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Abstract

This paper describes our work on improv-
ing access to the content of multimodal docu-
ments containing line graphs in popular media
for people with visual impairments. We pro-
vide an overview of our implemented system,
including our method for recognizing and con-
veying the intended message of a line graph.
The textual description of the graphic gener-
ated by our system is presented at the most rel-
evant point in the document. We also describe
ongoing work into obtaining additional propo-
sitions that elaborate on the intended message,
and examine the potential benefits of analyz-
ing the text and graphical content together in
order to extend our system to produce sum-
maries of entire multimodal documents.

1 Introduction

Individuals with visual impairments have difficulty
accessing the information contained in multimodal
documents. Although screen-reading software can
render the text of the document as speech, the graph-
ical content is largely inaccessible. Here we con-
sider information graphics (e.g., bar charts, line
graphs) often found in popular media sources such
as Time magazine, Businessweek, and USA Today.
These graphics are typically intended to convey a
message that is an important part of the overall story,
yet this message is generally not repeated in the ar-
ticle text (Carberry et al., 2006). People who are
unable to see and assimilate the graphical material
will be left with only partial information.

While some work has addressed the accessibility
of scientific graphics through alternative means like

touch or sound (see Section 7), such graphs are de-
signed for an audience of experts trained to use them
for data visualization. In contrast, graphs in popular
media are constructed to make a point which should
be obvious without complicated scientific reasoning.
We are thus interested in generating a textual pre-
sentation of the content of graphs in popular media.
Other research has focused on textual descriptions
(e.g., Ferres et al. (2007)); however in that work the
same information is included in the textual summary
for each instance of a graph type (i.e., all summaries
of line graphs contain the same sorts of informa-
tion), and the summary does not attempt to present
the overall intended message of the graph.

SIGHT (Demir et al., 2008; Elzer et al., 2011) is
a natural language system whose overall goal is pro-
viding blind users with interactive access to multi-
modal documents from electronically-available pop-
ular media sources. To date, the SIGHT project
has concentrated on simple bar charts. Its user in-
terface is implemented as a browser helper object
within Internet Explorer that works with the JAWS
screen reader. When the system detects a bar chart
in a document being read by the user, it prompts the
user to use keystrokes to request a brief summary of
the graphic capturing its primary contribution to the
overall communicative goal of the document. The
summary text can either be read to the user with
JAWS or read by the user with a screen magnifier
tool. The interface also enables the user to request
further information about the graphic, if desired.

However, SIGHT is limited to bar charts only.
In this work, we follow the methodology put forth
by SIGHT, but investigate producing a summary of
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Figure 1: From “Worry flows from Arctic ice to tropical
waters” in USA Today, May 31, 2006.

line graphs. Line graphs have different discourse
goals and communicative signals than bar charts,1

and thus require significantly different processing.
In addition, our work addresses the issue of coher-
ent placement of a graphic’s summary when reading
the text to the user and considers the summarization
of entire documents — not just their graphics.

2 Message Recognition for Line Graphs

This section provides an overview of our imple-
mented method for identifying the intended message
of a line graph. In processing a line graph, a vi-
sual extraction module first analyzes the image file
and produces an XML representation which fully
specifies the graphic (including the beginning and
ending points of each segment, any annotations on
points, axis labels, the caption, etc.). To identify
the intended message of a line graph consisting of
many short, jagged segments, we must generalize
it into a sequence of visually-distinguishable trends.
This is performed by a graph segmentation module
which uses a support vector machine and a variety
of attributes (including statistical tests) to produce a
model that transforms the graphic into a sequence of
straight lines representing visually-distinguishable
trends. For example, the line graph in Figure 1 is
divided into a stable trend from 1900 to 1930 and a
rising trend from 1930 to 2003. Similarly, the line
graph in Figure 2 is divided into a rising trend from

1Bar charts present data as discrete bars and are often used
to compare entities, while line graphs contain continuous data
series and are designed to portray longer trend relationships.
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Figure 2: From “Chrysler: Plant had $800 million im-
pact” in The (Wilmington) News Journal, Feb 15, 2007.

1997 to 1999 and a falling trend from 1999 to 2006.
In analyzing a corpus of around 100 line graphs

collected from several popular media sources, we
identified 10 intended message categories (includ-
ing rising-trend, change-trend, change-trend-return,
and big-jump, etc.), that seem to capture the kinds
of high-level messages conveyed by line graphs. A
suggestion generation module uses the sequence of
trends identified in the line graph to construct all
of its possible candidate messages in these message
categories. For example, if a graph contains three
trends, several candidate messages are constructed,
including two change-trend messages (one for each
adjacent pair of trends), a change-trend-return mes-
sage if the first and third trends are of the same type
(rising, falling, or stable), as well as a rising, falling,
or stable trend message for each individual trend.

Next, various communicative signals are ex-
tracted from the graphic, including visual features
(such as a point annotated with its value) that draw
attention to a particular part of the line graph, and
linguistic clues (such as the presence of certain
words in the caption) that suggest a particular in-
tended message category. Figure 2 contains several
such signals, including two annotated points and the
word declining in its caption. Next, a Bayesian net-
work is built to estimate the probability of the can-
didate messages; the extracted communicative sig-
nals serve as evidence for or against each candidate
message. For Figure 2, our system produces change-
trend(1997, rise, 1999, fall, 2006) as the logical rep-
resentation of the most probable intended message.
Since the dependent axis is often not explicitly la-
beled, a series of heuristics are used to identify an
appropriate referent, which we term the measure-
ment axis descriptor. In Figure 2, the measurement
axis descriptor is identified as durango sales. The
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intended message and measurement axis descriptor
are then passed to a realization component which
uses FUF/SURGE (Elhadad and Robin, 1996) to
generate the following initial description:

This graphic conveys a changing trend in
durango sales, rising from 1997 to 1999
and then falling to 2006.

3 Identifying a Relevant Paragraph

In presenting a multimodal document to a user via a
screen reader, if the author does not specify a read-
ing order in the accessibility preferences, it is not
entirely clear where the description of the graph-
ical content should be given. The text of scien-
tific articles normally makes explicit references to
any graphs contained in the document; in this case,
it makes sense to insert the graphical description
alongside the first such reference. However, popular
media articles rarely contain explicit references to
graphics. We hypothesize that describing the graphi-
cal content together with the most relevant portion of
the article text will result in a more coherent presen-
tation. Results of an experiment described in Sec-
tion 3.3 suggest the paragraph which is geograph-
ically closest to the graphic is very often not rele-
vant. Thus, our task becomes identifying the portion
of the text that is most relevant to the graph.

We have developed a method for identifying the
most relevant paragraph by measuring the similarity
between the graphic’s textual components and the
content of each individual paragraph in the docu-
ment. An information graphic’s textual components
may consist of a title, caption, and any additional
descriptions it contains (e.g., the five lines of text in
Figure 1 beneath the caption Ocean levels rising).
An initial method (P-KL) based on KL divergence
measures the similarity between a paragraph and the
graphic’s textual component; a second method (P-
KLA) is an extension of the first that incorporates
an augmented version of the textual component.

3.1 Method P-KL: KL Divergence
Kullback-Leibler (KL) divergence (Kullback, 1968)
is widely used to measure the similarity between two
language models. It can be expressed as:

DKL(p||q) =
∑
i∈V

p(i)log
p(i)

q(i)

where i is the index of a word in vocabulary V , and
p and q are two distributions of words. Liu et al.
(Liu and Croft, 2002) applied KL divergence to text
passages in order to improve the accuracy of docu-
ment retrieval. For our task, p is a smoothed word
distribution built from the line graph’s textual com-
ponent, and q is another smoothed word distribution
built from a paragraph in the article text. Smoothing
addresses the problem of zero occurrences of a word
in the distributions. We rank the paragraphs by their
KL divergence scores from lowest to highest, since
lower scores indicate a higher similarity.

3.2 Method P-KLA: Using Augmented Text

In analyzing paragraphs relevant to the graphics, we
realized that they included words that were germane
to describing information graphics in general, but
not related to the domains of individual graphs. This
led us to build a set of “expansion words” that tend to
appear in paragraphs relevant to information graph-
ics. If we could identify domain-independent terms
that were correlated with information graphics in
general, these expansion words could then be added
to the textual component of a graphic when measur-
ing its similarity to a paragraph in the article text.

We constructed the expansion word set using an
iterative process. The first step is to use P-KL to
identify m pseudo-relevant paragraphs in the cor-
responding document for each graphic in the train-
ing set (the current implementation uses m = 3).
This is similar to pseudo-relevance feedback used in
IR (Zhai, 2008), except only a single query is used
in the IR application, whereas we consider many
pairs of graphics and documents to obtain an ex-
pansion set applicable to any subsequent informa-
tion graphic. Given n graphics in the training set,
we identify (up to) m ∗ n relevant paragraphs.

The second step is to extract a set of words re-
lated to information graphics from these m ∗n para-
graphs. We assume the collection of pseudo-relevant
paragraphs was generated by two models, one pro-
ducing words relevant to the information graphics
and another producing words relevant to the topics
of the individual documents. Let Wg represent the
word frequency vector yielding words relevant to
the graphics, Wa represent the word frequency vec-
tor yielding words relevant to the document topics,
and Wp represent the word frequency vector of the
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pseudo-relevant paragraphs. We compute Wp from
the pseudo-relevant paragraphs themselves, and we
estimate Wa using the word frequencies from the
article text in the documents. Finally, we compute
Wg by filtering-out the components ofWa fromWp.
This process is related to the work by Widdows
(2003) on orthogonal negation of vector spaces.

The task can be formulated as follows:

1. Wp = αWa + βWg where α > 0 and β > 0,
which means the word frequency vector for
the pseudo-relevant paragraphs is a linear com-
bination of the background (topic) word fre-
quency vector and the graphic word vector.

2. < Wa,Wg >= 0 which means the background
word vector is orthogonal to the graph descrip-
tion word vector, under the assumption that the
graph description word vector is independent of
the background word vector and that these two
share minimal information.

3. Wg is assumed to be a unit vector, since we are
only interested in the relative rank of the word
frequencies, not their actual values.

Solving the above equations, we obtain:

α =
< Wp,Wa >

< Wa,Wa >

Wg = normalized
(
Wp −

< Wp,Wa >

< Wa,Wa >
·Wa

)
After computing Wg, we use WordNet to filter-

out words having a predominant sense other than
verb or adjective, under the assumption that nouns
will be mainly relevant to the domains or topics
of the graphs (and are thus “noise”) whereas we
want a general set of words (e.g., “increasing”)
that are typically used when describing the data in
any graph. As a rough estimate of whether a word
is predominantly a verb or adjective, we determine
whether there are more verb and adjective senses of
the word in WordNet than there are noun senses.

Next, we rank the words in the filteredWg accord-
ing to frequency and select the k most frequent as
our expansion word list (we used k = 25 in our ex-
periments). The two steps (identifyingm∗n pseudo-
relevant paragraphs and then extracting a word list of
size k to expand the graphics’ textual components)
are applied iteratively until convergence occurs or
minimal changes are observed between iterations.

In addition, parameters of the intended message
that represent points on the x-axis capture domain-
specific content of the graphic’s communicative
goal. For example, the intended message of the line
graph in Figure 1 conveys a changing trend from
1900 to 2003 with the change occurring in 1930. To
help identify relevant paragraphs mentioning these
years, we also add these parameters of the intended
message to the augmented word list.

The result of this process is the final expansion
word list used in method P-KLA. Because the tex-
tual component may be even shorter than the expan-
sion word list, we do not add a word from the expan-
sion word list to the textual component unless the
paragraph being compared also contains this word.

3.3 Results of P-KL and P-KLA
334 training graphs with their accompanying articles
were used to build the expansion word set. A sepa-
rate set of 66 test graphs and articles was analyzed
by two human annotators who identified the para-
graphs in each document that were most relevant to
its associated information graphic, ranking them in
terms of relevance. On average, annotator 1 selected
2.00 paragraphs and annotator 2 selected 1.71 para-
graphs. The annotators agreed on the top ranked
paragraph for only 63.6% of the graphs. Consid-
ering the agreement by chance, we can calculate the
kappa statistic as 0.594. This fact shows that the
most relevant paragraph is not necessarily obvious
and multiple plausible options may exist.

We applied both P-KL and P-KLA to the test set,
with each method producing a list of the paragraphs
ranked by relevance. Since our goal is to provide
the summary of the graphic at a suitable point in the
article text, two evaluation criteria are appropriate:

1. TOP: the method’s success rate in selecting
the most relevant paragraph, measured as how
often it chooses the paragraph ranked highest
by either of the annotators

2. COVERED: the method’s success rate in se-
lecting a relevant paragraph, measured as how
often it chooses one of the relevant paragraphs
identified by the annotators

Table 1 provides the success rates of both of our
methods for the TOP and COVERED criteria, along
with a simple baseline that selected the paragraph
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geographically-closest to the graphic. These results
show that both methods outperform the baseline,
and that P-KLA further improves on P-KL. P-KLA
selects the best paragraph in 60.6% of test cases,
and selects a relevant paragraph in 71.2% of the
cases. For both TOP and COVERED, P-KLA nearly
doubles the baseline success rate. The improve-
ment of P-KLA over P-KL suggests that our expan-
sion set successfully adds salient words to the tex-
tual component. A one-sided Z-test for proportion
based on binomial distribution is shown in Table 1
and indicates that the improvements of P-KL over
the baseline and P-KLA over P-KL are statistically-
significant at the 0.05 level across both criteria. The
Z-test is calculated as:

p− p0√
p0(1−p0)

n

where p0 is the lower result and p is the improved
result. The null hypothesis is H0 : p = p0 and the
alternative hypothesis is H1 : p > p0.

3.4 Using relevant paragraph identification to
improve the accessibility of line graphs

Our system improves on SIGHT by using method
P-KLA to identify the paragraph that is most rele-
vant to an information graphic. When this paragraph
is encountered, the user is asked whether he or she
would like to access the content of the graphic. For
example, our system identifies the following para-
graph as most relevant to Figure 2:

Doing so likely would require the com-
pany to bring in a new model. Sales of
the Durango and other gas-guzzling SUVs
have slumped in recent years as prices at
the pump spiked.

In contrast, the geographically-closest paragraph has
little relevance to the graphic:

“We have three years to prove to them
we need to stay open,” said Sam Latham,
president of the AFL-CIO in Delaware,
who retired from Chrysler after 39 years.

4 Identifying Additional Propositions

After the intended message has been identified, the
system next looks to identify elaborative informa-
tional propositions that are salient in the graphic.

These additional propositions expand on the initial
description of the graph by filling-in details about
the knowledge being conveyed (e.g., noteworthy
points, properties of trends, visual features) in order
to round-out a summary of the graphic.

We collected a corpus of 965 human-written sum-
maries for 23 different line graphs to discover which
propositions were deemed most salient under varied
conditions.2 Subjects received an initial description
of the graph’s intended message, and were asked to
write additional sentences capturing the most impor-
tant information conveyed by the graph. The propo-
sitions appearing in each summary were manually
coded by an annotator to determine which were most
prevalent. From this data, we developed rules to
identify important propositions in new graphs. The
rules assign weights to propositions indicating their
importance, and the weights can be compared to de-
cide which propositions to include in a summary.

Three types of rules were built. Type-1 (message
category-only) rules were created when a plurality
of summaries for all graphs having a given intended
message contained the same proposition (e.g., pro-
vide the final value for all rising-trend and falling-
trend graphs). Weights for type-1 rules were based
on the frequency with which the proposition ap-
peared in summaries for graphs in this category.

Type-2 (visual feature-only) rules were built when
there was a correlation between a visual feature and
the use of a proposition describing that feature, re-
gardless of the graph’s message category (e.g., men-
tion whether the graph is highly volatile). Type-2
rule weights are a function of the covariance be-
tween the magnitude of the visual feature (e.g., de-
gree of volatility) and the proportion of summaries
mentioning this proposition for each graph.

For propositions associated with visual features
linked to a particular message category (e.g., de-
scribe the trend immediately following a big-jump
or big-fall when it terminates prior to the end of the
graph), we constructed Type-3 (message category
+ visual feature) rules. Type-3 weights were cal-
culated just like Type-2 weights, except the graphs
were limited to the given category.

As an example of identifying additional proposi-

2This corpus is described in greater detail by Greenbacker et
al. (2011) and is available at www.cis.udel.edu/~mccoy/corpora
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closest P-KL significance level over closest P-KLA significance level over P-KL
TOP 0.272 0.469 (z = 3.5966, p < 0.01) 0.606 (z = 2.2303, p < 0.025)
COVERED 0.378 0.606 (z = 3.8200, p < 0.01) 0.712 (z = 1.7624, p < 0.05)

Table 1: Success rates for baseline method (“closest”), P-KL, and P-KLA using the TOP and COVERED criteria.

tions, consider Figures 1 and 2. Both line graphs
belong to the same intended message category:
change-trend. However, the graph in Figure 1 is far
more volatile than Figure 2, and thus it is likely that
we would want to mention this proposition (i.e., “the
graph shows a high degree of volatility...”) in a sum-
mary of Figure 1. By finding the covariance between
the visual feature (i.e., volatility) and the frequency
with which a corresponding proposition was anno-
tated in the corpus summaries, a Type-2 rule assigns
a weight to this proposition based on the magnitude
of the visual feature. Thus, the volatility proposi-
tion will be weighted strongly for Figure 1, and will
likely be selected to appear in the initial summary,
while the weight for Figure 2 will be very low.

5 Integrating Text and Graphics

Until now, our system has only produced summaries
for the graphical content of multimodal documents.
However, a user might prefer a summary of the en-
tire document. Possible use cases include examining
this summary to decide whether to invest the time re-
quired to read a lengthy article with a screen reader,
or simply addressing the common problem of having
too much material to review in too little time (i.e.,
information overload). We are developing a system
extension that will allow users to request summaries
of arbitrary length that cover both the text and graph-
ical content of a multimodal document.

Graphics in popular media convey a message that
is generally not repeated in the article text. For ex-
ample, the March 3, 2003 issue of Newsweek con-
tained an article entitled, “The Black Gender Gap,”
which described the professional achievements of
black women. It included a line graph (Figure 3)
showing that the historical gap in income equality
between white women and black women had been
closed, yet this important message appears nowhere
in the article text. Other work in multimodal doc-
ument summarization has relied on image captions
and direct references to the graphic in the text (Bha-
tia et al., 2009); however, these textual elements do

Figure 3: From “The Black Gender Gap” in Newsweek,
Mar 3, 2003.

not necessarily capture the message conveyed by in-
formation graphics in popular media. Thus, the user
may miss out on an essential component of the over-
all communicative goal of the document if the sum-
mary covers only material presented in the text.

One approach to producing a summary of the en-
tire multimodal document might be to “concatenate”
a traditional extraction-based summary of the text
(Kupiec et al., 1995; Witbrock and Mittal, 1999)
with the description generated for the graphics by
our existing system. The summary of the graphi-
cal content could be simply inserted wherever it is
deemed most relevant in the text summary. How-
ever, such an approach would overlook the relation-
ships and interactions between the text and graphical
content. The information graphics may make certain
concepts mentioned in the text more salient, and vice
versa. Unless we consider the contributions of both
the text and graphics together during the content se-
lection phase, the most important information might
not appear in the summary of the document.

Instead, we must produce a summary that inte-
grates the content conveyed by the text and graphics.
We contend that this integration must occur at the se-
mantic level if it is to take into account the influence
of the graphic’s content on the salience of concepts
in the text and vice versa. Our tack is to first build
a single semantic model of the concepts expressed
in both the article text and information graphics, and
then use this model as the basis for generating an
abstractive summary of the multimodal document.
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Drawing from a model of the semantic content of the
document, we select as many or as few concepts as
we wish, at any level of detail, to produce summaries
of arbitrary length. This will permit the user to re-
quest a quick overview in order to decide whether to
read the original document, or a more comprehen-
sive synopsis to obtain the most important content
without having to read the entire article.

5.1 Semantic Modeling of Multimodal
Documents

Content gathered from the article text by a seman-
tic parser and from the information graphics by
our graph understanding system is combined into
a single semantic model based on typed, struc-
tured objects organized under a foundational ontol-
ogy (McDonald, 2000a). For the semantic pars-
ing of text, we use Sparser (McDonald, 1992), a
bottom-up, phrase-structure-based chart parser, op-
timized for semantic grammars and partial parsing.3

Using a built-in model of core English grammar
plus domain-specific grammars, Sparser extracts in-
formation from the text and produces categorized
objects as a semantic representation (McDonald,
2000b). The intended message and salient additional
propositions identified by our system for the infor-
mation graphics are decomposed and added to the
model constructed by Sparser.4

Model entries contain slots for attributes in the
concept category’s ontology definition (fillable by
other concepts or symbols), the original phrasings
mentioning this concept in the text (represented as
parameterized synchronous TAG derivation trees),
and markers recording document structure (i.e.,
where in the text [including title, headings, etc.] or
graphic the concept appeared). Figure 4 shows some
of the information contained in a small portion of
the semantic model built for an article entitled “Will
Medtronic’s Pulse Quicken?” from the May 29,
2006 edition of Businessweek magazine5, which in-
cluded a line graph. Nodes correspond to concepts

3https://github.com/charlieg/Sparser
4Although the framework is general enough to accommo-

date any modality (e.g., images, video) given suitable seman-
tic analysis tools, our prototype implementation focuses on bar
charts and line graphs analyzed by SIGHT.

5http://www.businessweek.com/magazine/
content/06_22/b3986120.htm

and edges denote relationships between concepts;
dashed lines indicate links to concepts not shown in
this figure. Nodes are labelled with the name of the
conceptual category they instantiate, and a number
to distinguish between individuals. The middle of
each box displays the attributes of the concept, while
the bottom portion shows some of the original text
phrasings. Angle brackets (<>) note references to
other concepts, and hash marks (#) indicate a sym-
bol that has not been instantiated as a concept.

P1S1: "medical device
    giant Medtronic"
P1S5: "Medtronic"

Name: "Medtronic"
Stock: "MDT"
Industry: (#pacemakers,
    #defibrillators,
    #medical devices)

Company1

P1S4: "Joanne
    Wuensch"
P1S7: "Wuensch"

FirstName: "Joanne"
LastName: "Wuensch"

Person1

P1S4: "a 12-month
    target of 62"

Person: <Person 1>
Company: <Company 1>
Price: $62.00
Horizon: #12_months

TargetStockPrice1

Figure 4: Detail of model for Businessweek article.

5.2 Rating Content in Semantic Models

The model is then rated to determine which items are
most salient. The concepts conveying the most in-
formation and having the most connections to other
important concepts in the model are the ones that
should be chosen for the summary. The importance
of each concept is rated according to a measure of
information density (ID) involving several factors:6

Saturation Level Completeness of attributes in
model entry: a concept’s filled-in slots (f ) vs. its
total slots (s), and the importance of the concepts
(ci) filling those slots: f

s ∗ log(s) ∗
∑f

i=1 ID(ci)

Connectedness Number of connections (n) with
other concepts (cj), and the importance of these con-
nected concepts:

∑n
j=1 ID(cj)

Frequency Number of observed phrasings (e) re-
alizing the concept in text of the current document

Prominence in Text Prominence based on docu-
ment structure (WD) and rhetorical devices (WR)

Graph Salience Salience assessed by the graph
understanding system (WG) – only applies to con-
cepts appearing in the graphics

6The first three factors are similar to the dominant slot
fillers, connectivity patterns, and frequency criteria described
by Reimer and Hahn (1988).
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Saturation corresponds to the completeness of the
concept in the model. The more attribute slots that
are filled, the more we know about a particular con-
cept instance. However, this measure is highly sen-
sitive to the degree of detail provided in the seman-
tic grammar and ontology class definition (whether
created by hand or automatically). A concept having
two slots, both of which are filled-out, is not neces-
sarily more important than a concept with only 12
of its 15 slots filled. The more important a concept
category is in a given domain, the more detailed its
ontology class definition will likely be. Thus, we
can assume that a concept definition having a dozen
or more slots is, broadly speaking, more important
in the domain than a less well-defined concept hav-
ing only one or two slots. This insight is the basis of
a normalization factor (log(s)) used in ID.

Saturation differs somewhat from repetition in
that it attempts to measure the amount of informa-
tion associated with a concept, rather than simply
the number of times a concept is mentioned in the
text. For example, a news article about a proposed
law might mention “Washington” several times, but
the fact that the debate took place in Washington,
D.C. is unlikely to be an important part of the article.
However, the key provisions of the bill, which may
individually be mentioned only once, are likely more
important as a greater amount of detail is provided
concerning them. Simple repetition is not necessar-
ily indicative of the importance of a concept, but if a
large amount of information is provided for a given
concept, it is safe to assume the concept is important
in the context of that document.

Document structure (WD) is another important
clue in determining which elements of a text are
important enough to include in a summary (Marcu,
1997). If a concept is featured prominently in the
title, or appears in the first or final paragraphs, it is
likely more important than a concept buried in the
middle of the document. Importance is also affected
by certain rhetorical devices (WR) which serve to
highlight particular concepts. Being used in an id-
iom, or compared to another concept by means of
juxtaposition suggests that a given concept may hold
special significance. Finally, the weights assigned
by our graph understanding system for the additional
propositions identified in the graphics are incorpo-
rated into the ID of the concepts involved as WG.

5.3 Selecting Content for a Summary

To select concepts for inclusion in the summary,
the model will then be passed to a discourse-aware
graph-based content selection framework (Demir et
al., 2010), which selects concepts one at a time
and iteratively re-weights the remaining items so
as to include related concepts and avoid redun-
dancy. This algorithm incorporates PageRank (Page
et al., 1999), but with several modifications. In ad-
dition to centrality assessment based on relation-
ships between concepts, it includes apriori impor-
tance nodes enabling us to incorporate concept com-
pleteness, number of expressions, document struc-
ture, and rhetorical devices. More importantly from
a summary generation perspective, the algorithm it-
eratively picks concepts one at a time, and re-ranks
the remaining entries by increasing the weight of re-
lated items and discounting redundant ones. This
allows us to select concepts that complement each
other while simultaneously avoiding redundancy.

6 Generating an Abstractive Summary of
a Multimodal Document

Figure 4 shows the two most important concepts
(Company1 & Person1) selected from the Medtronic
article in Section 5.1. Following McDonald and
Greenbacker (2010), we use the phrasings observed
by the parser as the “raw material” for expressing
these selected concepts. Reusing the original phras-
ings reduces the reliance on built-in or “canned”
constructions, and allows the summary to reflect the
style of the original text. The derivation trees stored
in the model to realize a particular concept may use
different syntactic constituents (e.g., noun phrases,
verb phrases). Multiple trees are often available for
each concept, and we must select particular trees that
fit together to form a complete sentence.

The semantic model also contains concepts rep-
resenting propositions extracted from the graphics,
as well as relationships connecting these graphical
concepts with those derived from the text, and there
are no existing phrasings in the original document
that can be reused to convey this graphical content.
However, the set of proposition types that can be ex-
tracted from the graphics is finite. To ensure that we
have realizations for every concept in our model, we
create TAG derivation trees for each type of graphi-
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cal proposition. As long as realizations are supplied
for every proposition that can be decomposed in the
model, our system will never be stuck with a concept
without the means to express it.

The set of expressions is augmented by many
built-in realizations for common semantic relation-
ships (e.g., “is-a,” “has-a”), as well as expressions
inherited from other conceptual categories in the hi-
erarchy. If the observed expressions are retained as
the system analyzes multiple documents over time,
making these realizations available for later use by
concepts in the same category, the variety of utter-
ances we can generate is increased greatly.

By using synchronous TAG trees, we know that
the syntactic realizations of two semantically-related
concepts will fit together syntactically (via substitu-
tion or adjunction). However, the concepts selected
for the summary of the Medtronic article (Com-
pany1 & Person1), are not directly connected in the
model. To produce a single summary sentence for
these two concepts, we must find a way of express-
ing them together with the available phrasings. This
can be accomplished by using an intermediary con-
cept that connects both of the selected items in the
semantic model, in order to “bridge the gap” be-
tween them. In this example, a reasonable option
would be TargetStockPrice1, one of the many con-
cepts linking Company1 and Person1. Combining
original phrasings from all three concepts (via sub-
stitution and adjunction operations on the underly-
ing TAG trees), along with a “built-in” realization
inherited by the TargetStockPrice category (a sub-
type of Expectation), yields this surface form:

Wuensch expects a 12-month target of 62
for medical device giant Medtronic.

7 Related Work

Research into providing alternative access to graph-
ics has taken both verbal and non-verbal approaches.
Kurze (1995) presented a verbal description of the
properties (e.g., diagram style, number of data sets,
range and labels of axes) of business graphics. Fer-
res et al. (2007) produced short descriptions of the
information in graphs using template-driven genera-
tion based on the graph type. The SIGHT project
(Demir et al., 2008; Elzer et al., 2011) generated
summaries of the high-level message content con-

veyed by simple bar charts. Other modalities, like
sound (Meijer, 1992; Alty and Rigas, 1998; Choi
and Walker, 2010) and touch (Ina, 1996; Krufka et
al., 2007), have been used to impart graphics via a
substitute medium. Yu et al. (2002) and Abu Doush
et al. (2010) combined haptic and aural feedback,
enabling users to navigate and explore a chart.

8 Discussion

This paper presented our system for providing ac-
cess to the full content of multimodal documents
with line graphs in popular media. Such graph-
ics generally have a high-level communicative goal
which should constitute the core of a graphic’s sum-
mary. Rather than providing this summary at the
point where the graphic is first encountered, our sys-
tem identifies the most relevant paragraph in the
article and relays the graphic’s summary at this
point, thus increasing the presentation’s coherence.
System extensions currently in development will
provide a more integrative and accessible way for
visually-impaired readers to experience multimodal
documents. By producing abstractive summaries of
the entire document, we reduce the amount of time
and effort required to assimiliate the information
conveyed by such documents in popular media.

Several tasks remain as future work. The intended
message descriptions generated by our system need
to be evaluated by both sighted and non-sighted hu-
man subjects for clarity and accuracy. We intend
to test our hypothesis that graphics ought to be de-
scribed alongside the most relevant part of the text
by performing an experiment designed to determine
the presentation order preferred by people who are
blind. The rules developed to identify elaborative
propositions also must be validated by a corpus or
user study. Finally, once the system is fully imple-
mented, the abstractive summaries generated for en-
tire multimodal documents will need to be evaluated
by both sighted and sight-impaired judges.
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