
Proceedings of the 12th International Conference on Parsing Technologies, pages 140–149,
October 5-7, 2011, Dublin City University. c© 2011 Association for Computational Linguistics

Active Learning for Dependency Parsing Using Partially Annotated
Sentences

Seyed Abolghasem Mirroshandel Alexis Nasr
Laboratoire d’Informatique Fondamentale de Marseille- CNRS - UMR 6166

Université Aix-Marseille, Marseille, France
ghasem.mirroshandel@lif.univ-mrs.fr, alexis.nasr@lif.univ-mrs.fr

Abstract

Current successful probabilistic parsers
require large treebanks which are difficult,
time consuming, and expensive to produce.
Some parts of these data do not contain
any useful information for training a parser.
Active learning strategies allow to select the
most informative samples for annotation.
Most existing active learning strategies
for parsing rely on selecting uncertain
sentences for annotation. We show in this
paper that selecting full sentences is not an
optimal solution and propose a way to select
only subparts of sentences.

1 Introduction

Current probabilistic parsers rely on treebanks
in order to estimate their parameters. Such
data is known to be difficult and expensive to
produce. One can also observe that the quality of
parsers increase when they model complex lexico-
syntactic phenomena. Unfortunately, increasing
the precision of models is quickly confronted with
data sparseness which prevents to reliably estimate
the model parameters. Treebanks size is therefore
a limit to the accuracy of probabilistic parsers.
Given the cost of annotating new data with
syntactic structures, it is natural to ask oneself,
before annotating a new sentence and adding it to
a treebank, if this new piece of information will
benefit a parser trained on the treebank.

This question is at the heart of active
learning which assumes that “a machine learning
algorithm can achieve greater accuracy with
fewer training labels if it is allowed to choose the
data from which it learns. An active learner may
pose queries, usually in the form of unlabeled data
instances to be labeled by an oracle (e.g. human
annotator). Active learning is well-motivated
in many modern machine learning problems,
where unlabeled data may be abundant or easily

obtained, but labels are difficult, time-consuming,
or expensive to obtain.” (Settles, 2010)

Different scenarios have been proposed for
active learning. The work described here is based
on the Pool-Based Sampling scenario (Lewis and
Gale, 1994) which is adapted to the problem at
hand. Pool-based sampling scenario assumes that
there is a small set of labeled data L and a large
pool of unlabeled data U available. Instances are
drawn from U according to a selection strategy.
The chosen instance(s) are then labeled and added
to L. These steps are repeated until either U is
empty or does not contain informative instances
anymore.

Many selection strategies have been proposed
in the literature. Uncertainty sampling, which
is the strategy that has been used in this work,
is the simplest and the most commonly used
one. In this strategy, instances for which the
prediction of the label is the most uncertain are
selected by the learner. The performances of
such methods heavily rely on the definition of
a good confidence measure, which measures the
confidence the model, in our case the parser, has
in the solution it proposes.

Active learning has been used for many
NLP applications, such as automatic speech
recognition, information extraction, part of speech
tagging or syntactic parsing. We will not detail
the way active learning has been applied to
those tasks, the interested reader can find two
reasonably recent surveys in (Settles, 2010) and
(Olsson, 2009), and concentrate on its application
to statistical parsing.

(Tang et al., 2002) and (Hwa, 2004)
proposed active learning techniques for training
probabilistic parsers. They both used uncertainty
sampling and suggested a measure of uncertainty
based on the entropy of the probability distribution
of the parses of a sentence. The idea being that
the higher this entropy is, the more uncertain the

140

parser is of its choice. (Tang et al., 2002) proposed
to combine uncertainty with representativeness,
the idea here is to make sure that the instances
selected with uncertainty criterion are also
representative of the data distribution. The
common point to these two approaches, and most
work on active learning applied to parsing is that
they only consider full sentences in their instance
selection.

There is something not satisfactory in
considering only full sentences as instances
since, in many cases, only part of the syntactic
structure is uncertain. The manual annotation
of this part would benefit the parser while the
annotation of the remaining part of the sentence
would be a waste of effort.

The main novelty of the work reported here is
that we explore the other extreme position: instead
of considering uncertain sentences, we consider
single uncertain word tokens in a sentence. More
precisely, we consider the attachment of single
word tokens. In the framework of dependency
parsing, which is used here, this boils down to
selecting, for a token w, its governor and the label
of the dependency between w and its governor.
The task is therefore to select, in a sentence, the
most uncertain dependencies.

Active learning for parsing using sub-sentential
units has already been explored by (Sassano and
Kurohashi, 2010). In their work they select
unreliable dependencies predicted by a parser (a
simple shift-reduce parser where dependencies
are weighted using an averaged perceptron with
polynomial kernels), based on the score the parser
assigns to the dependencies. Such dependencies
are hand labeled and, based on syntactic
characteristics of Japanese syntax (dependencies
are projective and oriented from left to right (the
governor is always to the right of the dependent))
other dependencies are deduced and this set of
dependencies are added to the training set. Our
work departs from their in the uncertainty measure
that we use, in the kind of parser used, on the way
hand annotated single dependencies are added to
the training data (without using language specific
properties) as well as on the fact that we use both
sentence based and dependency based uncertainty
measures.

The structure of the paper is the following: in
section 2, we describe, in some details, the parsing
model on which this work is based, namely

the graph-based dependency parsing framework.
Such a detailed description is motivated by
two extensions of graph based parsing that we
describe. The first one is how to take into account,
in the input of the parser, part of the syntactic
structure of the sentence to parse, a feature that
is needed when annotating only a subpart of the
syntactic structure of a sentence. We will see that
this can be done very easily and this is the main
reason why we chose this parsing framework.
The second extension concerns the production of
a list of n-best candidates, which is necessary
for computing our uncertainty measure and is
not a standard operation for this kind of parsers,
contrary to syntagmatic parsers, for example. In
section 3, we report a first series of experiments
in which full sentences are selected during the
instance selection procedure. The techniques used
here are not novel and the aim of this section is
to constitute a baseline for evaluating our idea of
partial annotation, which is described in section 4.
Section 5 shows that better results can be reached
when taking into account both uncertainty of a
sentence and uncertainty of parts of it. Finally,
section 6 concludes the paper.

2 Graph-Based Parsing

Graph-Based parsing (McDonald et al., 2005;
Kübler et al., 2009) defines a framework for
parsing that does not make use of a generative
grammar. In such a framework, given a sentence
W = w1 . . . wl, any dependency tree1 for W is a
valid syntactic representation of W . The heart of
a graph-based parser is the scoring function that
assigns a score to every tree T ∈ TW , where TW
denotes the set of all dependency trees of sentence
W . Such scores are usually a weighted sum of the
scores of subparts of W .

s(T) =
∑
ψ∈ψT

λψ

where ψT is the set of all the relevant subparts
of tree T and λψ is the score of subpart ψ.

Depending on the decomposition of the tree
into subparts, different models of increasing
complexity can be defined. The most simple one
is the arc factored model, also called first order
model, which simply decomposes a tree into single

1A dependency tree for sentence W = w1 . . . wl and the
dependency relation set R is a directed labelled tree (V, A)
such that V = {w1, . . . wn} and A ⊆ V ×R× V .

141

dependencies and assigns a score to a dependency,
independently of its context.

The score of tree T , noted s(T) in this model is
therefore :

s(T) =
∑

(wi,r,wj)

λ(i, r, j)

where (i, r, j) is the dependency that has wi
as governor, wj as dependent and r as label,
and λ(i, r, j) is the score assigned to such a
dependency.

Parsing a sentence W in such a system boils
down to determining the tree that has the highest
score in TW . Determining such a tree can
be simply accomplished using the maximum
spanning tree algorithm.

A maximum spanning tree or MST of a
directed multigraph G = (V,A) is the highest
scoring subgraph G′ that satisfies the following
conditions:

• V ′ = V , i.e. G′ spans all the original nodes
of G.

• G′ is a directed tree.

Given a sentence W = w1 . . . wl, and a set
of functional labels R = {r1, . . . rm}, a graph
GW = (VW , AW) can be built such that:

• VW = {w1, . . . wl}

• AW = {(i, r, j)} ∀wi, wj ∈ VW and r ∈
R and i 6= j

In other words, GW is the graph composed
of all the dependencies that can be defined
between tokens of W . Given a scoring function
λ that assigns a score to every arc of GW , a
simple Graph-Based parser can be implemented
based on any MST algorithm such as Chu-Liu-
Edmonds (Chu and Liu, 1965; Edmonds et al.,
1968).

In order to build an actual parser, a scoring
function λ is needed. Current versions of Graph-
Based Parsers assume that such a function is a
linear classifier. The score of a dependency is
computed as follows:

λ(i, r, j) = α · f(i, r, j)

where f is a feature function that maps the
dependency to a boolean vector and α is the
feature weight vector that associates a weight

with every feature of the model. In first order
models, features describe different aspects of a
dependency, such as the part of speech of the
governor and the dependent, their lexical value,
the length of the dependency, the part of speech
of tokens between the dependent and the governor
. . .

Different Machine Learning techniques
can be used in order to learn the weight
vector. In our experiment, we used the
implementation of (Bohnet, 2010) that is based
on MIRA (Crammer et al., 2006), an on-line large
margin classifier.

The arc factored model, described here,
achieves good performances, but it relies on a
very strong independence assumption which is
that the score of a dependency is independent of
its context. Such an independence assumption
is linguistically unappealing and more elaborate
models, known as second order (Carreras, 2007)
and third order (Koo and Collins, 2010) models,
which associate a score with pairs of adjacent
dependencies in a tree or chains of two or three
dependencies, have shown to give better results.

Although we have used second order models
in our experiments, we will consider in the next
two subsections, only first order models, which are
conceptually and computationally simpler.

2.1 Constraining the Output of the Parser

The graph-based framework allows us to impose
structural constraints on the parses that are
produced by the parser in a straightforward way,
a feature that will reveal itself to be precious for
our experiments.

Given a sentence W = w1 . . . wl, a parser
with a scoring function λ and a dependency d =
(i, r, j) with 1 ≤ i, j ≤ l. We can define a new
scoring function λ+

d in the following way:

λ+
d (i′, r′, j′) =

−∞ if j′ = j and

(i′ 6= i or r′ 6= r)
λ(i′, r′, j′) otherwise

When running the parser on sentence W , with
the scoring function λ+

d , one can be sure that
dependency dwill be part of the solution produced
by the parser since it will be given a better score
than any competing dependency, i.e. a dependency
of the form (i′, r, j′) with j = j′ and i′ 6= i or
r′ 6= r. This feature will be used in section 4

142

in order to parse a sentence for which a certain
number of dependencies are set in advance.

Symmetrically, we can define a function λ−d in
the following way:

λ−d (i′, r′, j′) =

−∞ if j′ = j and

i′ = i and r′ = r
λ(i, r, j) otherwise

The effect of this new scoring function when
parsing sentence W is that the solution produced
by the parser will not contain dependency d.

Functions λ+ and λ− can be extended in order
to force the presence or the absence of any set of
dependencies in the output of the parser. Suppose
D is a set of dependencies, we define λ+

D the
following way:

λ+
D(i, r, j) =

λ+
d (i, r, j) if (·, ·, j) ∈ D

λ(i, r, j) otherwise

2.2 Producing N -Best Parses

Given scoring functions λ−D, we can define a
simple way of producing the n-best scoring parses
of a sentence. Given a scoring function λ and
a sentence W , let’s call T̂1 = {d1, . . . dl} the
tree output by the parser, where d1 . . . dl are the
dependencies that make up the tree T̂1, di being
the dependency that has wi as a dependent.

By definition, T̂1 is the tree of TW with the
highest score. Now let’s define l functions
λ−d1 . . . λ

−
dl

and run the parser l times on W ,
equipped respectively with functions λ−d1 . . . λ

−
dl

.
The result of these runs is a set of trees L0 =
{T1, . . . Tl} respectively produced with functions
λ−d1 . . . λ

−
dl

. These trees are such that Ti does not
contain dependency di. Let’s define T̂2 as follows:

T̂2 = arg max
T∈L0

s(T)

It is easy to prove that T̂2 is the second best
scoring tree in TW . This proposition holds because
trees T1 . . . Tl are all the best scoring trees of TW
that differ from T̂1 by at least one dependency.
Among them, the tree with the highest score is
therefore the second best scoring tree.

Suppose T̂2 = {d′1, . . . d′n}, The process is
recursively applied to T̂2 and produces a list of
trees L. A new list L1 is then defined as follows:

L1 = L0 − {T̂2} ∪ L

and the third best scoring tree T̂3 is defined as
follows:

T̂3 = arg max
T∈L1

s(T)

The process is iterated until a tree T̂n has been
produced, for a given value of n.

The process, as described is not
computationnaly optimal since the parser is
run n × l times on the same sentence and
many operations are duplicated. Much of the
redundant work could be avoided using dynamic
programming.

We are not aware of a general method for
efficiently computing n-best parses for graph-
based parsing, as it is the case with context-free
parsing (Huang and Chiang, 2005). Nevertheless,
(Hall, 2007) describes an efficient n-best method
for graph-based parsing which is unfortunately
limited to first order models.

3 Selecting Full Sentences

We report in this section a first series of
experiments in which full sentences are selected
from the pool at every iteration of the active
learning algorithm. The aim of this section is
primarily to set up a baseline against which we
will compare the results obtained in sections 4
and 5. In order to set up a reasonable baseline, we
used successful methods described in (Tang et al.,
2002) and (Hwa, 2004) but we adapted them to our
framework: discriminative dependency parsing.
The method described here will also prove to be
interesting to combine with the model of section 4,
as we will see in section 5.

The experiments have been conducted on the
French Treebank (Abeillé et al., 2003) which is
made of 12, 350 sentences taken from newspaper
Le Monde and annotated with syntagmatic
structures along with syntactic functions. The
corpus has been divided into three parts, the
labeled set L made of 500 sentences, the pool U ,
made of 10, 665 sentences and a test set T made
of 1, 185 sentences. The syntagmatic annotations
have been converted to dependencies using the
BONSAÏ converter (Candito et al., 2010).

As described in the introduction, the algorithm
is Pool-Based. A first parser P0 is trained onL and
used to parse the sentences of U . An uncertainty

143

measure is then computed for every sentence of
U and the k most uncertain sentences are labeled,
removed from U and added to L. A second parser
P1 is trained on L and the process is iterated
until there is no more sentences left in U . These
different steps are illustrated in Algorithm 1.

Algorithm 1 ACTIVE LEARNING WITH FULL

SENTENCES ANNOTATION
L: Initial training set
U : Unlabeled pool
ϕ(S): Uncertainty measure of sentence S
i = 0;

while U is not empty do
Pi = train(L);
Build n-best parses of U based on Pi;
Compute ϕ(S) for S ∈ U ;
U ′ = k most uncertain sentences of U ;
L′ = Annotate U ′;
U = U − U ′;
L = L ∪ L′;
i = i+ 1;

end while

3.1 Sentence Entropy

The uncertainty measure we have been using,
the sentence entropy, noted SE, is close to the
uncertainty measures defined in (Tang et al.,
2002), (Hwa, 2004) or (Sánchez-Sáez et al., 2009).
Given a sentence W and the n-best parses of W
with scores respectively noted s1 . . . sn, SE(W)
is computed as follows:

SE(W) = −
n∑
i=1

pi log(pi)

where pi is the posterior probability:

pi =
si∑n
j=1 sj

This uncertainty measure is based on the
intuitive idea that when the scores of the n-best
parses of a sentence are close to each other, and
therefore the entropy of the distribution of the
posterior probabilities is high, this indicates that
the parser is “hesitating” between some of the n-
best parses.

Two curves have been represented in figure 1,
they show the Labeled Accuracy Score (LAS)
computed on the test set against the size of the

 82

 83

 84

 85

 86

 87

 88

 89

 0 50 100 150 200 250 300

L
a
b
e
l
e
d

A
c
c
u
r
a
c
y

S
c
o
r
e

Number of manually annotated tokens
in the train set (in thousands)

Score Entropy
Random Selection

Figure 1: Learning curves with full sentences selection
using sentence entropy, comparison with random
selection.

train set, given in tokens2. Two curves have been
drawn, a curve based on the sentence entropy and
a curve based on a random selection. The sentence
entropy curve has two interesting features, it
grows quicker than the random curve and presents
an asymptotical shape which shows that it has
“extracted” all the useful information present in U
when it reaches the asymptote.

The uncertainty measure of a sentence W used
in this experiment is supposed to measure the
difficulty of parsing sentenceW . It must therefore
be related to the mean error rate of the parser
on sentence W . The curve of figure 2 shows
the relation between labeled accuracy score and
sentence entropy computed on a set of 1000
randomly selected sentences. The curve shows
that on average LAS tends to decrease when
sentence entropy increases. The small range in
which score entropy takes its values is explained
by the fact that, on average, the score of parse
trees in n-best list are close to each other. Their
posterior probability is therefore close to 0.01 (due
to the fact that it is computed on a 100 best list).
We do not have an explanation for the general
shape of the curve.

(Tang et al., 2002) and (Hwa, 2004) discuss
the relation between entropy and the length of
sentences. The idea is that long sentences tend
to have more parses than short sentences and
tend to have on average higher entropy. This
dependency between sentence length and entropy

2In all our experiments, the LAS was computed on whole
sentences, including punctuation.

144

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 1.9994 1.9995 1.9996 1.9997 1.9998 1.9999 2 2.0001

L
a
b
e
l
e
d

A
c
c
u
r
a
c
y

S
c
o
r
e

Score Entropy

Figure 2: Relation between Labeled Accuracy Score
and Sentence Entropy

will therefore bias the active learning algorithm
towards selecting long sentences. They therefore
propose to normalize entropy either with sentence
length (Tang et al., 2002) or number of parses for
a sentence (Hwa, 2004).

In our case, we did not observe any influence of
sentence length on sentence entropy. That might
be due to the fact that we only consider the n-
best scoring parses (but that was also the case
of (Tang et al., 2002)) or to the fact that the scores
from which posterior probabilities are computed
are not probabilities but scores given by the MIRA

classifier which have different distributions than
generative probabilites. We did not investigate
further this difference since our goal in this section
was mostly to define a reasonable baseline for
evaluating the results of the selection strategy that
will be described in the following section.

4 Selecting Single Tokens

The algorithm described in the preceding section
associates an uncertainty measure with whole
sentences and, based on this measure, decides to
ask for its labeling, or not. The syntactic analysis
of a sentence is a complex object, part of it can be
difficult to parse and a correct analysis of this part
could improve the parser while the remaining of
the syntactic structure might not contain any new
piece of information. The idea that we explore
in this section consists in locating in a sentence
some difficult parts and ask for the labeling of
these parts only. More precisely, we will try to
locate single difficult dependencies and ask for the

labeling of just these dependencies. The partly
labeled sentence is then parsed in such a way
that the parser preserves the manually annotated
dependencies. This is done by changing the
scoring function of the parser, as described in 2.1.
The output of the parser is then added to the set of
labeled sentences L.

In order to estimate the potential benefit of
such a method, we conducted the following
experiment: the parser P0, trained on the 500
sentences of L, was used to parse 1000 randomly
selected sentences from U . We will refer to this
set of sentences as U1000. Among the 24, 000
dependencies created by the parser, 3, 144 were
incorrect (governor or/and dependency label was
incorrect for a given token). These dependencies
were corrected (the right governor along with
the right dependency label was restored) and the
partially parsed sentences were parsed with P0

preserving manual annotation. The output of this
process was added to L and used to train a new
parser Ppartial. Eventually a third parser Pcomplete
was trained on a fully correct version of U1000 plus
L. The two parsers were evaluated on the test set
T . The result of these experiments are reported in
table 1.

Model LAS UAS
Pcomplete 85.60 87.84

Ppartial 85.71 87.91

Table 1: Performances of parsers trained with
respectively a set of 1000 sentences fully annotated
and the same set of sentences in which only wrong
dependencies were hand annotated.

The figures reported in table 1 show that
training a parser P on a corpus in which only
the mistakes of P were corrected can lead to
better results than training it on the fully annotated
version of this same corpus. In our case, the
partially annotated corpus contained only 3, 144
manually annotated dependencies and the fully
annotated corpus contained 24, 000 ones.

If we were able to determine the set of
wrong attachments made by a parser we would
therefore be in a position to define a very efficient
active learning algorithm. Although determining
all and only the wrong attachments is clearly
impossible, we can try to approximate this set
using a dependency based confidence measure as
described in the following subsection.

145

4.1 Attachment Entropy

Given the n-best parses of a sentence W , one
indication of the confidence of the attachment of
token w is the number of its possible governors in
the n-best parses. We define attachment entropy
of token w, noted AE(w) as a simple measure of
this confidence. Attachment entropy is computed
as follows:

AE(w) = −
∑

g∈G(w)

P (g, ·, w) logP (g, ·, w)

where G(w) is the set of the possible governors
of token w in the n-best parses and P (g, ·, w) is
the probability that tokenw is governed by token g
in the n-best parses. This probability is estimated
as follows:

P (g, ·, w) =
count(g, ·, w)

n

where count(g, ·, w) counts the number of
times token w was governed by token g in the n-
best parses3.

A perfect confidence measure should, in the
experiments reported above, allow to select the
wrong dependencies and only those. In order
to evaluate the quality of attachment entropy,
precision recall curves have been computed. For
a given threshold τ of our confidence measure, the
dependencies that are above τ (more precisely, the
dependencies (g, ·, w) of the first best parse such
that AE(w) ≥ τ) are collected to form the set DU
of uncertain dependencies. This set is compared
with the set DI of incorrect dependencies (the
set of 3, 144 dependencies described above). The
comparison is realized with precision and recall,
which are computed as follows:

Prec. = |DI∩DU |
|DU | Rec. = |DI∩DU |

|DI |

Attachment entropy depends on the length of
the n-best lists of parses produced by the parser.
A high value of n will produce, on average, a
higher number of possible governors for a token
of a sentence and therefore, a potentially higher
entropy. Three precision recall curves are reported
in figure 3 for n best lists of lengths respectively

3Labelling errors of correct attachments are not taken into
account for measuring attachment entropy for they did not
improve the quality of the confidence measure.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

n = 20

n = 100

n = 1000

Figure 3: Precision Recall curves for attachment
entropy for different n-best output of the parser.

equal to 20, 100 and 1000. Several conclusions
can be drawn from these curves. The first one
is that attachment entropy is quite far from the
perfect confidence measure that would achieve a
precision and recall of 1. High recall values can
be obtained at the cost of very low precision, and
inversely, high precision yields very low recall. On
average, lower values of n achieve better precision
recall tradeoffs but do not allow to reach high
recall values.

The inability for low values of n to reach
high values of recall opens the door for a
discussion about the influence of the sentence
length on precision recall curves. The number
of parses of a sentence is, in the worse case,
an exponential function of its length (Church
and Patil, 1982). Computing entropy attachment
on fixed length n-best parses lists only allow
to consider a very limited number of possible
governors of a token for longer sentences. A
natural solution in order to cope with this problem
is to compute variable length n-best lists, where
the value of n is a function of the length (l) of
the sentence being parsed. It would make sense
to let n be an exponential function of l. This
approach is in practice impossible since (at least
in our implementation of the n best algorithm)
the production of the n-best list will take an
exponential time. Furthermore, our experiments
showed that the value of n should not grow
too fast, as reported in figure 4. Three4 curves

4We have added the fixed 20-best curve, that achieved the
best result for fixed length n, for comparison purpose.

146

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

n = 20

n = l

n = 10*l

n = l^1.5

Figure 4: Precision Recall curves for attachment
entropy with variable length n-best lists.

have been reported in this figure, that correspond
to three functions linking n and l. The best
results were obtained for the function n = l

3
2 .

Higher order function did not obtain good results,
contrary to our intuition.

It is important, at this point to discuss one aspect
of our attachment entropy measure. In graph-
based parsing, one can compute the score of any
dependency linking two tokens of a sentence. It
is therefore possible to compute, for a given token
wj , the score of all the dependencies of the form
(i, ·, j), ∀j 1 ≤ j ≤ k and compute attachment
entropy based on this score. This method has the
advantage of considering all tokens of the sentence
as a potential governor and does not ask for the
construction of the n-best parses. But such a
method does not take into account the global score
of a parse. A dependency can get a high score
when considered alone but might not be part of a
good (high scoring) parse. In practice, it gave very
bad results5.

4.2 Active Learning Strategy

The token based active learning algorithm is
straightforward. For every iteration of the
algorithm, the most uncertain tokens are selected,
hand annotated and their sentences are parsed in
such a way that the partial annotation is preserved.
The new parses are then added to the labeled set

5As suggested by one of the reviewers, for first order
models, the confidence measure can be computed without
producing the n-best parses, using marginal probability of an
arc existing in any tree, which can be efficiently computed,
via the matrix tree theorem (McDonald and Satta, 2007).

and the process is iterated, as shown in Algorithm
2. Two different approaches can be considered
when selecting most uncertain tokens. One can
either select for every sentence the most uncertain
token or select for the whole pool the k most
uncertain tokens. In the latter case, several tokens
of a single sentence could be selected for every
step.

Algorithm 2 ACTIVE LEARNING WITH SINGLE

DEPENDENCY ANNOTATION
L: Initial training set
U : Unlabeled pool
ϕ(w): Uncertainty measure for token w
i = 0;

while There is no uncertain dependency do
Pi = train(L);
Build n-best parses of U based on Pi;
Compute ϕ(w) for each token;
U ′ = sentences containing the k most
uncertain tokens;
Annotate selected tokens;
L′ = Parse U ′ sentences, preserving
annotation;
L = L ∪ L′;
i = i+ 1;

end while

The result of the token selection strategy
is reported in figure 5. The full sentence
selection based on score entropy as well as the
random selection are also reported for comparison
purpose. The two strategies described above
(selecting the most uncertain token per sentence
or the k most uncertain tokens in the corpus)
gave almost the same results. The full sentence
selection strategy yielded better results for the first
iterations of the algorithm but was outperformed
by the token selection strategy after a while. The
token selection strategy shows good asymptotical
performances, it reaches the asymptote with
130, 000 manually annotated tokens (45.45% of
total tokens of U) while the full sentence strategy
asks for 180, 000 tokens (62.94% of total tokens
of U) to reach it. It is unclear why full sentence
selection gave better results in the first iterations,
it is as if the parser needs to be trained on full
sentences in the beginning and, after a while, gain
better benefit from isolated difficult attachments.

147

 82

 83

 84

 85

 86

 87

 88

 89

 0 50 100 150 200 250 300

L
a
b
e
l
e
d

A
c
c
u
r
a
c
y

S
c
o
r
e

Number of manually annotated tokens
in the train set (in thousands)

Most Uncertain Dependencies in Pool
Uncertain Dependencies of Each Sentence

Full Sentence Entropy
Random Selection

Figure 5: Learning curves with token selection strategy.
Comparison with full sentence strategy and random
selection.

5 Selecting Uncertain Tokens of
Uncertain Sentences

The results obtained when selecting uncertain
sentences and those obtained for uncertain tokens
showed that both strategies seem to be somehow
complementary. Such conclusion opens the door
for a two level strategy. In a first step uncertain
full sentences are selected, then uncertain tokens
of these sentences are selected, as described in
Algorithm 3.

Algorithm 3 COMBINED ACTIVE LEARNING

L: Initial training set
U : Unlabeled pool
ϕ(S): Full sentence uncertainty measure
ψ(w): Single dependency uncertainty measure
i = 0;

while U is not empty do
Pi = train(L);
Build n-best parses of U based on Pi;
Compute ϕ(S) for S ∈ U ;
U ′ = k most uncertain sentences of U ;
Compute ψ(x) for each token of U ′;
Select k′ most uncertain tokens;
Annotate selected tokens;
L′ = Partially parse U ′ sentences, preserving
annotation;
U = U − U ′;
L = L ∪ L′;
i = i+ 1;

end while

Figure 6 reports the results of the combined

 82

 83

 84

 85

 86

 87

 88

 89

 0 50 100 150 200 250 300

L
a
b
e
l
e
d

A
c
c
u
r
a
c
y

S
c
o
r
e

Number of manually annotated tokens
in the train set (in thousands)

Most Uncertain Dependencies in Pool
Combined Method

Full Sentence Entropy
Random Selection

Figure 6: Learning curves for the combined strategy.
Comparison with token selection strategy, full sentence
strategy and random selection.

method. The new method outperforms both the
full sentence and the single token strategy for
every iteration of the algorithm. It reaches the
asymptote with only 109, 000 manually annotated
tokens (37.98% of total tokens in U). These
result confirm the intuition that both score entropy
and attachment entropy carry complementary
information. One way to interpret the results
obtained is that the two methods that were tested
in this paper: selecting full sentences vs. selecting
single tokens, are two extreme positions. We did
not investigate the search space that lie between
them, i.e. specifically looking for unreliable parts
of sentences. We describe in the next section some
preliminary results along this line.

6 Conclusions and Future Work

We proposed in this paper three active learning
techniques for dependency parsing. The novelty of
this work is to annotate only difficult attachment
insead of full sentences as it is usually done in
other approaches.

Although selecting single dependencies showed
an improvement over selecting full sentences, in
some cases, it turns out that selecting subparts of
the sentence is a good strategy. A preliminary
experiment was conducted on punctuation. It
showed that selecting tokens that lie in a window
of 6 tokens centered on punctuation yielded very
good results. Such a method could be useful
for difficult attachment such as PP attachment
or coordination where dependencies must be
considered in a larger context.

148

Acknowledgements

This work has been funded by the French Agence
Nationale pour la Recherche, through the project
SEQUOIA (ANR-08-EMER-013). The authors
would like to thank the anonymous reviewers for
the very high quality of their reviews.

References

Anne Abeillé, Lionel Clément, and Toussenel
François, 2003. Treebanks, chapter Building a
treebank for French. Kluwer, Dordrecht.

Bernd Bohnet. 2010. Top Accuracy and Fast
Dependency Parsing is not a Contradiction. In
Proceedings of COLING.

Marie Candito, Benoı̂t Crabbé, and Pascal Denis.
2010. Statistical French Dependency Parsing:
Treebank Conversion and First Results. In
Proceedings of LREC2010.

X. Carreras. 2007. Experiments with a
higher-order projective dependency parser. In
Proceedings of the CoNLL Shared Task Session
of EMNLP-CoNLL, volume 7, pages 957–961.

Y.J. Chu and T.H. Liu. 1965. On the shortest
arborescence of a directed graph. Science
Sinica, 14(1396-1400):270.

K. Church and R. Patil. 1982. Coping with
syntactic ambiguity or how to put the block
in the box on the table. Computational
Linguistics, 8(3-4):139–149.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai
ShalevShwartz, and Yoram Singer. 2006.
Online Passive-Aggressive Algorithm. Journal
of Machine Learning Research.

J. Edmonds, J. Edmonds, and J. Edmonds. 1968.
Optimum branchings. National Bureau of
standards.

K. Hall. 2007. K-best spanning tree parsing. In
Proceedings of the 45th Annual Meeting of the
ACL, page 392.

L. Huang and D. Chiang. 2005. Better k-best
parsing. In Proceedings of the 9th International
Workshop on Parsing Technology, pages 53–64.

R. Hwa. 2004. Sample selection for
statistical parsing. Computational Linguistics,
30(3):253–276.

T. Koo and M. Collins. 2010. Efficient third-order
dependency parsers. In Proceedings of the 48th
Annual Meeting of the ACL, pages 1–11.

S. Kübler, R. McDonald, and J. Nivre. 2009.
Dependency parsing. Synthesis Lectures on
Human Language Technologies. Morgan &
Claypool Publishers.

D.D. Lewis and W.A. Gale. 1994. A sequential
algorithm for training text classifiers. In
Proceedings of the 17th annual international
ACM SIGIR conference on Research and
development in information retrieval, pages 3–
12.

R. McDonald and G. Satta. 2007. On
the complexity of non-projective data-driven
dependency parsing. In Proceedings of IWPT,
pages 121–132.

R. McDonald, K. Crammer, and F. Pereira. 2005.
Online large-margin training of dependency
parsers. In Proceedings of the 43rd Annual
Meeting of the Association for Computational
Linguistics, pages 91–98.

F. Olsson. 2009. A literature survey of active
machine learning in the context of natural
language processing. Technical report, Swedish
Institute of Computer Science.

R. Sánchez-Sáez, J.A. Sánchez, and J.M. Benedı́.
2009. Statistical confidence measures for
probabilistic parsing. In Proceedings of
RANLP, pages 388–392.

Manabu Sassano and Sadao Kurohashi. 2010.
Using smaller constituents rather than sentences
in active learning for japanese dependency
parsing. In Proceedings of the 48th Annual
Meeting of the ACL, pages 356–365.

Burr Settles. 2010. Active Learning Literature
Survey. Technical Report Technical Report
1648, University of Wisconsin-Madison.

M. Tang, X. Luo, and S. Roukos. 2002. Active
learning for statistical natural language parsing.
In Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics,
pages 120–127.

149

