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Abstract

In this paper we present a hybrid statisti-
cal machine translation (SMT)-example-based
MT (EBMT) system that shows significant
improvement over both SMT and EBMT base-
line systems. First we present a runtime
EBMT system using a subsentential transla-
tion memory (TM). The EBMT system is fur-
ther combined with an SMT system for effec-
tive hybridization of the pair of systems. The
hybrid system shows significant improvement
in translation quality (0.82 and 2.75 abso-
lute BLEU points) for two different language
pairs (English–Turkish (En–Tr) and English–
French (En–Fr)) over the baseline SMT sys-
tem. However, the EBMT approach suffers
from significant time complexity issues for a
runtime approach. We explore two methods to
make the system scalable at runtime. First, we
use an heuristic-based approach. Secondly, we
use an IR-based indexing technique to speed
up the time-consuming matching procedure of
the EBMT system. The index-based match-
ing procedure substantially improves run-time
speed without affecting translation quality.

1 Introduction

State-of-the-art phrase-based SMT (Koehn, 2010a)
is the most successful MT approach in many large
scale evaluations, such as WMT,1 IWSLT2 etc. At
the same time, work continues in the area of EBMT.
Some recent EBMT systems include Cunei (Phillips,

1http://www.statmt.org/wmt11/
2http://www.iwslt2011.org/

2011), CMU-EBMT (Brown, 2011) and OpenMa-
TrEx (Dandapat et al., 2010). The success of an
SMT system often depends on the amount of parallel
training corpora available for the particular language
pair. However, low translation accuracy has been
observed for language pairs with limited training re-
sources (Islam et al., 2010; Khalilov et al., 2010).
SMT systems effectively discard the actual training
data once the models (translation model and lan-
guage model) have been estimated. This can lead to
their inability to guarantee good quality translation
for sentences closely matching those in the train-
ing corpora. By contrast, EBMT systems usually
maintain a linked relationship between the full sen-
tence pairs in source and target texts. Because of this
EBMT systems can often capture long range depen-
dencies and rich morphology at runtime. In contrast
to SMT, however, most EBMT models lack a well-
formed probability model, which restricts the use of
statistical information in the translation process.

Keeping these in mind, our objective is to de-
velop a good quality MT system choosing the best
approach for each input in the form of a hybrid SMT-
EBMT approach. It is often the case that an EBMT
system produces a good translation where SMT sys-
tems fail and vice versa (Dandapat et al., 2011).

An EBMT system relies on past translations to
derive the target output for a given input. Run-
time EBMT approaches generally do not include
any training stage, which has the advantage of not
having to depend on time-consuming preprocessing.
On the other hand, their runtime complexity can be
considerable. This is due to the time-consuming
matching stage at runtime that finds the example

48



(or set of examples) which most closely matches
the source-language sentence to be translated. This
matching step often uses some variation of string
edit-distance measures (Levenshtein, 1965) which
has quadratic time complexity.3 This is quite time-
consuming even when a moderate amount of train-
ing examples are used for the matching procedure.

We adopt two alternative approaches to tackle the
above problem. First we use heuristics which are of-
ten useful to avoid some of the computations. For a
input sentence, in the matching process, we may not
need to compute the string edit distance with all sen-
tences in the example base. In order to prune some
of the computation, we rely on the fact that the in-
put sentence and its closest match sentence from the
example-base are likely to have a similar sentence
length. Search engine indexing is an effective way
of storing data for fast and accurate retrieval of in-
formation. During retrieval, a set of documents are
extracted based on their similarity to the input query.
In our second approach, we use this concept to effi-
ciently retrieve a potential set of suitable candidate
sentences from the example-base to find the closest
match. We index the entire example-base consider-
ing each source-side sentence as a document for the
indexer. We show that improvements can be made
with our approach in terms of time complexity with-
out affecting the translation quality.

The remainder of this paper is organized as fol-
lows. The next section presents work related to our
EBMT approach. Section 3 describes the MT sys-
tems used in our experiments. Section 4 focuses on
the two techniques used to make the system scalable.
Section 5 presents the experiments in detail. Section
6 presents and discusses the results and provides an
error analysis. We conclude in Section 7.

2 Related Work

The EBMT framework was first introduced by Na-
gao (1984) as the “MT by analogy principle”. The
two main approaches to EBMT are distinguished
by the inclusion or exclusion of a preprocess-
ing/training stage. Approaches that incorporate a

3Ukkonen (1983) gave an algorithm for computing edit-
distance with the worst case complexity O(md), where m is
the length of the string and d is their edit distance. This is ef-
fective when m � d. We use word-based edit distance, so m
is shorter in length.

training stage are commonly called “compiled ap-
proaches” (Cicekli and Güvenir, 2001). Approaches
that do not include a training stage are often referred
to as “pure” or “runtime” EBMT approaches, e.g.
(Lepage and Denoual, 2005). These approaches
have the advantage that they do not depend on any
time-consuming preprocessing stages. On the other
hand, their runtime complexity can be considerable.

EBMT is often linked with the related concept of
translation memory (TM). A TM essentially stores
source- and target-language translation pairs for ef-
fective reuse of previous translations originally cre-
ated by human translators. TMs are often used to
store examples for EBMT systems. After retriev-
ing a set of examples with associated translations,
EBMT systems automatically extract translations of
suitable fragments and combine them to produce a
grammatical target output.

Phrase-based SMT systems (Koehn, 2010a), pro-
duce a source–target aligned subsentential phrase
table which can be adapted as an additional TM
to be used in a CAT environment (Simard, 2003;
Biçici and Dymetman, 2008; Bourdaillet et al.,
2009; Simard and Isabelle, 2009). Koehn and Senel-
lart (2010b) use SMT to produce the translation of
the non-matched fragments after obtaining the TM-
based match. EBMT phrases have also been used
to populate the knowledge database of an SMT sys-
tem (Groves et al., 2006). However, to the best of
our knowledge, the use of SMT phrase tables within
an EBMT system as an additional sub-sentential TM
has not been attempted so far. Some work has been
carried out to integrate MT in a CAT environment
to translate the whole segment using the MT sys-
tem when no sufficiently well matching translation
unit (TU) is found in the TM. The TransType sys-
tem (Langlais et al., 2002) integrates an SMT sys-
tem within a text editor to suggest possible continua-
tions of the translations being typed by the translator.
By contrast, our approach attempts to integrate the
subsentential TM obtained using SMT techniques
within an EBMT system.

3 MT Systems

The SMT system used in our hybrid SMT-
EBMT approach is the vanilla Moses4 decoder.

4http://www.statmt.org/moses/
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Moses (Koehn et al., 2007) is a set of SMT tools
that include routines to automatically train a transla-
tion model for any language pair and an efficient de-
coder to find the most probable translation. Due to
lack of space and the wide usage of Moses, here we
focus more on the novel EBMT system we have de-
veloped for our hybrid SMT-EBMT approach. The
EBMT system described in this section is based on
previous work (Dandapat et al., 2010) and some of
the material has been reproduced here to make the
paper complete.

Like all other EBMT systems, our particular ap-
proach comprises three stages: matching, alignment
and recombination. Our EBMT system also uses a
subsentential TM in addition to the sentence aligned
example-base. Using the original TM as a train-
ing set, additional subsentential TUs (words and
phrases) are extracted from it based on word align-
ments and phrase pairs produced by Moses. These
subsentential TUs are used for alignment and recom-
bination stages of our EBMT system.

3.1 Building a Subsentential TM for EBMT
A TM for EBMT usually contains TUs linked at
the sentence, phrasal and word level. TUs can be
derived manually or automatically (e.g. using the
marker-hypothesis (Groves et al., 2006)). Usually,
TUs are linguistically motivated translation units.
In this paper however, we explore a different route,
as manual construction of high-quality TMs is time
consuming and expensive. Furthermore, only con-
sidering linguistically motivated TUs may limit the
matching potential of a TM. Because of this, we
used SMT technology to automatically create the
subsentential part of our TM at the phrase (i.e.
no longer necessarily linguistically motivated) and
word level. Based on Moses word alignment (using
GIZA++ (Och and Ney, 2003)) and phrase table con-
struction, we construct the additional TM for further
use within an EBMT approach.

Firstly, we add entries to the TM based on the
aligned phrase pairs from the Moses phrase table us-
ing the following two scores:

1. Direct phrase translation probabilities: φ(t|s)
2. Direct lexical weight: lex(t|s)

Table 1 shows an example of phrase pairs with the
associated probabilities learned by Moses. We keep
all target equivalents in a sorted order based on the

Table 1: Moses phrase equivalence probabilities.
English (s) Turkish (t) p(t|s) lex(t|s)

a hotel bir otel 0.826087 0.12843
a hotel bir otelde 0.086957 0.07313
a hotel otel mi 0.043478 0.00662
a hotel otel 0.043478 0.22360

above probabilities. This helps us in the matching
procedure, but during recombination we only con-
sider the most probable target equivalent. The fol-
lowing shows the resulting TUs in the TM for the
English source phrase a hotel.

a hotel⇔ {bir otel, bir otelde, otel, otem mi}

Secondly, we add entries to the TM based on the
source-to-target word-aligned file. We also keep
the multiple target equivalents for a source word in
a sorted order. This essentially adds source- and
target-language equivalent word pairs into the TM.
Note that the entries in the TM may contain in-
correct source-target equivalents due to unreliable
word/phrase alignments produced by Moses.

3.2 EBMT Engine

The overview of the three stages of the EBMT en-
gine is given below:

Matching: In this stage, we find a sentence pair
〈sc, tc〉 from the example-base that closely matches
with the input sentence s. We used a fuzzy-match
score (FMS) based on a word-level edit distance
metric (Wagner and Fischer, 1974) to find the closest
matching source-side sentence from the example-
base ({si}N1 ) based on Equation (i).

score(s, si) = 1− ED(s, si)/max(|s|, |si|) (i)

where |x| denotes the length (in words) of a sen-
tence, and ED(x, y) refers to the word-level edit dis-
tance between x and y. The EBMT system considers
the associated translation tc of the closest matching
source sentence sc, to build a skeleton for the trans-
lation of the input sentence s.

Alignment: After retrieving the closest fuzzy-
matched sentence pair 〈sc, tc〉, we identify the non-
matching fragments from the skeleton translation tc
in two steps.
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Firstly, we find the matched and non-matched
segments between s and sc using edit distance
trace. Given the two sentences (s and sc), the al-
gorithm finds the minimum possible number of op-
erations (substitutions, additions and deletions) re-
quired to change the closest match sc into the in-
put sentence s. For example, consider the input
sentence s = w1w2w3w4w5w6w7w8 and sc =
w′1w

′
3w4w5w7w8w

′
9. Figure 1 shows the matched

and non-matched sequence between s and sc using
edit-distance trace.

s = w1 w2 w3 w4 w5 w6 w7 w8 −
| | | | |

sc = w1 − w′
3 w4 w5 − w7 w8 w′

9

⇓

s = w1 w2 w3 w4 w5 w6 w7 w8 null

| ↓ | ↓ | ↓
sc = w1 w′

3 w4 w5 null w7 w8 w′
9

Figure 1: Extraction of matched (underlined) and non-
matched (boxed) segments between s and sc.

Secondly, we align each non-matched segment in
sc with its associated translation using the TM and
the GIZA++ alignment. Based on the source-target
aligned pair in the TM, we mark the mismatched
segment in tc. We find the longest possible seg-
ment from the non-matched segment in sc that has a
matching target equivalent in tc based on the source-
target equivalents in the TM. We continue the pro-
cess recursively until no further segments of the non-
matched segment in sc can be matched with tc us-
ing the TM. Remaining non-matching segments in
sc are then aligned with segments in tc using the
GIZA++ word alignment information.

Recombination: In the recombination stage, we
add or substitute segments from the input sentence s
with the skeleton translation equivalent tc. We also
delete some segments from tc that have no corre-
spondence in s. After obtaining the source segments
(needs to be added or substituted in tc) from the in-
put s, we use our subsentential TM to translate these
segments. Details of the recombination process are
given in Algorithm 1.

3.3 An Illustrative Example
As a running example, for the input sentence in (1a)
the corresponding closest fuzzy-matched sentence

Algorithm 1 recombination(X,TM)
In: source segment X ,
subsentential translation memory TM
Out: translation of source segment X

1: mark all words of X as untranslated
(untranslatedPortions(X)← {X})

2: repeat
3: U = untranslatedPortions(X)
4: x = longest subsegment in untranslatedPortions(X)

such that (x, tx) ∈ TM;
5: substitute(X, x → tx) {substitute x with its target

equivalent tx in X}
6: remove x from untranslatedPortions(X)
7: until (untranslatedPortions(X) = U )
8: return X

pair 〈sc, tc〉 is shown in (1b) and (1c). The portion
marked with angled brackets in (1c) are aligned with
the mismatched portion in (1b). The character and
the following number in angled brackets indicate the
edit operation (‘s’ indicates substitution) and the in-
dex of the mismatched segment from the alignment
process respectively.

1. (a) s: i ’d like a <s#0:present> for <s#1:my
mother> .

(b) sc: i ’d like a <s#0:shampoo> for
<s#1:greasy hair> .

(c) tc: <s#1:yağlı saçlar> için bir
<s#0:şampuan> istiyorum .

During recombination, we need to replace two
segments in (1c) {yağlı saçlar (greasy hair) and
şampuan (shampoo)} with the two corresponding
source segments in (1a) {my mother and present}
as an intermediate stage (2) along the way towards
producing a target equivalent.

(2)<1:my mother> için bir <0:present> istiyorum .

Furthermore, replacing the untranslated segments
in (2) with the translations obtained using TM, we
derive the output translation in (3) of the original in-
put sentence in (1).

(3) <annem> için bir <hediye> istiyorum .

4 Scalability

The main motivation of scalability is to improve
the speed of the EBMT system when using a large
example-base. The matching procedure in an EBMT
system finds the example (or a set of examples)
which closely matches the source-language string to
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be translated. All matching processes necessarily in-
volve a distance or similarity measure. The most
widely used distance measure in EBMT matching
is Levenshtein distance (Levenshtein, 1965; Wagner
and Fischer, 1974) which has quadratic time com-
plexity. In our EBMT system, we find the clos-
est sentence at runtime from the whole example-
base for a given input sentence using the edit dis-
tance matching score. Thus, the matching step of
the EBMT system is a time-consuming process with
a runtime complexity of O(nm2), where n denotes
the size of the example-base and m denotes the av-
erage length (in words) of a sentence. Due to a
significant runtime complexity, the EBMT system
can only handle a moderate size example-base in the
matching stage. However, it is important to handle a
large example-base to improve the quality of an MT
system. In order to make the system scalable with
a larger example-base, we adopt two approaches for
finding the closest matching sentences efficiently.

4.1 Grouping
Our first attempt is heuristic-based. We divide the
example-base into bins based on sentence length. It
is anticipated that the sentence from the example-
base that most closely matches an input sentence
will fall into the group which has comparable length
to the length of the input sentence. First, we divide
the example-baseE into different bins based on their
word-level length E =

⋃l
i=1Ei and Ei

⋂
Ej = ∅

for all i 6= j where 0 ≤ i, j ≤ l. Ei denotes the
set of sentences with length i and l is the maximum
length of a sentence in E. In order to find the clos-
est match for a test sentence (s of length k), we only
consider examples EG =

⋃x
m=0Ek±m, where x in-

dicates the window size. In our experiment, we con-
sider the value of x from 0 to 2. We find the closest-
match sc from EG for a given test sentence s. EG

has fewer sentences compared to E which will ef-
fectively reduce the time of the matching procedure.

4.2 Indexing
Our second approach to addressing time complexity
is to use indexing. We index the complete example-
base using an open-source IR engine SMART5 and
retrieve a potential set of candidate sentences (likely

5An open source IR system from Cornell University. ftp:
//ftp.cs.cornell.edu/pub/smart/

to contain the closest match sentence) from the
example-base. Unigrams extracted from the sen-
tences of the example-base are indexed using the
language model (LM) and complete sentences are
considered as retrievable units. In LM-based re-
trieval we assume that a given query is generated
from a unigram document language model. The ap-
plication of the LM retrieval model in our case re-
turns a sorted list of sentences from the example-
base ordered by the estimated probabilities of gen-
erating the given input sentence.

In order to improve the run-time performance,
we integrate the SMART retrieval engine within the
matching procedure of our EBMT system. The re-
trieval engine estimates a potential set of candidate
close-matching sentences from the example-base E
for a test sentence s. We assume that the closest
source-side match sc of the input sentence s can
take the value from the set EIR(s), where EIR(s) is
the potential set of close-matching sentences com-
puted by the LM-based retrieval engine. We have
used the top 50 candidate sentences from EIR(s).
Since the IR engine tries to retrieve the document
(sentences from E) for a given query (input) sen-
tence, it is likely to retrieve the closest match sen-
tence sc in the set EIR(s). Due to a much re-
duced set of possibilities, this approach improves the
run-time performance of the EBMT system without
hampering system accuracy. Finding this potential
set of candidate sentences will be much faster than
traditional edit-distance-based retrieval on the full
example-base as the worst case run time of the re-
triever is O(

∑
∀wi

si), where wi is a word in the in-
put sentence and si is the number of sentences in the
example-base that contain wi. Finding a set of can-
didate sentences took only 0.3 seconds and 116 sec-
onds, respectively, for 414 and 10,000 example in-
put sentences given 20k and 250k sentence example-
base in our En–Tr and En–Fr experiment on a 3GHz
Core 2 Duo machine with 4GB RAM.

5 Experiments

We conduct different experiments to report the ac-
curacy of our EBMT systems for En–Tr and En–Fr
translation tasks. In order to compare the perfor-
mance of our approaches we use two baseline sys-
tems. We use the Moses SMT system as one base-
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line. Furthermore, based on the matching step (Sec-
tion 3.2) of the EBMT approach, we obtain the clos-
est target-side equivalent (the skeleton sentence) and
consider this as the baseline output for the input to
be translated. This is referred to as TM in the exper-
iment below. We will consider this as the baseline
accuracy for our EBMT using TM approach.

In addition, we conduct two experiments with our
EBMT system. After obtaining the skeleton trans-
lation through the matching and alignment steps, in
the recombination step, we use TM to translate any
unmatched segments based on Algorithm 1. We call
this EBMTTM.

We found that there are cases where the
EBMTTM system produces the correct translation
but SMT fails and vice-versa (Dandapat et al., 2011).
In order to further improve translation quality, we
use a combination of EBMT and SMT. Here we use
some features to decide whether to rely on the out-
put produced by the EBMTTM system. These fea-
tures include fuzzy match scoreFMS (as in (i)) and
the number of mismatched segments in each of s,
sc, tc (EqUS6 as in (1)). We assume that the transla-
tions of an input sentence s produced by EBMTTM

and SMT systems are respectively TEBMT(s) and
TSMT(s). If the value of FMS is greater than some
threshold and EqUS exists between s and sc, we
rely on the output TEBMT(s); otherwise we take the
output from TSMT(s). We refer to this system as
EBMTTM + SMT.

To test the scalability of the system, we con-
ducted two more experiments based on the ap-
proach described in Section 4. First, we con-
ducted an experiment based on the sentence length-
based grouping heuristics (Section 4.1). We re-
fer to this system as EBMTTM + SMT + groupi,
where i indicates the window size while compar-
ing the length of the input sentence with the bins.
We conduct a second experiment based on the LM-
based indexing technique (Section 4.2) we have used
to retrieve a potential set of candidate sentences
from the indexed example-base. We call this sys-
tem EBMTTM + SMT + index. Note that the
EBMTTM + SMT system is used as the baseline
accuracy while conducting the experiments for scal-

6If s, sc and tc agree in the number of mismatched segments,
EqUS evaluates to 1, otherwise 0.

ability of the EBMT system.

5.1 Data Used for Experiments
We used two data sets for all our experiments rep-
resenting two language pairs of different size and
type. In the first data-set, we have used the En–Tr
corpus from IWSLT09.7 The training data consists
of 19,972 parallel sentences. We used the IWSLT09
development set as our testset which consists of 414
sentences. The IWSLT09 data set is comprised of
short sentences (with an average of 9.5 words per
sentence) from a particular domain (the C-STAR
project’s Basic Travel Expression Corpus).

Our second data set consists of an En–Fr
corpus from the European Medicines Agency
(EMEA)8 (Tiedemann and Nygaard, 2009). The
training data consists of 250,806 unique parallel sen-
tences.9 As a testset we use a set of 10,000 ran-
domly drawn sentences disjoint from the training
corpus. This data also represents a particular domain
(medicine) but with longer sentence lengths (with an
average of 18.8 words per sentence) compared to the
IWSLT09 data.

6 Results and Observations

We used BLEU (Papineni et al., 2002) for automatic
evaluation of our EBMT systems. Table 2 shows
the accuracy obtained for both En–Tr and En–Fr by
the EBMTTM system described in Section 3. Here
we have two baseline systems (SMT and TM) as de-
scribed in the first two experiments in Section 5.

Table 2: Baseline BLEU scores of the two systems
and the scores for EBMTTM system.

System Language pairs

En–Tr En–Fr

SMT 23.59 55.04
TM 15.60 40.23

EBMTTM 20.08 48.31

Table 2 shows that EBMTTM has a lower system
accuracy than SMT for both the language pairs, but

7http://mastarpj.nict.go.jp/IWSLT2009/2009/12/downloads.html
8http://opus.lingfil.uu.se/EMEA.php
9A large number of duplicate sentences exists in the original

corpus (approximately 1M sentences). We remove duplicates
and consider sentences with unique translation equivalents.
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better scores than TM alone. Tables 3 and 4 show
that combining EBMT with SMT systems shows im-
provements of 0.82 and 2.75 BLEU absolute over
the SMT baseline (Table 2) for both the En–Tr and
the En–Fr data sets. In each case, the improvement
of EBMTTM + SMT over the baseline SMT is sta-
tistically significant (reliability of 98%) using boot-
strap resampling (Koehn, 2004).

Table 3: En–Tr MT system accuracies of the com-
bined systems (EBMTTM + SMT) with different
combining factors. The second column indicates the
number (and percentage) of sentences translated by
the EBMTTM system during combination.

System: EBMTTM + SMT
Condition times

EBMTTM

used

BLEU
(in %)

FMS>0.85 35 (8.5%) 24.22
FMS>0.80 114 (27.5%) 23.99
FMS>0.70 197 (47.6%) 22.74
FMS>0.80 OR
(FMS>0.70 & EqUS)

165 (40.0%) 23.87

FMS>0.85 & EqUS 24 (5.8%) 24.41
FMS>0.80 & EqUS 76 (18.4%) 24.19
FMS>0.70 & EqUS 127 (30.7%) 24.08

Table 4: En–Fr MT system accuracies for the com-
bined systems (EBMTTM + SMT) with different
combining factors.

System: EBMTTM + SMT
Condition times

EBMTTM

used

BLEU
(in %)

FMS>0.85 3323 (33.2%) 57.79
FMS>0.80 4300 (43.0%) 57.55
FMS>0.70 5283 (52.8%) 57.05
FMS>0.60 6148 (61.5%) 56.25
FMS>0.80 OR
(FMS>0.70 & EqUS)

4707 (47.1%) 57.46

FMS>0.85 & EqUS 2358 (23.6%) 57.24
FMS>0.80 & EqUS 2953 (29.5%) 57.16
FMS>0.70 & EqUS 3360 (33.6%) 57.08

A particular objective of our work is to scale the
runtime EBMT system to a larger amount of train-
ing examples. We experiment with the two ap-
proaches described in Section 4 to improve the run
time of the system. Table 5 compares the run time of
the three systems (EBMTTM, EBMTTM + groupi

and EBMTTM + index) for both En–Tr and En–Fr
translation. Note that the SMT decoder takes 140
seconds and 310 minutes respectively for En–Tr and
En–Fr translation test sets.

Table 5: Running time of the three different systems.
System Language pairs

En–Tr En–Fr
(seconds) (minutes)

SMT 140.0 310.0
EBMTTM 295.9 2267.0
EBMTTM + group0 34.0 63.4
EBMTTM + group1 96.2 183.5
EBMTTM + group2 148.5 301.4
EBMTTM + index 2.7 2.6

Both the grouping and indexing methodologies
proved successful for system scalability with a max-
imum speedup of almost 2 orders of magnitude. We
also need to estimate the accuracy while combining
grouping and indexing techniques with the baseline
system (EBMTTM + SMT) to understand their rel-
ative performance. Table 6 provides the system ac-
curacy using the grouping and indexing techniques
for both the language pairs. We report the transla-
tion quality under three conditions. Similar trends
have been observed for other conditions.

6.1 Observations and Discussions

We find that the EBMTTM system has a lower ac-
curacy on its own compared to baseline SMT for
both the language pairs (Table 2). Nevertheless,
there are sentences which are better translated by the
EBMTTM approach compared to SMT, although
the overall document translation score is higher with
SMT. Thus, we combined the two systems based on
different features and found that the combined sys-
tem performs better. The highest relative improve-
ments in BLEU score are 3.47% and 1.05% respec-
tively for En–Tr and En–Fr translation. We found
that if an input has a high fuzzy match score (FMS)
with the example-base, then the EBMTTM system
does better compared to SMT. With our current ex-
perimental setup, we found that an FMS over 0.8
showed an improvement for En–Tr and a FMS over
0.6 showed improvement for En–Fr over the SMT
system. Figure 2 shows the effect in the translation
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Table 6: BLEU scores of the three different systems for En–Tr and En–Fr under different conditions. i
denotes the number of bins considered during grouping.

Condition System

EBMTTM + SMT EBMTTM + SMT EBMTTM + SMT
+groupi +index

i=0 i=±1 i=±2

En–Tr

FMS>0.85 24.22 24.18 24.18 24.23 24.24
FMS>0.80 OR (FMS>0.70 & EqUS) 23.87 23.34 23.90 24.40 24.37

FMS>0.85 & EqUS 24.41 24.17 24.38 24.34 24.39

En–Fr

FMS>0.85 57.79 56.47 57.48 57.76 57.92
FMS>0.80 OR (FMS>0.70 & EqUS) 57.46 55.69 57.07 57.33 57.56

FMS>0.85 & EqUS 57.24 56.48 57.23 57.29 57.32

quality when different FMS thresholds were used to
combine the two systems.

However, FMS might not be the only factor for
triggering the EBMTTM system. We considered
EqUs as another factor which showed improvement
for En–Tr but showed negative effect for En–Fr.
Though an FMS over 0.7 for En–Tr shows no im-
provement in overall system accuracy, inclusion of
the EqUs feature along with FMS shows improve-
ment. Thus, the EBMTTM system is sometimes
more effective when the number of unmatched seg-
ment matches in s, sc and tc.

These observations show the effective use of our
EBMT approach in terms of translation quality.
However, we found that the EBMTTM system has
a very considerable runtime complexity. In order to
translate 414 test sentences from English into Turk-
ish, the basic EBMT system takes 295.9 seconds.
The situation becomes worse when using the large
example-base for En–Fr translation. Here, we found
that the system takes around 38 hours to translate
10k source English sentences into French. This is
a significant time complexity by any standard for a
runtime approach. However, both grouping and in-
dexing reduce the time complexity of the approach
considerably. The time reduction with grouping de-
pends on the number of bins considered to find the
closest sentence during the matching stage. Systems
with a lower number of bins take less time but cause
more of a drop in translation quality. The effect is

more prominent with the En–Fr system which uses
a larger example-base. We found a drop of abso-
lute 1.32 BLEU points while considering a single
bucket whose length is equal to the length of the
test sentence. This configuration takes 63 minutes to
translate 10k English sentences into French. There
is only a drop of 0.03 BLEU points when consider-
ing the 5 nearest bins (±2) for a given test sentence.
Nevertheless, there is not much of a reduction but it
increases the run time to 5 hours for the translation
of 10k sentences. Thus, the group-based method is
not effective enough to balance system accuracy and
run time.

Incorporation of the indexing technique into the
matching stage of EBMT shows the highest effi-
ciency gains in run time. Translating 10k sen-
tences from English into French takes only 158 sec-
onds. It is also interesting to note that with index-
ing, the BLEU score remained the same or even in-
creased. This is due to the fact that, compared to
FMS-based matching, a different closest-matching
sentence sc is selected for some of the input sen-
tences while using indexing, thus resulting in a dif-
ferent outcome to the system. Figure 3 compares
the number of times the EBMTTM + SMT + index
system is used in the hybrid system and the num-
ber of same closest-matching sentences selected by
EBMTTM + SMT + index systems under different
conditions for En–Tr. The use of index-based candi-
date selection for EBMT matching shows effective
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Figure 2: Effect of FMS in the combined EBMTTM + SMT system.

Table 7: The effect of indexing in selection sc and
in final translation.

Input: zeffix belongs to a group of medicines called
antivirals.

Ref : zeffix appartient à une classe de
médicaments appelés antiviraux.

baseline EBMTTM system
sc: simulect belongs to a group of medicines

called immunosuppressants.
st: simulect fait parti d ’ une classe de

médicaments appelés immunosuppresseurs.
Output: zeffix fait parti d ’ une classe de

médicaments appelés antiviraux.
EBMTTM + SMT + index system
sc: diacomit belongs to a group of medicines

called antiepileptics.
st: diacomit appartient à un groupe de

médicaments appelés antiépileptiques.
Output: zeffix appartient à un groupe de

médicaments appelés antiviraux.

improvement in translation time, and BLEU scores
remained the same or increased. Due to the selec-
tion of different closest-matching sentence sc, some-
times the system produces better quality translation
which increases the system level BLEU score. Ta-
ble 7 shows one such En—Fr example where an
index-based technique produced a better translation
than the baseline (EBMTTM + SMT) system.

7 Conclusion

Our experiments show that EBMT approaches work
better compared to the SMT-based system for cer-
tain sentences when a high fuzzy match score is

Figure 3: Number of times EBMTTM + SMT + index
used in the hybrid system and the number of times
the same closest-matching sentences are selected by the
systems. a=FMS>0.85, b=FMS>0.85 & EqUS and
c=FMS>0.80 OR (FMS>0.70 & EqUS)

obtained for the input sentence with the example-
base. Thus a feature-based combination of EBMT-
and SMT-based systems produces better translation
quality than either of the individual systems. Inte-
gration of a SMT technology-based sub-sentential
TM with the EBMT framework (EBMTTM) has im-
proved translation quality in our experiments.

Our baseline EBMTTM system is a runtime ap-
proach which has high time complexity when us-
ing a large example-base. We found that the inte-
gration of IR-based indexing substantially improves
run time without affecting BLEU score. So far our
systems have been tested using moderately sized
example-bases from a closed domain corpus. In our
future work, we plan to use a much larger example-
base and wider-domain corpora.
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