
Proceedings of the 12th International Conference on Parsing Technologies, pages 241–252,
October 5-7, 2011, Dublin City University. c© 2011 Association for Computational Linguistics

Detecting Dependency Parse Errors with Minimal Resources

Markus Dickinson and Amber Smith
Indiana University

Bloomington, IN USA
{md7,smithamj}@indiana.edu

Abstract

To detect errors in automatically-obtained
dependency parses, we take a grammar-
based approach. In particular, we develop
methods that incorporate n-grams of differ-
ent lengths and use information about pos-
sible parse revisions. Using our methods
allows annotators to focus on problematic
parses, with the potential to find over half
the parse errors by examining only 20% of
the data, as we demonstrate. A key result
is that methods using a small gold gram-
mar outperform methods using much larger
grammars containing noise. To perform
annotation error detection on newly-parsed
data, one only needs a small grammar.

1 Introduction and Motivation

There is a need for high-quality dependency an-
notation for the training and evaluation of depen-
dency parsers (Buchholz and Marsi, 2006), ideally
large amounts of annotated data. This is a lofty
goal for any language, especially languages with
few, if any, annotated resources. Citing Abeillé
(2003), Hwa et al. (2005) say: “it appears that ac-
quiring 20,000-40,000 sentences — including the
work of building style guides, redundant manual
annotation for quality checking, and so forth – can
take from four to seven years.” As pointed out by
Dickinson (2010), a major bottleneck in obtain-
ing annotation involves the need for human correc-
tion, leading to the following process: 1) automati-
cally parse corpora (van Noord and Bouma, 2009),
which will contain errors, and 2) identify prob-
lematic parses for human post-processing. We de-
velop this second step of detecting errors.

In particular, there is the problem of hav-
ing little annotated data to work with, as in the
cases of: lesser-resourced languages (e.g., Ambati
et al., 2010; Simpson et al., 2009), new annotation
schemes, and new domains with limited in-domain

annotated data (e.g., Plank and van Noord, 2010).
In these situations, there is a large cost to annotate
data, and parsing results are worse than in cases
with more annotated training data (Nivre, 2010).

We develop error detection methods based on a
coarse grammar, comparing parsed rules to rules
in a grammar in order to identify anomalies, as
outlined in section 2. This is akin to theoretically-
driven work in treebanking, where a grammar is
used to guide treebank annotation (e.g., Oepen
et al., 2004; Rosén et al., 2005; Bond et al., 2004),
but it shares an insight with work incorporat-
ing grammatical information to improve parsing,
namely that even simple grammatical information
can inform parse output (e.g., Plank and van No-
ord, 2010; Ambati, 2010; Seeker et al., 2010).

Our methods are simple and efficient, requir-
ing no additional parsing technology. This is es-
pecially beneficial for lesser-resourced languages,
and, as we describe in section 3, makes the meth-
ods applicable to any treebanking scenario. Also,
we want to know “which linguistic constructs are
hard to analyze” (Goldberg and Elhadad, 2010a).
Framing parse failures in terms of grammatical
anomalies makes them easily interpretable, lead-
ing to quicker annotation decisions, as systematic
problems can be seen at a glance (cf. Wallis, 2003;
Hara et al., 2009) and perhaps also helping unearth
latent theoretical decisions (cf., e.g., Leech, 2004).

We improve upon previous methods in two
ways, as described in section 4. First, we stream-
line the different sources of information by adding
the counts for all n-grams within a rule: this
balances concerns over sparse data for longer n-
grams with the fact that longer n-grams are more
informative. Secondly, taking the scores initially
assigned by our methods, we compare them with
scores for possible parse revisions. This checks
whether the parser could have made a better deci-
sion and more directly connects to parse revision
work (e.g., Attardi and Ciaramita, 2007). As we
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show in section 5, these methods have the potential
to help annotation quality go from, e.g., 65% ac-
curacy to 85% by presenting annotators with cases
highly likely to be erroneous. Based on the results
using a noisy grammar in section 6, we also con-
clude that a small gold grammar is more effective
than a large noisy one, a useful result since such
resources can quickly be developed manually.

2 Error Detection

We build from methods for detecting ad hoc, or
anomalous, rules in dependency parses (Dickin-
son, 2010). Dependency rules represent a head
with its arguments and adjuncts, and ad hoc rules
are “used for specific constructions and unlikely
to be used again,” indicating annotation errors and
rules for ungrammaticalities (Dickinson, 2011).

To understand a dependency rule, consider fig-
ure 1 from the Talbanken05 corpus (Nilsson and
Hall, 2005), for the Swedish sentence in (1).1

(1) Det
it

går
goes

bara
just

inte
not

ihop
together

.

‘It just doesn’t add up.’

SS MA NA PL

Det går bara inte ihop
PO VV AB AB AB

Figure 1: Dependency graph example

A grammar rule is comprised of a dependency
relation rewriting as a head with its sequence of
POS-dependent pairs, as in figure 2.

1. TOP→ root ROOT:VV
2. ROOT→ SS:PO VV MA:AB NA:AB PL:AB
3. SS→ PO 5. NA→ AB
4. MA→ AB 6. PL→ AB

Figure 2: Rule representation for (1)

The error detection methods work by compar-
ing an individual parsed rule to rules in a (training)
grammar. Based on comparisons to similar rules,
a score is assigned to each individual element of
a rule, and elements with the lowest scores are

1Category definitions are in appendix A.

flagged. The intuition is that there should be reg-
ularities in dependency structure; non-conformity
to regularities indicates a potential problem.

Dickinson (2010) compares pairs of depen-
dency relations and POS tags (instead of using
only, e.g., dependencies), and we follow suit. Re-
latedly, although scores can be obtained for each
unit in its role as a dependent or as a head, we
score elements based on how they function as de-
pendents (see also section 2.1). In figure 2, for
instance, the PO position is scored with respect to
its role in rule #2, where it is a dependent, and not
rule #3, where it is a head.

As Dickinson (2010) says, “We do not want to
compare a rule to all grammar rules, only to those
which should have the same valents.” For a given
parse rule, we can compare it to rules with the
same head or rules which have the same “mother”
(left-hand side (LHS)) dependency relation. We
follow Dickinson (2010) in comparing to rules ei-
ther with the same LHS or with the same head,
taking the greater value of scores; this gives a rule
more chances to prove its validity. The formula is
given in (2), where ei refers to the ith element in a
rule (r = e1...em) and the score is based on having
the same head (h) or the same LHS (lhs).

(2) S(ei) = max{s(ei, h), s(ei, lhs)}

Most importantly, there is the method of com-
parison itself. Dickinson (2010) explores the bi-
gram and whole rule methods. To see how these
work, consider the bigram method for the rule in
(3), with implicit START and END tags. To score
AT:AJ, the bigram method counts up how often
the bigrams DT:PO AT:AJ and AT:AJ VN appear
in all OO (LHS) or VN (head) rules in the gram-
mar. The whole rule method works similarly, but
comparing full subsequences. We develop more
general methods in section 4, with the same rough
idea: rules with low scores are likely errors.

(3) OO→ DT:PO AT:AJ VN

The formula for the bigram method is given in
(4), where c = comparable item (head or LHS), and
C(x, c) refers to the count of x, c in the grammar.
Which grammar we use is discussed in section 3.

(4) s(ei, c) = C(ei−1ei, c) + C(eiei+1, c)

2.1 Unary Rules
Consider again the “unary” rules in the grammar,
as in SS → PO in figure 2. Dickinson (2010) in-
cluded these rules, as this captures the fact that,
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e.g., PO has no dependents. However, for the way
rules are scored, we can remove these unary rules.

Because unary rules only contain heads, only
items which are the heads in rules are actually af-
fected by such rules. For example, with SS →
PO, only PO-headed rules will be affected. But, as
mentioned above, we score elements by how they
function as dependents. We can thus ignore such
rules. Removing them from a grammar also gives
a better indication of the size of a rule set.

3 Scenarios

As there are different scenarios for building an-
notated corpora—corpora for new languages, cor-
pora of a much larger nature than previously cre-
ated, corpora in a new domain, etc.—the assump-
tions of one’s resources can be quite different. We
sketch different possibilities here.

3.1 Types of Grammars

Our methods are based on having a grammar to
compare parse rules to. Automatically-parsed data
can be obtained in different ways, affecting gram-
mar resources. First, parsed data can be obtained
from a parser trained on gold data. In this case, a
GOLD GRAMMAR can be extracted from the gold
data. For error detection, we can then compare the
parsed data to this fixed grammar (section 5).

One subtype of this is the situation where the
gold grammar is small (SMALL GRAMMAR). To
be in this situation, one could develop a small tree-
bank and extract a grammar from it, or one could
manually write (coarse) grammar rules. We work
with corpus-extracted grammars, but one advan-
tage of the type of approach we take—unlike more
theoretically grammar-driven ways of treebanking
(e.g., Oepen et al., 2004; Rosén et al., 2005; Bond
et al., 2004)—is that grammar-writing is simpler,
using only very coarse categories.

The second type of situation (NOISY GRAM-
MAR) arises when not all the rules in the grammar
are valid, as when rules are extracted straight from
automatically-parsed data. If the data has been
parsed, some parser exists, but it may be the case
that: a) data is exchanged, but the technology is
not; or b) the data is partially hand-corrected. In
either case, a NOISY GRAMMAR can be extracted
from the parsed data (section 6).

This leads to the possibility of hybrid gram-
mars, where some rules have been hand-checked
and others have not—i.e., a concatenation of a

gold and a noisy grammar. Since gold and noisy
grammars are more primary, we focus on them.

Finally, there may be a hand-crafted or spe-
cialized parser, tuned to a particular annotation
scheme. This can arise from continual develop-
ment in a large project (e.g., the Alpino project
(Plank and van Noord, 2010)) or when one uses a
parser without having access to the corpus it was
trained on. If the parser has an accessible gram-
mar, there is a GOLD GRAMMAR; otherwise, a
NOISY GRAMMAR can be extracted.

3.2 Grammar-Based Error Detection

The reason we phrase error detection in terms of
grammars is that some grammar is always avail-
able, whereas we cannot always assume a mod-
ifiable parser. Error detection based on coarse
grammars is applicable to any of these scenar-
ios, as opposed to, e.g., methods which rely on
details of how a parser is likely to fail (e.g., At-
tardi and Ciaramita, 2007; Goldberg and Elhadad,
2010b).2 Additionally, because we can always ob-
tain a grammar from parsed data, we will have ac-
cess to the frequency of occurrence of each rule.3

4 Methods of Comparison

In this section, we develop the best methods of
rule comparison (section 4.1) and introduce a new,
orthogonal way of flagging possible errors (sec-
tion 4.2). In order to compare directly to the pre-
vious work, we use the Swedish Talbanken corpus
(Nilsson and Hall, 2005) with the same data split
as in the CoNLL-X Shared Task (Buchholz and
Marsi, 2006); in section 5 and beyond, we switch
the training and testing data. In all experiments,
we use gold standard POS tags.

To keep the data sets clear across different train-
ing regiments, we refer to them as the large and
small Talbanken data sets. The large Talbanken
data has 11,042 sentences, 191,467 words, 96,517
(non-unary) rule tokens and 26,292 rule types.
The small data set has 389 sentences, 5,656 words,
3,107 rule tokens and 1,284 rule types. As we
show in section 5, even such a small grammar can
be highly effective in detecting parse errors.

2Those methods are of course well-suited to the issue of
improving parsing technology.

3Even for hand-written grammars, the methods we de-
velop can be altered to be type-based instead of token-based.
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4.1 Method Improvement
As discussed in section 2, the main previous meth-
ods of flagging errors look for anomalous bigrams
or anomalous “whole rules.” Each method has its
limitations, looking only at local context (bigram)
or only at the whole context (whole rule). Yet there
is a straightforward, principled way to combine
the methods: add together all n-gram parts of a
rule (cf. Zhao et al., 2010; Bergsma et al., 2009).

To do this, during training we break a rule down
into its component n-grams (cf. steps 1 and 2 be-
low) and store the frequency of the rule for each
n-gram. For rule scoring, we then:

1. Add START and END context tags to the list
of elements in a rule.

2. Calculate all (contiguous) bigrams, trigrams,
etc., up to the length of the whole rule.

3. Calculate the frequency of all n-grams (based
on a training set) containing a given element.

This is encapsulated in the formula in (5).

(5) s(ei, c) =
∑

ngram:ei∈ngram∧n≥2
C(ngram, c)

For example, focusing on AT:AJ back in rule (3)
with the head VN as the comparable item (c), we
count up the grammar frequencies of n-grams, as
in (6). A benefit of this method is that, by using lo-
cal and global contexts, equally-frequent bigrams,
for example, are sorted out by whether they con-
tinue to occur in longer forms.

(6) s(AT:AJ, VN) = C(DT:PO AT:AJ, VN)
+ C(AT:AJ VN, VN)
+ C(START DT:PO AT:AJ, VN)
+ C(DT:PO AT:AJ VN, VN)
+ C(AT:AJ VN END, VN)
+ C(START DT:PO AT:AJ VN, VN)
+ C(DT:PO AT:AJ VN END, VN)
+ C(START DT:PO AT:AJ VN END, VN)

We refer to the new method as the all-gram
(All.) method, and results are reported in table 1
using MaltParser (Nivre et al., 2007). Our goal
is to improve annotation post-editing, and so we
report precision (P) and recall (R) of error detec-
tion, for positions below the threshold. Either an
attachment or labeling error counts as an error.
Precision is thus the complement of a labeled at-
tachment score (LAS); for example, by using no
score, the parser has an LAS of 82.0% and error

detection precision of 18.0%. Two F-scores are
provided—F1 and F0.5, which weights precision
twice as much—and the best value of each is re-
ported. We favor precision, so as to prevent anno-
tators from sorting through false positives.

Score Thr. pos. P R F1 F0.5

None n/a 5,656 18.0% 100% 30.5% 21.5%
All. 0 56 92.9% 5.1% 9.7% 21.0%

60 479 61.8% 29.1% 39.6% 50.5%
390 1,234 42.5% 51.7% 46.7% 44.1%

Tri. 0 215 77.2% 16.3% 27.0% 44.2%
5 478 66.3% 31.2% 42.4% 54.1%
49 1,202 44.1% 52.2% 47.8% 45.5%

High. 0 215 77.2% 16.3% 27.0% 44.2%
5 424 69.6% 29.0% 41.0% 54.4%
90 1,373 42.2% 57.0% 48.5% 44.5%

Table 1: Talbanken error detection results for different
scores: parser = MaltParser trained on large data; gram-
mar = large gold; evaluation data = small data (pos. =
positions below threshold (Thr.))

Comparing the results here on the same data in
Dickinson (2010), we have a slightly higher F1

score than the previous best method (46.7% vs.
46.4% [whole rule]) and a higher F0.5 than the best
method (50.5% vs. 49.9% [bigram]).

4.1.1 Excluding Bigrams
The methods are still very close, so we attempt to
improve further. Consider the tree in figure 3, for
the example in (7), where there is no verb, and a
preposition (PR) is the sentence’s root. The re-
sulting rule, which occurs 79 times in the training
data, is TOP→ root ROOT:PR.

(7) Ur
From

giftermålsbalken
marriage act

5
5

kap
ch.

<
<

1
1

och
and

<
<

2
2

‘From the marriage act, ch. 5, para. (?) 1 and 2’

When bigram information is included in calcu-
lating scores, both root ROOT:PR and ROOT:PR
END get counted 79 times, leading to high scores
for both PRs in (8), when only the first is cor-
rect. Bigrams do not distinguish the correct first
PR from the incorrect second PR attachment in
(8): both have 79 pieces of supporting evidence.

(8) TOP→ root ROOT:PR ROOT:PR

We need both left and right contexts in rule scor-
ing. We thus experiment with using both trigram
information as a model of its own (Tri.) and a
model which uses all trigrams and above (i.e., the
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ROOT PA DT RA DT RA ++ DT CC

root Ur giftermålsbalken 5 kap < 1 och < 2
PR NN RO NN NN EN ++ NN RO

Figure 3: Preposition-rooted sentence (from large Talbanken data set)

same as (5), but with n ≥ 3), which we refer to as
the high-gram method (High.). These are included
in table 1, where we can see improvements in pre-
cision and recall. For example, with a threshold
of 5, we find 29% of all errors by examining 424
instances (i.e., 7.5% of the parsed corpus).

Trigrams are the minimum length to obtain con-
textual information on each side, and longer n-
grams (for the high-gram method) give more pre-
cise indication that the rule context is valid. Even
though long n-grams are rare, they are useful,
leading to a positive, albeit small, improvement.

4.1.2 Notes on Evaluation
The intended use of the scores is for annotators
to start with the lowest-scoring positions (i.e., to-
kens) and work upwards. The F-measures give
some sense of this, but we need a way to evalu-
ate across different corpora. To account for this,
we do two things: first, we report the values for
the lowest threshold, so that one can get a sense of
the precision for the highest-priority cases. Sec-
ondly, we use Talbanken for development, find-
ing the best F0.5 score and calculating the percent-
age of the test corpus that the threshold identifies.
In the case of evaluating on the small test corpus,
424

5,656 = 7.5%, so other experiments with a similar
large/small split would be evaluated with a thresh-
old identifying as close to 7.5% of the evaluation
corpus as possible. We reset thresholds for ex-
periments where the large corpus is the test cor-
pus, as these behave differently, due to differing
parser quality; in section 5.1, we will set this at
23%. The bottom two lines of table 7, for instance,
present results for the lowest threhold (0) and the
one which identifies as close to 23% of the tokens
as possible (25). Also, as we emphasize precision,
in future tables we report F0.5 and ignore F1.

4.2 Revision Checking

The n-gram models discussed so far are not very
sophisticated. Low scores conflate two issues: 1)
the element in question is anomalous, or 2) there

was no better attachment or labeling for this ele-
ment, i.e., the parser could not have made a better
decision. Identifying the latter cases could reduce
false positives, i.e., correct low-scoring positions.

For example, for (9), the parser correctly at-
taches hållas (‘hold’) to måste (‘must’) in a VG
relation, as in figure 4. The high-gram scoring
method assigns a score of 0, because UK:UK MV
VG:VV and MV VG:VV END were never ob-
served in the grammar, but there is no better at-
tachment in this instance. By determining that at-
taching to som or hemligt is no better, we can over-
come some limitations of the original scoring. We
refer to the process of checking for a better-scoring
attachment or labeling as a revision check.

(9) Du
You

kommer
come

under
under

din
your

utbildning
education

att
to

få
get

se
see

och
and

höra
hear

sådant
such

som
as

måste
must

hållas
be held

hemligt
secret

.

.
‘You will during your education see and hear
things that must be kept secret.’

UK VG SP

... som måste hållas hemligt
UK MV VV AJ

Figure 4: Correct low-scoring dependency structure

What a better-scoring revision means depends
to a great extent on parser quality. Trained on a
small gold corpus, the parser has not seen much
data. If other attachments or labelings result in
better scores, the parser may not have had enough
information to select the revision and perhaps
should have given it more weight. For a parser
with high accuracy (e.g., trained on large gold
data), on the other hand, the parser should have
considered the revision and rejected it on the basis
of good evidence. The elements which do not have
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a better revision are ones which may represent new
types of constructions. Thus, the parser may do
worse if there are no reasonable revisions—just
the opposite of the expectation for a small corpus.

4.2.1 Revision Checking Algorithm
For an element ei in a rule r (lhs → e1e2, ..., en),
where ei is a (posi, depi) pair:

1. Score ei, ei−1 (left context), and ei+1 (right con-
text) within r, using, e.g., the high-gram method.

2. Check a different labeling in the original rule.

(a) Replace (posi, depi) with all relevant
(posi, depj) pairs (where depi 6= depj)
• Relevant dependency labels occurred in

training with posi; other labels will re-
sult in a score of 0.

(b) Score the modified rule.
(c) Flag the rule if a different labeling results in

an improvement, namely:
i. The modified element’s score increases,

and left/right context scores improve or
stay the same.

ii. The modified element’s score stays the
same, and context scores increase.

3. Check different re-attachments (and re-labelings)
by placing the element in question (ei) into other
rules (x), if appropriate.

(a) Remove ei from the original rule:
i. Remove ei from r to obtain r′.

ii. Score r′ and extract scores for positions
to the left/right of where ei used to be.

iii. If ei−1 or ei+1 is worse than originally
scored, skip next step and do not flag.

(b) Modify and score other rules (x):
i. Insert element into the appropriate posi-

tion within x, following linear ordering.
ii. Determine whether this is an appropri-

ate candidate attachment site:
A. Inserting ei does not introduce a

cyclic structure.
B. Inserting ei does not create a non-

projective structure.
iii. Try all relevant dependency labelings

for this element to obtain different x′.
iv. Score each modified rule x′, in particu-

lar e′, e′−1, and e′+1.
v. Flag the original rule if a different

atttachment+labeling results in an im-
provement (as defined above).

While the idea is straightforward, there are sev-
eral points to note. First, the output is that we flag
an element if any revision shows improvement, but

do not keep track of which revision is better. Sec-
ondly, in step #3bii we use a strict notion of where
an element may be inserted—ensuring no cyclicity
or non-projectivity—but either of these conditions
may be relaxed. Further, we do not check root-
edness, as we do not enforce a globally optimal
tree. Finally, the algorithm can check any element
in any order; if one were to perform rule revision,
the ordering of elements would matter, as scores
would change based on previous revisions.

4.2.2 Using the Flagged Elements
Once rules are flagged as having a better-scoring
revision or not, we can use: a) the original (high-
gram) score, and b) the revision check flag (yes = a
better revision exists). These can be used indepen-
dently or in conjunction. We will evaluate by re-
porting error detection precision and recall for the
lowest-scoring flagged and unflagged positions, as
well as for all flagged and unflagged positions. We
can also view the process as: correct all the flagged
positions and then move to the unflagged ones, and
so we report combinations of all flagged positions
plus some amount of unflagged positions.

In table 2, we report results using the large gold
grammar on the small parsed data. We note first
that the highest precision is recorded for the low-
est unflagged position (82.8% vs. 77.2% without
the flagged/unflagged distinction). As mentioned,
when the parser is high quality, the cases where
we cannot find a better attachment or labeling may
be the most difficult. This gives us some promise
of being able to use these techniques for active
learning (e.g., Sassano and Kurohashi, 2010). Sec-
ondly, the F-scores are lower than the best ones
obtained on this data ignoring the revision flag-
ging. Thus, when the parser is of a high quality, we
want to prioritize the initial high-gram scores over
a revision check. As we will see in section 5.2,
smaller grammars present a different picture.4

5 Small Gold Grammars

Turning to a small gold grammar, we perform
two sets of experiments: in the first, we use
MaltParser5 on the Swedish Talbanken data (sec-
tions 5.1 and 5.2). Then, in section 5.3, we
use MSTParser (McDonald et al., 2006)6 on the

4Determining at what point one switches from “low qual-
ity” to “high quality” is a question for future research.

5http://maltparser.org/
6http://sourceforge.net/projects/

mstparser/
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Score Thr. pos. P R F0.5

L 0 215 77.2% 16.3% 44.2%
LF 0 70 65.7% 4.5% 17.7%
AF 1,269 670 43.1% 28.4% 39.1%
LU 0 145 82.8% 11.8% 37.6%
AU 31,987 4,986 14.6% 71.6% 17.3%
AF+U0 n/a 815 50.2% 40.3% 47.8%
AF+U5 n/a 931 51.5% 47.1% 50.5%

Table 2: Revision checking: same set-up as in table 1,
using high-gram method for checking. (L=lowest,
A=all, F=flagged, U=unflagged, Ux=unflagged up to
threshold x)

dependency-converted English Wall Street Journal
(WSJ) data (Marcus et al., 1993),7 and we vary
the size and appropriateness of the gold grammar.
With these permutations, we demonstrate the wide
applicability of our methods. With little annotated
training data, parser results are worse than before,
placing more priority on error detection.

5.1 Working with a Small Gold Grammar
Swapping the Talbanken data, the training data is
now approximately 10% of the corpus (small data)
and the test data 90% (large data). The results are
given in table 3, where the first thing to note is
the overall worse parser performance, reflected in
a much higher baseline precision (None) of 35.4%
(=64.6% LAS), significantly higher then with the
normal split (P=18.0%, LAS=82.0%, table 1).

Score Thr. pos. P R F0.5

None n/a 191,467 35.4% 100% 40.7%
Freq. 0 116,847 48.1% 82.7% 52.5%
Bi. 0 21,110 85.2% 26.5% 59.0%

6 48,890 70.0% 50.4% 65.0%
Tri. 0 44,297 72.7% 47.5% 65.7%
High. 0 44,297 72.7% 47.5% 65.7%
All. 0 21,110 85.2% 26.5% 59.0%

9 48,690 70.3% 50.4% 65.2%

Table 3: Talbanken error detection results for differ-
ent scores: parser = MaltParser trained on small data;
grammar = small gold; evaluation data = large data

With low parser accuracy, baseline F measures
are higher: by going over every instance, an an-
notator will, in principle, find every error (100%
recall), with 35% precision. However, that means
going through over 190,000 words by hand. To

7We used the LTH Constituent-to-Dependency Conver-
sion Tool (Johansson and Nugues, 2007), selecting options
for CoNLL 2007 format and no NP rebracketing.

improve the corpus with less effort, we want to
identify errors with high precision. Indeed, in the
results in table 3, we find precision around 70%
with recall around 50%.8

Consider the high-gram method, which has the
highest F0.5, 65.7%, at a score of 0—i.e., no rules
in the grammar with any trigrams or longer n-
grams supporting a given rule.9 First, this is much
higher than the 54.4% for the standard data split
(table 1), partly due to the fact that the parser ac-
curacy is lower. Secondly, 44,297 positions are
flagged—23% of the corpus—with 32,209 erro-
neous; annotators could correct nearly 3 out of
every 4 flagged dependencies, fixing 47% of the
errors. We will use 23% of the corpus for other
experiments with large data (cf. section 4.1.2). Fi-
nally, if 32,209 corrections are added to the origi-
nal 123,595 correct positions, the resulting corpus
will have correct dependencies 81.4% of the time
(vs. 64.6% LAS), making the corpus more suit-
able for, e.g., training parsers (cf. Nivre, 2010).

Note also that at the lowest threshold, the bi-
gram method is the most precise (85.2%). What
we observed before (cf. example (8) in sec-
tion 4.1.1) is true—positive evidence of bigrams
may be misleading—but negative evidence from
bigrams may be useful (cf. Dickinson, 2011). If a
position has no bigram support, this is worse than
no trigrams. One can thus consider splitting the
zero high-gram elements into two classes: those
which never occurred as bigrams (more likely to
be erroneous) and those which did.

To gauge an upper bound on error detection, we
use the large gold grammar for an oracle experi-
ment. This helps sort out the effect of the gram-
mar (and its size) from the effect of the compari-
son methods. We can see the results in table 4.

In comparing to table 3, we see that the results
with the much larger grammar are a few points bet-
ter. The best F0.5 measure goes from 65.7% to
69.6%, despite the grammar sizes being 1,284 and
26,292 rule types, respectively (section 4). Even a
small gold grammar is extremely useful for error
detection. Furthermore, the small grammar here is
based on data which is disjoint from the evalua-
tion data, whereas the large grammar comes from
(gold) annotation for the evaluation data.

8Since errors are often inter-related (Hara et al., 2009), it
is likely an annotator would actually have a higher recall, but
we do not explore inter-relatedness here.

9The trigram method performs identically here because
no trigrams means no higher n-grams.
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Score Thr. pos. P R F0.5

None n/a 191,467 35.4% 100% 40.7%
Freq. 0 84,067 57.5% 71.2% 59.8%
Bi. 84 33,197 80.5% 39.2% 66.6%
Tri. 18 39,707 78.8% 46.1% 69.0%
High. 23 39,278 79.8% 46.2% 69.6%
All. 203 39,846 77.0% 45.2% 67.5%

Table 4: Talbanken oracle error detection results: same
set-up as table 3, but grammar = large gold

5.2 Small Gold Grammar Revision Checking

Turning to flagging positions by whether they have
better-scoring possible revisions, we report the re-
sults for Talbanken in table 5. With a previous best
F0.5 of 65.7% for all zero-scoring element, we ob-
serve improvement here (68.2%), obtained by go-
ing over all (21,670) flagged positions and then in-
cluding the (34,343) lowest unflagged positions.

Score Thr. pos. P R F0.5

L 0 44,297 72.7% 47.5% 65.7%
LF 0 9,954 73.8% 10.8% 34.1%
AF 72 21,670 69.1% 22.0% 48.4%
LU 0 34,343 72.4% 36.6% 60.5%
AU 1233 169,797 31.2% 77.9% 35.4%
AF+U0 n/a 56,013 71.1% 58.7% 68.2%

Table 5: Revision checking: same set-up as in table 3,
using high-gram method for checking

This matches the intuition that, when the qual-
ity of the parse is low, such a sanity check can im-
prove parse error detection. Note in this case that
69.1% of all flagged (AF) cases need revision, not
much lower than the overall (lowest) precision of
72.7%. No matter the rule score, if it is flagged,
then it is quite likely to be in need of revision. To
evaluate in other situations with large evaluation
corpora, we will take all flagged positions and then
the lowest-scoring unflagged positions.

Consider the practical effect: 56,013 positions
are identified, with 39,825 (71.1%) erroneous.
Fixing these cases would correct 58.7% of the er-
rors, resulting in 85.4% corpus accuracy (163,420

191,467 ).

False Negatives We investigate some of the
false negatives—i.e., cases which the revision
check does not flag but which are low-scoring—
in order to discover the limitations of the method.
In general, the underflagging often results from
the conservative nature of candidate selection. Be-
cause we do not allow cycles to be introduced, for

example, it is nearly impossible to revise a ROOT
element. The most frequent false negatives are
those with multiple ROOTs, e.g., the erroneous IP
position in TOP→ root ROOT:NN ROOT:IP (not
flagged 82 times). Extremely long rules (e.g., over
10 dependents) are also underflagged. Because we
do not permit non-projectivity, if an element is be-
tween two sister elements, those are often the only
positions which can serve as alternate heads; oth-
erwise, branches have to cross. This is schema-
tized in figure 5, where revisions for D could only
include C and E as heads.

... A B C D E F ...

Figure 5: Schematic for sister relations

5.3 Grammar Size and Quality
As with the Talbanken data, we want to test these
methods on English data using a small amount of
training data and a large amount of test data. To do
this, we train different parser models. We use the
default training options for MSTParser and train
one model on section 00 of the WSJ data, one on
section 24, and one on both. All three models are
then used to parse sections 02-21, with results in
table 6. We use the default settings, as this is a
good fit for using the methods in the real world.10

Par. Tokens Size UAS LAS
00 46,451 7,250 81.7% 73.4%
24 32,853 5,797 80.5% 71.8%
0024 79,304 11,095 83.5% 76.0%

Table 6: Parser accuracies for WSJ models with dif-
ferent training data (Par.), including number of training
Tokens and Size of grammar (non-unary rule types)

In addition to varying the parser, we also vary
the grammar, running tests for each model us-
ing gold standard grammars derived from differ-
ent sections. This set-up allows us to see the ef-
fect of varying the size of the parser training data,
the size of the grammar, and the different gram-
mars across data sets—i.e., error detection using a
grammar from a different section than the one the
parser is trained on. The results are in table 7.

10In development, we also tested parser models with the
optimized settings used for McDonald et al. (2005), but there
was little impact on accuracy: 73.7%, 72.1%, and 76.2% LAS
for the respective training data situations in table 6.
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Par. Gram. Thr. pos. P R F0.5

00 None n/a 950,022 26.6% 100% 31.2%
00 0 143,365 79.5% 45.1% 68.9%

9 217,804 70.8% 61.0% 68.6%
24 0 152,281 78.0% 47.0% 68.9%

6 219,712 69.4% 60.2% 67.3%
0024 0 130,724 81.0% 41.9% 68.3%

16 217,628 70.7% 60.9% 68.5%
24 None n/a 950,022 28.2% 100% 32.9%

00 0 155,889 79.7% 46.4% 69.7%
6 218,227 73.4% 59.8% 70.2%

24 0 157,733 79.1% 46.6% 69.4%
5 217,751 72.6% 59.0% 69.4%

0024 0 139,604 81.3% 42.3% 68.6%
12 218,207 73.3% 59.7% 70.1%

0024 None n/a 950,022 24.0% 100% 28.3%
00 0 127,667 77.7% 43.6% 67.2%

14 219,362 64.6% 62.3% 64.1%
24 0 133,596 76.3% 44.8% 66.9%

9 216,826 64.0% 60.9% 63.3%
0024 0 114,486 79.7% 40.1% 66.5%

25 218,731 64.4% 61.9% 63.9%

Table 7: WSJ: high-gram scores for lowest and 23%
thresholds: parser = default MST trained on differ-
ent data (Par.); grammar = gold from section listed
(Gram.); evaluation data = sections 02-21

Looking at the results for the parser trained
on section 00, there are 252,700 errors (26.6%)
in over 950,000 words. By using the high-gram
method and a grammar extracted from the gold
data for section 00, we obtain a precision of 70.8%
and recall of 61.0% at the 23% threshold: thus,
one could correct 61% of the errors by looking at
only 23% of the corpus (217,804 positions, with
about 154,000 of them erroneous). Alternatively,
using a threshold score of zero on the same data
results in higher precision (79.5%) and lower re-
call (45.1%). This pattern of higher precision at
the lowest threshold and higher recall for the 23%
threshold is consistent across all testing scenarios,
showing the effectiveness of correcting by work-
ing up from the lowest-scoring items.

Within the results for each parser, the grammar
based on section 00 is more effective at sorting
out the errors (i.e., has a higher F0.5 score) than
the other grammars—although the differences are
small. This is true even for the parser trained on
section 24 (70.2% vs. 69.4%), and the reverse situ-
ation (parser=00, grammar=24) even performs on
a par with the other grammars. This indicates that
a grammar from a different (albeit, related) corpus

can be effective in error detection. Future work
can explore applying this work across domains.

As for grammar size, the differences in F0.5

between the smallest (section 24) and the largest
(both sections) for all experiments is <1%. Even
with a small gold grammar, we again conclude that
this method can effectively sort out a majority of
the errors with high precision.

5.3.1 Revision Checking
To gauge the results of revision checking, we re-
port results for the WSJ parser trained only on sec-
tion 00, as shown in table 8. The results for the
other two parsers are not shown for space reasons,
but they follow exactly the same trends, namely a
consistent improvement, verifying the Talbanken
results (section 5.2). For example, comparing to
the 00 parser results without revision checking
in table 7, we observe a greater F0.5 value for
all grammars by taking all flagged positions and
the lowest-scoring unflagged positions (AF+U0).
With the section 00 grammar, for instance, we see
an improvement in F0.5 from 68.9% to 71.6%.

Gr. Score Thr. pos. P R F0.5

00 LF 0 78,805 92.2% 28.8% 66.4%
AF 1,325 141,914 79.7% 44.8% 68.9%
AF+U0 n/a 206,474 74.8% 61.1% 71.6%

24 LF 0 79,755 91.9% 29.0% 64.1%
AF 1,167 138,912 79.4% 43.6% 68.2%
AF+U0 n/a 211,438 73.7% 61.6% 70.9%

0024 LF 0 76,570 92.0% 28.0% 63.3%
AF 3,200 144,041 80.3% 45.8% 69.8%
AF+U0 n/a 198,195 76.1% 59.7% 72.1%

Table 8: WSJ revision checking results, using the high-
gram method, for the parser trained on section 00; same
set-up as in table 7

Perhaps the most notable feature of these results
is the precision of the lowest-scoring flagged po-
sitions, around 92% for all grammars. This means
that for this type of data, annotators could go over
80,000 positions, with very few false positives,
providing much potential for efficient correction.

6 Noisy Grammar

In this section, we switch to using a noisy gram-
mar, i.e., one extracted from the parsed data it-
self. Using the same parser for Swedish as in sec-
tion 5.1 and parsing the large corpus, we extract
a grammar from the parsed data and obtain the
results for the high-gram method in table 9. As
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the parsed rules are from the grammar, this can be
seen as an internal consistency check.

Score Thr. pos. P R F0.5

None n/a 191,467 35.4% 100% 40.7%
No-Rev. 3 267 88.4% 0.3% 1.7%

76 44,274 68.4% 44.6% 61.8%
AF 2,784 12,769 67.9% 12.8% 36.4%
AF+U55 n/a 44,155 68.8% 44.7% 62.1%

Table 9: Talbanken error detection results for the high-
gram method: parser = MaltParser trained on small
data; grammar = large noisy; evaluation data = small
data (No-Rev. = No revision checking)

These results are noticably lower than when us-
ing a small gold grammar (tables 3 and 5). With-
out revision checking, the high-gram F0.5 score
goes from 65.7% to 61.8%, in spite of the fact
that the noisy grammar has 95,900 rule tokens and
25,904 types, compared to 3,107/1,284 in the gold
grammar. That is, a small set of high-quality rules
outperforms a large set of more questionable rules,
possibly because of parser bias in the grammar.

As for the impact of revision checking, the pre-
cision for all 12,769 flagged positions is 67.9%—
on a par with the precision without revision check-
ing. Indeed, for all flagged positions combined
with many lowest-scoring unflagged positions (up
to the 55 threshold, or 23% of the corpus), the F0.5

score is slightly improved, though still well below
the small gold grammar case.

Comparing the noisy grammar in table 10 to the
small gold grammars in table 7, the trend in En-
glish is more pronounced. For example, for the
parser trained on section 00 (and the 00 grammar),
the F0.5 goes from 68.9% to 56.9%. Each noisy
WSJ grammar has over 85,000 rules, yet the noise
greatly pulls down the accuracy, thereby confirm-
ing our preference for (small) gold grammars.11

7 Summary and Outlook

Taking into account different ways in which au-
tomatic dependency parses are obtained, we have
advocated for a grammar-based method of detect-
ing parse errors and have illustrated the gains that
can be made by using such methods, including the
incorporation of revision checking. Methods us-
ing a small gold grammar outperform the meth-
ods using much larger grammars with noise in

11We also tried concatenating the small gold and large
noisy grammars to make a hybrid grammar (section 3), but
the results were hardly better than in tables 9 and 10.

Par. Thr. pos. P R F0.5

00 3 315 90.5% 0.1% 0.6%
460 218,497 58.7% 50.7% 56.9%

24 3 400 90.5% 0.1% 0.7%
438 218,612 61.1% 49.8% 58.4%

0024 3 377 91.8% 0.2% 0.8%
479 218,512 55.7% 53.5% 55.3%

Table 10: WSJ: high-gram scores: parser = default
MST trained on different data (Par.); grammar = ex-
tracted from appropriate parsed 02-21; evaluation data
= 02-21

them. Thus, to employ such methods on new data,
one needs a small grammar, perhaps from a small
hand-annotated corpus. Using our methods can
improve the resulting annotation of large amounts
of parsed data, allowing annotators to focus on
problematic parses and not correct ones.

In the future, one can test these methods on real-
world corpus-building efforts, integrating them
into a particular annotation workflow. Because the
method of scoring parses is very general, one can
also explore using the scores in different contexts,
such as scoring the validity of parse structures in
a parser combination model (e.g., Surdeanu and
Manning, 2010; Sagae and Tsujii, 2007; Sagae and
Lavie, 2006); sorting sentences for active learning
(cf. Sassano and Kurohashi, 2010); or selecting
parse structures for parsing (Chen et al., 2009).
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A Some Talbanken05 categories

POS tags
++ coord. conj.
AB adverb
AJ adjective
EN indef. article
FV få (get)
NN noun
PO pronoun
PR preposition
RO numeral
VN verbal noun
VV verb

Dependencies
++ coord. conj.
AT nominal pre-modifier
CC sister of first conjunct

(binary branching co-
ordination)

DT determiner
FS dummy subject
MA attitude adverbial
NA negation adverbial
PA preposition comp.
PL verb particle
RA place adverbial
SS subject
VG verb group
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Abeillé, Anne (ed.) (2003). Treebanks: Building
and using syntactically annoted corpora. Dor-
drecht: Kluwer Academic Publishers.

Ambati, Bharat Ram (2010). Importance of Lin-
guistic Constraints in Statistical Dependency
Parsing. In Proceedings of the ACL 2010 Stu-
dent Research Workshop. Uppsala, Sweden, pp.
103–108.

Ambati, Bharat Ram, Mridul Gupta, Samar Hu-
sain and Dipti Misra Sharma (2010). A high re-
call error identification tool for Hindi treebank
validation. In Proceedings of The 7th Interna-
tional Conference on Language Resources and
Evaluation (LREC). Valletta, Malta.

Attardi, Giuseppe and Massimiliano Ciaramita
(2007). Tree Revision Learning for Dependency
Parsing. In Proceedings of NAACL-HLT-07.
Rochester, NY, pp. 388–395.

Bergsma, Shane, Dekang Lin and Randy Goebel
(2009). Web-Scale N-gram Models for Lexical
Disambiguation. In Proceedings of the Inter-
national Joint Conference on Artificial Intelli-
gence (IJCAI). Pasadena, California, pp. 1507–
1512.

Bond, Francis, Sanae Fujita et al. (2004). The Hi-
noki Treebank: Toward Text Understanding. In
Proceedings of the 5th International Workshop
on Linguistically Interpreted Corpora (LINC-
04). Geneva, pp. 7–10.

Buchholz, Sabine and Erwin Marsi (2006).
CoNLL-X Shared Task on Multilingual Depen-
dency Parsing. In Proceedings of CoNLL-X.
New York City, pp. 149–164.

Chen, Wenliang, Jun’ichi Kazama, Kiyotaka
Uchimoto and Kentaro Torisawa (2009). Im-
proving Dependency Parsing with Subtrees
from Auto-Parsed Data. In Proceedings of
EMNLP-09. Singapore, pp. 570–579.

Dickinson, Markus (2010). Detecting Errors in
Automatically-Parsed Dependency Relations.
In The 48th Annual Meeting of the Association
for Computational Linguistics (ACL-10). Upp-
sala, Sweden.

Dickinson, Markus (2011). Detecting Ad Hoc
Rules for Treebank Development. Linguistic Is-
sues in Language Technology 4(3).

Goldberg, Yoav and Michael Elhadad (2010a).
An Efficient Algorithm for Easy-First Non-
Directional Dependency Parsing. In Human
Language Technologies: The 2010 Annual Con-
ference of the North American Chapter of the
Association for Computational Linguistics. Los
Angeles, California, pp. 742–750.

Goldberg, Yoav and Michael Elhadad (2010b). In-
specting the Structural Biases of Dependency
Parsing Algorithms. In Proceedings of the
Fourteenth Conference on Computational Nat-
ural Language Learning. Uppsala, Sweden, pp.
234–242.

Hara, Tadayoshi, Yusuke Miyao and Jun’ichi
Tsujii (2009). Effective Analysis of Causes
and Inter-dependencies of Parsing Errors. In
Proceedings of the 11th International Confer-
ence on Parsing Technologies (IWPT’09). Paris,
France: Association for Computational Lin-
guistics, pp. 180–191.

Hwa, Rebecca, Philip Resnik, Amy Weinberg,
Clara Cabezas and Okan Kolak (2005). Boot-
strapping parsers via syntactic projection across
parallel texts. Natural Language Engineering
11, 311–325.

Johansson, Richard and Pierre Nugues (2007). Ex-
tended Constituent-to-dependency Conversion
for English. In Proceedings of NODALIDA
2007. Tartu, Estonia.

Leech, Geoffrey (2004). Adding Linguistic An-
notation. In Martin Wynne (ed.), Developing
Linguistic Corpora: a Guide to Good Practice,
Oxford: Oxbow Books, pp. 17–29.

Marcus, M., Beatrice Santorini and M. A.
Marcinkiewicz (1993). Building a large anno-
tated corpus of English: The Penn Treebank.
Computational Linguistics 19(2), 313–330.

McDonald, Ryan, Koby Crammer and Fernando
Pereira (2005). Online Large-Margin Training
of Dependency Parsers. In Proceedings of the
43rd Annual Meeting of the ACL. AnnArbor, pp.
91–98.

McDonald, Ryan, Kevin Lerman and Fernando
Pereira (2006). Multilingual Dependency Anal-
ysis with a Two-Stage Discriminative Parser.
In Proceedings of the Tenth Conference on
Computational Natural Language Learning
(CoNLL-X). New York City, pp. 216–220.

251



Nilsson, Jens and Johan Hall (2005). Recon-
struction of the Swedish Treebank Talbanken.
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