as the neces-
sity of, both forgetting and attention to novelty in
our results, we test two other models under the same
conditions as the previous spacing experiment: (a) a
model with our mechanism for attention to novelty
but not forgetting, and (b) a model with our forget-
ting mechanism but no attention to novelty; see Fig-
ure 4 and Figure 5, respectively.

In the model that attends to novelty but does not
incorporate a memory decay mechanism (Figure 4),
the average acq score consistently increases as spac-
ing intervals grow bigger. This occurs because the
novel words appear more novel following bigger
spacing intervals, and thus attract more alignment
strength. Since the model does not forget, there is
no difference between the immediate (imm) and later
(lat) retention intervals. This pattern does not match
the spacing effect patterns of people, suggesting that
forgetting is a necessary aspect of our model’s abil-
ity to do so in the previous section.

On the other hand, in the model with forgetting
but no attentional mechanism (Figure 5), we see two
different behaviors in the imm and lat conditions. In
the imm condition, the average acq score decreases
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Figure 4: Average acq score of the novel words over spac-
ing intervals, for the model with novelty but without for-
getting.

Figure 5: Average acq score of the novel words over spac-
ing intervals, for the model with forgetting but without
novelty.

consistently over spacing intervals. This is as ex-
pected, because the greater time between presenta-
tions means a greater degree of forgetting. Specif-
ically, the alignment scores decay more between
presentations of the word to be learned, given the
greater passage of time in larger spacing intervals.
The weaker alignments then lead to lower acq scores
in this condition.

Paradoxically, although this effect on learning
also holds in the lat condition, another factor is at
play, leading to better performance than in the imm
condition at all spacing intervals. Here the greater
retention interval — the time between the last learn-
ing presentation and the test time — leads to greater
forgetting in a manner that instead improves the acq
scores. Consider that the meaning representation

for a word includes some probability mass assigned
to irrelevant features — i.e., those features that oc-
curred in an utterance–scene pair with the word but
are not part of its true meaning. Because such fea-
tures generally have lower probability than relevant
features (which are observed more consistently with
a word), a longer retention interval leads to them de-
caying more than the relevant features. Thus the lat
condition enables the model to better focus on the
features relevant to a word.

In conclusion, neither attention to novelty nor for-
getting alone achieves the pattern typical of the spac-
ing effects in people that our model shows in the
lower two plots in Figure 3. Hence we conclude that
both factors are necessary to our account, suggesting
that it is an interaction between the two that accounts
for people’s behaviour.

4.4 The “Spacing Crossover Interaction”

In our model with attention to novelty and forgetting
(see Section 4.2), the average acq score was always
better in the imm condition than the lat condition.
However, researchers have observed other patterns
in spacing experiments. A particularly interesting
pattern found in some studies is that the plots of the
results for earlier and later retention intervals cross
as the spacing intervals are increased. That is, with
smaller spacing intervals, a shorter retention inter-
val (such as our imm condition) leads to better re-
sults, but with larger spacing intervals, a longer re-
tention interval (such as our lat condition) leads to
better results (Bahrick, 1979; Pavlik and Anderson,
2005). This interaction of spacing and retention in-
tervals results in a pattern referred to as the spacing
crossover interaction (Pavlik and Anderson, 2005).
This pattern is different from Glenberg’s (1976) ex-
periment and from the pattern of results shown ear-
lier for our model (Figure 3).

We looked at an experiment in which the spac-
ing crossover pattern was observed: Pavlik and An-
derson (2005) taught Japanese–English pairs to sub-
jects, varying the spacing and retention intervals.
One difference we noticed between the experiment
of Pavlik and Anderson (2005) and Glenberg (1976)
was that in the former, the presentation period of the
stimulus was 5 seconds, whereas in the latter, it was
3 seconds. We hypothesize that the difference be-
tween the amount of time for the presentation peri-

86



Figure 6: Average acq score of the novel words over spac-
ing intervals

ods might explain the different spacing patterns in
these experiments.

We currently cannot model presentation time di-
rectly in our model, since having access to an in-
put longer does not change its computation of align-
ments between words and features. However, we
can indirectly model a difference in presentation
time by modifying the amount of memory decay:
We assume that when an item is presented longer, it
is learned better and therefore subject to less forget-
ting. We run the spacing experiment with a smaller
forgetting parameter to model the longer presenta-
tion period used in Pavlik and Anderson’s (2005)
versus Glenberg (1976).6

Our results using the decreased level of forgetting,
given in Figure 6, show the expected crossover inter-
action between the retention and spacing intervals:
for smaller spacing intervals, the acq scores are bet-
ter in the imm condition, whereas for larger spacing
intervals, they are better in the lat condition. Thus,
our model suggests an explanation for the observed
crossover: in tasks which strengthen the learning of
the target item — and thus lessen the effect of forget-
ting — we expect to see a benefit of later retention
trials in experiments with people.

5 General Discussion and Future Work

The spacing effect (where people learn items better
when multiple presentations are spread over time)
has been studied extensively and is found to be ro-
bust over different types of tasks and domains. Many

6Here, the decay parameter is set to 0.03.

experiments have examined the spacing effect in the
context of word learning and other similar tasks.
Particularly, in a recent study of Vlach et al. (2008),
young children demonstrated a spacing effect in a
novel word learning task.

We use computational modeling to show that by
changing a probabilistic associative model of word
learning to include both a forgetting and attentional
mechanism, the new model can account not only for
the child data, but for various patterns of spacing ef-
fect data in adults. Specifically, our model shows the
nonmonotonic pattern of spacing observed in the ex-
perimental data, where learning improves in shorter
spacing intervals, but worsens in bigger spacing in-
tervals. Our model can also replicate the observed
cross-over interaction between spacing and retention
intervals: for smaller spacing intervals, performance
is better when tested after a shorter retention inter-
val, whereas for bigger spacing intervals, it is better
after longer retention intervals. Finally, our results
confirm that by modelling word learning as a stan-
dalone development process, we cannot account for
the spacing effect. Instead, it is important to con-
sider word learning in the context of fundamental
cognitive processes of memory and attention.

Much remains to be investigated in our model.
For example, most human experiments examine the
effect of frequency of presentations of target items.
Also, the range of retention intervals that has been
studied is greater than what we have considered
here. In the future, we plan to study the effect of
these two parameters. In addition, with our current
model, the amount of time an item is presented to
the learner does not play a role. We can also re-
formulate our alignment mechanism to incorporate
a notion of the amount of time to consider an item
to be learned. Another interesting future direction,
especially in the context of word learning, is to de-
velop a more complete attentional mechanism, that
considers different parameters such as social cues
and linguistic cues. Finally, we will study the role
of forgetting and attention in modelling other rele-
vant experimental data (e.g., Kachergis et al., 2009;
Vlach and Sandhofer, 2010).
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