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Abstract 

We introduce Conflict-Driven Co-Clustering, 

a novel algorithm for data co-clustering, and 

apply it to the problem of inducing parts-of-

speech in a corpus of child-directed spoken 

English. Co-clustering is preferable to 

unidimensional clustering as it takes into 

account both item and context ambiguity. We 

show that the categorization performance of 

the algorithm is comparable with the co-

clustering algorithm of Leibbrandt and 

Powers (2008), but out-performs that 

algorithm in robustly pruning less-useful 

clusters and merging them into categories 

strongly corresponding to the three main open 

classes of English. 

1 Introduction 

The problem of unsupervised part-of-speech 

induction has received considerable attention in 

computational linguistics (for a recent 

comparison of several influential models, see 

Christodoulopoulos, Goldwater & Steedman, 

2010). A common approach is to estimate the 

parameters of a generative model given the 

natural language data, with the model usually a 

variant of a Hidden Markov Model (e.g. 

Goldwater & Griffiths, 2007; Berg-Kirkpatrick, 

Côté, De Nero &  Klein, 2010; Moon, Erk & 

Baldridge, 2010). These models are often 

evaluated on corpora of formal, written English, 

such as the Penn Treebank, rather than on 

natural, spoken language, and typically the aim 

of these studies is to improve the state-of-the-art 

of POS induction using various techniques from 

machine learning, with an implicit focus on 

devising techniques that can be used in practical 

applications.  

In the current paper, on the other hand, our 

focus is on part-of-speech induction mechanisms 

that children might use when learning their first 

language. Hence, we are interested in models that 

are motivated by psychological considerations, 

rather than by a more abstract mathematical or 

statistical grounding. In language acquisition 

research, a typical approach to part-of-speech 

induction is to make use of clustering.  We will 

review this work and argue for the particular 

utility of two-mode clustering or co-clustering 

approaches, before presenting two novel co-

clustering techniques and evaluating their 

performance in part-of-speech tagging on a 

corpus of child-directed English. 

1.1 Clustering and co-clustering approaches 

to part-of-speech induction in language 

acquisition research 

Single-mode clustering approaches 

Clustering algorithms operate on a two-

dimensional matrix where the rows and columns 

in this context represent words and the linguistic 

contexts in which they appear, taken from a 

corpus of natural language, and the cells of the 

matrix contain frequency counts of how often a 

word occurs in a particular context. It has often 

been proposed that children might make use of 

information about the contextual distribution of 

usage of words to induce the parts-of-speech of 

their native language (e.g. Maratsos & Chalkley, 

1980), and work by, e.g., Redington, Chater & 

Finch (1998) and Clark (2000), showed that 

parts-of-speech can indeed be induced by 
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clustering together words that are used in similar 

contexts in a corpus. Clustering word types 

together does not take into account the fact that 

the part-of-speech of a word type may change 

depending on the context in which it is used. One 

of the most influential models in part-of-speech 

induction in language acquisition, the Frequent 

Frames model of Mintz (2003), addresses this 

issue by forming clusters of the contextual 

frames in which words are used, rather than the 

words themselves. The idea is that the contexts 

define the part-of-speech, rather than the words 

themselves. This model attains high, but not 

perfect results in part-of-speech tagging for 

English child-directed speech; part of the reason 

is that even frames are sometimes ambiguous in 

the parts-of-speech that they can accommodate, 

and Erkelens (2008) has shown that this problem 

is more pronounced when the Frequent Frames 

approach is applied to Dutch material. In general, 

however the set of frame contexts is chosen, the 

problem of contextual ambiguity is likely to 

present itself. Hence, an approach is needed in 

which both words and contexts can be associated 

with multiple categories. Techniques of co-

clustering, also called biclustering or two-mode 

clustering, (see Madeira & Oliveira, 2004, Van 

Mechelen et al., 2004, for reviews), represent one 

such approach. 

Co-clustering approaches 

Single-mode clustering forms clusters of 

elements in one dimension of the matrix (either 

rows or columns) by grouping together elements 

on the basis of similar co-occurrence with 

elements of the other dimension. Co-clustering 

techniques, on the other hand, form clusters on 

the basis of similarity between rows and 

similarity between columns simultaneously. Co-

clustering is therefore able to assign row and 

column elements to the same clusters. We can 

distinguish between row-column clustering 

methods which assign each row and each column 

to a particular cluster, and data clustering 

methods which assign each individual non-empty 

cell of the matrix to a cluster. Some co-clustering 

methods allow for overlapping clusters, i.e. in 

row-column methods by allowing rows and 

columns to belong to more than one cluster, or in 

data clustering methods by allowing cells in the 

matrix to belong to more than one cluster. Co-

clustering algorithms have been shown to be 

useful in many applications, notably in the 

analysis of gene expression data (Madeira & 

Oliveira, 2004).  

There are good reasons to prefer a co-

clustering approach over a single-mode 

categorization approach in part-of-speech 

induction. In natural language, including child-

directed speech, there are many cases where a 

word appears in a context that does not specify 

the part-of-speech exactly, but allows several 

possibilities, while at the same time, the word is 

also ambiguous  in its part-of-speech. Co-

clustering is able to deal with part-of-speech 

ambiguity at the level of word and frame 

simultaneously. For example, a common frame 

in child-directed speech in English is “That‟s 

X.”, where the word that fills the X slot could be 

a noun (“That‟s ice-cream.”) or an adjective 

(“That‟s pretty.”). Simultaneously, the word 

“mean” can be used as either a verb or an 

adjective (the nominal usage is rare in child-

directed speech). A single-mode clustering 

algorithm that aims to assign a part-of-speech to 

the word “mean” in “That‟s mean” will be 

unable to decide between the allowed parts-of-

speech for the frame, if frames were clustered, 

and between the allowed parts-of-speech for the 

words, if words were clustered. However, a co-

clustering approach that assigned “That‟s X” to 

both the categories noun and adjective, and 

“mean” to the categories verb and adjective, 

would be able to deduce that the only category 

that the word and the frame have in common is 

adjective, and therefore that this is the correct 

category. In this way, co-clustering is better able 

to deal with linguistic ambiguity. 

Even apart from its practical utility in part-of-

speech induction, co-clustering is broadly 

compatible with a psychological outlook that 

conceives of part-of-speech development in 

terms of associative learning (see e.g. Shanks, 

1995). Under this view, parts-of-speech are 

mental categories that are formed by repeated 

exposure to words used in context, in 

combination with whatever semantic construal 

the language-learning child places on the 

utterances she hears.  

Only a few studies have applied co-clustering 

to part-of-speech induction with child-directed 

language (but see Freitag, 2004, for part-of-

speech induction with co-clustering on adult-

directed language in the Penn Treebank). The 

pioneering work in this regard was the EMILE 

system of Adriaans and colleagues (Adriaans, 

1992), which formed co-clusters of word-context 

combinations as a step in the process of inducing 
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rules for a categorial grammar. While the 

grammars formed in this way perform well, 

EMILE typically produces large, overlapping 

categories which  do not correspond to the parts-

of-speech of English (Adriaans, 1999). Hence, it 

is difficult to evaluate the accuracy of EMILE‟s 

part-of-speech tagging against a gold standard.  

Leibbrandt & Powers (2008) applied co-

clustering to a corpus of English child-directed 

speech, yielding accuracy comparable to that 

obtained by the Frequent Frames model of Mintz 

(2003). This approach was also able to 

outperform Frequent Frames in tagging child-

directed data in Dutch (Leibbrandt & Powers, 

2010). 

In this paper, we extend the work of 

Leibbrandt & Powers (2008, 2010) by describing 

and evaluating a novel co-clustering technique 

for part-of-speech induction. In Section 2 we 

present the Conflict-Driven Co-Clustering 

algorithm, and in Section 3 we evaluate its 

performance in part-of-speech tagging of a 

corpus of child-directed speech. We show that 

the algorithm delivers performance comparable 

to that of both the Frequent Frames model of 

Mintz (2003) and the co-clustering work by 

Leibbrandt & Powers (2008, 2010), and is more 

robust than the earlier work in automatically 

discovering the main English open classes of 

noun, verb and adjective, discarding smaller and 

less-easily interpretable categories. In Section 4 

we consider reasons for these results and point to 

future directions for this work. 

2 Conflict-Driven Co-Clustering 

The Conflict-Driven Co-Clustering (CDCC) 

algorithm is a row-column-based co-clustering 

algorithm. It creates an initial clustering of words 

into a set of clusters, and a simultaneous 

clustering of frames into the same set of clusters. 

Only a few word and frame types are clustered to 

start with, and hence this initial clustering is 

inadequate to account for the empirical co-

occurrence data (as explained below). From this 

starting point, the CDCC algorithm iteratively 

adds frames and clusters to the clusters, until all 

of the co-occurrence data is accounted for. 

We make the assumption that there exist a 

number of parts-of-speech in the target language, 

and that a particular word used in a particular 

frame context belongs to only one part-of-

speech
1
. We also assume that the word type is a 

cue to the part-of-speech, and that the same is 

true of the frame type. Finally, each word type 

and frame type is presumed to have the potential 

to be associated with more than one part-of-

speech. 

Suppose, then, that we (in this case, the co-

clustering algorithm, but also, potentially, a child 

learning the target language) already have some 

notion of the parts-of-speech to which a 

particular frame type f “belongs”, and the parts-

of-speech to which a word type w belongs. Then 

when we encounter an instance (i.e. a token) of 

the word type w used in the context of the frame 

type f, and wish to assign a part-of-speech to this 

instance, the only viable candidates (based on 

our knowledge at the time) are those  parts-of-

speech that both w and f have in common. 

Should there be multiple such candidates, a part-

of-speech tagging algorithm might resort to 

combining information about the probabilities of 

f and w belonging to each candidate in order to 

select a “winner”. However, when there is no 

such candidate (word and frame have no part-of-

speech in common), this presents a problem for 

part-of-speech tagging. Such a situation is an 

instance of the “conflicts” from which CDCC 

derives its name. 

More concretely, we can represent the cluster 

membership of each of the J words under 

consideration as a J×K matrix W, where K is the 

number of clusters, and Wjk = 1 if word j is a 

member of cluster k, and 0 otherwise. Similarly, 

the cluster membership of each of the I frames is 

represented by the I×K matrix F, where Fik = 1 if 

frame i belongs to cluster k, and 0 otherwise. 

The I×J matrix D represents the co-occurrence 

data obtained from the corpus, where Dij = 1 if 

word j occurs in the context of frame i in the 

corpus, and 0 otherwise. Then a conflict exists 

whenever Dij = 1 and the dot-product Wj · Fi = 0. 

We can think of the possibilities described by 

the cluster membership matrices W and F as 

accounting for the word-frame co-occurrences 

described in D: if a word and frame can occur 

together, there must be at least one part-of-

speech to which they both belong. Conflicts 

occur where cells in the D matrix are not yet 

accounted for in this way. The problem to be 

solved in this case, therefore, is to remove all 

                                                           
1 There are examples, even in the corpus used in this 

experiment, for which this assumption does not seem to 

hold; however, these examples are relatively infrequent 

enough to warrant its use as a useful heuristic. 
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instances of conflict. Because the D matrix is 

empirically given, the only way to remove 

conflict is to modify the F and W matrices so that 

all co-occurrences in D can be accounted for.  

Figure 1 illustrates some cases of conflict and 

resolved conflict between word and frame. 

Initially, the utterance “Shall I brush it?” 

contains a conflict, because the frame “Shall I X 

it?” is allocated to the Verb category, but “brush” 

is not yet allocated to any category. The conflict 

might be resolved by adding “brush” to the Verb 

category. Later, when we consider the utterance 

“There‟s your brush”, a conflict would occur if 

“brush” was allocated to Verb only and “There‟s 

your X” was allocated to Noun only. Suppose 

that the conflict was resolved correctly by also 

adding “brush” to the category Noun (in addition 

to already being allocated to Verb). Then when 

the utterance “Don‟t brush it” is encountered, 

there is no conflict, as both “Don‟t X it” and 

“brush” are allocated to the Verb cluster, and 

hence the allocations are compatible. 

 

Shall I brush it? N V A 

brush 0 0 0 

Shall I X it? 0 1 0 

 

There’s your brush. N V A 

brush 0 1 0 

There‟s your X. 1 0 0 

 

Don’t brush it. N V A 

brush 1 1 0 

Don‟t X it. 0 1 0 

 

Figure 1. Three instances of conflict and non-

conflict. In the top example, brush and Shall I X 

it? are in conflict, in the middle example, brush 

and There’s your X are in conflict, and in the 

lower example there is no conflict. (N = Noun, V 

= Verb, A = Adjective) 

 An open problem is then how best to calculate 

the cluster membership matrices W and F so as to 

remove all conflicts. One obvious “solution” 

would be to simply add membership of every 

cluster to every word and frame. While this 

would remove all conflicts, it is clearly not a 

useful basis for part-of-speech tagging, and 

violates our sense that not every word or context 

can belong to every part-of-speech.  

A better approach might be to start with a very 

sparse pair of initial matrices for W and F, which 

greatly under-determine the co-occurrence 

matrix D, and then add cluster memberships to 

individual frames and words (changing 0s to 1s 

in F and W) if adding them would help to solve 

conflicts.  

We still need to decide which cluster 

memberships to add, and a useful principle might 

be to add memberships parsimoniously, i.e. to try 

to minimize the number of new memberships 

added to F and W. The CDCC algorithm takes a 

greedy approach to this problem. On each 

iteration, it simply adds the single cluster 

membership (word or frame) that would resolve 

the largest number of conflicts existing at that 

time. The set of remaining conflicts is then 

recalculated, and the cluster membership that 

again resolves the greatest number of conflicts is 

added, with the process being repeated until all 

conflicts have been resolved. 

The only remaining point to specify is how the 

algorithm gets started, i.e. how the W and F 

matrices are initialized. It would be desirable to 

begin with just a small number of “ground 

truths”, i.e. a small number of category 

memberships, for only a few frames and words, 

that are well-established in advance. The rest of 

the values in the membership matrices are then 

bootstrapped from this starting point by referring 

to the co-occurrence matrix.  

The initial values with which W and F are 

“seeded” can come from any source: for instance, 

they may be the result of a process of semantic 

category formation (e.g. Macnamara, 1982; 

Pinker, 1984), so that words that refer to physical 

objects are flagged as belonging to one category, 

and words for actions marked as belonging to 

another category (bear in mind that this does not 

preclude these words from later also being 

assigned to other categories). This process might 

also be extended to frames that reliably contain 

words referring to objects, actions, physical 

properties, etc. In computational work on 

language acquisition, proxies for these categories 

might be obtained from lists of early-acquired 

words, possibly in combination with norms on 

word imageability. In less acquisition-oriented 

work, seeds may be obtained from manually 

annotated examples, so that this becomes a semi-

supervised approach to part-of-speech tagging. 

In the experiment reported here, we decided to 

obtain our seed information entirely from the 

same word-frame co-occurrence matrix D used 

later to expand the W and F matrices, and we did 

so along the same lines as followed by 

Leibbrandt & Powers (2008, 2010). 

Consequently, our results are prone to some of 

the shortcomings of the earlier work, as 
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discussed later. We emphasize that the choice of 

seeding algorithm is not part of the CDCC 

algorithm proper, and informal experimentation 

has shown that the performance of CDCC is 

highly dependent on the accuracy of the initial 

seed information.  

2.1 CDCC Algorithm  

The conflict-driven co-clustering algorithm 

(pseudo-code is presented in Box 2) attempts to 

find a conflict-free allocation of categories to 

words and frames. It does so by repeatedly 

removing the largest existing conflict until no 

conflicts remain.  

In what follows, we use the term “co-item” to 

refer to those items with which an item (word or 

frame) co-occurs in D, i.e. the co-items of  a 

word type are the frame types in which it has 

occurred, and the co-items of a frame type are 

the word types that have occurred in it. Conflicts 

between items and their co-items are removed by 

simply allocating those additional categories to 

items that they would need in order to no longer 

be in conflict with the co-items. Conflicts are not 

resolved in random order; instead, the conflict 

resolution option that would resolve the largest 

number of conflicts is chosen at every step. In 

this way, the membership vectors for each of the 

words and frames are adjusted so as to converge 

onto the “correct” allocation. When no more 

changes can be made to the membership vectors, 

the algorithm halts. 

The algorithm works in batch mode, 

considering the entire data matrix at once. For 

every item (whether word or frame), the set of 

co-items that are currently in conflict with the 

item is collected. Using the current membership 

matrices W and F, the algorithm allows each co-

item to cast one vote for every category to which 

it is currently allocated (i.e. co-items cast votes 

to have particular categories added to the item‟s 

allocations). Per definition, these are categories 

that the target item does not have in its 

membership vector, so that adding that category 

to the item‟s membership vector would resolve 

the conflict between the item and that particular 

co-item; however, the point of voting is to find 

the single change that would result in the largest 

number of conflict resolutions at once. The 

number of votes for each category is determined 

in this way for every target item (every word and 

every frame). The suggested category allocation 

that has received the largest number of votes 

over all words and all frames is designated the 

“winner”, and the category in question is added 

to the membership vector of the item in question.  

 

CDCC: 

D: co-occurrence matrix of frames and words 

F, W: membership matrices describing the 

categories to which each of the frames and 

words may belong. F and W are initialized 

prior to running CDCC, for instance using 

unsupervised clustering as in Box 2. F[ k ][ i ] 

= 1 if frame i is able to belong to cluster k, and 

0 otherwise, and similarly for W. 

 

repeat until convergence (see text) 

for i = 1 to I 

for j = 1 to J 

if D[ i ][ j ] = 1 

  conflict = true 

  for k = 1 to K 

    if (F [ k ][ i ] = 1  

    and W [ k ][ j ] = 1) 

        conflict =false 

  if conflict 

    tallyVotes(i, j) 

find k1 such that FrameVotes[ k1 ][ i ] =  

   max cell in FrameVotes 

find k2 such that WordVotes[ k2 ][ j ] = 

   max cell in WordVotes 

if FrameVotes[k1][ i ] > WordVotes[k2][ j ] 

   F [ k1 ][ i ] = 1 

else 

   W [ k2 ][ j ] = 1 

 

tallyVotes(i, j): 

for k = 1 to K 

if (F[ k ][ i ] = 0 and W [ k ][ j ] = 1) 

     FrameVotes[ k ][ i ] += 1 

else if (F [ k ][ i ] = 1 and W [ k ][ j ] = 0) 

     WordVotes[ k ][ j ] += 1 

Box 1. Conflict-Driven Co-Clustering 

Algorithm. 

One of the benefits of the voting system is that 

it is self-correcting. If an item which is, say, a 

Noun, is incorrectly not assigned to the cluster 

corresponding to Nouns, then it will cast one 

incorrect vote each time to change the allocation 

of each of its co-items. However, the co-items 

are likely to be Nouns in most cases, and hence 
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to occur in other Noun frames, which will in 

most cases lend them the Noun allocation, so that 

they will vote en masse to change the allocation 

of the incorrectly allocated item to Noun. 

 The product of the CDCC algorithm is a fairly 

conservative allocation of (potentially multiple) 

clusters to each of the words and frames.  

3 Evaluation of the algorithms  

The CDCC algorithm was applied to a corpus 

of child-directed speech, after which individual 

tokens of word-frame co-occurrences were 

categorized into one of the co-clusters produced 

by the algorithm, as described below.  

3.1 Data Set  

The data set used was the same as in Leibbrandt 

& Powers (2008), namely the child-directed  

portion of the Manchester corpus (Theakston, 

Lieven, Pine & Rowland, 2001) obtained from 

the CHILDES project (MacWhinney, 2000). This 

corpus is supplied with a manual part-of-speech 

tagging, which was used as the „gold standard‟ 

correct tagging against which the categorization 

produced by CDCC was evaluated. 

3.2 Extraction of Contextual Frames  

Contextual frames were extracted from the 

corpus following the method in Leibbrandt & 

Powers (2008). Frames were formed from 

utterances in the corpus by replacing all but the 

most frequently-occurring words in the corpus 

with a placeholder symbol, turning corpus 

utterances into lexically-based schematic 

template sentences with slots that can be filled by 

inserting single words (for example, “Don‟t X 

it”, “That‟s your X”, “It‟s very X”). Frequency 

counts were collected of the number of 

occurrences of each word in each of the 

contextual frames, and the resulting data matrix 

was filtered to contain only those elements that 

attained a certain level of support, i.e. frames that 

occurred with 5 or more distinct word types, and 

words that occurred in 5 or more frame types. 

The resulting data matrix was used to obtain seed 

category membership information for selected 

words and frames, as described in the next 

section. 

3.3 Seed Information 

The first step in obtaining “ground truth” seed 

information for running the CDCC algorithm 

(pseudocode shown in Box 2) is to perform a  

D: co-occurrence matrix, such that D [ i ][ j ] = 1 

if word j has co-occurred with frame I, 0 

otherwise. 

Allocation: Cluster membership vector for 

frames, obtained from hard clustering algorithm, 

such that Allocation[ i ] = k if frame i is allocated 

to cluster k. 

 

Initialize ClusterCoocc[ K ][ J ] to all zeroes. 

for i = 1 to I  

for j = 1 to J 

if D[ i ][ j ] 

ClusterCoocc [ Allocation[ i ] ] [ j ] += 1 

for k = 1 to K 

sum = sum(ClusterCoocc [ k ]) 

for j = 1 to J 

Distribution[ k ][ j ].index  = j 

Distribution[ k ][ j ].value =  

ClusterCoocc [ k ][ j ] / sum 

Sort Distribution[ k ] by value (descending) 

cumulativeProportion = 0;  j = 0 

repeat until cumulativeProportion ≥ η 

j += 1 

index = Distribution[ k ][ j ].index 

value = Distribution[ k ][ j ].value 

SeedWords[ k ] [index]  = 1  

cumulativeProportion += value 

for each pair (SeedWords[a], SeedWords[b]),  

a ≠ b 

Remove all words that occur in both 

SeedWords[a] and SeedWords[b] 

for i = 1 to I  

for j = 1 to J 

if D [ i ][ j ]  

for k = 1 to K 

if SeedWords[ k ][ j ] = 1 

SeedFrames[ k ][ i ] = 1 

for each pair (SeedFrames[a], SeedFrames[b]),  

a ≠ b 

Remove all frames that occur in both 

SeedFrames[a] and SeedFrames[b] 

Box 2. Seed frame and word selection algorithm. 
 

standard one-mode clustering of the (L2-

normalized) frame vectors of the co-occurrence 

matrix D, producing clusters of contextual 
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frames (hierarchical clustering with average 

linkage was used in this experiment). 

Next, we select sets of words that are 

particularly distinctive of each of the frame 

clusters. The assumption is that words that occur 

in a large number of frame types from a 

particular cluster are good representatives of that 

cluster. Hence, for each cluster, words are ranked 

in order of the number of distinct frame types 

from the cluster in which each word has 

occurred, and are added one-by-one to the seed-

word set for the cluster, until the cumulative 

proportion of total distinct-frame counts 

accounted for exceeds a threshold (set to 0.25 in 

this experiment). Once all seed-word sets have 

been collected in this way, seed-words which 

occur in the sets of more than one cluster are 

discarded.  

Next, a seed-frame set is created for each 

cluster, consisting of all frames which occurred 

with seed-words from that cluster and did not 

occur with a seed-word from any other cluster. 

The resulting seed sets are arguably the words 

and frames that are the most distinctly associated 

with each cluster. The process described above 

can be considered to produce similar results to a 

psychological process of association between 

clusters and words, where the strength of 

association between the cluster and the word is 

strengthened each time the word is used in a 

frame that is strongly associated with that cluster 

already. Each distinct frame is considered to 

contribute an equal amount of activation strength 

to the word, regardless of its own frequency of 

occurrence in the input, so that this association 

process is sensitive to the type frequency of 

frames co-occurring with the word in question, 

rather than to the token frequency. A wider range 

of co-occurring frames constitutes more robust 

evidence that the word does indeed belong with 

the cluster (and most likely possesses many of 

the semantic attributes that are associated with 

the cluster). For evidence that the type frequency 

of words occurring in a frame aids 

generalization, see Bybee (1985, 2006). 

The algorithm maintains a binary-valued 

allocation vector for each frame and each word 

of length K, where K is the number of clusters. 

The k‟th value in the allocation vector is 1 if the 

word or frame can belong to cluster k, and 0 if 

not. In this way, the algorithms deal with the 

ambiguity of both words and frames, by allowing 

an item to belong to more than one cluster. For 

every cluster k, the k‟th value of the allocation 

vector of every seed word and every seed frame 

of cluster k is initialized to 1, and all other values 

are set to 0.  

3.4 Categorization 

For the purpose of evaluation, we categorize 

each of the instances of word-frame co-

occurrences in the data matrix D by combining 

the word and frame cluster information contained 

in the membership matrices W and F. When 

classifying a particular instance of word w used 

in frame f, if there exists a unique a cluster c such 

that w and f  have both been allocated to c (in a 

majority of cases in this experiment, there was 

such a unique cluster), then the word-frame 

combination is classified as belonging to the 

cluster in question. In cases where the word and 

frame have more than one cluster in common, we 

fall back on estimating the amount of evidence 

that the word and frame separately belong to 

each of the clusters. The fallback values for each 

word and frame are calculated as the proportion 

of co-items of the word or frame that are 

allocated to each cluster. The fallback value of 

the word is multiplied by the fallback value of 

the frame, for each cluster separately, and the 

cluster with the highest product is selected as the 

category to which the frame-word combination is 

assigned. 

3.5 Evaluation Measures 

Results are reported in terms of standard 

measures of precision, recall and F-score, with 

random baselines in parentheses. These measures 

were calculated, as is customary in unsupervised 

categorization, by a pair counting approach that 

constructs a confusion matrix based on whether 

pairs of elements are assigned to the same 

category in the gold-standard, and also in the 

clustering model (see e.g. Mintz, Newport & 

Bever, 2002). Because of several well-known 

shortcomings of precision and recall (e.g. 

Powers, 2003; Rosenberg & Hirschberg, 2007), 

we also report the Informedness measure 

(Powers, 2003), which corresponds to the 

probability that the predictions made by the 

algorithm  are informed, in the sense of making 

correct use of information.  

For a 2×2 contingency table with the symbols 

a, b, c and d respectively indicating the number 

of true positives, false positives, false negatives 

and true negatives, Informedness is given by 

𝐼 =  
𝑎

𝑎 + 𝑐
−

𝑏

𝑏 + 𝑑
 . 
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Informedness can thus be expressed as Recall 

for a particular cluster, discounted by the 

proportion of all non-category items that occur in 

that cluster. Informedness is equivalent to the 

well-known delta-P formula expressing 

association strength in human associative 

learning (e.g. Shanks, 1995). For a supervised 

classification problem, with a table of arbitrary 

dimensions m×m, Informedness is calculated for 

the 2×2 contingency table of each category in 

turn, and the Informedness values for all 

categories are combined in a weighted sum, 

where the weight for each category is the 

proportion of word tokens assigned to that 

category by the algorithm (i.e. the algorithm‟s 

bias to assign instances to the category). In 

unsupervised cases, it is not obvious how to 

associate clusters with gold-standard categories. 

In this case, weighted Informedness values are 

calculated for every possible 1-to-1 mapping 

between gold standard categories and clusters, 

and the highest of these Informedness values is 

selected. 

For evaluation, we made use of only those 

tokens that were assigned to one of the three 

major open-class categories (nouns, verbs and 

adjectives).  

 

 HC CDCC LP08 FreqF 

Precision 
0.844  

(0.559) 

0.888  

(0.559) 

0.900 

(0.559) 
0.90 

Recall 
0.774 

(0.513) 

0.911 

(0.574) 

0.886 

(0.551) 
0.91 

F 
0.808 

(0.535) 

0.899 

(0.566) 

0.893 

(0.555) 
0.90 

I 0.708 0.800 0.814 n/a 

 

Table 1. Performance of clustering-based part-of-

speech induction methods. Random baseline 

values in italics. Baseline value for Informedness 

is zero. HC = Hierarchical Clustering (one-

dimensional); CDCC = Conflict-Driven Co-

Clustering; LP08 = replication of Leibbrandt & 

Powers (2008); FreqF = Frequent Frames 

(results from Mintz, 2006, baseline and 

Informedness scores unknown). 

3.6 Results 

The results of categorization according to the 

CDCC algorithm is shown in Table 1. For 

comparison, we have also shown the results of 

categorization with three other algorithms, 

namely: LP08, a replication of Leibbrandt & 

Powers (2008); FreqF, the results from Mintz 

(2003) for the Frequent Frames model applied to 

the same corpus as used here; and HC, the results 

from categorizing a word-frame combination 

according to the cluster of the frame only, where 

the frame clusters are the ones derived in the 

one-way clustering step that produced the seed 

information for CDCC. 

The results show that CDCC is competitive in 

its categorization performance with both the 

LP08 and FreqF approaches. Comparing 

Informedness and F-scores against their random 

baselines, the performance of LP08 is only 

slightly better than that of the two new 

algorithms (random baseline values were not 

reported by Mintz, 2003). Importantly, CDCC 

(as well as LP08) performs much better than the 

hard clustering HC from which it derives its seed 

information, showing that co-clustering improves 

categorization. 

3.7 Robustness of induced parts-of-speech 

We have not yet said much about the number 

of clusters formed by the co-clustering 

algorithms. This number could conceivably be 

influenced by the number of clusters formed by 

the initial one-way clustering algorithm, which is 

often (as it was in our experiment) a parameter 

under control of the experimenter. However, the 

number of parts-of-speech produced by a part-of-

speech induction algorithm should be relatively 

immune to manipulations of algorithmic 

parameters. A related issue is that the parts-of-

speech produced by clustering approaches are 

often unsatisfactory from a linguistic point of 

view, as they don‟t correspond exactly to the 

expected parts-of-speech of the target language 

(see also Schütze, 1995). We regard it as 

desirable for a part-of-speech induction method 

to account for at least the main open-class parts-

of-speech of English (nouns, verbs, adjectives 

and adverbs), and to be able to produce these 

without undue coercion.  

Therefore, it is of interest to consider how the 

number of parts-of-speech produced by the co-

clustering algorithms is affected by the number 

of clusters in the original one-way clustering 

from which they start. These results are shown in 

Table 2.  The table shows the number of parts-of- 

speech produced by LP08 versus CDCC when 

started off with varying numbers of hard clusters 
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in the range 3 to 18. For each algorithm, the table 

shows (under Any) the number of distinct parts-

of-speech (clusters) to which at least one word-

frame occurrence was assigned during the 

categorization reported above, and also (under 

1%) the number of parts-of-speech such that at 

least one percent of the total number of word-

frame combinations were assigned to that part-

of-speech. The results under Any show that, as  

 LP08 CDCC 

K Any 1% Any 1% 

3 3 3 3 3 

6 5 3 4 3 

9 9 4 5 3 

12 12 6 9 3 

15 15 6 10 3 

18 18 7 9 3 

 

Table 2. Number of parts-of-speech used during 

categorization for three co-clustering algorithms, 

for varying K = number of clusters produced in 

initial one-way clustering. Any = number of 

parts-of-speech that account for at least one 

frame-word instance; 1% = number of parts-of-

speech that account for at least 1% of instances. 

LP08 = replication of Leibbrandt & Powers 

(2008); CDCC = Conflict-Driven Co-Clustering. 

 

the number of initial clusters grew, so too did the 

number of clusters that were used at least once 

during categorization, so that the algorithms were 

rather badly prone to proliferation of parts-of-

speech when started with a large number of 

initial clusters, although CDCC was more 

conservative than LP08, and managed to discard 

many of the original clusters. However, the 

results for 1% are more encouraging. Both 

algorithms, even when started with several 

candidate clusters in the one-way clustering, 

managed to eliminate the minor clusters to some 

extent, and redistribute their members into the 

larger parts-of-speech. It is particularly 

noteworthy that for CDCC, only three clusters 

were used for more than 1% of all instances. 

Inspection of the details of categorization 

showed that the CDCC algorithm managed to 

discover three clusters that seemed to correspond 

closely to the three major English parts-of-

speech of Noun, Verb and Adjective. These 

categories appeared to be such a salient feature 

of the data for CDCC that they were able to „self-

organize‟ during runs of the algorithm from 

various one-way clustering starting points. This 

robust induction of the main English parts-of-

speech is a striking advantage of CDCC over 

LP08. 

It may be argued that the number of classes 

produced by the algorithm are too few to provide 

a basis for part-of-speech induction. To some 

extent this is a consequence of the seeding 

algorithm chosen. The frames used by 

Leibbrandt & Powers (2008, 2010) tended to 

support mostly open-class word fillers; nouns, 

verbs and adjectives made up respectively 52%, 

25% and 10% of the total number of tokens that 

served as fillers in their frames, for a total of 

87%. Arguably, this may be seen as desirable: 

for a child learning a language, knowledge of the 

open classes is more useful for learning novel 

words than knowledge of the closed classes. On 

the other hand, the lack of a category of adverbs 

may be regarded as a shortcoming of the original 

work by Leibbrandt & Powers. Nevertheless, the 

CDCC algorithm was able to robustly identify 

the main classes represented in the co-occurrence 

matrix. 

4 Discussion 

The CDCC algorithm has been shown to 

achieve similar categorization performance to 

some earlier models of part-of-speech induction. 

The most striking advantage has been that CDCC 

is able to “hone in” on the three main parts-of-

speech. We suggest that this is due to the 

conservative nature of conflict resolution: by 

tallying the strength of evidence for a particular 

category in terms of the number of votes it 

receives, weaker categories are not able to cast 

sufficient numbers of votes to change word or 

frame allocations. Importantly, this means that in 

subsequent iterations, when conflicts are 

recalculated and votes cast once more, 

allocations of particular words or frames to these 

minor categories are more likely  to be swamped 

by the additional allocations previously added to 

the major categories, so that the initially stronger 

categories become stronger as the algorithm 

executes while the weaker categories all but 

disappear. This is an important feature of the 

algorithm, because the original clustering step 

from which both CDCC and Leibbrandt & 

Powers (2008) begin is unconstrained in the 

number of clusters it produces; this is a 

parameter of the system, but it is a relatively 

unimportant one in the case of CDCC because 

the algorithm self-organizes around the major 

categories. 
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While the CDCC algorithm performs similarly 

to other established work while taking a radically 

different approach, several issues remain to be 

investigated. One of the potential strengths of 

CDCC is that it treats category membership in a 

discrete or symbolic way, rather than graded, as 

in Leibbrandt & Powers (2008). It remains to be 

seen whether such a treatment provides specific 

benefits in resolving ambiguity when dealing 

with words or frames that can belong to multiple 

categories.  

CDCC has been formulated here as combining 

distributional information about the word type 

and the frame type in order to produce a part-of-

speech allocation. However, the algorithm can be 

viewed more generally as a method to combine 

or fuse more than one source of information 

together, and hence can be applied to 

distributional, phonological, semantic or any 

other forms of linguistic information. 

As it has been formulated here as a batch 

process, the CDCC algorithm can be regarded as 

addressing only the computational level of the 

problem of part-of-speech induction in language 

acquisition. Additional work would be required 

to attempt to address the algorithmic or 

implementational levels by turning the algorithm 

into a fully incremental learner (e.g., Parisien, 

Fazly & Stevenson, 2008; Chrupala & Alishahi, 

2010). A simple variant of the CDCC algorithm 

could be one that simply processes the corpus in 

order, and in the case of a conflict between word 

and frame, stores the occurrence as evidence that 

the membership of either the word or frame 

should be altered, and in what way. When the 

accumulated evidence for a specific change of 

membership exceeds a threshold (e.g. when a 

certain number of votes have been cast to add 

membership of a particular cluster to a word or 

frame), the membership is added. It would 

remain to be determined empirically whether this 

iterative variant is still able to exhibit the same 

categorization performance and the property of 

robustness shown above for the batch CDCC 

algorithm. 
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