
Proceedings of the EACL 2012 Joint Workshop of LINGVIS & UNCLH, pages 108–116,
Avignon, France, April 23 - 24 2012. c©2012 Association for Computational Linguistics

Using context and phonetic features
in models of etymological sound change

Hannes Wettig1, Kirill Reshetnikov2 and Roman Yangarber1

1Department of Computer Science 2Institute of Linguistics
University of Helsinki, Finland Academy of Sciences

First.Last@cs.helsinki.fi Moscow, Russia

Abstract

This paper presents a novel method for
aligning etymological data, which mod-
els context-sensitive rules governing sound
change, and utilizes phonetic features of the
sounds. The goal is, for a given corpus of
cognate sets, to find the best alignment at
the sound level. We introduce an imputa-
tion procedure to compare the goodness of
the resulting models, as well as the good-
ness of the data sets. We present evalu-
ations to demonstrate that the new model
yields improvements in performance, com-
pared to previously reported models.

1 Introduction

This paper introduces a context-sensitive model
for alignment and analysis of etymological data.
Given a raw collection of etymological data (the
corpus)—we first aim to find the “best” alignment
at the sound or symbol level. We take the corpus
(or possibly several different corpora) for a lan-
guage family as given; different data sets are typ-
ically conflicting, which creates the need to deter-
mine which is more correct. Etymological data
sets are found in digital etymological databases,
such as ones we use for the Uralic language fam-
ily. A database is typically organized into cog-
nate sets; all elements within a cognate set are
posited (by the database creators) to be derived
from a common origin, which is a word-form in
the ancestral proto-language.

Etymology encompasses several problems,
including: discovery of sets of cognates—
genetically related words; determination of ge-
netic relations among groups of languages, based
on linguistic data; discovering regular sound cor-
respondences across languages in a given lan-

guage family; and reconstruction of forms in the
proto-languages.

Computational methods can provide valuable
tools for the etymological community. The meth-
ods can be judged by how well they model certain
aspects of etymology, and by whether the auto-
matic analysis produces results that match theo-
ries established by manual analysis.

In this work, we allow all the data—and only
the data—to determine what rules underly it,
rather than relying on external (and possibly bi-
ased) rules that try to explain the data. This ap-
proach will provide a means of measuring the
quality of the etymological data sets in terms of
their internal consistency—a dataset that is more
consistent should receive a higher score. We seek
methods that analyze the data automatically, in
an unsupervised fashion, to determine whether a
complete description of the correspondences can
be discovered automatically, directly from raw
etymological data—cognate sets within the lan-
guage family. Another way to state the question
is: what alignment rules are “inherently encoded”
in the given corpus itself.

At present, our aim is to analyze given etymo-
logical datasets, rather than to construct new ones
from scratch. Because our main goal is to de-
velop methods that are as objective as possible,
the models make no a priori assumptions or “uni-
versal” principles—e.g., no preference to align
vowel with vowels, or a symbol with itself. The
models are not aware of the identity of a symbol
across languages, and do not try to preserve iden-
tity, of symbols, or even of features—rather they
try to find maximally regular correspondences.

In Section 2 we describe the data used in our
experiments, and review approaches to etymolog-
ical alignment over the last decade. We formalize
the problem of alignment in Section 3, give the

108



Uralic tree   

Figure 1: Finno-Ugric branch of Uralic language fam-
ily (the data used in the experiments in this paper)

technical details of our models in Section 4. We
present results and discussion in Sections 5 and 6.

2 Data and Related Work

We use two large Uralic etymological resources.
The StarLing database of Uralic, (Starostin,
2005), based on (Rédei, 1988 1991), contains
over 2500 cognate sets. Suomen Sanojen Alku-
perä (SSA), “The Origin of Finnish Words”, a
Finnish etymological dictionary, (Itkonen and Ku-
lonen, 2000), has over 5000 cognate sets, (about
half of which are only in languages from the
Balto-Finnic branch, closest to Finnish). Most
importantly, for our models, SSA gives “dictio-
nary” word-forms, which may contain extraneous
morphological material, whereas StarLing data is
mostly stemmed.

One traditional arrangement of the Uralic lan-
guages1 is shown in Figure 1. We model etymo-
logical processes using these Uralic datasets.

The methods in (Kondrak, 2002) learn regular
one-to-one sound correspondences between pairs
of related languages in the data. The methods
in (Kondrak, 2003; Wettig et al., 2011) find more
complex (one-to-many) correspondences. These
models operate on one language pair at a time;
also, they do not model the context of the sound
changes, while most etymological changes are
conditioned on context. The MCMC-based model
proposed in (Bouchard-Côté et al., 2007) explic-
itly aims to model the context of changes, and op-

1Adapted from Encyclopedia Britannica and (Anttila,
1989)

erates on more than a pair of languages.2

We should note that our models at present op-
erate at the phonetic level only, they leave seman-
tic judgements of the database creators unques-
tioned. While other work, e.g. (Kondrak, 2004),
has attempted to approach semantics by compu-
tational means as well, our model uses the given
cognate set as the fundamental unit. In our work,
we do not attempt the problem of discovering cog-
nates, addressed, e.g., in, (Bouchard-Côté et al.,
2007; Kondrak, 2004; Kessler, 2001). We begin
instead with a set of etymological data (or more
than one set) for a language family as given. We
focus on the principle of recurrent sound corre-
spondence, as in much of the literature, includ-
ing (Kondrak, 2002; Kondrak, 2003), and others.

As we develop our alignment models at the
sound or symbol level, in the process of evalu-
ation of these models, we also arrive at model-
ing the relationships among groups of languages
within the family. Construction of phylogenies is
studied extensively, e.g., by (Nakhleh et al., 2005;
Ringe et al., 2002; Barbançon et al., 2009). This
work differs from ours in that it operates on manu-
ally pre-selected sets of characters, which capture
divergent features of languages within the family,
whereas we operate on the raw, complete data.

There is extensive work on alignment in the
machine-translation (MT) community, and it has
been observed that methods from MT alignment
may be projected onto alignment in etymology.
The intuition is that translation sentences in MT
correspond to cognate words in etymology, while
words in MT correspond to sounds in etymology.
The notion of regularity of sound change in et-
ymology, which is what our models try to cap-
ture, is loosely similar to contextually conditioned
correspondence of translation words across lan-
guages. For example, (Kondrak, 2002) employs
MT alignment from (Melamed, 1997; Melamed,
2000); one might employ the IBM models for
MT alignment, (Brown et al., 1993), or the HMM
model, (Vogel et al., 1996). Of the MT-related
models, (Bodrumlu et al., 2009) is similar to ours
in that it is based on MDL (the Minimum Descrip-
tion Length Principle, introduced below).

2Using this method, we found that the running time did
not scale well for more than three languages.

109



3 Aligning Pairs of Words

We begin with pairwise alignment: aligning pairs
of words, from two related languages in our
corpus of cognates. For each word pair, the
task of alignment means finding exactly which
symbols correspond. Some symbols may align
with “themselves” (i.e., with similar or identi-
cal sounds), while others may have undergone
changes during the time when the two related lan-
guages have been evolving separately. The sim-
plest form of such alignment at the symbol level
is a pair (σ : τ) ∈ Σ × T , a single symbol σ
from the source alphabet Σ with a symbol τ from
the target alphabet T . We denote the sizes of the
alphabets by |Σ| and |T |.

To model insertions and deletions, we augment
both alphabets with a special empty symbol—
denoted by a dot—and write the augmented al-
phabets as Σ. and T.. We can then align
word pairs such as vuosi—al (meaning “year” in
Finnish and Xanty) , for example as any of:

v u o s i
| | | | |
a l . . .

v u o s i
| | | | |
. a . l .

etc...

The alignment on the right then consists of the
symbol pairs: (v:.), (u:a), (o:.), (s:l), (i:.).

4 Context Model with Phonetic Features

The context-aware alignment method we present
here is built upon baseline models published pre-
viously, (Wettig et al., 2011), where we presented
several models that do not use phonetic features
or context. Similarly to the earlier ones, the cur-
rent method is based on the Minimum Description
Length (MDL) Principle, (Grünwald, 2007).

We begin with a raw set of (observed) data—
the not-yet-aligned word pairs. We would like
to find an alignment for the data—which we
will call the complete data—complete with align-
ments, that make the most sense globally, in terms
of embodying regular correspondences. We are
after the regularity, and the more regularity we
can find, the “better” our alignment will be (its
goodness will be defined formally later). MDL
tells us that the more regularity we can find in
the data, the fewer bits we will need to encode
it (or compress it). More regularity means lower
entropy in the distribution that describes the data,
and lower entropy allows us to construct a more

economical code. That is, if we have no knowl-
edge about any regularly of correspondence be-
tween symbols, the joint distribution over all pos-
sible pairs of symbols will be very flat (high en-
tropy). If we know that certain symbol pairs align
frequently, the joint distribution will have spikes,
and lower entropy. In (Wettig et al., 2011) we
showed how starting with a random alignment a
good joint distribution can be learned using MDL.
However the “rules” those baseline models were
able to learn were very rudimentary, since they
could not use any information in the context, and
we know that many regular correspondences are
conditioned by context.

We now introduce models that leverage infor-
mation from the context to try to reduce the un-
certainty in the distributions further, lowering the
coding cost. To do that, we will code sounds
in terms of their phonetic features: rather than
coding the symbols (sounds) as atomic, we code
them as vectors of phonetic features. Rather than
aligning symbol pairs, we align the correspond-
ing features of the symbols. While coding each
feature, the model can make use of features of
other sounds in its context (environment), through
a special decision tree built for that feature.

4.1 Features
We will code each symbol, to be aligned in the
complete data, as a feature vector. First we code
the Type feature, with values: K (consonant), V
(vowel), dot, and word boundary, which we de-
note as #. Consonants and vowels have their own
sets of features, with 2–8 values per feature:

Consonant articulation
M Manner plosive, fricative, glide, ...
P Place labial, dental, ..., velar
X Voiced – , +
S Secondary – , affricate, aspirate, ...

Vowel articulation
V Vertical high–low
H Horizontal front–back
R Rounding – , +
L Length 1–5

4.2 Contexts
While coding any symbol, the model will be al-
lowed to query a fixed, finite set of candidate con-
texts. A context is a triplet (L,P, F ), where L
is the level—either source or target,—and P is

110



one of the positions that the model may query—
relative to the position currently being coded; for
example, we may allow positions as in Fig. 2. F is
one of the possible features found at that position.
Therefore, we will have about 2 levels * 8 posi-
tions * 2–6 features ≈ 80 candidate contexts that
can be queried by the model, as explained below.

I itself,
–P previous position
–S previous non-dot symbol
–K previous consonant
–V previous vowel
+S previous or self non-dot symbol
+K previous or self consonant
+V previous or self vowel

Figure 2: An example of a set of possible positions
in the context—relative to the position currently being
coded—that can be queried by the context model.

4.3 The Two-Part Code

We code the complete (i.e., aligned) data using a
two-part code, following the MDL Principle. We
first code which particular model instance we se-
lect from our class of models, and then code the
data, given the defined model. Our model class
is defined as: a set of decision trees (forest), with
one tree to predict each feature on each level. The
model instance will define the particular struc-
tures for each of the trees.

The forest consists of 18 decision trees, one for
each feature on the source and the target level: the
type feature, 4 vowel and 4 consonant features,
times 2 levels. Each node in such tree will ei-
ther be a leaf, or will be split by querying one of
the candidate contexts defined above. The cost of
coding the structure of the tree is one bit for every
node—to encode whether this node was split (is
an internal node) or is a leaf—plus≈ log 80 times
the number of internal nodes—to encode which
particular context was chosen to split that node.
We will explain how the best context to split on is
chosen in Sec. 4.6.

Each feature and level define a tree, e.g., the
“voiced” (X) feature of the source symbols cor-
responds to the source-X tree. A node N in this
tree holds a distribution over the values of X of
only those symbol instances in the complete data
that have reached in N by following the context

queries, starting from the root. The tree struc-
ture tells us precisely which path to follow—
completely determined by the context. For exam-
ple, when coding a symbol α based on another
symbol found in the context of α—at some level
(say, target), some position (say, –K), and one of
its features (say, M)—the next edge down the tree
is determined by that feature’s value; and so on,
down to a leaf. For an example of an actual deci-
sion tree learned by the model, see Fig. 5.

To compute the code length of the complete
data, we only need to take into account the dis-
tributions at the leaves. We could choose from a
variety of coding methods; the crucial point is that
the chosen code will assign a particular number—
the cost—to every possible alignment of the data.
This code-length, or cost, will then serve as the
objective function—i.e., it will be the value that
the algorithm will try to optimize. Each reduc-
tion in cost will correspond directly to reduction
in the entropy of the probability distribution of
the symbols, which in turn corresponds to more
certainty (i.e., regularity) in the correspondences
among the symbols, and to improvement in the
alignment. This is the link to our goal, and the
reason for introducing code lengths—it gives us
a single number that describes the quality of an
alignment.

We use Normalized Maximum Likelihood
(NML), (Rissanen, 1996) as our coding scheme.
We choose NML because it has certain optimal-
ity properties. Using NML, we code the distri-
bution at each leaf node separately, and summing
the costs of all leaves gives the total cost of the
aligned data—the value of our objective function.

Suppose n instances end up in a leaf node N ,
of the λ-level tree, for feature F having k val-
ues (e.g., consonants satisfying N ’s context con-
straints in the source-X tree, with k = 2 values:
− and +), and the values are distributed so that
ni instances have value i (with i ∈ {1, . . . , k}).
Then this requires an NML code-length of

LNML(λ;F ;N) = − logPNML(λ;F ;N)

= − log

∏
i

(
ni
n

)ni

C(n, k)
(1)

Here
∏

i

(
ni
n

)ni is the maximum likelihood of the
multinomial data at node N , and the term

C(n, k) =
∑

n′
1+...+n′

k=n

∏
i

(
n′i
n

)n′
i

(2)

111



is a normalizing constant to make PNML a prob-
ability distribution.

In the MDL literature, e.g., (Grünwald, 2007),
the term − logC(n, k) is called the stochastic
complexity or the (minimax) regret of the model,
(in this case, the multinomial model). The NML
distribution provides the unique solution to the
minimax problem posed in (Shtarkov, 1987),

min
P̂

max
xn

log
P (xn|Θ̂(xn))

P̂ (xn)
(3)

where Θ̂(xn) = arg maxΘ P(xn) are the maxi-
mum likelihood parameters for the data xn. Thus,
PNML minimizes the worst-case regret, i.e., the
number of excess bits in the code as compared to
the best model in the model class, with hind-sight.
For details on the computation of this code length
see (Kontkanen and Myllymäki, 2007).

Learning the model from the observed data now
means aligning the word pairs and building the
decision trees in such a way as to minimize the
two-part code length: the sum of the model’s code
length—to encode the structure of the trees,—
and the data’s code length—to encode the aligned
word pairs, using these trees.

4.4 Summary of the Algorithm

The full learning algorithm runs as follows:
We start with an initial random alignment for

each pair of words in the corpus, i.e., for each
word pair choose some random path through the
matrix depicted in Figure 3.

From then on we alternate between two steps:
A. re-build the decision trees for all features on
source and target levels, and B. re-align all word
pairs in the corpus. Both of these operations
monotonically decrease the two-part cost function
and thus compress the data.

We continue until we reach convergence.

4.5 Re-alignment Procedure

To align source word ~σ consisting of symbols
~σ = [σ1...σn], ~σ ∈ Σ∗ with target word ~τ =
[τ1...τm] we use dynamic programming. The
tree structures are considered fixed, as are the
alignments of all word pairs, except the one cur-
rently being aligned—which is subtracted from
the counts stored at the leaf nodes.

We now fill the matrix V , left-to-right, top-to-
bottom. Every possible alignment of ~σ and ~τ cor-

Figure 3: Dynamic programming matrix V, to search
for the most probable alignment

responds to exactly one path through this matrix:
starting with cost equal to 0 in the top-left cell,
moving only downward or rightward, and termi-
nating in the bottom-right cell. In this Viterbi-like
matrix, every cell corresponds to a partially com-
pleted alignment: reaching cell (i, j) means hav-
ing read off i symbols of the source word and j
symbols of the target. Each cell V (i, j)—marked
X in the Figure—stores the cost of the most prob-
able path so far: the most probable way to have
scanned ~σ through symbol σi and ~τ through τj :

V (i, j) = min


V (i, j − 1) +L(. : τj)

V (i− 1, j) +L(σi : .)

V (i− 1, j − 1) +L(σi : τj)

Each term V (·, ·) has been computed earlier by
the dynamic programming; the term L(·)—the
cost of aligning the two symbols, inserting or
deleting—is determined by the change in data
code length it induces to add this event to the cor-
responding leaf in all the feature trees it concerns.

In particular, the cost of the most probable com-
plete alignment of the two words will be stored in
the bottom-right cell, V (n,m), marked �.

4.6 Building Decision Trees

Given a complete alignment of the data, we need
to build a decision tree, for each feature on both
levels, yielding the lowest two-part cost. The term
“decision tree” is meant in a probabilistic sense
here: instead of a single value, at each node we
store a distribution of the corresponding feature
values, over all instances that reach this node. The
distribution at a leaf is then used to code an in-
stance when it reaches the leaf in question. We
code the features in some fixed, pre-set order, and
source level before target level.

112



We now describe in detail the process of build-
ing the tree for feature X, for the source level, (we
will need do the same for all other features, on
both levels, as well). We build this tree as follows.
First, we collect all instances of consonants on the
source level, and gather the the counts for feature
X; and build an initial count vector; suppose it is:

value of X: + –
1001 1002

This vector is stored at the root of the tree; the
cost of this node is computed using NML, eq. 1.

Next, we try to split this node, by finding such
a context that if we query the values of the feature
in that context, it will help us reduce the entropy
in this count vector. We check in turn all possi-
ble candidate contexts, (L,P, F ), and choose the
best one. Each candidate refers to some symbol
found on the source (σ) or the target (τ ) level, at
some relative position P , and to one of that sym-
bol’s features F . We will condition the split on
the possible values of F . For each candidate, we
try to split on its feature’s values, and collect the
resulting alignment counts.

Suppose one such candidate is (σ, –V, H),
i.e., (source-level, previous vowel, Horizontal fea-
ture), and suppose that the H-feature has two val-
ues: front/back. The vector at the root node (re-
call, this tree is for the X-feature) would then split
into two vectors, e.g.:

value of X: + –
X | H=front 1000 1
X | H=back 1 1001

This would likely be a very good split, since
it reduces the entropy of the distribution in each
row almost to zero. The criterion that guides the
choice of the best candidate to use for splitting a
node is the sum of the code lengths of the resulting
split vectors, and the code length is proportional
to the entropy.

We go through all candidates exhaustively, and
greedily choose the one that yields the greatest re-
duction in entropy, and drop in cost. We proceed
recursively down the tree, trying to split nodes,
and stop when the total tree cost stops decreasing.

This completes the tree for feature X on level σ.
We build trees for all features and levels similarly,
from the current alignment of the complete data.

We augment the set of possible values at ev-
ery node with two additional special branches: 6=,
meaning the symbol at the queried position is of

the wrong type and does not have the queried fea-
ture, and #, meaning the query ran past the be-
ginning of the word.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  500  1000  1500  2000  2500  3000  3500

C
om

pr
es

se
d 

si
ze

 x
10

00
 b

its

Data size: number of word pairs (average word-length: 5.5 bytes)

Gzip
Bzip2

1-1 model
2-2 model

Context model

Figure 4: Comparison of compression power: Finnish-
Estonian data from SSA, using the context model vs.
the baseline models and standard compressors.

5 Evaluation and Results

One way to evaluate the presented models would
require a gold-standard aligned corpus; the mod-
els produce alignments which could be compared
to the gold-standard alignments, and we could
measure performance quantitatively, e.g., in terms
of accuracy. However, building a gold-standard
aligned corpus for the Uralic data proved to be
extremely difficult. In fact, it quickly becomes
clear that this problem is at least as difficult as
building a full reconstruction for all internal nodes
in the family tree (and probably harder), since it
requires full knowledge of all sound correspon-
dences within the family. It is also compounded
by the problem that the word-forms in the corpus
may contain morphological material that is ety-
mologically unrelated: some databases give “dic-
tionary” forms, which contain extraneous affixes,
and thereby obscure which parts of a given word
form stand in etymological relationship with other
members in the cognates set, and which do not.
We therefore introduce other methods to evaluate
the models.

Compression: In figure 4, we compare the
context model, and use as baselines the standard
data compressors, Gzip and Bzip, as well as the
more basic models presented in (Wettig et al.,
2011), (labeled “1x1 and “2x2”). We test the
compression of up to 3200 Finnish-Estonian word
pairs, from SSA. Gzip and Bzip compress data

113



fin khn kom man mar mrd saa udm ugr

est 0.26 0.66 0.64 0.65 0.61 0.57 0.57 0.62 0.62
fin 0.63 0.64 0.65 0.59 0.56 0.50 0.62 0.63
khn 0.65 0.58 0.69 0.64 0.67 0.66 0.66
kom 0.63 0.68 0.66 0.70 0.39 0.66
man 0.68 0.65 0.72 0.62 0.62
mar 0.65 0.69 0.65 0.66
mrd 0.58 0.66 0.63
saa 0.67 0.70
udm 0.65

Table 1: Pairwise normalized edit distances for Finno-
Ugric languages, on StarLing data (symmetrized by
averaging over the two directions of imputation).

by finding regularities in it (i.e., frequent sub-
strings). The comparison with Gzip is a “san-
ity check”: we would like to confirm whether
our models find more regularity in the data than
would an off-the-shelf data compressor, that has
no knowledge that the words in the data are ety-
mologically related. Of course, our models know
that they should align pairs of consecutive lines.
This test shows that learning about the “vertical”
correspondences achieves much better compres-
sion rates—allows the models to extract greater
regularity from the data.

Figure 5: Part of a tree, showing the rule for voicing of
medial plosives in Estonian, conditioned on Finnish.

Rules of correspondence: One our main goals
is to model rules of correspondence among lan-
guages. We can evaluate the models based on how
good they are at discovering rules. (Wettig et al.,
2011) showed that aligning multiple symbols cap-
tures some of the context and thereby finds more
complex rules than their 1-1 alignment model.

However, certain alignments, such as t∼t/d,
p∼p/b, and k∼k/g between Finnish and Esto-
nian, cannot be explained by the multiple-symbol
model. This is due to the rule of voicing of
word-medial plosives in Estonian. This rule could

be expressed in terms of Two-level Morphol-
ogy, (Koskenniemi, 1983) as: a voiceless plosive
in Finnish, may correspond to voiced in Esto-
nian, if not word-initial.3 The context model
finds this rule, shown in Fig. 5. This tree codes
the Target-level (i.e., Estonian) Voiced consonant
feature. In each node, the counts of correspond-
ing feature values are shown in brackets. In
the root node—prior to knowing anything about
the environment—there is almost complete un-
certainty (i.e., high entropy) about the value of
Voiced feature of an Estonian consonant: 821
voiceless to 801 voiced in our data. Redder nodes
indicate higher entropy, bluer nodes—lower en-
tropy. The query in the root node tells us to check
the context Finnish Itself Voiced for the most in-
formative clue about whether the current Estonian
consonant is voiced or not. Tracing the options
down left to right from the root, we obtain the
rules. The leftmost branch says, if the Finnish
is voiced (⊕), then the Estonian is almost cer-
tainly voiced as well—615 voiced to 2 voiceless
in this case. If the Finnish is voiceless (Finnish
Itself Voiced = 	), it says voicing may occur, but
only in the red nodes—i.e., only if preceded by
a voiced consonant on Estonian level (the branch
marked by ⊕, 56 cases), or—if previous posi-
tion is not a consonant (the 6= branch indicates
that the candidate’s query does not apply: i.e., the
sound found in that position is not a consonant)—
it can be voiced only if the corresponding Finnish
is a plosive (P, 78 cases). The blue nodes in this
branch say that otherwise, the Estonian consonant
almost certainly remains voiceless.

The context models discover numerous com-
plex rules for different language pairs. For ex-
ample, they learn a rule that initial Finnish k
“changes” (corresponds) to h in Hungarian, if it
is followed by a back vowel; the correspondence
between Komi trills and Udmurt sibilants; etc.

Imputation: We introduce a novel test of the
quality of the models, by using them to impute
unseen data, as follows. For a given model,
and a language pair (L1, L2)—e.g., (Finnish,
Estonian)—hold out one word pair, and train the
model on the remaining data. Then show the
model the hidden Finnish word and let it guess

3In fact, phonetically, in modern spoken Estonian, the
consonants that are written using the symbols b,d,g are not
technically voiced, but that is a finer point, we use this rule
for illustration of the principle.

114



the corresponding Estonian. Imputation can be
done for all models with a simple dynamic pro-
gramming algorithm, similar to the Viterbi-like
search used during training. Formally, given the
hidden Finnish string, the imputation procedure
selects from all possible Estonian strings the most
probable Estonian string, given the model. We
then compute an edit distance between the im-
puted sting and the true withheld Estonian word
(e.g., using the Levenshtein distance). We repeat
this procedure for all word pairs in the (L1, L2)
data set, sum the edit distances and normalize by
the total size of the (true) L2 data—this yields the
Normalized Edit Distance NED(L2|L1,M) be-
tween L1 and L2, under model M .

Imputation is a more intuitive measure of the
model’s quality than code length, with a clear
practical interpretation. NED is also the ultimate
test of the model’s quality. If model M im-
putes better than M ′—i.e., NED(L2|L1,M) <
NED(L2|L1,M

′)—then it is difficult to argue
that M could be in any sense “worse” than M ′—
it has learned more about the regularities between
L1 and L2, and it knows more about L2 given
L1. The context model, which has much lower
cost than the baseline, almost always has lower
NED. This also yields an important insight: it
is an encouraging indication that optimizing the
code length is a good approach—the algorithm
does not optimize NED directly, and yet the cost
correlates strongly with NED, which is a simple
and intuitive measure of the model’s quality.

6 Discussion

We have presented a novel feature-based context-
aware MDL model, and a comparison of its per-
formance against prior models for the task of
alignment of etymological data. We have eval-
uated the models by examining the the rules of
correspondence that they discovers, by comparing
compression cost, imputation power and language
distances induced by the imputation. The models
take only the etymological data set as input, and
require no further linguistic assumptions. In this
regard, they is as objective as possible, given the
data. The data set itself, of course, may be highly
subjective and questionable.

The objectivity of models given the data now
opens new possibilities for comparing entire data
sets. For example, we can begin to compare the
Finnish and Estonian datasets in SSA vs. Star-

Ling, although the data sets have quite different
characteristics, e.g., different size—3200 vs. 800
word pairs, respectively—and the comparison is
done impartially, relying solely on the data pro-
vided. Another direct consequence of the pre-
sented methods is that they enable us to quantify
uncertainty of entries in the corpus of etymologi-
cal data. For example, for a given entry x in lan-
guage L1, we can compute exactly the probabil-
ity that x would be imputed by any of the models,
trained on all the remaining data from L1 plus any
other set of languages in the family. This can be
applied equally to any entry, in particular to en-
tries marked dubious by the database creators.

We can use this method to approach the ques-
tion of comparison of “competing” etymological
datasets. The cost of an optimal alignment ob-
tained over a given data set serves as a measure of
its internal consistency.

We are currently working to combine the con-
text model with 3- and higher-dimensional mod-
els, and to extend these models to perform di-
achronic imputation, i.e., reconstruction of proto-
forms. We also intend to test the models on
databases of other language families.

Acknowledgments

We are very grateful to the anonymous reviewers
for their thoughtful and helpful comments. We
thank Suvi Hiltunen for the implementation of the
models, and Arto Vihavainen for implementing
some of the earlier models. This research was
supported by the Uralink Project, funded by the
Academy of Finland and by the Russian Fund for
the Humanities.

References
Raimo Anttila. 1989. Historical and comparative lin-

guistics. John Benjamins.
François G. Barbançon, Tandy Warnow, Don Ringe,

Steven N. Evans, and Luay Nakhleh. 2009. An ex-
perimental study comparing linguistic phylogenetic
reconstruction methods. In Proceedings of the Con-
ference on Languages and Genes, UC Santa Bar-
bara. Cambridge University Press.

Tugba Bodrumlu, Kevin Knight, and Sujith Ravi.
2009. A new objective function for word alignment.
In Proc. NAACL Workshop on Integer Linear Pro-
gramming for NLP.

Alexandre Bouchard-Côté, Percy Liang, Thomas Grif-
fiths, and Dan Klein. 2007. A probabilistic ap-

115



proach to diachronic phonology. In Proceedings
of the 2007 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-
CoNLL), pages 887–896, Prague, June.

Peter F. Brown, Vincent J. Della Pietra, Stephen A.
Della Pietra, and Robert. L. Mercer. 1993. The
mathematics of statistical machine translation: Pa-
rameter estimation. Computational Linguistics,
19(2):263–311.

Peter Grünwald. 2007. The Minimum Description
Length Principle. MIT Press.

Erkki Itkonen and Ulla-Maija Kulonen. 2000.
Suomen Sanojen Alkuperä (The Origin of Finnish
Words). Suomalaisen Kirjallisuuden Seura,
Helsinki, Finland.

Brett Kessler. 2001. The Significance of Word Lists:
Statistical Tests for Investigating Historical Con-
nections Between Languages. The University of
Chicago Press, Stanford, CA.

Grzegorz Kondrak. 2002. Determining recur-
rent sound correspondences by inducing translation
models. In Proceedings of COLING 2002: 19th In-
ternational Conference on Computational Linguis-
tics, pages 488–494, Taipei, August.

Grzegorz Kondrak. 2003. Identifying complex sound
correspondences in bilingual wordlists. In A. Gel-
bukh, editor, Computational Linguistics and Intel-
ligent Text Processing (CICLing-2003), pages 432–
443, Mexico City, February. Springer-Verlag Lec-
ture Notes in Computer Science, No. 2588.

Grzegorz Kondrak. 2004. Combining evidence in
cognate identification. In Proceedings of the Sev-
enteenth Canadian Conference on Artificial Intelli-
gence (Canadian AI 2004), pages 44–59, London,
Ontario, May. Lecture Notes in Computer Science
3060, Springer-Verlag.

Petri Kontkanen and Petri Myllymäki. 2007. A
linear-time algorithm for computing the multino-
mial stochastic complexity. Information Processing
Letters, 103(6):227–233.

Kimmo Koskenniemi. 1983. Two-level morphol-
ogy: A general computational model for word-form
recognition and production. Ph.D. thesis, Univer-
sity of Helsinki, Finland.

I. Dan Melamed. 1997. Automatic discovery of non-
compositional compounds in parallel data. In The
Second Conference on Empirical Methods in Nat-
ural Language Processing, pages 97–108, Hissar,
Bulgaria.

I. Dan Melamed. 2000. Models of translational equiv-
alence among words. Computational Linguistics,
26(2):221–249.

Luay Nakhleh, Don Ringe, and Tandy Warnow. 2005.
Perfect phylogenetic networks: A new methodol-
ogy for reconstructing the evolutionary history of
natural languages. Language (Journal of the Lin-
guistic Society of America), 81(2):382–420.

Károly Rédei. 1988–1991. Uralisches etymologisches
Wörterbuch. Harrassowitz, Wiesbaden.

Don Ringe, Tandy Warnow, and A. Taylor. 2002.
Indo-European and computational cladis-
tics. Transactions of the Philological Society,
100(1):59–129.

Jorma Rissanen. 1996. Fisher information and
stochastic complexity. IEEE Transactions on Infor-
mation Theory, 42(1):40–47, January.

Yuri M. Shtarkov. 1987. Universal sequential coding
of single messages. Problems of Information Trans-
mission, 23:3–17.

Sergei A. Starostin. 2005. Tower of babel: Etymolog-
ical databases. http://newstar.rinet.ru/.

Stephan Vogel, Hermann Ney, and Christoph Till-
mann. 1996. HMM-based word alignment in sta-
tistical translation. In Proceedings of 16th Confer-
ence on Computational Linguistics (COLING 96),
Copenhagen, Denmark, August.

Hannes Wettig, Suvi Hiltunen, and Roman Yangarber.
2011. MDL-based Models for Alignment of Et-
ymological Data. In Proceedings of RANLP: the
8th Conference on Recent Advances in Natural Lan-
guage Processing, Hissar, Bulgaria.

116


