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Abstract

Relation extraction is frequently and suc-
cessfully addressed by machine learning
methods. The downside of this approach
is the need for annotated training data, typi-
cally generated in tedious manual, cost inten-
sive work. Distantly supervised approaches
make use of weakly annotated data, like au-
tomatically annotated corpora.

Recent work in the biomedical domain
has applied distant supervision for protein-
protein interaction (PPI) with reasonable
results making use of the IntAct database.
Such data is typically noisy and heuristics
to filter the data are commonly applied. We
propose a constraint to increase the qual-
ity of data used for training based on the
assumption that no self-interaction of real-
world objects are described in sentences.
In addition, we make use of the Univer-
sity of Kansas Proteomics Service (KUPS)
database. These two steps show an increase
of 7 percentage points (pp) for the PPI cor-
pus AIMed. We demonstrate the broad appli-
cability of our approach by using the same
workflow for the analysis of drug-drug in-
teractions, utilizing relationships available
from the drug database DrugBank. We
achieve 37.31 % in F1 measure without man-
ually annotated training data on an indepen-
dent test set.

1 Introduction

Assuming co-mentioned entities to be related is
an approach of extracting relations of real-world
objects with limited precision. Extracting high
quality interaction pairs from free text allows for

∗These authors contributed equally.

building networks, e. g. of proteins, which need
less manual curation to serve as a model for further
knowledge processing steps. Nevertheless, just as-
suming co-occurrence to model an interaction or
relation is common, as the development of inter-
action extraction systems can be time-consuming
and complex.

Currently, a lot of relation extraction (RE) sys-
tems rely on machine learning, namely classifying
pairs of entities to be related or not (Airola et al.,
2008; Miwa et al., 2009; Kim et al., 2010). De-
spite the fact that machine learning has been most
successful in identifying relevant relations in text,
a drawback is the need for manually annotated
training data. Domain experts have to dedicate
time and effort to this tedious and labor-intensive
process.

Specific biomedical domains have been ex-
plored more extensively than others, thus creating
an imbalance in the number of existing corpora
for a specific RE task. Protein-protein interactions
(PPI) have been investigated the most, which gave
rise to a number of available corpora. Pyysalo et al.
(2008) standardized five PPI corpora to a unified
XML format. Recently, a drug-drug-interaction
(DDI) corpus is made available in the same for-
mat, originally for the DDI Extraction Workshop1

(Segura-Bedmar et al., 2011b).
As a consequence of the overall scarcity of an-

notated corpora for RE in the biomedical domain,
the approach of distant supervision, e. g. to auto-
matically label a training set is emerging. Many
approaches make use of the distant supervision as-
sumption (Mintz et al., 2009; Riedel et al., 2010):

1Associated with the conference of the spanish society
for natural language processing (SEPLN) in 2011, http:
//labda.inf.uc3m.es/DDIExtraction2011/
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If two entities participate in a relation,
all sentences that mention these two en-
tities express that relation.

Obviously, this assumption does not hold in gen-
eral, and therefore exceptions need to be detected
which are not used for training a model. Thomas et
al. (2011b) successfully used simple filtering tech-
niques in a distantly supervised setting to extract
PPI. In contrast to their work, we introduce a more
generic filter to detect frequent exceptions from
the distant supervision assumption and make use
of more data sources, by merging the interaction
information from IntAct and KUPS databases (dis-
cussed in Section 2.1). In addition, we present the
first system (to our knowledge), evaluating distant
supervision for drug-drug interaction with promis-
ing results.

1.1 Related work

Distant supervision approaches have received con-
siderable attention in the past few years. However,
most of the work is focusing on domains other
than biomedical texts.

Mintz et al. (2009) use distant supervision to
learn to extract relations that are represented in
Freebase (Bollacker et al., 2008). Yao et al. (2010)
use Freebase as a source of supervision, dealing
with entity identification and relation extraction
in a joint fashion. Entity types are restricted to
those compatible with selected relations. Riedel et
al. (2010) argue that distant supervision leads to
noisy training data that hurts precision and suggest
a two step approach to reduce this problem. They
identify the sentences which express the known re-
lations (“expressed-at-least-once” assumption) and
thus frame the problem of distant supervision as
an instance of constraint-driven semi-supervision,
achieving 31 % of error reduction.

Vlachos et al. (2009) tackle the problem of
biomedical event extraction. The scope of their
interest is to identify different event types without
using a knowledge base as a source of supervision,
but explore the possibility of inferring relations
from the text based on the trigger words and de-
pendency parsing, without previously annotated
data.

Thomas et al. (2011b) develop a distantly la-
beled corpus for protein-protein interaction extrac-
tion. Different strategies are evaluated to select
valuable training instances. Competitive results

are obtained, compared to purely supervised meth-
ods.

Very recent work examines the usability of
knowledge from PharmGKB (Gong et al., 2008)
to generate training sets that capture gene-drug,
gene-disease and drug-disease relations (Buyko et
al., 2012). They evaluate the RE for the three inter-
action classes in intrisic and extrinsic experimental
settings, reaching F1 measure of around 80 % and
up to 77.5 % respectively.

2 Resources

2.1 Interaction Databases
The IntAct database (Kerrien et al., 2012) con-
tains protein-protein interaction information. It is
freely available, manually curated and frequently
updated. It consists of 290,947 binary interaction
evidences, including 39,235 unique pairs of inter-
acting proteins for human species.2

In general, PPI databases are underanno-
tated and the overlap between them is marginal
(De Las Rivas and Fontanillo, 2010). Combining
several databases allows to cover a larger fraction
of known interactions resulting in a more complete
knowledge base. KUPS (Chen et al., 2010) is a
database that combines entries from three manu-
ally curated PPI databases (IntAct, MINT (Chatr-
aryamontri et al., 2007) and HPRD50 (Prasad et al.,
2009)) and contains 185,446 positive pairs from
various model organisms, out of which 69,600
belong to human species.3 Enriching IntAct inter-
action information with the KUPS database leads
to 57,589 unique pairs.4

The database DrugBank (Knox et al., 2011)
combines detailed drug data with comprehensive
drug target information. It consists of 6,707 drug
entries. Apart from information about its targets,
for certain drugs known interactions with other
drugs are given. Altogether, we obtain 11,335
unique DDI pairs.

2.2 Corpora
For evaluation of protein-protein interaction, the
five corpora made available by Pyysalo et al.
(2008) are used. Their properties, like size and ra-
tio of positive and negative examples, differ greatly,

2As of January 27th, 2012.
3As of August 16th, 2010.
4Only 45,684 out of 69,600 human PPI pairs are available

from the KUPS web service due to computational and storage
limitations (personal communication).

36



Corpus Positive pairs Negative pairs Total

AIMed 1000 (0.17) 4,834 (0.82) 5,834
BioInfer 2,534 (0.26) 7,132 (0.73) 9,666
HPRD50 163 (0.38) 270 (0.62) 433
IEPA 335 (0.41) 482 (0.59) 817
LLL 164 (0.49) 166 (0.50) 330

DDI train 2,400 (0.10) 21,411 (0.90) 23,811
DDI test 755 (0.11) 6,275 (0.89) 7,030

Table 1: Basic statistics of the five PPI and two DDI
corpora. Ratios are given in brackets.

the latter being the main cause of performance dif-
ferences when evaluating on these corpora. More-
over, annotation guidelines and contexts differ:
AIMed (Bunescu et al., 2005) and HPRD50 (Fun-
del et al., 2007) are human-focused, LLL (Nedel-
lec, 2005) on Bacillus subtilis, BioInfer (Pyysalo
et al., 2007) contains information from various or-
ganisms and IEPA (Ding et al., 2002) is made of
sentences that describe 10 selected chemicals, the
majority of which are proteins, and their interac-
tions.

For the purposes of DDI extraction, the corpus
published by Segura-Bedmar et al. (2011b) is used.
This corpus is generated from web-documents de-
scribing drug effects. It is divided into a training
and testing set. An overview of the corpora is
given in Table 1.

3 Methods

In this section, the relation extraction system used
for classification of interacting pairs is presented.
Furthermore, the process of generating an automat-
ically labeled corpus is explained in more detail,
along with specific characteristics of the PPI and
DDI task.

3.1 Interaction Classification

We formulate the task of relation extraction as
feature-based classification of co-occurring enti-
ties in a sentence. Those are assigned to be either
related or not, without identifying the type of re-
lation. Our RE system is based on rich feature
vectors and the linear support vector machine clas-
sifier LibLINEAR, which has shown high perfor-
mance (in runtime as well as model accuracy) on
large and sparse data sets (Fan et al., 2008).

The approach is based on lexical features, op-
tionally with dependency parsing features created
using the Stanford parser (Marneffe et al., 2006).
Lexical features are bag-of-words (BOW) and n-

Methods P R F1

Thomas et al. (2011a) 60.54 71.92 65.74
Chowdhury et al. (2011) 58.59 70.46 63.98
Chowdhury and Lavelli (2011) 58.39 70.07 63.70
Björne et al. (2011) 58.04 68.87 62.99
Minard et al. (2011) 55.18 64.90 59.65

Our system (lex) 63.30 52.32 57.28
Our system (lex+dep) 66.46 56.69 61.19

Table 2: Comparison of fully supervised relations ex-
traction systems for DDI. (lex denotes the use of lexi-
cal features, lex+dep the additional use of dependency
parsing-based features.)

grams based, with n ∈ {1, 2, 3, 4}. They encom-
pass the local (window size 3) and global (window
size 13) context left and right of the entity pair,
along with the area between the entities (Li et al.,
2010). Additionally, dictionary based domain spe-
cific trigger words are taken into account.

The respective dependency parse tree is in-
cluded through following the shortest dependency
path hypothesis (Bunescu and Mooney, 2005), by
using the syntactical and dependency information
of edges (e) and vertices (v). So-called v-walks
and e-walks of length 3 are created as well as n
grams along the shortest path (Miwa et al., 2010).

3.2 Automatically Labeling a Corpus in
General

One of the most important source of publications
in the biomedical domain is MEDLINE5, currently
containing more than 21 million citations.6 The
initial step is annotation of named entities – in
our case performed by ProMiner (Hanisch et al.,
2005), a tool proving state-of-the-art results in e. g.
the BioCreative competition (Fluck et al., 2007).
Based on the named entity recognition, only sen-
tences containing co-occurrences are further pro-
cessed. Based on the distant supervision assump-
tion, each pair of entities is labeled as related if
mentioned so in a structured interaction databases.
Note that this requires the step of entity normaliza-
tion.

3.3 Filtering Noise

A sentence may contain two entities of an inter-
acting pair (as known from a database), but does
not describe their interaction. Likewise, a sentence

5http://www.ncbi.nlm.nih.gov/pubmed/
6As of January, 2012.
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may talk about a novel interaction which has not
been stored in the database. Therefore, filtering
strategies need to be employed to help in decid-
ing which pairs are annotated as being related and
which not.

Thomas et al. (2011b) propose the use of trigger
words, i. e., an entity pair of a certain sentence is
marked as positive (related) if the database has in-
formation about their interaction and the sentence
contains at least one trigger word. Similarly, a
negative (non-related) example is a pair of entities
that does not interact according to the database
and their sentence does not contain any trigger
word. Pairs which do not fulfil both constraints are
discarded.

Towards improvement of the heuristics for re-
ducing noise, we introduce the constraint of “auto-
interaction filtering” (AIF): If entities from an en-
tity pair both refer to the same real-world object,
the pair is labeled as not interacting. Even though
self-interactions are known for proteins and drugs,
such pairs can rarely be observed to describe an
interaction but rather are repeated occurences or
abbreviations. Moreover, the fundamental advan-
tage of AIF is that it requires no additional manual
effort.

3.4 Application on Protein-Protein
Interaction and Drug-Drug Interaction

In biomedical texts there are often mentions of
multiple proteins in the same sentence. However,
this co-occurrence does not necessarily signal that
the sentence is talking about their relation. Hence,
to reduce noise, a list of trigger words specific to
the problem is required. The rationale behind this
filter is that the interaction between two entities is
usually expressed by a specific (trigger) word. For
protein-protein-interactions, we use the trigger list
compiled by Thomas et al. (2011b)7. In addition to
using IntAct alone, we introduce the use of KUPS
database (as described in Section 2.2).

For drug-drug-interaction, to our knowledge,
no DDI-specific trigger word list developed by
domain experts is available. Therefore, filtering
via such term occurrences is not applied in this
case.

7http://www2.informatik.hu-berlin.de/

˜thomas/pub/2011/iwords.txt

4 Results

In this section, we start with an overview of state-
of-the-art results for fully supervised relation ex-
traction on PPI and DDI corpora (see Table 1).
Furthermore, experimental settings for distant su-
pervision are explained. Finally, we present spe-
cific results for models trained on distantly labeled
data, when evaluated on manually annotated PPI
and DDI corpora.

4.1 Performance overview of supervised RE
systems

Protein-protein interactions has been extensively
investigated in the past decade because of their bio-
logical significance. Machine learning approaches
have shown the best performance in this domain
(e. g. BioNLP (Cohen et al., 2011) and DDIExtrac-
tion Shared Task (Segura-Bedmar et al., 2011a)).
Table 3 gives a comparison of RE systems’ per-
formances on 5 PPI corpora, determined by doc-
ument level 10-fold cross-validation.8 The use of
dependency parsing-based features increases the
F1 measure by almost 4 pp.

Table 2 shows results of the five best perform-
ing systems on the held out test data set of the
DDI extraction workshop (Segura-Bedmar et al.,
2011b). In addition, the result of our system is
shown. Note that the first three systems use ensem-
ble based methods combining the output of several
different systems.

The results presented in Table 2 and 3 give a
performance overview of the RE system used in
distant learning strategies.

4.2 Experimental Setting
To avoid information leakage and biased classifi-
cation, all documents which are contained in the
test corpus are removed. For each experiment we
sample random subsets to reduce processing time.
This allows us to evaluate the impact of different
combinations of subset size and the ratio of related
and non-related (pos/neg) entity pairs, having in
mind the problem of imbalanced datasets (Chawla
et al., 2004). All experiments are performed five
times to reduce the influence of sampling differ-
ent subsets. This leads to more reliable precision,
recall, and F1 values.

8Separating into training and validation sets is performed
on document level, not on instance (entity pair) level. The
latter could lead to an unrealisticallly optimistic estimate
(Van Landeghem et al., 2008)
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AIMed BioInfer HPRD50 IEPA LLL
P R F1 P R F1 P R F1 P R F1 P R F1

(Airola et al., 2008) 52.9 61.8 56.4 56.7 67.2 61.3 64.3 65.8 63.4 69.6 82.7 75.1 72.5 87.2 76.8
(Kim et al., 2010) 61.4 53.2 56.6 61.8 54.2 57.6 66.7 69.2 67.8 73.7 71.8 72.9 76.9 91.1 82.4
(Fayruzov et al., 2009) 39.0 34.0 56.0 72.0 76.0
(Liu et al., 2010) 54.7 59.8 64.9 62.1 78.1
(Miwa et al., 2009) 55.0 68.8 60.8 65.7 71.1 68.1 68.5 76.1 70.9 67.5 78.6 71.7 77.6 86.0 80.1
(Tikk et al., 2010) 47.5 65.5 54.5 55.1 66.5 60.0 64.4 67 64.2 71.2 69.3 69.3 74.5 85.3 74.5

Our s. (lex) 62.3 46.3 53.1 59.1 54.3 56.6 69.7 69.4 69.6 67.5 73.2 70.2 66.9 84.6 74.7
Our s. (lex+dep) 65.1 48.6 55.7 64.7 57.6 61.0 69.3 69.8 69.5 67.0 72.5 69.7 71.2 86.3 78.0

Table 3: Comparison of fully supervised relations extraction systems for PPI.

Strategy Pairs Positive pairs Sentences

1 3,304,033 511,665 (0.155) 842,339
2 5,560,975 1,389,036 (0.250) 1,172,920
3 2,764,626 359,437 (0.130) 780,658
4 3,454,805 650,455 (0.188) 896,344

Table 4: Statistics of the fours strategies used in distant
supervision for PPI task: 1) IntAct, 2) IntAct + KUPS,
3) IntAct + AIF, 4) IntAct + KUPS + AIF. Ratios are
given in brackets.

4.3 Protein-protein interaction
We explore four strategies to determine the impact
of using additional database knowledge (IntAct
and KUPS) and to test the utility of our novel
condition (AIF).

Table 4 shows the difference in retrieved num-
ber of sentences and protein pairs, including the
percentage of positive examples in the whole data
set. As expected, by using more background know-
ledge, the number of sentences and instances re-
trieved from MEDLINE rises. An increase of both
negative and positive pairs is observed, since a
relevant sentence can have negative pairs along
with the positive ones. After applying additional
interaction knowledge, the fraction of positive ex-
amples (see 3rd column in Table 4) increases from
15.5 % (IntAct) to 25 % (IntAct+KUPS). However,
employment of the AIF condition to both IntAct
and IntAct+KUPS strategies leads to a reduction
of these values (e. g. fraction of positive examples
reduces from 15.5 % to 13 % and from 25 % to
18.8 %).

For simplicity reasons all runs are performed
using only lexical features.

Table 5 shows the average values of distant super-
vision experiments carried out for the PPI task. A
significant correlation between pos/neg ratio and
precision/recall holds. This clearly indicates the
tendency of classifiers to assign more test instances

to the class more often observed during training.
In accordance with their class distribution, AIMed
reaches highest performance in case of lower frac-
tion of positive instances (i. e. 30 % or 40 %), while
for IEPA and LLL the optimal ratio is in favor of
the positive class (i. e. 70 % or 80 %).

Comparative results of the distant learning
strategies IntAct and IntAct+KUPS tested on five
PPI corpora indicate that additional knowledge
bases do not help per se. Supplementary employ-
ment of the KUPS database leads to a drop in
performances seen in four out of five test cases (a
decrease of 1.7 pp in F1 measure is most notably
observed in case of HPRD50). However, introduc-
tion of the novel filtering condition, in both strate-
gies IntAct+AIF and IntAct+KUPS+AIF, shows
a favorable effect on the precision and leads to an
increase of up to 6 pp in F1 measure, compared to
IntAct and IntAct+KUPS.

Applying AIF to the baseline IntAct increases
F1 measure of AIMed and HPRD50 from 34.4 %
to 37.8 % and from 56.1 % to 59.1 %, respectively.
An even larger impact is observed when compar-
ing IntAct+KUPS and IntAct+KUPS+AIF. For
AIMed, HPRD50 and IEPA an increase of around
6 pp is achieved, while F1 measure of BioInfer
and LLL is improved around 3 pp. Table 5 clearly
shows that IntAct+KUPS+AIF is outperforming
other strategies in all five test cases by achiev-
ing F1 measures of 39.0 % for AIMed, 52.0 % for
BioInfer, 60.2 % for HPRD50, 63.4 % for IEPA
and 69.3 % for LLL.

Analysis of the database (IntAct+KUPS) pairs
reveals that in total there are 5,550 (around 10 %)
proteins that interact with themselves, with 4,918
(89 %) originating from the KUPS database. This
indicates a number of instances that represent auto-
interacting proteins which contribute to increase of
false positives. Such proportion where a majority
of them come from KUPS explains the decrease

39



AIMed BioInfer HPRD50 IEPA LLL
Strategy pos/neg P R F1 P R F1 P R F1 P R F1 P R F1

IntAct

30-70 22.3 75.8 34.4 41.7 54.1 46.9 42.6 73.8 53.9 44.6 70.3 54.5 58.9 63.5 61.0
40-60 21.5 83.5 34.2 40.0 61.9 48.5 42.0 81.7 55.5 44.4 78.0 56.6 55.7 73.3 63.2
50-50 20.8 87.0 33.5 38.7 67.1 49.0 41.4 86.9 56.1 43.7 82.2 57.1 54.6 80.7 65.1
60-40 20.0 90.8 32.8 37.3 72.6 49.2 40.5 91.2 56.1 43.2 85.6 57.4 52.4 86.7 65.3
70-30 19.0 94.5 32.1 35.4 79.5 48.9 39.6 93.4 55.6 42.6 89.3 57.7 50.7 92.1 65.4
80-20 18.6 96.8 31.2 33.5 86.5 48.3 38.6 96.2 55.1 42.1 93.3 58.1 49.4 96.7 65.0

IntAct
+

KUPS

30-70 20.6 48.9 29.0 37.5 30.0 33.3 38.6 45.8 41.8 33.1 25.3 28.6 55.3 25.4 34.6
40-60 21.6 70.3 33.0 39.3 47.4 42.9 40.7 70.2 51.5 41.0 49.6 44.9 58.6 49.3 53.2
50-50 20.8 81.6 33.2 38.2 59.4 46.5 39.6 80.4 53.0 42.9 65.3 51.8 58.5 61.1 59.5
60-40 20.0 89.0 32.7 37.0 68.8 48.2 38.9 87.4 53.8 43.4 76.8 55.4 55.2 74.4 63.2
70-30 19.2 94.3 31.9 35.2 79.1 48.7 38.6 92.3 54.4 42.9 86.2 57.2 52.8 88.5 66.1
80-20 18.3 97.5 30.9 32.2 88.6 47.3 37.8 96.1 54.2 41.9 92.7 57.8 50.8 97.0 66.6

IntAct
+

AIF

30-70 25.1 76.7 37.8 42.8 54.1 47.7 45.7 75.7 57.0 49.9 77.2 60.6 58.4 69.5 63.4
40-60 24.5 78.9 37.4 42.3 56.5 48.3 46.1 79.2 58.3 49.2 79.0 60.7 58.2 72.8 64.6
50-50 23.9 81.1 36.9 42.3 59.2 49.2 45.9 83.1 59.1 49 81.6 61.2 57.8 75.5 65.3
60-40 23.1 83.8 36.1 41.8 63.3 50.3 44.9 85.3 58.8 48.4 84.7 61.6 56.8 79.2 66.1
70-30 22.1 85.8 35.2 40.8 66.4 50.5 43.9 86.5 58.2 47.6 87.9 61.8 56.3 82.1 66.7
80-20 21.3 88.3 34.3 39.6 69.9 50.5 42.9 89.8 58.1 46.0 91.6 61.3 54.0 84.9 66.0

IntAct
+

KUPS
+

AIF

30-70 26.6 72.1 38.8 43.8 50.8 47.0 48.1 78.6 59.7 51.1 75.3 60.9 60.2 63.7 61.8
40-60 26.0 77.8 39.0 43.2 55.4 48.5 47.6 82.5 60.4 50.7 80.6 62.2 58.8 68.7 63.3
50-50 25.5 81.6 38.8 44.8 56.2 49.8 46.0 83.9 59.4 51.4 78.7 62.2 60.3 72.2 65.6
60-40 24.6 84.1 38.0 44.5 60.0 51.1 45.6 88.6 60.2 50.6 83.8 63.1 59.4 77.8 67.3
70-30 23.6 86.7 37.1 43.3 64.4 51.8 44.3 90.5 59.5 49.3 88.8 63.4 59.4 83.3 69.3
80-20 22.1 90.4 35.5 41.0 71.3 52.0 42.5 93.4 58.4 46.8 91.8 62.0 56.2 88.2 68.6

Thomas et al. (2011b) 22.3 81.3 35.0 38.7 76.0 51.2 45.6 92.9 61.2 42.6 88.3 57.3 53.7 93.3 68.1
Tikk et al. (2010) 28.3 86.6 42.6 62.8 36.5 46.2 56.9 68.7 62.2 71.0 52.5 60.4 79.0 57.3 66.4
Our system 34.3 74.0 46.9 70.8 22.5 34.2 63.3 61.3 62.3 70.0 46.0 55.5 82.4 45.7 58.8
Co-occurrence 17.1 100 29.3 26.2 100 41.5 37.6 100 54.7 41.0 100 58.2 49.7 100 66.4

Table 5: Results achieved with lexical features, trained on 10,000 distantly labeled instances and tested on 5 PPI
corpora.
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Figure 1: Comparison of four distant learning strategies with co-occurrence baseline. “IntAct/DrugBank” denotes
the database used as source of supervision for PPI corpora and DDI corpus, respectively.
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of performance in strategy IntAct+KUPS and the
recovery after applying the AIF condition.

The strategy IntAct+KUPS+AIF results in a
higher quality of data used for training and
achieves the best performance in all five test cases
thus proving the effectiveness of the novel condi-
tion. More knowledge is beneficial, but only when
appropriate filtering of the data is applied.

Distantly supervised systems outperform
co-occurrence results for all five PPI corpora.
Considering the best performing strategy
(IntAct+KUPS+AIF), F1 measure of AIMed and
BioInfer, for which we assume to have the most
realistic pos/neg ratio, increased around 10 pp.
HPRD50, IEPA and LLL have an improvement of
5.5 pp, 5.2 pp and 2.9 pp respectively, due to high
fractions of positive instances (leading to a strong
co-occurrence baseline).

Cross-learning9 evaluation may be more realis-
tic to be compared to distant-learning than cross
validation (Airola et al., 2008). For AIMed and
HPRD50 our approach performs on a par with Tikk
et al. (2010) or better (up to 6 pp for BioInfer).

4.4 Drug-drug interaction

The problem of drug-drug interactions has not
been previously explored in terms of distant super-
vision. It is noteworthy that DDI corpora are gener-
ated from web documents discussing drug effects
which are in general not contained in MEDLINE.
Hence, this evaluation corpus can be considered as
out-domain and provides additional insights on the
robustness of distant-supervision. The AIF setting
is not evaluated for the DDI task, because only 1
of all 11,335 unique pairs describes a self interac-
tion. In MEDLINE, only 7 sentences with multiple
mentions of this drug (Sulfathiazole, DrugBank
identifier DB06147) are found.

Table 6 gives an overview of the results for dis-
tant supervision on DDI, with the parameter of
size of the training corpus and the pos/neg ratio. A
slight increase in F1 measure can be observed with
additional training instances, both in case of using
just lexical features and when dependency based
features are additionally utilized (e. g. (lex+dep)
from 36.2 % (5k) to 37.3 % (25k) in F1 measure).

Accounting for dependency parsing features
leads to an increase of 0.5 pp in F1 measure, i. e.
from 36.5 % to 37.0 % (10k) and 36.7%̇ to 37.3 %

9For five PPI corpora: train on four, test on the remaining.

size pos/neg P R F1

5k

30-70 35.4 32.4 33.7
40-60 33.3 37.0 34.9
50-50 31.9 41.7 36.0
50-50 (lex+dep) 32.7 40.7 36.2
60-40 30.1 46.6 36.5
70-30 27.4 51.8 35.7

10k

30-70 36.0 34.4 34.9
40-60 34.2 38.9 36.3
50-50 32.9 41.0 36.5
50-50 (lex+dep) 33.8 41.1 37.0
60-40 30.8 44.8 36.4
70-30 28.2 48.7 35.6

25k

30-70 35.8 35.0 35.3
40-60 34.3 38.6 36.2
50-50 33.2 41.1 36.7
50-50 (lex+dep) 32.5 43.7 37.3
60-40 31.7 42.6 36.3
70-30 28.9 47.2 35.7

Co-occurrence 10.7 100 19.4

Table 6: Results for distant supervision with only lexi-
cal features on the DDI test corpus.

(25k)), the latter being our best result obtained for
weakly supervised DDI.

Compared to co-occurence, a gain of around
18 pp is achieved. Taking into account the high
class imbalance of the DDI test set (see Table 1),
which is most similar to AIMed corpus, the F1

measure of 37.3 % is encouraging.

Figure 1 shows the results of PPI and DDI experi-
ments in addition. The error bars denote the stan-
dard deviation over 5 differently sampled training
corpora.

5 Discussion

This paper presents the application of distant su-
pervision on the task to find protein-protein inter-
actions and drug-drug interactions. The first is
addressed using the databases IntAct and KUPS,
the second using DrugBank.

More database knowledge does not necessar-
ily have a positive impact on a trained model, ap-
propriate instance selection methods need to be
applied. This is demonstrated with the KUPS
database and the automatic curation via auto-
interaction filtering leading to state-of-the-art re-
sults for weakly supervised protein-protein inter-
action detection.

We present the first results of applying the dis-
tant supervision paradigm to drug-drug-interaction.
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The results may seem comparatively limited in
comparison to protein-protein interaction, but are
encouraging when taking into account the imbal-
ance of the test corpus and its differing source
domain.

Future development of noise reduction ap-
proaches is important to make use of the full poten-
tial of available database knowledge. The results
shown are encouraging that manual annotation of
corpora can be avoided in other application areas
as well. Another future direction is the investiga-
tion of specifically difficult structures, e. g. listings
and enumerations of entities in a sentence.
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