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Abstract 

This paper describes an error detection mech-

anism which helps in validation of dependency 

treebank annotation. Consistency in treebank 

annotation is a must for making data as error-

free as possible and for assuring the usefulness 

of treebank. This work is aimed at ensuring 

this consistency and to make the task of vali-

dation cost effective by detecting major errors 

induced during completely manual annotation. 

We evaluated our system on the Hindi de-

pendency treebank which is currently under 

development. We could detect 76.63% of er-

rors at dependency level. Results show that 

our system performs well even when the train-

ing data is low. 

1 Introduction 

For effective processing of text, tools at different 

conceptual levels, say from letter/syllable level 

to discourse level are needed. Output of these 

tools can then be used in different NLP based 

applications, beginning with simple spell check-

ers to sophisticated machine translation systems. 

These tools could be completely rule-based, sta-

tistical or hybrid systems. To build such tools, 

manually annotated gold standard corpora are 

required. Annotated corpora are mostly obtained 

by either manual or semi-automated processes. 

Hence, there are chances that errors are intro-

duced either by human annotators or by the pre-

processed output of automated tools. It is crucial 

that the annotated corpora are free of anomalies 

(errors) and inconsistencies. In the process of 

making these corpora error free, experts need to 

validate them. As the data is already annotated 

carefully (which is a time-consuming task), we 

need tools that can supplement the validators‟ 

task with a view of making the overall task fast, 

without compromising on reliability. With the 

help of such a tool, a validator can directly go to 

error instances and correct them. Therefore, we 

need the tool to have high recall. It is easy to see 

that a human validator can reject unintuitive er-

rors (false positives) without much effort; one 

can therefore compromise a little bit on preci-

sion.  

In this paper, we propose an error detection 

mechanism to detect dependency errors in the 

Hindi treebank (Bhatt et al., 2009) annotation. 

We classify the identified errors under specific 

categories for the benefit of the validators, who 

may choose to correct a specific type of error at 

one time. Though we did experiments on Hindi 

treebank, our approach can be applied to any un-

der developing treebank with minimal effort.  

The paper is arranged as follows. Section 2 

gives a brief overview of the Hindi dependency 

treebank. Details of the information annotated, 

annotation procedure and types of possible errors 

in the treebank are discussed in section 3. We 

present the related work in section 4. In section 

5, we describe our approach. Results of our ap-

proach are presented in section 6. Section 7 fo-

cuses on a general discussion about the results 

and approach and proposes a future direction to 

our work. We conclude our paper in section 8. 
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2 Hindi Dependency Treebank  

A multi-layered and multi-representational tree-

bank for Hindi (Bhatt et al., 2009; Xia et al., 

2009) is being developed. The treebank will have 

dependency, verb-argument (PropBank, Palmer 

et al., 2005) and phrase structure (PS) representa-

tion. Automatic conversion from dependency 

structure (DS) to phrase structure (PS) is 

planned. Hence, it is important to have a high 

quality version of the dependency treebank so 

that the process of automated conversion to PS 

does not induce errors in PS. The dependency 

treebank contains information encoded at the 

morpho-syntactic (morphological, part-of-speech 

and chunk information) and syntactico-semantic 

(dependency) levels. 

3 Dependency Representation 

In this section we first describe the information 

encoded in the dependency representation of the 

treebank. We then briefly describe the annotation 

procedure for encoding this information. We also 

describe the possible errors at each level of anno-

tation. 

3.1 Information encoded in dependency 

representation 

During dependency annotation, Part-Of-speech 

(POS), morph, chunk and inter-chunk dependen-

cy relations are annotated. Some special features 

are also annotated for some specific nodes. De-

tails can be seen in this section. 

 

Part-Of-Speech (POS) Information: POS tags 

are annotated for each node following the POS 

and chunk annotation guidelines (Bharati et al., 

2006). 

 

Morph Information: Information pertaining to 

the morphological features of the nodes is also 

encoded using the Shakti standard format (SSF) 

(refer, Bharati et al., 2007). These morphological 

features have eight mandatory feature attributes 

for each node. These features are classified as 

root, category, gender, number, person, case, 

post position (for a noun) or tense aspect modali-

ty (for a verb) and suffix. 

 

Chunk Information: After annotation of POS 

tags, chunk boundaries are marked with appro-

priate assignment of chunk labels (Bharati et al., 

2006). This information is also stored in SSF 

(Bharati et al., 2007). 

Dependency Relations: After POS, morph and 

chunk annotation, inter-chunk dependency anno-

tation 
1
 is done following the set of dependency 

guidelines in Bharati et al. (2009). This infor-

mation is encoded at the syntactico-semantic lev-

el following the Paninian dependency framework 

(Begum et al., 2008; Bharati et al., 1995). After 

inter-chunk annotation, plan is to use a high ac-

curacy intra-chunk expander, which marks the 

intra-chunk dependencies
2

 and expands the 

chunks arriving at sentence level dependency 

tree.  

Other Features: In the dependency treebank, 

apart from POS, morph, chunk and inter-chunk 

dependency annotations, some special features 

for some specific nodes are marked. For exam-

ple, for the main verb of a sentential clause, in-

formation about whether the clause is declara-

tive, interrogative or imperative is marked. Simi-

larly, whether the sentence is in active or passive 

voice is also marked. 

3.2 Annotation Procedure 

At POS, chunk and morphological levels, corre-

sponding state-of-the-art tools are run as a first 

step. An annotator then checks each node and 

corrects the tool‟s output. Another annotator 

(validator) takes the annotated data and validates 

it. At dependency level, due to unavailability of 

high accuracy parser, manual annotation fol-

lowed by validation is done. 

Annotation is being done using a tool called 

Sanchay
3
. Sanchay is an open source platform 

for working on languages, especially South 

Asian languages, using computers and also for 

developing Natural Language Processing (NLP) 

or other text processing applications. Apart from 

syntactic annotation interface (used for Hindi 

dependency annotation), it has several other use-

ful functionalities as well. Font conversion, lan-

guage and encoding detection, n-gram generation 

are a few of them. 

3.3 Types of possible errors at various lev-

els 

In this section we describe the types of annota-

tion errors at each level and provide examples for 

some specific types of errors. 

                                                 
1 Inter-chunk dependencies are the dependency relations 

marked between the chunks, chunk heads to be specific. 
2 Intra-chunk dependencies are the dependency relations 

marked with in the chunk. 
3 http://sanchay.co.in/. 
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POS Errors: In POS errors we try to identify 

whether the Part-Of-Speech (POS) tag is correct 

or not for each lexical item. For example, in the 

example sentence given below „chalaa‟ should 

be the main verb (VM) instead of an auxiliary 

verb (VAUX). 

raama          ghara         chalaa       gayaa. 

NNP             NN          VAUX       VAUX 

‘Ram’         ‘home’        ‘walk’      ‘went’. 

                   “Ram went home”. 

Morph Errors: Errors in the eight attribute val-

ues as mentioned in the previous section are clas-

sified as morph errors.  

Chunk Errors: There can be two types of chunk 

errors. One is chunk type and the other is chunk 

boundary. In chunk type we identify whether the 

chunk label is correct or not. In chunk boundary 

we identify whether the node should belong to 

the same chunk or different chunk. For example, 

consider the following chunk, 

 

 ((    NP 

 meraa „my‟   PRP  

 bhaaii „brother‟ NN 

 )) 

 

In Hindi, „meraa‟ and „bhaaii‟ should be in 

two separate noun chunks (refer Bharati et al., 

2006). So, in the above example, the chunk label 

of „bhaaii‟ is correct, but the boundary is wrong. 

Dependency Errors: In dependency errors we 

try to identify whether a node is attached to its 

correct parent and whether its dependency label 

is correct or not. In addition to dependency rela-

tion errors, we also identify errors in general lin-

guistic constraints and framework specific errors, 

for example, the tree well-formedness assump-

tion in dependency analysis. Framework specific 

example would be that children of a conjunct 

should be of similar type (Bharati et al., 2009). 

For example, a conjunct can have two nouns as 

its children but not a noun and a verb as its chil-

dren.  

Other Feature Errors: Errors in the special fea-

tures discussed above are classified under other 

feature errors. 

Focus of the current paper is to describe the 

methodology employed to detect errors in the 

dependency level (inter-chunk dependencies) of 

the DS representation. Error detection at intra-

chunk dependencies is out of scope of this paper. 

In the rest of the paper, by dependency level, we 

mean inter-chunk dependencies unless explicitly 

stated. In the following section, we first describe 

the related work in the area of detecting errors in 

treebanks, in general. Then, we present the work 

on Hindi in particular. 

4 Related Work: 

Validation and correction tools are an important 

part for making treebanks error-free and con-

sistent. With an increase in demand for high 

quality annotated corpora over the last decade, 

major research works in the field of developing 

lexical resources have focused on detection of 

errors.  

One such approach for treebank error detec-

tion has been employed by Dickinson and 

Meurers (2003a; 2003b; 2005) and Boyd et al. 

(2008). The underlying principle in these works 

is to detect “variation n-grams” in syntactic an-

notation across large corpora. These variations 

could be present for a continuous sequence of 

words (POS and chunks) or for a non-continuous 

sequence of words (dependency structures), more 

the number of variation for a particular contigu-

ous or non-contiguous sequence of tokens (or 

words), greater the chance of the particular varia-

tion being an error. They use these statistical pat-

terns (n-grams) to detect anomalies in POS anno-

tation in corpora such as the Penn treebank 

(Marcus et al., 1993), TIGER corpus (Brants et 

al., 2002) etc. For discontinuous patterns as 

found most commonly in dependency annotation 

(Boyd et al., 2008), they tested their strategy on 

Talbanken05 (Nivre et al., 2006) apart from the 

corpora mentioned above. This we believe was 

the first mainstream work on error detection in 

dependency annotation.  

Some other earlier methods employed for er-

ror detection in syntactic annotation (mainly POS 

and chunk), are by Eskin (2000) and van Hal-

teren (2000). Based on large corpora, van Noord 

(2004) and de Kok et al. (2009) employed error 

mining techniques. The basic underlying strategy 

was to obtain a set of parsed and un-parsed sen-

tences using a wide-coverage parser and compute 

suspicion ratio for detecting errors. Other exam-

ples of detection of annotation errors in tree-

banks include Kaljurand (2004) and Kordoni 

(2003).  

Most of the aforementioned techniques work 

well with large corpora in which the frequency of 

occurrence of words is very high. Hence, none of 

them account for data sparsity except for de Kok 

et al. (2009). Moreover, the techniques employed 
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by van Noord (2004) and de Kok et al. (2009) 

rely on the output of a reliable state-of-the-art 

parser which may not be available for many lan-

guages just as in the case of Hindi, the language 

in question for our work. 

It becomes a challenge to develop error detec-

tion tools for small treebanks like Hindi. There is 

an effort by Ambati et al. (2010) in this direction 

for Hindi treebank validation. They used a com-

bination of a rule-based and hybrid system to 

detect treebank errors. Rule-based system works 

on the development of robust (high precision) 

rules which are formed using the annotation 

guidelines and the framework, whereas the hy-

brid system is a combination of statistical mod-

ule with a rule-based post-processing module. 

The statistical module helps in detecting a wide 

array of potential errors and suspect cases. The 

rule-based post-processing module then prunes 

out the false positives, with the help of robust 

and efficient rules thereby ensuring higher preci-

sion value.  

Note that both “Rule-Based Approach” and 

“Rule-based post-processing” modules have sep-

arate goals. Goal of “Rule-Based Approach” is to 

detect errors using high precision rules. Whereas 

goal for the later, is to prune the false positives 

given by the statistical approach. Former one 

tries to increase the precision of the system, 

whereas the later tries to increase the recall of the 

system. Rules used in “Rule-Based Approach” 

can be used in post-processing module, but vice 

versa is not true. The entire framework is 

sketched in Figure 1. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Error detection framework by Am-

bati et al. (2010) 

 Ambati et al. (2010) could detect errors in POS 

and chunk annotations with reasonable accura-

cies. But at dependency level recall of overall 

system (combination of rule-based and hybrid 

approaches) is 40.33% only. This is mainly due 

to low performance of the statistical module. In 

statistical module, they extracted frequencies of 

child and parent node bi-grams in the dependen-

cy tree. To handle scarcity issues, they explored 

different similarity measures and merged similar 

patterns. We call this as “Frequency Based Sta-

tistical Module (FBSM)”. Major limitation of 

this approach is that one cannot give richer con-

text due to the problem of scarcity. To find 

whether the dependency label is correct or not, 

apart from node and its parent information, con-

textual features like sibling and child information 

is also helpful. Current state-of-the-art depend-

ency parsers like MSTParser
4
 and MaltParser

5
 

use these features for dependency labeling 

(McDonald et al., 2006; Nivre et al., 2007; 

Kosaraju et al., 2010). Finding similarity be-

tween patterns and merging similar patterns 

would not help when we wish to take a much 

richer context.  

In this paper, we propose a probability based 

statistical module (PBSM) to overcome this 

problem of FBSM. With this approach, we eval-

uate and compare the performance of PBSM and 

FBSM. Now in place of FBSM, we integrate 

PBSM into overall system of Ambati et al. 

(2010) and compare the results. 

5 Our Approach: Probability Based 

Statistical Module (PBSM):  

In this probability based statistical module, we 

first extract the contextual features which help in 

identifying the correct tag. For example, at the 

dependency level, apart from node and its parent 

features, sibling and child features with their re-

spective dependency labels are very useful in 

predicting the correct dependency label. Using 

these contextual features from the training data, 

we create a model using maximum entropy clas-

sification algorithm
6

 (MAXENT). This model 

gives the probabilities of all possible output tags 

(here dependency labels) for a given context. For 

each node in the test data, we first extract the 

context information and the input tag of that 

node. We then extract the list of all possible de-

pendency tags with their probabilities for this 

                                                 
4 http://sourceforge.net/projects/mstparser/ 
5 http://maltparser.org/ 
6 http://maxent.sourceforge.net/  

Dependency 

Treebank 

 

Rule-Based 

Approach 

Hybrid Approach 

 
Statistical Approach 

Rule-Based post-

processing 

Errors 
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context using the trained model. From this list 

we extract first best and second best tags and 

their corresponding probabilities.  

If the input tag doesn't match with the first 

best tag, and if the probability of the first best tag 

is greater than a particular threshold, we then 

consider it as a possible error node. These could 

be valid errors or the cases which require much 

richer context to find the correct tag. 

If both the input tag and the first best tag given 

by the model match, we then fix a maximum and 

minimum threshold on the probability values. If 

the probability of the first best tag is greater than 

the maximum threshold, we do not consider it as 

a potential error. The chance of it being an error 

is very low as the system is very confident about 

its decision. If the probability of the first best tag 

is less than the minimum threshold, it is consid-

ered as a possible error. This could either be the 

case of an error pattern or a correct but less fre-

quent pattern. If it is the latter, then the rule-

based post-processing tool will remove this false 

positive.  

If the probability value lies between the maxi-

mum and minimum thresholds, we calculate the 

difference between the probabilities of the first 

and second best tags. If the difference is less than 

a particular value, it means that there is high am-

biguity between these two tags. As there is high 

ambiguity there is a greater chance of making an 

error. Hence, we identify this case as a possible 

error. In this way using the probabilistic ap-

proach, we not only detect the possible errors, 

but also classify them into different categories. 

 

find_errors (input)  
 

    for each sentence in the input:  

       for each node in the sentence:  

1. Get the node's context  

2. Get the input_tag  

3. tags_probs = get_probabilities(context);  

4. 1stBestTag = tags_probs[0][0];  

5. 1stBestProb = tags_probs[0][1];  

6. 2ndBestTag = tags_probs[1][0];  

7. 2ndBestProb = tags_probs[1][1];  

8. if input_tag != 1stBestTag:  

               if 1stBestProb > thres_minX:  

                  mark node as error node (less context); 

9. else:  

               if 1stBestProb < thres_max:  

                   if 1stBestProb < thres_min:  

                       mark node as error node (less frequent);  

                   else if 1stBestProb-2ndBestProb < thres_dif:  

                       mark node as error node (ambiguous);  

 

 

get_probabilities(context) 
 

1. Load the trained maxent model  

2. Predict probabilities of all tags for the context.  

3. Store the tags and their probabilities in an array.  

4. Return the array. 
 

   

Figure 2. Algorithm employed for PBSM 

 

 

Figure 2 shows the algorithm of probability 

based statistical module (PBSM). Use of richer 

contextual information and probabilities to detect 

errors makes this approach more effective from 

the previous approaches employed for error de-

tection (Dickinson and Meurers, 2003a; 2003b; 

2005; Boyd et al., 2008; Ambati et al., 2010). 

Using this approach, not only can one detect 

errors but also classify them under specific cate-

gories like less context, less frequent and ambig-

uous cases, which will help the validation pro-

cess. This helps the validators to correct the er-

rors in a focused way. For example, a validator 

can check and correct all the error in “less fre-
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quent” category first and then start correcting 

“ambiguous cases”. It also helps validator to de-

cide the amount of energy he/she needs to spend. 

For example, correcting “ambiguous cases” 

would require more time compared to other cate-

gories. This could be because the validator might 

look for sentence or sometimes discourse level 

information to resolve the ambiguity. He/she 

could also contact peers or an expert to resolve it. 

Hence, more time might be required to resolve 

“ambiguous cases” compared to others. 

6 Experiments and Results  

We used same data used by Ambati et al. (2010) 

for evaluation. This is a 65k-token manually an-

notated and validated sample of data (2694 sen-

tences) derived from the Hindi dependency tree-

bank. The data is divided into 40k, 10k and 15k 

for training, development and testing respective-

ly. We used training data to train the model and 

development data to tune the parameters like 

threshold values. For our experiments, 

thres_max= 0.8, thres_min = 0.2, thres_minX = 

0.25 and thres_dif = 0.25 gave the best perfor-

mance. 

Table 1 shows the performance of PBSM and 

compares it with FBSM. FBSM of Ambati et al. 

(2010) could identify only 18.74% of the de-

pendency errors. The precision recorded for this 

approach was also quite low. But with our 

PBSM, we could detect 57.06% of the depend-

ency errors with a reasonable precision value. 

Note that, our main aim is to achieve a high re-

call value. The false positives can be easily dis-

carded by the validators. 

 

 
Approach Total  

Errors 

(Total 

instances) 

System 

output 

Correct 

Errors 

Recall 

FBSM of  

Ambati et al. 

(2010)  

843  

(7113) 

2546 158 18.74% 

PBSM: Our  

Approach  

843  

(7113) 

2000 

 

481 57.06% 

 

Table 1. Error detection at dependency level us-

ing FBSM of Ambati et al. (2010) and our PBSM 

 

Overall system recall of Ambati et al. (2010) 

for error detection at dependency level is 

40.33%. This system uses FBSM in hybrid ap-

proach. We replaced FBSM with our PBSM and 

re-evaluated the overall system of Ambati et al. 

(2010). The modified system could achieve a 

recall of 76.63% with reasonable precision of 

29.84%. Results are shown in Table 2. 

 
Approach Total  

Errors 

System 

output 

Correct 

Errors 
Recall 

Ambati et al. 

(2010) overall 

system with FBSM 

843  2728 340 40.33% 

Ambati et al. 

(2010) overall 

system with PBSM  

843  2165 646 76.63% 

 

Table 2. Error Detection at dependency level us-

ing overall system of Ambati et al. (2010) with 

FBSM and PBSM 

 

7 Discussion and Future work  

Proposed PBSM identifies 38% more errors than 

the FBSM at dependency level. As we have less 

data, hypothesis for FBSM, “Low frequency is a 

possible sign of error”, didn't work. Unsurpris-

ingly, several valid patterns had low counts. Ma-

jor advantage of PBSM over FBSM is the use of 

richer context. Richer context helped PBSM to 

predict the errors more accurately. But in FBSM 

we couldn't use it because of sparsity issues. Re-

sults show that our approach works well even 

when the size of the data is low. 

The tool is being constantly improved. We are 

analyzing the errors which are missed out and 

planning to improve. Currently, precision of the 

system is low. Improving the “Rule-based post-

processing” step of hybrid approach can signifi-

cantly increase the precision. We can build an 

interface where a validator while validating the 

data can automatically add new rules to this post-

processing step. We would also like to evaluate 

our system on the time taken for validation. That 

is the reduction in the validation time using this 

system. We are also planning to build a user-

friendly interface which helps validators in cor-

recting the errors.  

This system can also help in improving the 

guidelines which subsequently improves the an-

notation. While correcting the errors if the vali-

dator comes across some ambiguous decisions or 

some common errors or comes up with new deci-

sions, guidelines can be modified accordingly to 

reflect the changes. Data annotated based on new 

guidelines will reduce the occurrence of these 

errors and eventually the quality of annotation of 

individual as well as entire data will improve. 
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Figure 3, shows the complete cycle of this pro-

cess. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Cycle for improving guidelines for an-

notation 

 

Although we worked and presented our results 

only on the Hindi Treebank, our approach can be 

generalized to any language and to any frame-

work. Parameter tuning like the threshold values 

is the only part which depend on the size of data, 

language and the framework.  

8 Conclusions 

We proposed a novel approach to detect errors in 

the treebanks. This approach can significantly 

reduce the validation time. We tested it on Hindi 

dependency treebank data and were able to de-

tect 76.63% of errors at dependency level. This 

tool can be generalized to detect errors in annota-

tion of any language/framework. Results show 

that the proposed approach works well even 

when the size of the data is low. 
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