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Mariët Theune
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands
m.theune@utwente.nl

Abstract

One important subtask of Referring Expres-
sion Generation (REG) algorithms is to se-
lect the attributes in a definite description for
a given object. In this paper, we study how
much training data is required for algorithms
to do this properly. We compare two REG al-
gorithms in terms of their performance: the
classic Incremental Algorithm and the more
recent Graph algorithm. Both rely on a notion
of preferred attributes that can be learned from
human descriptions. In our experiments, pref-
erences are learned from training sets that vary
in size, in two domains and languages. The
results show that depending on the algorithm
and the complexity of the domain, training on
a handful of descriptions can already lead to a
performance that is not significantly different
from training on a much larger data set.

1 Introduction

Most practical NLG systems include a dedicated
module for Referring Expression Generation (REG)
in one form or another (Mellish et al., 2006). One
central problem a REG module needs to address is
deciding on the contents of a description. Jordan
and Walker (2005), for example, studied human-
produced descriptions in a furniture scenario, and
found that speakers can refer to a target in many dif-
ferent ways (“the yellow rug”, “the $150 rug”, etc.).
The question, then, is how speakers decide which at-
tributes to include in a description, and how this de-
cision process can be modeled in a REG algorithm.

When we focus on the generation of distinguish-
ing descriptions (which is often done in REG), it is

usually assumed that some attributes are more pre-
ferred than others: when trying to identify a chair,
for example, its colour is probably more helpful than
its size. It is precisely this intuition of preferred at-
tributes which is incorporated in the Incremental Al-
gorithm (Dale and Reiter, 1995), arguably one of the
most influential REG algorithms to date. The Incre-
mental Algorithm (IA) assumes the existence of a
complete, ordered list of preferred attributes. The
algorithm basically iterates through this list, adding
an attribute (e.g., COLOUR) to the description under
construction if its value (e.g., yellow) helps ruling
out one or more of the remaining distractors.

Even though the IA is exceptional in that it re-
lies on a complete ordering of attributes, most cur-
rent REG algorithms make use of preferences in
some way (Fabbrizio et al., 2008; Gervás et al.,
2008; Kelleher, 2007; Spanger et al., 2008; Viethen
and Dale, 2010). The graph-based REG algorithm
(Krahmer et al., 2003), for example, models prefer-
ences in terms of costs, where cheaper is more pre-
ferred. Contrary to the IA, the graph-based algo-
rithm assumes that preferences operate at the level
of attribute-value pairs (or properties) rather than at
the level of attributes; in this way it becomes pos-
sible to prefer a straightforward size (large) over a
subtle colour (mauve, taupe). Moreover, the graph-
based algorithm looks for the cheapest overall de-
scription, and may opt for a description with a sin-
gle, relatively dispreferred property (“the man with
the blue eyes”) when the alternative would be to
combine many, relatively preferred properties (“the
large, balding man with the bow tie and the striped
tuxedo”). This flexibility is arguably one of the

3



reasons why the graph-based REG approach works
well: it was the best performing system in the most
recent REG Challenge (Gatt et al., 2009).

But where do the preferences used in the algo-
rithms come from? Dale and Reiter point out that
preferences are domain dependent, and that deter-
mining them for a given domain is essentially an
empirical question. Unfortunately, they do not spec-
ify how this particular empirical question should be
answered. The general preference for colour over
size is experimentally well-established (Pechmann,
1989), but for most other cases experimental data
are not readily available. An alternative would be
to look at human data, preferably in a “semantically
transparent” corpus (van Deemter et al., 2006), that
is: a corpus that contains the attributes and values of
all domain objects, together with the attribute-value
pairs actually included in a target reference. Such
corpora are typically collected using human partic-
ipants, who are asked to produce referring expres-
sions for targets in controlled visual scenes. One
example is the TUNA corpus, which is a publicly
available data set containing 2280 human-produced
descriptions in total, and which formed the basis of
various REG Challenges. Clearly, building a corpus
such as TUNA is a time consuming and labour in-
tensive exercise, so it will not be surprising that only
a handful of such corpora exists (and often only for
English).

This raises an important question: how many
human-produced references are needed to make a
good estimate of which attributes and properties are
preferred? Do we really need hundreds of instances,
or is it conceivable that a few of them (collected in a
semantically transparent way) will do? This is not an
easy matter, since various factors might play a role:
from which data set are example references sampled,
what are the domains of interest, and, perhaps most
importantly, which REG algorithm is considered? In
this paper, we address these questions by systemati-
cally training two REG algorithms (the Incremental
Algorithm and the graph-based REG algorithm) on
sets of human-produced descriptions of increasing
size and evaluating them on a held-out test set; we
do this for two different domains (people and furni-
ture descriptions) and two data sets in two different
languages (TUNA and D-TUNA, the Dutch version
of TUNA).

That size of the training set may have an impact
on the performance of a REG algorithm was already
suggested by Theune et al. (2011), who used the En-
glish TUNA corpus to determine preferences (costs)
for the graph-based algorithm using a similar learn-
ing curve set-up as we use here. However, the cur-
rent paper expands on Theune et al. (2011) in three
major ways. Firstly, and most importantly, where
Theune et al. reported results for only one algorithm
(the graph-based one), we directly compare the per-
formance of the graph-based algorithm and the In-
cremental Algorithm (something which, somewhat
surprisingly, has not been done before). Secondly,
we test whether these algorithms perform differently
in two different languages (English and Dutch), and
thirdly, we use eight training set sizes, which is more
than the six set sizes that were used by Theune et al.

Below we first explain in more detail which algo-
rithms (Section 2) and corpora (Section 3) we used
for our experiments. Then we describe how we de-
rived costs and orders from subsets of these corpora
(Section 4), and report the results of our experiments
focusing on effects of domain, language and size
of the training set (Section 5). We end with a dis-
cussion and conclusion (Section 6), where we also
compare the performance of the IA trained on small
set sizes with that of the classical Full Brevity and
Greedy algorithms (Dale and Reiter, 1995).

2 The Algorithms

In this section we briefly describe the two algo-
rithms, and their settings, used in our experiment.
For details about these algorithms we refer to the
original publications.

The Incremental Algorithm (IA) The basic
assumption underlying the Incremental Algorithm
(Dale and Reiter, 1995) is that speakers “prefer”
certain attributes over others when referring to
objects. This intuition is formalized in the notion
of a list of attributes, ranked in order of preference.
When generating a description for a target, the al-
gorithm iterates through this list, adding an attribute
to the description under construction if its value
helps rule out any of the distractors not previously
ruled out. There is no backtracking in the IA, which
means that a selected attribute is always realized in
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the final description, even if the inclusion of later
attributes renders it redundant. In this way, the IA is
capable of generating overspecified descriptions, in
accordance with the human tendency to mention re-
dundant information (Pechmann, 1989; Engelhardt
et al., 2006; Arts et al., 2011). The TYPE attribute
(typically realized as the head noun) has a special
status in the IA. After running the algorithm it is
checked whether TYPE is in the description; if not,
it is added, so that TYPE is always included even if
it does not rule out any distractors.

To derive preference orders from human-
produced descriptions we proceeded as follows:
given a set of n descriptions sampled from a
larger corpus (where n is the set size, a variable
we systematically control in our experiment), we
counted the number of times a certain attribute
occurred in the n descriptions. The most frequently
occurring attribute was placed at the first position of
the preferred attributes list, followed by the second
most frequent attribute, etc. In the case of a tie (i.e.,
when two attributes occurred equally often, which
typically is more likely to happen in small training
sets), the attributes were ordered alphabetically. In
this way, we made sure that all ties were treated in
the same, comparable manner, which resulted in a
complete ranking of attributes, as required by the IA.

The Graph-based Algorithm (Graph) In the
graph-based algorithm (Krahmer et al., 2003),
which we refer to as Graph, information about
domain objects is represented as a labelled directed
graph, and REG is modeled as a graph-search
problem. The output of the algorithm is the
cheapest distinguishing subgraph, given a particular
cost function assigning costs to properties (i.e.,
attribute-value pairs). By assigning zero costs to
some properties Graph is also capable of generating
overspecified descriptions, including redundant
properties. To ensure that the graph search does not
terminate before the free properties are added, the
search order must be explicitly controlled (Viethen
et al., 2008). To ensure a fair comparison with the
IA, we make sure that if the target’s TYPE property
was not originally selected by the algorithm, it is
added afterwards.

In this study, both the costs and orders required
by Graph are derived from corpus data. We base

the property order on the frequency with which each
attribute-value pair is mentioned in a training cor-
pus, relative to the number of target objects with
this property. The properties are then listed in or-
der of decreasing frequency. Costs can be derived
from the same corpus frequencies; here, following
Theune et al. (2011), we adopt a systematic way of
deriving costs from frequencies based on k-means
clustering. Theune and colleagues achieved the best
performance with k = 2, meaning that the prop-
erties are divided in two groups based on their fre-
quency. The properties in the group with the high-
est frequency get cost 0. These ‘free’ properties are
always included in the description if they help dis-
tinguish the target. The properties in the less fre-
quent group get cost 1; of these properties, the al-
gorithm only adds the minimum number necessary
to achieve a distinguishing description. Ties due to
properties occurring with the same frequency need
not be resolved when determining the cost function,
since Graph does not assume the existence of a com-
plete ordering. Properties that did not occur in a
training corpus were automatically assigned cost 1.
Like we did for the IA, we listed attribute-value pairs
with the same frequency in alphabetical order.

3 Corpora

Training and test data for our experiment were
taken from two corpora of referring expressions,
one English (TUNA) and one Dutch (D-TUNA).

TUNA The TUNA corpus (Gatt et al., 2007)
is a semantically transparent corpus consisting of
object descriptions in two domains (furniture and
people). The corpus was collected in an on-line
production experiment, in which participants were
presented with visual scenes containing one target
object and six distractor objects. These objects were
ordered in a 5 × 3 grid, and the participants were
asked to describe the target in such a way that it
could be uniquely distinguished from its distractors.
Table 1 shows the attributes and values that were
annotated for the descriptions in the two domains.

There were two experimental conditions: in
the +LOC condition, the participants were free
to describe the target using any of its properties,
including its location on the screen (represented
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Furniture
Attribute Possible values
TYPE chair, desk, sofa, fan
COLOUR green, red, blue, gray
ORIENTATION front, back, left, right
SIZE large, small
X-DIMENSION 1, 2, 3, 4, 5
Y-DIMENSION 1, 2, 3

People
Attribute Possible values
TYPE person
AGE old, young
HAIRCOLOUR light, dark
ORIENTATION front, left, right
HASBEARD true, false
HASGLASSES true, false
HASSHIRT true, false
HASSUIT true, false
HASTIE true, false
X-DIMENSION 1, 2, 3, 4, 5
Y-DIMENSION 1, 2, 3

Table 1: Attributes and values in the furniture and people
domains. X- and Y-DIMENSION refer to an object’s hori-
zontal and vertical position in a scene grid and only occur
in the English TUNA corpus.

in Table 1 as the X- and Y-DIMENSION), whereas
in the -LOC condition they were discouraged (but
not prevented) from mentioning object locations.
However, some descriptions in the -LOC condition
contained location information anyway.

D-TUNA For Dutch, we used the D-TUNA
corpus (Koolen and Krahmer, 2010). This corpus
uses the same visual scenes and annotation scheme
as the TUNA corpus, but consists of Dutch instead
of English target descriptions. Since the D-TUNA
experiment was performed in laboratory conditions,
its data is relatively ’cleaner’ than the TUNA data,
which means that it contains fewer descriptions that
are not fully distinguishing and that its descriptions
do not contain X- and Y-DIMENSION attributes. Al-
though the descriptions in D-TUNA were collected
in three different conditions (written, spoken, and
face-to-face), we only use the written descriptions
in this paper, as this condition is most similar to the

data collection in TUNA.

4 Method

To find out how much training data is required
to achieve an acceptable attribute selection perfor-
mance for the IA and Graph, we derived orders and
costs from different sized training sets. We then
evaluated the algorithms, using the derived orders
and costs, on a test set. Training and test sets were
taken from TUNA and D-TUNA.

As Dutch training data, we used 160 furniture and
160 people items, randomly selected from the tex-
tual descriptions in the D-TUNA corpus. The re-
maining furniture and people descriptions (40 items
each) were used for testing. As English training
data, we took all -LOC data from the training set
of the REG Challenge 2009 (Gatt et al., 2009): 165
furniture and 136 people descriptions. As English
test data we used all -LOC data from the REG 2009
development set: 38 furniture and 38 people descrip-
tions. We only used -LOC data to increase compa-
rability to the Dutch data.

From the Dutch and English furniture and people
training data, we selected random subsets of 1, 5,
10, 20, 30, 40 and 50 descriptions. Five different
sets of each size were created, since the accidental
composition of a training set could strongly influ-
ence the results. All training sets were built up in a
cumulative fashion, starting with five randomly se-
lected sets of size 1, then adding 4 items to each of
them to create five sets of size 5, and so on, for each
combination of language and domain. We used these
different training sets to derive preference orders of
attributes for the IA, and costs and property orders
for Graph, as outlined above.

We evaluated the performance of the derived pref-
erence orders and cost functions on the test data for
the corresponding domain and language, using the
standard Dice and Accuracy metrics for evaluation.
Dice measures the overlap between attribute sets,
producing a value between 1 and 0, where 1 stands
for a perfect match and 0 for no overlap at all. Ac-
curacy is the percentage of perfect matches between
the generated attribute sets and the human descrip-
tions in the test set. Both metrics were used in the
REG Generation Challenges.
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English furniture
IA Graph

Set size Dice Acc.(%) Dice Acc.(%)
1 0.764 36.8 0.693 24.7
5 0.829 55.3 0.756 33.7

10 0.829 55.3 0.777 39.5
20 0.829 55.3 0.788 40.5
30 0.829 55.3 0.782 40.5
40 0.829 55.3 0.793 45.3
50 0.829 55.3 0.797 45.8

All 0.829 55.3 0.810 50.0
Dutch furniture

IA Graph
Set size Dice Acc.(%) Dice Acc.(%)

1 0.925 63.0 0.876 44.5
5 0.935 67.5 0.917 62.0

10 0.929 68.5 0.923 66.0
20 0.930 65.5 0.923 64.0
30 0.931 67.0 0.924 65.5
40 0.931 67.0 0.931 67.5
50 0.929 66.0 0.929 67.0

All 0.926 65.0 0.929 67.5

Table 2: Performance for each set size in the furniture
domain. For sizes 1 to 50, means over five sets are given.
The full sets are 165 English and 160 Dutch descriptions.
Note that the scores of the IA for the English sets of sizes
1 to 30 were also reported in Theune et al. (2011).

5 Results

5.1 Overall analysis

To determine the effect of domain and language on
the performance of REG algorithms, we applied re-
peated measures analyses of variance (ANOVA) to
the Dice and Accuracy scores, using set size (1, 5,
10, 20, 30, 40, 50, all) and domain (furniture, peo-
ple) as within variables, and algorithm (IA, Graph)
and language (English, Dutch) as between variables.

The results show main effects of domain (Dice:
F(1,152) = 56.10, p < .001; Acc.: F(1,152) = 76.36,
p < .001) and language (Dice: F(1,152) = 30.30,
p < .001; Acc.: F(1,152) = 3.380, p = .07). Regard-
ing the two domains, these results indicate that both
the IA and the Graph algorithm generally performed
better in the furniture domain (Dice: M = .86, SD =
.01; Acc.: M = .56, SD = .03) than in the people do-
main (Dice: M = .72, SD = .01; Acc.: M = .20, SD =
.02). Regarding the two languages, the results show
that both algorithms generally performed better on

English people
IA Graph

Set size Dice Acc.(%) Dice Acc.(%)
1 0.519 7.4 0.558 12.6
5 0.605 15.8 0.617 14.5

10 0.682 21.1 0.683 20.0
20 0.710 22.1 0.716 24.7
30 0.682 15.3 0.716 26.8
40 0.716 26.3 0.723 26.3
50 0.718 27.9 0.727 26.3

All 0.724 31.6 0.730 28.9
Dutch people

IA Graph
Set size Dice Acc.(%) Dice Acc.(%)

1 0.626 4.5 0.682 17.5
5 0.737 16.0 0.738 21.0

10 0.738 12.5 0.741 19.5
20 0.765 12.5 0.778 25.5
30 0.762 14.5 0.789 25.0
40 0.763 11.5 0.792 25.0
50 0.764 10.5 0.798 26.0

All 0.775 12.5 0.812 32.5

Table 3: Performance for each set size in the people do-
main. For sizes 1 to 50, means over five sets are given.
The full sets are 136 English and 160 Dutch descriptions.
Note that the scores of the IA for the English sets of sizes
1 to 30 were also reported in Theune et al. (2011).

the Dutch data (Dice: M = .84, SD = .01; Acc.: M
= .41, SD = .03) than on the English data (Dice: M
= .74, SD = .01; Acc.: M = .34, SD = .03). There
is no main effect of algorithm, meaning that over-
all, the two algorithms had an equal performance.
However, this is different when we look separately
at each domain and language, as we do below.

5.2 Learning curves per domain and language

Given the main effects of domain and language de-
scribed above, we ran separate ANOVAs for the dif-
ferent domains and languages. For these four analy-
ses, we used set size as a within variable, and algo-
rithm as a between variable. To determine the effects
of set size, we calculated the means of the scores
of the five training sets for each set size, so that we
could compare them with the scores of the entire set.
The results are shown in Tables 2 and 3.

We made planned post hoc comparisons to test
which is the smallest set size that does not perform
significantly different from the entire training set in
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terms of Dice and Accuracy scores (we call this the
“ceiling”). We report results both for the standard
Bonferroni method, which corrects for multiple
comparisons, and for the less strict LSD method
from Fisher, which does not. Note that with the
Bonferroni method we are inherently less likely to
find statistically significant differences between the
set sizes, which implies that we can expect to reach
a ceiling earlier than with the LSD method. Table 4
shows the ceilings we found for the algorithms, per
domain and language.

The furniture domain Table 2 shows the Dice
and Accuracy scores in the furniture domain. We
found significant effects of set size for both the
English data (Dice: F(7,518) = 15.59, p < .001;
Acc.: F(7,518) = 17.42, p < .001) and the Dutch data
(Dice: F(7,546) = 5.322, p < .001; Acc.: F(7,546)

= 5.872, p < .001), indicating that for both lan-
guages, the number of descriptions used for training
influenced the performance of both algorithms in
terms of both Dice and Accuracy. Although we
did not find a main effect of algorithm, suggesting
that the two algorithms performed equally well, we
did find several interactions between set size and
algorithm for both the English data (Dice: F(7,518) =
1.604, ns; Acc.: F(7,518) = 2.282, p < .05) and the
Dutch data (Dice: F(7,546) = 3.970, p < .001; Acc.:
F(7,546) = 3.225, p < .01). For the English furniture
data, this interaction implies that small set sizes
have a bigger impact for the IA than for Graph.
For example, moving from set size 1 to 5 yielded a
Dice improvement of .18 for the IA, while this was
only .09 for Graph. For the Dutch furniture data,
however, a reverse pattern was observed; moving
from set size 1 to 5 yielded an improvement of .01
(Dice) and .05 (Acc.) for the IA, while this was .11
(Dice) and .18 (Acc.) for Graph.

Post hoc tests showed that small set sizes were
generally sufficient to reach ceiling performance:
the general pattern for both algorithms and both
languages was that the scores increased with the size
of the training set, but that the increase got smaller
as the set sizes became larger. For the English
furniture data, Graph reached the ceiling at set size
10 for Dice (5 with the Bonferroni test), and at set
size 40 for Accuracy (again 5 with Bonferroni),
while this was the case for the IA at set size 5 for

English furniture Dutch furniture
Dice Accuracy Dice Accuracy

IA 5 (5) 5 (5) 1 (1) 1 (1)
Graph 10 (5) 40 (5) 5 (1) 5 (1)

English people Dutch people
Dice Accuracy Dice Accuracy

IA 10 (10) 40 (1) 20 (5) 1 (1)
Graph 20 (10) 20 (1) 30 (20) 5 (1)

Table 4: Ceiling set sizes computed using LSD, with
Bonferroni between brackets.

both Dice and Accuracy (also 5 with Bonferroni).
For the Dutch furniture data, Graph reached the
ceiling at set size 5 for both Dice and Accuracy
(and even at 1 with the Bonferroni test), while this
was at set size 1 for the IA (again 1 with Bonferroni).

The people domain Table 3 shows the Dice
and Accuracy scores in the people domain. Again,
we found significant effects of set size for both the
English data (Dice: F(7,518) = 39.46, p < .001;
Acc.: F(7,518) = 11.77, p < .001) and the Dutch data
(Dice: F(7,546) = 33.90, p < .001; Acc.: F(7,546)

= 3.235, p < .01). Again, this implies that for
both languages, the number of descriptions used
for training influenced the performance of both
algorithms in terms of both Dice and Accuracy.
Unlike we did in the furniture domain, we found
no interactions between set size and algorithm, but
we did find a main effect of algorithm for the Dutch
people data (Dice: F(1,78) = .751, ns; Acc.: F(1,78)

= 5.099, p < .05), showing that Graph generated
Dutch descriptions that were more accurate than
those generated by the IA.

As in the furniture domain, post hoc tests showed
that small set sizes were generally sufficient to reach
ceiling performance. For the English data, Graph
reached the ceiling at set size 20 for both Dice and
Accuracy (with Bonferroni: 10 for Dice, 1 for Accu-
racy), while this was the case for the IA at set size 10
for Dice (also 10 with Bonferroni), and at set size 40
for Accuracy (and even at 1 with Bonferroni). For
the Dutch data, Graph reached the ceiling at set size
30 for Dice (20 with Bonferroni), and at set size 5
for Accuracy (1 with Bonferroni). For the IA, ceil-
ing was reached at set size 20 for Dice (Bonferroni:
5), and already at 1 for Accuracy (Bonferroni: 1).
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6 Discussion and Conclusion

Our main goal was to investigate how many human-
produced references are required by REG algo-
rithms such as the Incremental Algorithm and the
graph-based algorithm to determine preferences (or
costs) for a new domain, and to generate “human-
like” descriptions for new objects in these domains.
Our results show that small data sets can be used
to train these algorithms, achieving results that are
not significantly different from those derived from
a much larger training set. In the simple furniture
domain even one training item can already be suffi-
cient, at least for the IA. As shown in Table 4, on the
whole the IA needed fewer training data than Graph
(except in the English people domain, where Graph
only needed a set size of 10 to hit the ceiling for
Dice, while the IA needed a set size of 20).

Given that the IA ranks attributes, while the
graph-based REG algorithm ranks attribute-value
pairs, the difference in required training data is
not surprising. In any domain, there will be more
attribute-value pairs than attributes, so determining
an attribute ranking is an easier task than determin-
ing a ranking of attribute-value pairs. Another ad-
vantage of ranking attributes rather than attribute-
value pairs is that it is less vulnerable to the problem
of “missing data”. More specifically, the chance that
a specific attribute does not occur in a small train-
ing set is much smaller than the chance that a spe-
cific attribute-value pair does not occur. As a conse-
quence, the IA needs fewer data to obtain complete
attribute orderings than Graph needs to obtain costs
for all attribute-value pairs.

Interestingly, we only found interactions between
training set size and algorithm in the furniture do-
main. In the people domain, there was no signifi-
cant difference between the size of the training sets
required by the algorithms. This could be explained
by the fact that the people domain has about twice as
many attributes as the furniture domain, and fewer
values per attribute (see Table 1). This means that
for people the difference between the number of at-
tributes (IA) and the number of attribute-value pairs
(Graph) is not as big as for furniture, so the two al-
gorithms are on more equal grounds.

Both algorithms performed better on furniture
than on people. Arguably, the people pictures in the

TUNA experiment can be described in many more
different ways than the furniture pictures can, so it
stands to reason that ranking potential attributes and
values is more difficult in the people than in the fur-
niture domain. In a similar vein, we might expect
Graph’s flexible generation strategy to be more use-
ful in the people domain, where more can be gained
by the use of costs, than in the furniture domain,
where there are relatively few options anyway, and a
simple linear ordering may be quite sufficient.

This expectation was at least partially confirmed
by the results: although in most cases the differences
are not significant, Graph tends to perform numeri-
cally better than the IA in the people domain. Here
we see the pay-off of Graph’s more fine-grained
preference ranking, which allows it to distinguish
between more and less salient attribute values. In the
furniture domain, most attribute values appear to be
more or less equally salient (e.g., none of the colours
gets notably mentioned more often), but in the peo-
ple domain certain values are clearly more salient
than others. In particular, the attributes HASBEARD

and HASGLASSES are among the most frequent at-
tributes in the people domain when their value is
true (i.e., the target object can be distinguished by
his beard or glasses), but they hardly get mentioned
when their value is false. Graph quickly learns this
distinction, assigning low costs and a high ranking
to <HASBEARD, true> and <HASGLASSES, true>
while assigning high costs and a low ranking to
<HASBEARD, false> and <HASGLASSES, false>.
The IA, on the other hand, does not distinguish be-
tween the values of these attributes.

Moreover, the graph-based algorithm is arguably
more generic than the Incremental Algorithm, as it
can straightforwardly deal with relational properties
and lends itself to various extensions (Krahmer et
al., 2003). In short, the larger training investment
required for Graph in simple domains may be com-
pensated by its versatility and better performance
on more complex domains. To test this assump-
tion, our experiment should be repeated using data
from a more realistic and complex domain, e.g., ge-
ographic descriptions (Turner et al., 2008). Unfortu-
nately, currently no such data sets are available.

Finally, we found that the results of both algo-
rithms were better for the Dutch data than for the
English ones. We think that this is not so much an ef-
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fect of the language (as English and Dutch are highly
comparable) but rather of the way the TUNA and D-
TUNA corpora were constructed. The D-TUNA cor-
pus was collected in more controlled conditions than
TUNA and as a result, arguably, it contains training
data of a higher quality. Also, because the D-TUNA
corpus does not contain any location properties (X-
and Y-DIMENSION) its furniture and people domains
are slightly less complex than their TUNA counter-
parts, making the attribute selection task a bit easier.

One caveat of our study is that so far we have
only used the standard automatic metrics on REG
evaluation (albeit in accordance with many other
studies in this area). However, it has been found
that these do not always correspond to the results of
human-based evaluations, so it would be interesting
to see whether the same learning curve effects
are obtained for extrinsic, task based evaluations
involving human subjects. Following Belz and
Gatt (2008), this could be done by measuring
reading times, identification times or error rates as a
function of training set size.

Comparing IA with FB and GR We have shown
that small set sizes are sufficient to reach ceiling for
the IA. But which preference orders (PO’s) do we
find with these small set sizes? And how does the
IA’s performance with these orders compare to the
results obtained by alternative algorithms such as
Dale and Reiter’s (1995) classic Full Brevity (FB)
and Greedy Algorithm (GR)? – a question explicitly
asked by van Deemter et al. (2012). In the furniture
domain, all five English training sets of size 5 yield
a PO for which van Deemter et al. showed that it
causes the IA to significantly outperform FB and
GR (i.e., either C(olor)O(rientation)S(ize) or CSO;
note that here we abstract over TYPE which van
Deemter and colleagues do not consider). When
we look at the English people domain and consider
set size 10 (ceiling for Dice), we find that four
out of five sets have a preference order where
HAIRCOLOUR, HASBEARD and HASGLASSES are
in the top three (again disregarding TYPE); one of
these is the best performing preference order found
by van Deemter and colleagues (GBH), another
performs slightly less well but still significantly
better than FB and GR (BGH); the other two score
statistically comparable to the classical algorithms.

The fifth people PO includes X- and Y-DIMENSION

in the top three, which van Deemter et al. ignore. In
sum: in almost all cases, small set sizes (5 and 10
respectively) yield POs with which the IA performs
at least as well as the FB and GR algorithms, and in
most cases significantly better.

Conclusion We have shown that with few training
instances, acceptable attribute selection results can
be achieved; that is, results that do not significantly
differ from those obtained using a much larger
training set. Given the scarcity of resources in
this field, we feel that this is an important result
for researchers working on REG and Natural
Language Generation in general. We found that less
training data is needed in simple domains with few
attributes, such as the furniture domain, and more in
relatively more complex domains such as the people
domain. The data set being used is also of influence:
better results were achieved with D-TUNA than
with the TUNA corpus, which probably not so much
reflects a language difference, but a difference in
the way the corpora were collected.

We found some interesting differences between
the IA and Graph algorithms, which can be largely
explained by the fact that the former ranks attributes,
and the latter attribute-value pairs. The advantage
of the former (coarser) approach is that overall,
fewer training items are required, while the latter
(more fine-grained) approach is better equipped to
deal with more complex domains. In the furniture
domain both algorithms had a similar performance,
while in the people domain Graph did slightly better
than the IA. It has to be kept in mind that these
results are based on the relatively simple furniture
and people domains, and evaluated in terms of a
limited (though standard) set of evaluation met-
rics. We hope that in the near future semantically
transparent corpora for more complex domains will
become available, so that these kinds of learning
curve experiments can be replicated.
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